JP6287813B2 - Radiation phase contrast imaging device - Google Patents

Radiation phase contrast imaging device Download PDF

Info

Publication number
JP6287813B2
JP6287813B2 JP2014258714A JP2014258714A JP6287813B2 JP 6287813 B2 JP6287813 B2 JP 6287813B2 JP 2014258714 A JP2014258714 A JP 2014258714A JP 2014258714 A JP2014258714 A JP 2014258714A JP 6287813 B2 JP6287813 B2 JP 6287813B2
Authority
JP
Japan
Prior art keywords
radiation
image
self
energy
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014258714A
Other languages
Japanese (ja)
Other versions
JP2016116736A (en
Inventor
晃一 田邊
晃一 田邊
真悟 古井
真悟 古井
弘之 岸原
弘之 岸原
木村 健士
健士 木村
太郎 白井
太郎 白井
貴弘 土岐
貴弘 土岐
哲 佐野
哲 佐野
日明 堀場
日明 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014258714A priority Critical patent/JP6287813B2/en
Publication of JP2016116736A publication Critical patent/JP2016116736A/en
Application granted granted Critical
Publication of JP6287813B2 publication Critical patent/JP6287813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、物体を透過した放射線の位相差を利用して物体の内部構造をイメージングすることができる放射線位相差撮影装置に関する。   The present invention relates to a radiation phase difference imaging apparatus capable of imaging an internal structure of an object using a phase difference of radiation transmitted through the object.

従来、物体に放射線を透過させて物体の内部構造をイメージングする放射線撮影装置として様々なものが考え出されている。このような放射線撮影装置の一般的なものとしては、物体に放射線を当て、物体を通過させることにより放射線の投影像を撮影するものである。このような投影像には、放射線を通しやすさに応じて濃淡が現れており、これが物体の内部構造を表している。   2. Description of the Related Art Conventionally, various devices have been devised as radiation imaging apparatuses for imaging an internal structure of an object by transmitting radiation to the object. As a general thing of such a radiography apparatus, a projected image of radiation is captured by irradiating an object with radiation and passing the object through. In such a projected image, shading appears according to the ease of passing radiation, and this represents the internal structure of the object.

このような放射線撮影装置では、ある程度放射線を吸収する性質を有する物体しか撮影することができない。例えば生体軟部組織などは、放射線をほとんど吸収しない。一般的な装置でこのような組織を撮影したとしても、投影像にはほとんど何も写らない。このように放射線を吸収しない物体の内部構造をイメージングしようとするときは、一般的な放射線撮影装置では原理上の限界がある。   With such a radiation imaging apparatus, only an object having a property of absorbing radiation to some extent can be imaged. For example, living soft tissue hardly absorbs radiation. Even if such a tissue is photographed with a general device, the projection image shows almost nothing. Thus, when attempting to image the internal structure of an object that does not absorb radiation, a general radiographic apparatus has a theoretical limit.

そこで、透過放射線の位相差を利用して物体の内部構造をイメージングする放射線位相差撮影装置が考え出されてきている。このような装置は、タルボ干渉を利用して物体の内部構造をイメージングする。   Thus, a radiation phase difference imaging apparatus has been devised that images the internal structure of an object using the phase difference of transmitted radiation. Such an apparatus uses Talbot interference to image the internal structure of an object.

タルボ干渉について説明する。図11の放射線源53からは、位相のそろった放射線が照射されている。この放射線がスダレ状となっている位相格子55を通過させると、位相格子55から所定の距離(タルボ距離)離れた投影面上に位相格子55の像が現れる。この像を自己像と呼ぶ。自己像は、投影面が位相格子55からタルボ距離だけ離れた位置でしか生じないものであり、単なる位相格子55の投影像ではない。自己像は、光の干渉によって生じた干渉縞から構成される。タルボ距離において位相格子55の自己像が現れる理由は放射線源53から生じる放射線の位相がそろっているからである。放射線の位相が乱れると、タルボ距離に表れる自己像も乱れる。   Talbot interference will be described. The radiation source 53 in FIG. 11 emits radiation in phase. When the radiation passes through the phase grating 55 having a saddle shape, an image of the phase grating 55 appears on a projection plane separated from the phase grating 55 by a predetermined distance (Talbot distance). This image is called a self-image. The self-image is generated only at a position where the projection plane is separated from the phase grating 55 by the Talbot distance, and is not simply a projection image of the phase grating 55. The self-image is composed of interference fringes generated by light interference. The reason why the self-image of the phase grating 55 appears at the Talbot distance is that the phases of the radiation generated from the radiation source 53 are aligned. When the phase of radiation is disturbed, the self-image that appears in the Talbot distance is also disturbed.

放射線位相差撮影装置は自己像の乱れを利用して物体の内部構造をイメージングする。放射線源と位相格子55との間に物体を置いたものとする。この物体は、放射線をほとんど吸収しないので、物体に入射した放射線のほとんどは位相格子55側に出射する。   The radiation phase contrast imaging apparatus images the internal structure of an object using the disturbance of the self-image. Assume that an object is placed between the radiation source and the phase grating 55. Since this object hardly absorbs radiation, most of the radiation incident on the object is emitted to the phase grating 55 side.

放射線は物体を完全に素通りであったかいうとそうではない。放射線の位相が物体を通過する間に変わるのである。物体を出射した放射線は位相が変化したまま位相格子55を通過する。この放射線をタルボ距離に置いた投影面で観察すると、位相格子55の自己像に乱れが生じている。この位相格子55の乱れの程度は放射線の位相変化を表している。   That's not the case if the radiation was completely passing through the object. The phase of the radiation changes while passing through the object. The radiation emitted from the object passes through the phase grating 55 with its phase changed. When this radiation is observed on the projection plane placed at the Talbot distance, the self-image of the phase grating 55 is disturbed. The degree of disturbance of the phase grating 55 represents a change in the phase of radiation.

物体を透過した放射線の位相が具体的にどの程度変更するかは、放射線が物体のどこを通過したかによって変わる。仮に物体が均質な構成であれば、放射線の位相の変化は物体のどこを通っても同じである。しかし、一般的に物体は何らかの内部構造を有している。このような物体に放射線を透過させると位相の変化が同じとならないのである。   The extent to which the phase of the radiation transmitted through the object changes specifically depends on where the radiation has passed through the object. If the object has a homogeneous configuration, the change in the phase of the radiation is the same everywhere in the object. However, in general, an object has some internal structure. If radiation is transmitted through such an object, the phase change will not be the same.

したがって、位相の変化が分かれば物体の内部構造を知ることができる。位相の変化はタルボ距離における位相格子55の自己像を観察することで知ることができる。自己像の観察はタルボ距離に置かれた放射線検出器で実行される(例えば特許文献1参照)。   Therefore, if the phase change is known, the internal structure of the object can be known. The change in phase can be known by observing the self-image of the phase grating 55 at the Talbot distance. Observation of the self-image is performed with a radiation detector placed at the Talbot distance (see, for example, Patent Document 1).

国際特許公開第2009104560号公報International Patent Publication No. 2009104560

しかしながら、従来の放射線位相差撮影装置には次のような問題点がある。
すなわち、従来の放射線位相差撮影装置は、鮮明な透視像を得るのが難しい。撮影に用いる放射線のエネルギーを最適化することができないからである。
However, the conventional radiation phase contrast imaging apparatus has the following problems.
That is, it is difficult to obtain a clear fluoroscopic image with the conventional radiation phase contrast imaging apparatus. This is because the radiation energy used for imaging cannot be optimized.

放射線位相差撮影装置の放射線源から発する放射線のエネルギーは、何であってもいいというわけはない。例えば、放射線源が発する放射線のエネルギーが低すぎると、放射線が物体の中で吸収されてしまい透過しにくくなる。このような低いエネルギーの放射線は撮影に不向きである。物体の内部構造を知るには、放射線が物体を透過することで生じる自己像の乱れを観察する必要があるからである。   The energy of the radiation emitted from the radiation source of the radiation phase contrast imaging apparatus is not limited. For example, if the energy of the radiation emitted from the radiation source is too low, the radiation is absorbed in the object and is difficult to transmit. Such low energy radiation is not suitable for imaging. This is because in order to know the internal structure of the object, it is necessary to observe the disturbance of the self-image caused by the radiation passing through the object.

かといって、放射線源が発する放射線のエネルギーが高すぎると、放射線の位相は物体の影響を受けにくくなり、放射線は物体と相互作用せずにそのまま素通りしてしまう。このような高いエネルギーの放射線は撮影に不向きである。物体の内部構造を知るには、放射線が物体を透過することで生じる自己像の乱れを観察する必要があるからである。このように放射線位相差撮影をするときには撮影に適した放射線のエネルギーというものがある。撮影に最適のエネルギーは被写体によって異なる。鮮明な透視像を得ようとすれば、放射線のエネルギーを変えて撮影をやり直したほうがよい場合が出てくる。   However, if the energy of the radiation emitted from the radiation source is too high, the phase of the radiation is not easily affected by the object, and the radiation passes through as it is without interacting with the object. Such high energy radiation is not suitable for imaging. This is because in order to know the internal structure of the object, it is necessary to observe the disturbance of the self-image caused by the radiation passing through the object. Thus, when performing radiation phase contrast imaging, there is radiation energy suitable for imaging. The optimum energy for shooting varies depending on the subject. In order to obtain a clear fluoroscopic image, it may be better to change the energy of the radiation and re-shoot.

そもそも、従来装置は、放射線のエネルギーを1つに定め、それに合わせて位相格子の構成や検出素子との離間距離などを設定したものとなっている。したがって、従来装置はもとより放射線のエネルギーを変えて撮影を繰り返すような構成とはなっていない。   In the first place, in the conventional apparatus, the radiation energy is set to one, and the configuration of the phase grating, the separation distance from the detection element, and the like are set in accordance with that. Therefore, the conventional apparatus is not configured to repeat imaging while changing the radiation energy.

とはいえ、タルボ干渉の原理からすると、従来装置であっても放射線のエネルギーの異なる撮影を繰り返すことは不可能というわけではない。しかし、従来装置においてこのような撮影をするのは極めて煩雑な作業となる。放射線のエネルギーによってタルボ距離は変化する。したがって、位相格子55から自己像が現れる位置までの距離は放射線のエネルギーによって変わることになる。放射線のエネルギーの異なる撮影を繰り返すには、放射線のエネルギーを変える度に位相格子55と放射線検出器の離間距離を調整し直さなければならない。   However, based on the principle of Talbot interference, it is not impossible to repeat imaging with different radiation energies even with conventional devices. However, it is extremely troublesome to perform such shooting in the conventional apparatus. The Talbot distance varies depending on the energy of the radiation. Therefore, the distance from the phase grating 55 to the position where the self-image appears changes depending on the energy of the radiation. In order to repeat imaging with different radiation energies, the distance between the phase grating 55 and the radiation detector must be adjusted each time the radiation energy is changed.

本発明は、この様な事情に鑑みてなされたものであって、その目的は、複数のエネルギーの放射線を用いた物体の撮影を簡便に行うことができる放射線位相差撮影装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a radiation phase difference imaging apparatus that can easily perform imaging of an object using radiation of a plurality of energies. is there.

本発明は上述の課題を解決するために次のような構成をとる。
すなわち、本発明に係る放射線位相差撮影装置は、高エネルギーの放射線と低エネルギーの放射線とを照射する放射線源と、放射線を吸収する1方向に伸びる吸収体が1方向と直交する方向に配列されているとともに、放射線が透過することによりタルボ干渉を生じさせる格子と、高エネルギーの放射線に係る格子の自己像を検出する高エネルギー放射線検出面と、低エネルギーの放射線に係る格子の自己像を検出する低エネルギー放射線検出面とを備えた検出部とを備え、放射線源、格子、および検出部の位置関係が保たれたまま検出面上で被写体の投影が移動するように放射線源、格子、および検出部で構成される撮像系と被写体との相対位置を変更させる位置変更部と、検出部が高エネルギー放射線検出面で放射線を検出した結果から第1の自己像をイメージングするとともに、検出部が低エネルギー放射線検出面で放射線を検出した結果から第2の自己像をイメージングする自己像生成部と、自己像生成部がイメージングした高エネルギーの放射線に係る第1の自己像から被写体の第1の透視画像または第1の小角散乱画像を生成するとともに、自己像生成部がイメージングした低エネルギーの放射線に係る第2の自己像から被写体の第2の透視画像または第2の小角散乱画像を生成する透視画像生成部とを備えることを特徴とするものである。
The present invention has the following configuration in order to solve the above-described problems.
That is, in the radiation phase contrast imaging apparatus according to the present invention, a radiation source that irradiates high-energy radiation and low-energy radiation, and an absorber that extends in one direction that absorbs radiation are arranged in a direction orthogonal to one direction. In addition, a grating that causes Talbot interference by transmitting radiation, a high-energy radiation detection surface that detects a self-image of the grating related to high-energy radiation, and a self-image of the grating related to low-energy radiation are detected. A radiation source, a grating, and a radiation source such that the projection of the subject moves on the detection surface while maintaining the positional relationship between the radiation source, the grating, and the detection unit. a position changing unit for changing the relative position between the imaging system and the subject constituted by the detection unit, from the results detector detects radiation with high energy radiation detection surface The self-image generator 1 images the second self-image based on the result of detecting the radiation on the low-energy radiation detection surface, and the high-energy radiation imaged by the self-image generator. The first perspective image or the first small-angle scattered image of the subject is generated from the first self-image and the second self-image of the low-energy radiation imaged by the self-image generation unit is generated. And a fluoroscopic image generation unit that generates a fluoroscopic image or a second small-angle scattered image .

[作用・効果]本発明によれば、複数のエネルギーの放射線を用いた物体の撮影を簡便に行うことができる放射線位相差撮影装置が提供できる。すなわち、本発明の構成は、デュアルエナジー出力タイプの放射線源と高エネルギー放射線検出面および低エネルギー放射線検出面を備えた検出部とを備え、高エネルギーの放射線による撮影と低エネルギーの放射線による撮影との二種類の撮影を行えるようにしている。そして、撮像系と被写体との相対位置を変更させながら被写体をスキャンするように撮影すれば、二種類の撮影を一度に完了することができる。
また、自己像生成部が高エネルギーの放射線についての自己像と低エネルギーの放射線についての自己像とを個別にイメージングすれば、異なる放射線の条件のそれぞれについて確実に自己像を生成することができる。
また、透視画像生成部が高エネルギーの放射線についての透視画像と低エネルギーの放射線についての透視画像とを個別に生成すれば、異なる放射線の条件のそれぞれについて確実に透視画像を生成することができる。
[Operation / Effect] According to the present invention, it is possible to provide a radiation phase difference imaging apparatus capable of easily imaging an object using radiation of a plurality of energies. That is, the configuration of the present invention includes a dual energy output type radiation source and a detection unit having a high energy radiation detection surface and a low energy radiation detection surface, and imaging with high energy radiation and imaging with low energy radiation. The two types of shooting can be performed. If shooting is performed so that the subject is scanned while changing the relative position between the imaging system and the subject, two types of shooting can be completed at once.
Further, if the self-image generation unit individually images a self-image for high-energy radiation and a self-image for low-energy radiation, a self-image can be reliably generated for each of different radiation conditions.
Further, if the fluoroscopic image generation unit individually generates a fluoroscopic image for high-energy radiation and a fluoroscopic image for low-energy radiation, it is possible to reliably generate a fluoroscopic image for each of different radiation conditions.

また、上述の放射線位相差撮影装置において、格子は、高エネルギーの放射線が透過する部分と、低エネルギーの放射線が透過する部分とを有する1つの格子であり、検出部が有する高エネルギー放射線検出面から格子までの距離と、低エネルギー放射線検出面から格子までの距離とは互いに異なり、検出部が有する高エネルギー放射線検出面から格子までの距離は高エネルギーの放射線に対応するタルボ距離に基づいて設定され、低エネルギー放射線検出面から格子までの距離は低エネルギーの放射線に対応するタルボ距離に基づいて設定されていればより望ましいIn the above-described radiation phase contrast imaging apparatus, the grating is one grating having a portion through which high-energy radiation is transmitted and a portion through which low-energy radiation is transmitted, and the detection unit has a high-energy radiation detection surface. The distance from the grid to the grid and the distance from the low-energy radiation detection surface to the grid are different from each other, and the distance from the high-energy radiation detection surface to the grid of the detector is set based on the Talbot distance corresponding to the high-energy radiation It is more desirable that the distance from the low energy radiation detection surface to the grating is set based on the Talbot distance corresponding to the low energy radiation .

[作用・効果]上述の構成は、本発明のより具体的に示している。格子を起点として自己像が現れる位置までの距離を示すタルボ距離は、放射線のエネルギーによって変化する。高エネルギー放射線検出面から格子までの距離と、低エネルギー放射線検出面から格子までの距離とを独立に設定するようにすれば、検出面から格子までの距離を異なるエネルギーの放射線について確実にタルボ距離に設定することができる。   [Operation / Effect] The above-described configuration is more specifically shown in the present invention. The Talbot distance, which indicates the distance from the lattice to the position where the self-image appears, varies depending on the energy of the radiation. If the distance from the high-energy radiation detection surface to the grating and the distance from the low-energy radiation detection surface to the grating are set independently, the distance from the detection surface to the grating can be reliably set to the Talbot distance for radiation of different energies. Can be set to

また、上述の放射線位相差撮影装置において、位置変更部が高エネルギー放射線検出面と低エネルギー放射線検出面との位置関係を保った状態で検出部を移動させればより望ましい。   In the above-mentioned radiation phase contrast imaging apparatus, it is more desirable that the position changing unit is moved in a state where the positional relationship between the high energy radiation detection surface and the low energy radiation detection surface is maintained.

[作用・効果]上述の構成は、本発明のより具体的に示している。高エネルギー放射線検出面と低エネルギー放射線検出面との位置関係を保った状態で検出部が移動されれば、検出面から格子までの距離が確実にタルボ距離に保たれた状態で被写体のスキャンを行うことができる。   [Operation / Effect] The above-described configuration is more specifically shown in the present invention. If the detector is moved while maintaining the positional relationship between the high-energy radiation detection surface and the low-energy radiation detection surface, the subject can be scanned with the distance from the detection surface to the grid reliably maintained at the Talbot distance. It can be carried out.

また、上述の放射線位相差撮影装置において、自己像生成部が、撮像系と被写体との相対位置を変更する際の移動方向に幅狭の画像を時系列順に移動方向に並べてつなぎあわせることにより、第1の自己像および第2の自己像をイメージングすればより望ましい。Further, in the above-described radiation phase difference imaging apparatus, the self-image generation unit arranges images that are narrow in the moving direction when changing the relative position between the imaging system and the subject and arranged in the moving direction in chronological order, It is more desirable to image the first self-image and the second self-image.

また、上述の放射線位相差撮影装置において、位置変更部は、放射線源、格子、および検出部の位置関係が保たれたまま検出面上で被写体の投影が平行移動するように放射線源、格子、および検出部で構成される撮像系と被写体との相対位置を変更させればより望ましい。Further, in the above-described radiation phase difference imaging apparatus, the position changing unit includes the radiation source, the grating, and the radiation source, the grating, and the radiation source, the grating, It is more desirable to change the relative position between the imaging system constituted by the detection unit and the subject.

(削除)(Delete)

(削除)(Delete)

本発明によれば、複数のエネルギーの放射線を用いた物体の撮影を簡便に行うことができる放射線位相差撮影装置が提供できる。すなわち、本発明の構成は、デュアルエナジー出力タイプの放射線源と高エネルギー放射線検出面および低エネルギー放射線検出面を備えた検出部とを備え、高エネルギーの放射線による撮影と低エネルギーの放射線による撮影との二種類の撮影を行えるようにしている。そして、撮像系と被写体との相対位置を変更させながら被写体をスキャンするように撮影すれば、二種類の撮影を一度に完了することができる。   ADVANTAGE OF THE INVENTION According to this invention, the radiation phase difference imaging apparatus which can image | photograph the object easily using the radiation of several energy can be provided. That is, the configuration of the present invention includes a dual energy output type radiation source and a detection unit having a high energy radiation detection surface and a low energy radiation detection surface, and imaging with high energy radiation and imaging with low energy radiation. The two types of shooting can be performed. If shooting is performed so that the subject is scanned while changing the relative position between the imaging system and the subject, two types of shooting can be completed at once.

実施例1に係る装置の全体構成を説明する機能ブロック図である。1 is a functional block diagram illustrating an overall configuration of a device according to Embodiment 1. FIG. 実施例1に係る撮像系の移動を説明する模式図である。FIG. 3 is a schematic diagram illustrating movement of the imaging system according to the first embodiment. 実施例1に係る位相格子の構成を説明する平面図である。3 is a plan view illustrating the configuration of a phase grating according to Embodiment 1. FIG. 実施例1に係る検出面の構成を説明する平面図である。3 is a plan view illustrating a configuration of a detection surface according to Embodiment 1. FIG. 実施例1に係るFPDが有する2つの検出面を説明する模式図である。6 is a schematic diagram illustrating two detection surfaces of the FPD according to Embodiment 1. FIG. 実施例1に係る自己像生成部を説明する模式図である。3 is a schematic diagram illustrating a self-image generation unit according to Embodiment 1. FIG. 実施例1に係る自己像生成部を説明する模式図である。3 is a schematic diagram illustrating a self-image generation unit according to Embodiment 1. FIG. 実施例1に係る自己像生成部を説明する模式図である。3 is a schematic diagram illustrating a self-image generation unit according to Embodiment 1. FIG. 実施例1に係る透視画像を説明する模式図である。FIG. 3 is a schematic diagram illustrating a perspective image according to the first embodiment. 実施例1に係る透視画像を説明する模式図である。FIG. 3 is a schematic diagram illustrating a perspective image according to the first embodiment. 従来構成に係る装置を説明する模式図である。It is a schematic diagram explaining the apparatus which concerns on a conventional structure.

続いて、発明を実施するための形態について実施例を参照しながら説明する。実施例におけるX線は、本発明の放射線に相当する。なお、実施例におけるFPDはフラットパネルディテクタの略である。本発明の放射線位相差撮影装置は、放射線吸収が少ない被写体Mに対しても撮影ができるので、工業用途としては基板の透視、医療用途としては乳房の透視などに向いている。   Next, modes for carrying out the invention will be described with reference to examples. X-rays in the examples correspond to the radiation of the present invention. In addition, FPD in an Example is the abbreviation for a flat panel detector. The radiation phase contrast imaging apparatus of the present invention can take an image of the subject M with little radiation absorption, and thus is suitable for fluoroscopy of a substrate for industrial use and for fluoroscopy of a breast for medical use.

本発明に係る放射線位相差撮影装置について説明する。図1は、本発明に係る撮影装置1の全体構成を示している。撮影装置1は、図1に示すように被写体Mを載置する載置台2と、載置台2の上側に設けられるとともに角錐形状に広がるX線ビームを照射するX線源3と、X線源3から生じ、載置台2上の被写体Mを透過してきたX線を検出するFPD4を備えている。FPD4と載置台2との挟まれる位置にはタルボ干渉を生じさせる位相格子5が設けられている。X線源3は本発明の放射線源に相当し、FPD4は本発明の検出部に相当する。位相格子5は本発明の格子に相当する。   A radiation phase contrast imaging apparatus according to the present invention will be described. FIG. 1 shows the overall configuration of a photographing apparatus 1 according to the present invention. As shown in FIG. 1, the imaging apparatus 1 includes a mounting table 2 on which a subject M is mounted, an X-ray source 3 that is provided above the mounting table 2 and that irradiates an X-ray beam that spreads in a pyramid shape, and an X-ray source 3, and an FPD 4 that detects X-rays transmitted through the subject M on the mounting table 2. A phase grating 5 that causes Talbot interference is provided at a position between the FPD 4 and the mounting table 2. The X-ray source 3 corresponds to the radiation source of the present invention, and the FPD 4 corresponds to the detection unit of the present invention. The phase grating 5 corresponds to the grating of the present invention.

撮影装置1は、タルボ干渉を利用した放射線撮影装置である。したがって、X線源3は位相のそろった放射状に広がるX線ビームを出力する構成となっている。また、位相格子5とFPD4との間の距離は、タルボ距離に設定されている。この設定により位相格子5の自己像がFPD4のX線を検出する検出面上に現れることになる。本発明における検出面は2つあり、それぞれの機能は異なっている。この点についての詳細は後述のものとする。   The imaging apparatus 1 is a radiation imaging apparatus that uses Talbot interference. Therefore, the X-ray source 3 is configured to output an X-ray beam that spreads radially in phase. The distance between the phase grating 5 and the FPD 4 is set to the Talbot distance. With this setting, the self-image of the phase grating 5 appears on the detection surface for detecting the X-rays of the FPD 4. There are two detection surfaces in the present invention, and their functions are different. Details of this point will be described later.

自己像生成部11は、FPD4の出力に基づいて位相格子5の自己像を写し込んだ自己像画像P0a,P0bを生成する。すなわち、自己像生成部11は、FPD4の有する2つの検出面で検出された検出データをそれぞれ独立したものとして扱い、2種類の自己像画像P0a,P0bを生成する構成となっている。生成された自己像画像P0a,P0bは透視画像生成部12に出力される。透視画像生成部12は、位相格子5の自己像画像P0a,P0bの各々に基づいて被写体Mで生じたX線の位相差がイメージングされた透視画像P1a,P1bを生成する。   The self-image generation unit 11 generates self-images P0a and P0b in which the self-image of the phase grating 5 is captured based on the output of the FPD 4. That is, the self-image generating unit 11 is configured to handle the detection data detected on the two detection surfaces of the FPD 4 as independent ones and generate two types of self-image images P0a and P0b. The generated self-images P0a and P0b are output to the perspective image generation unit 12. The perspective image generation unit 12 generates perspective images P1a and P1b in which the phase difference of the X-ray generated in the subject M is imaged based on each of the self-image images P0a and P0b of the phase grating 5.

撮像系移動機構13は、図2に示すようにX線源3,FPD4,位相格子5を互いの位置関係を保った状態で載置台2に対して移動させる構成である。撮像系移動機構13により、X線源3,FPD4,位相格子5は、載置台2に平行な方向に移動することができる。撮像系移動機構13は、X線源3,位相格子5,およびFPD4の位置関係が保たれたままFPD4の検出面で被写体Mの投影が直線的に移動するように撮像系3,4,5および被写体Mの相対位置を変更させる。撮像系3,4,5は、X線を照射するX線源3と、放射線を吸収する1方向に伸びる吸収線5aが1方向と直交する方向に配列されている位相格子5と、放射線を検出する検出素子が縦横に配列された検出面でタルボ干渉によって生じる位相格子5の自己像を検出するFPD4とから構成される。撮像系移動機構13は、後述の高エネルギーX線検出面4bと低エネルギーX線検出面4aとの位置関係を保った状態でFPD4を移動させる。吸収線5aは本発明の吸収体に相当し、撮像系移動機構13は本発明の位置変更部に相当する。   As shown in FIG. 2, the imaging system moving mechanism 13 is configured to move the X-ray source 3, the FPD 4, and the phase grating 5 with respect to the mounting table 2 while maintaining the mutual positional relationship. The X-ray source 3, the FPD 4, and the phase grating 5 can be moved in a direction parallel to the mounting table 2 by the imaging system moving mechanism 13. The imaging system moving mechanism 13 is configured so that the projection of the subject M moves linearly on the detection surface of the FPD 4 while the positional relationship between the X-ray source 3, the phase grating 5, and the FPD 4 is maintained. And the relative position of the subject M is changed. The imaging systems 3, 4, and 5 include an X-ray source 3 that irradiates X-rays, a phase grating 5 in which absorption lines 5 a extending in one direction that absorb radiation are arranged in a direction orthogonal to one direction, and radiation The detection elements to be detected are configured by an FPD 4 that detects a self-image of the phase grating 5 caused by Talbot interference on a detection surface arranged in rows and columns. The imaging system moving mechanism 13 moves the FPD 4 while maintaining the positional relationship between a high energy X-ray detection surface 4b and a low energy X-ray detection surface 4a described later. The absorption line 5a corresponds to the absorber of the present invention, and the imaging system moving mechanism 13 corresponds to the position changing unit of the present invention.

実施例1の場合、撮像系3,4,5に対する被写体Mの相対位置の変更は被写体Mを動かさずに撮像系3,4,5を移動させることで実行される。なお、撮像系移動制御部14は、撮像系移動機構13を制御する目的で設けられている。   In the case of the first embodiment, the relative position of the subject M with respect to the imaging systems 3, 4, and 5 is changed by moving the imaging systems 3, 4, and 5 without moving the subject M. The imaging system movement control unit 14 is provided for the purpose of controlling the imaging system movement mechanism 13.

X線源制御部6は、X線源3を制御する目的で設けられている。撮影中、X線源制御部6は、パルス状にX線ビームを繰り返し出力するようにX線源3を制御する。X線源3がX線ビームを出力する度に、FPD4は載置台2上の被写体Mおよび位相格子5を透過してきたX線を検出し検出データを自己像生成部11に送出する。このように本発明の装置は、X線撮影を連写することにより自己像を生成する構成となっている。   The X-ray source control unit 6 is provided for the purpose of controlling the X-ray source 3. During imaging, the X-ray source control unit 6 controls the X-ray source 3 so as to repeatedly output the X-ray beam in a pulse shape. Each time the X-ray source 3 outputs an X-ray beam, the FPD 4 detects X-rays that have passed through the subject M and the phase grating 5 on the mounting table 2 and sends detection data to the self-image generation unit 11. As described above, the apparatus of the present invention is configured to generate a self-image by continuously shooting X-ray imaging.

X線撮影の連写は、X線源制御部6と撮像系移動制御部14とが互いに協働して実現される。すなわち、両者が協働することにより、高エネルギーX線検出面4a上において高エネルギーX線検出面4aの短手方向の幅(後述の図4の縦方向、すなわち移動方向についての幅)分に相当する移動量だけ撮像系3,4,5を移動させる動作と、X線ビームが照射される動作とが互いに繰り返される。したがって、連写を続けていくとFPD4上の被写体Mの写り込む位置が高エネルギーX線検出面4aの短手方向の幅分だけ移動していく。このように実施例1に係るX線源制御部6は、撮像系移動機構13が検出面上で被写体Mの投影が高エネルギーX線検出面4aの短手方向の幅だけ移動させるごとにX線源3に放射線の照射を実行させる。なお、高エネルギーX線検出面4aの短手方向の幅は、低エネルギーX線検出面4bの短手方向の幅に一致している。   The continuous shooting of X-ray imaging is realized by the X-ray source control unit 6 and the imaging system movement control unit 14 cooperating with each other. That is, by cooperation of both, the width of the high energy X-ray detection surface 4a in the short direction of the high energy X-ray detection surface 4a (longitudinal direction in FIG. The operation of moving the imaging systems 3, 4, and 5 by the corresponding movement amount and the operation of irradiating the X-ray beam are repeated. Therefore, if continuous shooting is continued, the position of the subject M on the FPD 4 moves by the width in the short direction of the high energy X-ray detection surface 4a. As described above, the X-ray source control unit 6 according to the first embodiment is configured so that the imaging system moving mechanism 13 moves the projection of the subject M on the detection surface by the width in the short direction of the high energy X-ray detection surface 4a. The radiation source 3 is irradiated with radiation. Note that the width in the short direction of the high energy X-ray detection surface 4a matches the width in the short direction of the low energy X-ray detection surface 4b.

図3は、位相格子5について説明している。位相格子5は、FPD4の検出面の全域にX線ビームの投影が写り込むような形状をしている。したがって、位相格子5は、FPD4の検出面と同じように撮像系3,4,5の移動方向を縦方向とし、移動方向と直交する方向を横方向とする矩形の形状をしている。   FIG. 3 illustrates the phase grating 5. The phase grating 5 is shaped so that the projection of the X-ray beam is reflected over the entire detection surface of the FPD 4. Accordingly, the phase grating 5 has a rectangular shape in which the moving direction of the imaging systems 3, 4, 5 is the vertical direction and the direction orthogonal to the moving direction is the horizontal direction, like the detection surface of the FPD 4.

位相格子5は、X線を吸収する線状に伸びる複数の吸収線5aを有している。吸収線5aは、延びる方向に直交する方向に所定のピッチで配列している。この吸収線5aは、撮像系3,4,5の移動方向に伸びている。   The phase grating 5 has a plurality of absorption lines 5a extending linearly to absorb X-rays. The absorption lines 5a are arranged at a predetermined pitch in a direction orthogonal to the extending direction. The absorption line 5a extends in the moving direction of the imaging systems 3, 4, and 5.

図1に示す主制御部21は、各部6,11,12,14を統括的に制御する目的で設けられている。この主制御部21は、CPUによって構成され、各種のプログラムを実行することにより各部を実現している。また、これら各部は、これらを担当する演算装置に分割して実行されてもよい。各部は必要に応じて記憶部27にアクセスすることができる。操作卓25は、操作者の指示を入力する目的で設けられている。また、表示部26は、透視像を表示する目的で設けられている。   The main control unit 21 shown in FIG. 1 is provided for the purpose of comprehensively controlling the units 6, 11, 12, and 14. The main control unit 21 is constituted by a CPU, and realizes each unit by executing various programs. In addition, each of these units may be divided and executed by an arithmetic device in charge of them. Each unit can access the storage unit 27 as necessary. The console 25 is provided for the purpose of inputting operator instructions. The display unit 26 is provided for the purpose of displaying a fluoroscopic image.

<本発明の特徴的な構成>
続いて、本発明の特徴的な構成について説明する。本発明は、X線源3,FPD4,自己像生成部11,透視画像生成部12に特徴がある。
<Characteristic configuration of the present invention>
Subsequently, a characteristic configuration of the present invention will be described. The present invention is characterized by the X-ray source 3, the FPD 4, the self-image generation unit 11, and the perspective image generation unit 12.

<本発明の特徴的な構成:デュアルエナジー出力タイプのX線源>
本発明の特徴的な構成の一つとして、X線源3が異なるエネルギーのX線を同時に出力することにある。すなわち、X線源3は、例えば8.5kevのエネルギーを有する低エネルギーのX線(長波長X線)と、例えば22kevのエネルギーを有する高エネルギーのX線(短波長X線)とを出力する。低エネルギーのX線と高エネルギーのX線とは互いに異なる方向に出射されるので、X線源3は、エネルギーの異なるX線が重なり合ったものを出力するわけではない。このようにX線源3から出力されるX線にエネルギーに違いが見られるのは、出力されるX線の波長が異なることに由来する。本発明のX線源3は、高エネルギーのX線と低エネルギーのX線とを同時に照射する。
<Characteristic Configuration of the Present Invention: Dual Energy Output Type X-ray Source>
One characteristic configuration of the present invention is that the X-ray source 3 simultaneously outputs X-rays having different energies. That is, the X-ray source 3 outputs, for example, a low energy X-ray (long wavelength X-ray) having an energy of 8.5 kev and a high energy X-ray (short wavelength X-ray) having an energy of 22 kev, for example. . Since the low-energy X-ray and the high-energy X-ray are emitted in different directions, the X-ray source 3 does not output an X-ray with different energy overlapped. The difference in energy between the X-rays output from the X-ray source 3 is derived from the fact that the wavelengths of the output X-rays are different. The X-ray source 3 of the present invention simultaneously irradiates high energy X-rays and low energy X-rays.

位相格子5には、低エネルギーのX線が通過する部分と高エネルギーのX線が通過する部分とが存在する。この2つの部分はオーバーラップしていない。また、この2つの部分の間で位相格子5の吸収線のピッチを同じにすることにできるし、違えるようにすることもできる。   The phase grating 5 has a portion through which low energy X-rays pass and a portion through which high energy X-rays pass. The two parts do not overlap. Moreover, the pitch of the absorption line of the phase grating 5 can be made the same between the two parts, or can be made different.

<本発明の特徴的な構成:2つの検出面を有するFPD>
FPD4の検出面は、図1に示すように、低エネルギーのX線検出用の低エネルギーX線検出面4aと、高エネルギーのX線検出用の高エネルギーX線検出面4bとを備えている。 図4は、FPD4の低エネルギーX線検出面4aについて説明している。FPD4の低エネルギーX線検出面4aには縦20μm×横20μmの矩形をしている検出素子が縦横に配列されている。検出素子の縦方向は撮像系移動機構13が実現する撮像系3,4,5の移動方向に一致している。FPD4の低エネルギーX線検出面4aは、撮像系3,4,5の移動方向を縦方向とし、移動方向と直交する方向を横方向とする矩形の形状をしている。低エネルギーX線検出面4aは、縦方向に20cmの幅があり、横方向に2cmの幅がある。これら検出素子および検出面の大きさは適宜変更が可能である。
<Characteristic configuration of the present invention: FPD having two detection surfaces>
As shown in FIG. 1, the detection surface of the FPD 4 includes a low energy X-ray detection surface 4a for detecting low energy X-rays and a high energy X-ray detection surface 4b for detecting high energy X-rays. . FIG. 4 illustrates the low energy X-ray detection surface 4 a of the FPD 4. On the low energy X-ray detection surface 4a of the FPD 4, detection elements each having a rectangular shape of 20 μm long × 20 μm wide are arranged vertically and horizontally. The vertical direction of the detection element coincides with the moving direction of the imaging systems 3, 4, 5 realized by the imaging system moving mechanism 13. The low energy X-ray detection surface 4a of the FPD 4 has a rectangular shape in which the moving direction of the imaging systems 3, 4 and 5 is the vertical direction and the direction orthogonal to the moving direction is the horizontal direction. The low energy X-ray detection surface 4a has a width of 20 cm in the vertical direction and a width of 2 cm in the horizontal direction. The sizes of these detection elements and detection surfaces can be changed as appropriate.

なお、高エネルギーX線検出面4bも、図4で説明した低エネルギーX線検出面4aと同様な構成となっている。次に、2つの検出面4a,4bの位置関係について説明する。2つの検出面4a,4bは、横方向が撮像系3,4,5の移動方向に一致する向きに配列されている。このように本発明のFPD4は、高エネルギーのX線に係る位相格子5の自己像を検出する高エネルギーX線検出面4bと、低エネルギーのX線に係る位相格子5の自己像を検出する低エネルギーX線検出面4aとを備えている。   The high energy X-ray detection surface 4b has the same configuration as the low energy X-ray detection surface 4a described in FIG. Next, the positional relationship between the two detection surfaces 4a and 4b will be described. The two detection surfaces 4 a and 4 b are arranged in a direction in which the horizontal direction coincides with the moving direction of the imaging systems 3, 4, and 5. As described above, the FPD 4 of the present invention detects the high-energy X-ray detection surface 4b that detects the self-image of the phase grating 5 related to the high-energy X-ray and the self-image of the phase grating 5 related to the low-energy X-ray. And a low energy X-ray detection surface 4a.

図5に示すように、X線源3が照射するX線のエネルギーは低エネルギーX線検出面4aに入射するものと高エネルギーX線検出面4bに入射するものとでは互いに異なっている。すなわち、X線源3は、低エネルギーX線検出面4aに図5の斜線で示す低エネルギーのX線が入射し、高エネルギーX線検出面4bに図5の網掛けで示す高エネルギーのX線が入射するように動作する。互いの検出面4a,4bにX線が入射することにより検出面4a,4bにはタルボ干渉による位相格子5の自己像が写り込むことになる。   As shown in FIG. 5, the X-ray energy irradiated by the X-ray source 3 is different from that incident on the low energy X-ray detection surface 4a and that incident on the high energy X-ray detection surface 4b. That is, in the X-ray source 3, low energy X-rays indicated by diagonal lines in FIG. 5 are incident on the low energy X-ray detection surface 4a, and high energy X rays indicated by hatching in FIG. 5 are incident on the high energy X-ray detection surface 4b. Operates so that the line is incident. When X-rays are incident on the detection surfaces 4a and 4b, the self-image of the phase grating 5 due to Talbot interference is reflected on the detection surfaces 4a and 4b.

検出面4a,4bに位相格子5の自己像が現れるのには条件がある。すなわち、検出面4a,4bとX線源3との距離がタルボ距離となっていなければならない。このタルボ距離は、X線の波長によって変化する。すなわち、タルボ距離は、X線の波長が長くなるのに応じて短くなる性質がある。そこで、本発明の構成によれば、図1に示すように低エネルギーX線検出面4aの方が高エネルギーX線検出面4bよりも位相格子5に近い側に位置させるようにしている。つまり、2つの検出面4a,4bはいずれも位相格子5からタルボ距離だけ離れている。しかし、2つの検出面4a,4bの間で対象とするX線の波長が違うので、2つの検出面4a,4bは、図1に示すような配置となったのである。   There are conditions for the self-image of the phase grating 5 to appear on the detection surfaces 4a and 4b. That is, the distance between the detection surfaces 4a and 4b and the X-ray source 3 must be the Talbot distance. This Talbot distance varies depending on the wavelength of the X-ray. That is, the Talbot distance has a property of shortening as the wavelength of X-rays becomes longer. Therefore, according to the configuration of the present invention, as shown in FIG. 1, the low energy X-ray detection surface 4a is positioned closer to the phase grating 5 than the high energy X-ray detection surface 4b. That is, the two detection surfaces 4a and 4b are both separated from the phase grating 5 by the Talbot distance. However, since the target X-ray wavelength is different between the two detection surfaces 4a and 4b, the two detection surfaces 4a and 4b are arranged as shown in FIG.

したがって、FPD4が有する高エネルギーX線検出面4bから位相格子5までの距離と、低エネルギーX線検出面4aから位相格子5までの距離とは互いに異なる。すなわち、位相格子5と低エネルギーX線検出面4aとの距離は、低エネルギーのX線に最適化されており、位相格子5と高エネルギーX線検出面4bとの距離は、高エネルギーのX線に最適化されている。したがってX線源3で生じた低エネルギーのX線は位相格子5を通過し、低エネルギーX線検出面4a上に位相格子5の自己像を写し出す。同様に、X線源3で生じた高エネルギーのX線は位相格子5を通過し、高エネルギーX線検出面4b上に位相格子5の自己像を写し出す。   Therefore, the distance from the high energy X-ray detection surface 4b to the phase grating 5 of the FPD 4 is different from the distance from the low energy X-ray detection surface 4a to the phase grating 5. That is, the distance between the phase grating 5 and the low energy X-ray detection surface 4a is optimized for low energy X-rays, and the distance between the phase grating 5 and the high energy X-ray detection surface 4b is high energy X-rays. Optimized for lines. Therefore, low energy X-rays generated by the X-ray source 3 pass through the phase grating 5 and project a self-image of the phase grating 5 on the low energy X-ray detection surface 4a. Similarly, high-energy X-rays generated by the X-ray source 3 pass through the phase grating 5 and project a self-image of the phase grating 5 on the high-energy X-ray detection surface 4b.

このように、実施例1のFPD4は、低エネルギーX線検出面4aを有する検出器ユニットと高エネルギーX線検出面4bを有する検出器ユニットとの2つの検出器ユニットから構成される。これら検出器ユニットの相対位置は、撮影中に変化することがない。また、これら検出器ユニットの出力は互いに独立している。   Thus, FPD4 of Example 1 is comprised from two detector units, the detector unit which has the low energy X-ray detection surface 4a, and the detector unit which has the high energy X-ray detection surface 4b. The relative positions of these detector units do not change during imaging. The outputs of these detector units are independent of each other.

<本発明の特徴的な構成:2つの自己像画像を生成する自己像生成部>
低エネルギーX線検出面4aに係るFPD4の出力と高エネルギーX線検出面4bに係るFPD4の出力とは自己像生成部11に出力される。自己像生成部11は、低エネルギーX線検出面4aに係るFPD4の出力に基づいて自己像画像P0aを生成する一方で、高エネルギーX線検出面4bに係るFPD4の出力に基づいて自己像画像P0bを生成する。互いの自己像画像P0a,P0bは、同じ位相格子5の自己像が写り込んでいる。
<Characteristic Configuration of the Present Invention: Self-Image Generation Unit that Generates Two Self-Images>
The output of the FPD 4 related to the low energy X-ray detection surface 4 a and the output of the FPD 4 related to the high energy X-ray detection surface 4 b are output to the self-image generation unit 11. The self-image generating unit 11 generates the self-image image P0a based on the output of the FPD 4 related to the low energy X-ray detection surface 4a, while the self image image based on the output of the FPD 4 related to the high energy X-ray detection surface 4b. P0b is generated. The self-images P0a and P0b of each other include a self-image of the same phase grating 5.

ここで、図5のような載置台2に被写体Mを置いた撮影を考える。この場合、図5の斜線で示す低エネルギーのX線と図5の網掛けで示す高エネルギーのX線は、それぞれ被写体Mの異なる部分を通って検出面4a,4bに入射する。従って、図5の様な状態では、低エネルギーのX線についての撮影は低エネルギーのX線が通過する被写体Mの1部分Maについてしか行えず、高エネルギーのX線についての撮影は高エネルギーのX線が通過する被写体Mの1部分Mbについてしか行えないということになる。   Here, consider a case where the subject M is placed on the mounting table 2 as shown in FIG. In this case, the low-energy X-rays indicated by the oblique lines in FIG. 5 and the high-energy X-rays indicated by the hatching in FIG. 5 enter the detection surfaces 4a and 4b through different portions of the subject M, respectively. Therefore, in the state as shown in FIG. 5, imaging for low-energy X-rays can be performed only for one part Ma of the subject M through which low-energy X-rays pass, and imaging for high-energy X-rays is performed for high-energy X-rays. This means that it can be performed only for one portion Mb of the subject M through which X-rays pass.

そこで、本発明の構成では、低エネルギーのX線についての撮影と高エネルギーのX線についての撮影とを被写体全域について実行できるように工夫がされている。すなわち、本発明における自己像の撮影は、被写体Mに対して撮像系3,4,5が移動されながらX線を連射することで実行されるのである。図6は、撮像系3,4,5が撮影中に移動している様子を示している。撮像系3,4,5を移動していくと、低エネルギーX線検出面4a,高エネルギーX線検出面4bがこの順に被写体Mに近づいて、この順に被写体Mから遠ざかる。図7は、低エネルギーX線検出面4a,高エネルギーX線検出面4bが被写体Mの一端部を通過していく様子を示している。図7の左側では、被写体Mの一端部が低エネルギーX線検出面4aで撮影されている。図7の右側では、被写体Mの一端部が高エネルギーX線検出面4bで撮影されている。このように被写体Mの一端部は、検出面4a,4bのそれぞれで撮影されることになる。   In view of this, the configuration of the present invention is devised so that imaging for low-energy X-rays and imaging for high-energy X-rays can be performed for the entire subject. That is, the photographing of the self-image in the present invention is executed by continuously emitting X-rays while the imaging systems 3, 4, and 5 are moved with respect to the subject M. FIG. 6 shows that the imaging systems 3, 4, and 5 are moving during shooting. As the imaging systems 3, 4 and 5 are moved, the low energy X-ray detection surface 4a and the high energy X-ray detection surface 4b approach the subject M in this order and move away from the subject M in this order. FIG. 7 shows a state where the low energy X-ray detection surface 4a and the high energy X-ray detection surface 4b pass through one end of the subject M. On the left side of FIG. 7, one end of the subject M is imaged by the low energy X-ray detection surface 4a. On the right side of FIG. 7, one end portion of the subject M is imaged by the high energy X-ray detection surface 4b. In this way, one end of the subject M is photographed by each of the detection surfaces 4a and 4b.

自己像生成部11は、撮像系3,4,5が移動されながら連射されたX線の検出結果に基づいて2枚の自己像画像P0a,P0bを生成する。自己像生成部11は、X線が照射される度に照射された低エネルギーのX線の検出結果をFPD4から受信し、撮像系3,4,5の移動方向に幅狭の短冊状の画像を生成する。そして、自己像生成部11は、図8に示すように複数生成した短冊状の画像を撮影の時系列順に撮像系3,4,5の移動方向に並べてつなぎ合わせることにより被写体Mの全域が写り込んだ自己像画像P0aを生成する。とはいえ、実際に自己像画像P0aに写り込んでいるのは、被写体Mそのものではなく、被写体Mにより乱れた位相格子5の自己像である。   The self-image generation unit 11 generates two self-images P0a and P0b based on the detection result of the X-rays shot continuously while the imaging systems 3, 4, and 5 are moved. The self-image generating unit 11 receives the detection result of the low energy X-rays irradiated every time the X-rays are irradiated from the FPD 4, and forms a strip-like image narrow in the moving direction of the imaging systems 3, 4, 5. Is generated. Then, as shown in FIG. 8, the self-image generation unit 11 displays the entire area of the subject M by arranging and connecting a plurality of generated strip-like images in the moving direction of the imaging systems 3, 4, 5 in the time series of the shooting. The embedded self-image image P0a is generated. However, what is actually reflected in the self-image P0a is not the subject M itself but the self-image of the phase grating 5 disturbed by the subject M.

同様に、自己像生成部11は、X線が照射される度に照射された高エネルギーのX線の検出結果をFPD4から受信し、撮像系3,4,5の移動方向に幅狭の短冊状の画像を生成する。そして、自己像生成部11は、複数生成した短冊状の画像を撮影の時系列順に撮像系3,4,5の移動方向に並べてつなぎ合わせることにより被写体Mの全域が写り込んだ自己像画像P0bを生成する。このとき自己像画像P0bが生成される様子は図8と同様である。とはいえ、実際に自己像画像P0bに写り込んでいるのは、被写体Mそのものではなく、被写体Mにより乱れた位相格子5の自己像である。   Similarly, the self-image generation unit 11 receives the detection result of the high energy X-rays irradiated every time the X-rays are irradiated from the FPD 4, and the strips narrow in the moving direction of the imaging systems 3, 4, 5. Image is generated. Then, the self-image generation unit 11 arranges the plurality of generated strip-shaped images in the moving direction of the imaging systems 3, 4, 5 and joins them together in the time-series order of shooting, and the self-image image P 0 b in which the entire area of the subject M is reflected. Is generated. The state in which the self-image image P0b is generated at this time is the same as that in FIG. However, what is actually reflected in the self-image P0b is not the subject M itself but the self-image of the phase grating 5 disturbed by the subject M.

このように、自己像生成部11は、低エネルギーX線検出面4aの検出結果に基づき被写体全域についての自己像画像P0aを生成するとともに、高エネルギーX線検出面4bの検出結果に基づき被写体全域についての自己像画像P0bを生成する。自己像画像P0aは、被写体Mに低エネルギーのX線を当てたときに観察される位相格子の自己像の乱れを表しており、自己像画像P0bは、被写体Mに高エネルギーのX線を当てたときに観察される位相格子の自己像の乱れを表している。このように、自己像生成部11は、FPD4が高エネルギーX線検出面4bでX線を検出した結果から自己像をイメージングするとともに、FPD4が低エネルギーX線検出面4aでX線を検出した結果から自己像をイメージングする。   As described above, the self-image generation unit 11 generates the self-image image P0a for the entire subject based on the detection result of the low energy X-ray detection surface 4a, and the entire subject region based on the detection result of the high energy X-ray detection surface 4b. A self-image image P0b for is generated. The self-image P0a represents the disturbance of the self-image of the phase grating observed when low energy X-rays are applied to the subject M, and the self-image image P0b applies high-energy X-rays to the subject M. This shows the disturbance of the self-image of the phase grating observed at the time. As described above, the self-image generation unit 11 images the self-image from the result of the FPD 4 detecting the X-rays with the high-energy X-ray detection surface 4b, and the FPD 4 detects the X-rays with the low-energy X-ray detection surface 4a. The self image is imaged from the result.

<本発明の特徴的な構成:2つの透視画像を生成する透視画像生成部>
自己像生成部11は、自己像画像P0a,P0bを透視画像生成部12に送出する。透視画像生成部12は、自己像画像P0aに基づいて被写体Mの透視像が写り込んだ透視画像P1aを生成するとともに、自己像画像P0bに基づいて被写体Mの透視像が写り込んだ透視画像P1bを生成する。このように、透視画像生成部12は、自己像生成部11がイメージングした高エネルギーのX線に係る自己像から被写体Mの透視画像を生成するとともに、自己像生成部11がイメージングした低エネルギーのX線に係る自己像から被写体Mの透視画像を生成する。生成された透視画像P1a,P1bの各々は表示部26に並べて表示される。
<Characteristic Configuration of the Present Invention: Perspective Image Generating Unit that Generates Two Perspective Images>
The self-image generation unit 11 sends the self-image images P0a and P0b to the fluoroscopic image generation unit 12. The perspective image generation unit 12 generates a perspective image P1a in which a perspective image of the subject M is reflected based on the self-image image P0a, and a perspective image P1b in which a perspective image of the subject M is reflected based on the self-image image P0b. Is generated. As described above, the perspective image generation unit 12 generates a perspective image of the subject M from the self-image related to the high-energy X-rays imaged by the self-image generation unit 11 and the low-energy image captured by the self-image generation unit 11. A perspective image of the subject M is generated from the self-image related to X-rays. Each of the generated perspective images P1a and P1b is displayed side by side on the display unit 26.

図9,図10は、球形の被写体Mを撮影したときに得られる透視画像P1a,P1bを模式的に表している。このような被写体Mは、周縁部はX線を通過しやすく、中心部はX線を吸収しやすいという性質がある。   9 and 10 schematically show perspective images P1a and P1b obtained when a spherical subject M is photographed. Such a subject M has a property that the peripheral portion easily passes X-rays and the center portion easily absorbs X-rays.

図9は透視画像P1aが生成される様子を示している。透視画像P1aは、低エネルギーのX線で被写体Mをイメージングした結果となっている。透視画像P1aには、被写体Mの周縁部は被写体Mの内部の様子が鮮明に写り込んでいる。低エネルギーのX線は、被検体のX線を通過しやすい部分の撮影に向いている。しかし、透視画像P1aに写り込む被写体Mの中心部は必ずしも鮮明であるとは言えない。低エネルギーのX線は、被写体Mの中心部を透過できない場合があるからである。本発明の装置は、被写体Mを通り抜けたX線の位相がどの程度変化したかを可視化するものである。したがって、被写体MをX線が十分に通り抜けなければ被写体内部の鮮明なイメージングはできない。   FIG. 9 shows how the fluoroscopic image P1a is generated. The fluoroscopic image P1a is a result of imaging the subject M with low energy X-rays. The perspective image P1a clearly shows the inside of the subject M in the peripheral portion of the subject M. Low energy X-rays are suitable for imaging a portion of a subject that easily passes through X-rays. However, it cannot be said that the central part of the subject M shown in the fluoroscopic image P1a is clear. This is because low energy X-rays may not be transmitted through the center of the subject M. The apparatus of the present invention visualizes how much the phase of the X-ray that has passed through the subject M has changed. Therefore, clear imaging of the inside of the subject cannot be performed unless X-rays sufficiently pass through the subject M.

図10は透視画像P1bが生成される様子を示している。透視画像P1bは、高エネルギーのX線で被写体Mをイメージングした結果となっている。透視画像P1bには、被写体Mの中心部に被写体Mの内部の様子が鮮明に写り込んでいる。高エネルギーのX線は、被検体のX線を通過しにくい部分の撮影に向いている。しかし、透視画像P1bに写り込む被写体Mの周縁部は必ずしも鮮明であるとは言えない。高エネルギーのX線は、被写体Mの周縁部を素通りしてしまったからである。本発明の装置は、被写体Mを通り抜けたX線の位相がどの程度変化したかを可視化するものである。したがって、被写体Mを通り抜けたX線の位相が十分に変化していないと被写体内部の鮮明なイメージングはできない。   FIG. 10 shows how the perspective image P1b is generated. The fluoroscopic image P1b is a result of imaging the subject M with high-energy X-rays. In the perspective image P1b, the inside of the subject M is clearly reflected in the center of the subject M. High energy X-rays are suitable for imaging a portion of a subject that is difficult to pass through X-rays. However, it cannot be said that the peripheral portion of the subject M shown in the fluoroscopic image P1b is clear. This is because high-energy X-rays have passed through the periphery of the subject M. The apparatus of the present invention visualizes how much the phase of the X-ray that has passed through the subject M has changed. Therefore, if the phase of the X-ray passing through the subject M has not changed sufficiently, clear imaging inside the subject cannot be performed.

本発明の装置によれば、撮影条件の異なる2つの透視画像P1a,P1bを見比べることで被写体Mの内部の様子を正確に知ることができる。すなわち、被写体Mの周縁部についての内部構造を知りたければ透視画像P1aを参照すればよいし、被写体Mの中心部についての内部構造を知りたければ透視画像P1bを参照すればよい。   According to the apparatus of the present invention, it is possible to accurately know the state inside the subject M by comparing two fluoroscopic images P1a and P1b having different photographing conditions. That is, the fluoroscopic image P1a may be referred to if the internal structure of the peripheral part of the subject M is known, or the fluoroscopic image P1b may be referred to if the internal structure of the central part of the subject M is known.

以上のように、本発明によれば、複数のエネルギーのX線を用いた物体の撮影を簡便に行うことができるX線位相差撮影装置が提供できる。すなわち、本発明の構成は、デュアルエナジー出力タイプのX線源3と高エネルギーX線検出面4bおよび低エネルギーX線検出面4aを備えたFPD4とを備え、高エネルギーのX線による撮影と低エネルギーのX線による撮影との二種類の撮影を行えるようにしている。そして、撮像系と被写体Mとの相対位置を変更させながら被写体Mをスキャンするように撮影すれば、二種類の撮影を一度に完了することができる。   As described above, according to the present invention, it is possible to provide an X-ray phase difference imaging apparatus capable of easily imaging an object using X-rays having a plurality of energies. That is, the configuration of the present invention includes the dual energy output type X-ray source 3 and the FPD 4 provided with the high energy X-ray detection surface 4b and the low energy X-ray detection surface 4a. Two types of imaging, that is, imaging with energy X-rays, can be performed. If shooting is performed so that the subject M is scanned while changing the relative position between the imaging system and the subject M, two types of shooting can be completed at once.

また、本発明は小角散乱を利用した透視画像にも応用することができるので、まずは小角散乱について簡単に説明する。物体にX線を当てると、物体の中で一部のX線の進行方向が変えられる現象が起こる。このような現象をX線の散乱という。X線の散乱のうち、進行方向がほとんど変化しない散乱を小角散乱と呼ぶ。このような小角散乱に係るX線は、FPD4に検出され自己像生成部11が生成する自己像画像P0a,P0bに写り込む。透視画像生成部12は、自己像画像P0a,P0bのそれぞれから小角散乱に係る成分を抽出して小角散乱画像を生成することができる。このとき生成される小角散乱画像は、自己像画像P0aに基づいて生成されたものと自己像画像P0bに基づいて生成されたものとの2つがある。   Since the present invention can also be applied to a fluoroscopic image using small angle scattering, first, small angle scattering will be briefly described. When X-rays are applied to an object, a phenomenon occurs in which the traveling direction of some X-rays in the object is changed. Such a phenomenon is called X-ray scattering. Of the X-ray scattering, the scattering in which the traveling direction hardly changes is called small-angle scattering. Such X-rays related to small-angle scattering are detected by the FPD 4 and reflected in the self-image images P0a and P0b generated by the self-image generation unit 11. The perspective image generation unit 12 can extract a component related to small angle scattering from each of the self-image images P0a and P0b to generate a small angle scattered image. There are two small-angle scattered images generated at this time, an image generated based on the self-image image P0a and an image generated based on the self-image image P0b.

小角散乱という現象を考えるときに被写体内部を構成する構造物を粒子として捉えると分かりやすい。この粒子にX線が当たると小角散乱が生じると考えるのである。低エネルギーのX線を被写体に当てて生じた小角散乱X線は、被写体内部を構成する粒子のうち比較的径の大きなものに由来している。一方、高エネルギーのX線を被写体に当てて生じた小角散乱X線は、被写体内部を構成する粒子のうち比較的径の小さなものに由来している。このように、小角散乱画像の撮影時に用いるX線の波長を変えると、小角散乱画像に写り込む像が変わってくる。低エネルギーのX線を被写体に当てて撮影した小角散乱画像は、被写体内部を構成する径の大きな粒子を写し込んだものとなっており、高エネルギーのX線を被写体に当てて撮影した小角散乱画像は、被写体内部を構成する径の小さな粒子を写し込んだものとなっている。   When considering the phenomenon of small-angle scattering, it is easy to understand if the structures that make up the interior of the subject are considered as particles. It is thought that small-angle scattering occurs when X-rays hit this particle. Small-angle scattered X-rays generated by applying low-energy X-rays to a subject are derived from particles having a relatively large diameter among particles constituting the subject. On the other hand, small-angle scattered X-rays generated by applying high-energy X-rays to the subject are derived from particles having a relatively small diameter among the particles constituting the subject. As described above, when the wavelength of the X-ray used for capturing the small angle scattered image is changed, the image reflected in the small angle scattered image is changed. A small-angle scattered image taken by shining low-energy X-rays on the subject is a reflection of large-diameter particles that make up the interior of the subject, and small-angle scatters taken by shining high-energy X-rays on the subject. The image is a photograph of particles having a small diameter constituting the inside of the subject.

本発明の構成によれば、一度のスキャンで低エネルギーのX線を用いた撮影と高エネルギーのX線を用いた撮影とを同時に行うことができるので、撮影の対象が異なる2枚の小角散乱画像を同時に取得することができる。すなわち、低エネルギーのX線に係る自己像画像P0aからは、被写体内部を構成する径の大きな粒子を写し込んだ小角散乱画像が生成でき、高エネルギーのX線に係る自己像画像P0aからは、被写体内部を構成する径の小さな粒子を写し込んだ小角散乱画像が生成できる。   According to the configuration of the present invention, imaging using low energy X-rays and imaging using high energy X-rays can be performed at the same time in one scan, so two small angle scatterings with different imaging targets can be performed. Images can be acquired simultaneously. That is, from the self-image image P0a related to low-energy X-rays, a small-angle scattered image in which large-diameter particles constituting the inside of the subject are captured, and from the self-image image P0a related to high-energy X-rays, A small-angle scattered image in which particles having a small diameter constituting the inside of the subject are captured can be generated.

本発明は上述の構成に限られず、下記のように変形実施することもできる。   The present invention is not limited to the above-described configuration, and can be modified as follows.

(1)上述の実施例によれば、撮像系移動機構13は、FPD4,位相格子5とともにX線源3を移動させる構成としていたが、本発明はこれに限られない。X線源3,FPD4,位相格子5の位置関係を変えないようにFPD4,位相格子5を円弧の軌跡をたどって移動させるように撮像系移動機構13を構成することで被写体Mと撮像系との相対位置を変化させるようにしてもよい。また、撮像系3,4,5を移動させずに載置台2を移動させることにより被写体Mと撮像系との相対位置を変化させるようにしてもよい。   (1) According to the above-described embodiment, the imaging system moving mechanism 13 is configured to move the X-ray source 3 together with the FPD 4 and the phase grating 5, but the present invention is not limited to this. By configuring the imaging system moving mechanism 13 so that the FPD 4 and the phase grating 5 are moved along an arc locus so as not to change the positional relationship between the X-ray source 3, the FPD 4 and the phase grating 5, The relative position may be changed. Alternatively, the relative position between the subject M and the imaging system may be changed by moving the mounting table 2 without moving the imaging systems 3, 4, and 5.

(2)上述の構成によれば、被写体MをX線源3と位相格子5との間に載置するようにしていたが、本発明はこの構成に限られない。載置台2および被写体Mを位相格子5とFPD4との間に載置するようにしてもよい。   (2) According to the above-described configuration, the subject M is placed between the X-ray source 3 and the phase grating 5, but the present invention is not limited to this configuration. The mounting table 2 and the subject M may be mounted between the phase grating 5 and the FPD 4.

(3)上述の実施例によれば、X線源3は、低エネルギーのX線と高エネルギーのX線を同時に照射していたが、本発明はこの構成に限られない。X線源3が低エネルギーのX線と高エネルギーのX線を交互に照射するように構成してもよい。   (3) According to the above-described embodiment, the X-ray source 3 simultaneously irradiates low energy X-rays and high energy X-rays, but the present invention is not limited to this configuration. The X-ray source 3 may be configured to alternately irradiate low energy X-rays and high energy X-rays.

(4)上述の実施例によれば低エネルギーX線検出面4aと高エネルギーX線検出面4bとは同じピッチで検出素子が配列されていたが、本発明はこの構成に限られない。検出面4a,4bの間で検出素子のピッチを変えるように構成してもよい。   (4) According to the above embodiment, the low energy X-ray detection surface 4a and the high energy X-ray detection surface 4b are arranged with the same pitch, but the present invention is not limited to this configuration. You may comprise so that the pitch of a detection element may be changed between the detection surfaces 4a and 4b.

(5)上述の実施例によれば、低エネルギーのX線と高エネルギーのX線とは同じ位相格子5を通過するような構成となっていたが、本発明はこの構成に限られない。低エネルギーのX線が通過する低エネルギーX線位相格子5と、高エネルギーのX線が通過する高エネルギーX線位相格子5とを備え、低エネルギーX線位相格子5を構成する吸収線のピッチと高エネルギーX線位相格子5を構成する吸収線のピッチとを互いに変更するようにしてもよい。   (5) According to the above-described embodiment, the low energy X-ray and the high energy X-ray pass through the same phase grating 5, but the present invention is not limited to this configuration. The pitch of the absorption line comprising the low energy X-ray phase grating 5 through which the low energy X-ray passes and the high energy X-ray phase grating 5 through which the high energy X-ray passes, and constituting the low energy X-ray phase grating 5 And the pitch of the absorption lines constituting the high energy X-ray phase grating 5 may be mutually changed.

(6)上述の吸収線のピッチが異なる位相格子5を設ける構成において、低エネルギーのX線に係るタルボ距離と高エネルギーのX線におけるタルボ距離とを一致させる様に設定することもできる。この場合、低エネルギーX線検出面4aから位相格子5までの距離と高エネルギー放射線検出面4bから位相格子5までの距離とは一致する。   (6) In the above-described configuration in which the phase grating 5 having different absorption line pitches is provided, the Talbot distance associated with the low energy X-ray and the Talbot distance associated with the high energy X-ray can be set to coincide with each other. In this case, the distance from the low energy X-ray detection surface 4a to the phase grating 5 and the distance from the high energy radiation detection surface 4b to the phase grating 5 are the same.

(7)上述の実施例によれば、FPD4が自己像を直接に観察するような構成となっていたが、本発明はこの構成に限られない。検出面4a,4bを覆うように吸収格子を配置し、自己像と吸収格子との間で発生したモアレを検出面4a,4bで観察するような構成としてもよい。   (7) According to the above-described embodiment, the FPD 4 is configured to directly observe the self image, but the present invention is not limited to this configuration. An arrangement may be adopted in which an absorption grating is disposed so as to cover the detection surfaces 4a and 4b, and moire generated between the self-image and the absorption grating is observed on the detection surfaces 4a and 4b.

(8)上述のX線源3は、デュアルエナジー出力タイプとなっていたが、本発明はこの構成に限られない。これに代えて本発明のX線源3を広帯域のX線を出力するタイプの構成とすることもできる。このようなX線源3は様々な波長のX線を出力することになるから、低エネルギー放射線検出面4aおよび高エネルギー放射線検出面4bには、単色光のX線が入射するわけではない。ところが自己像の生成に関与できるX線の波長は、位相格子5から検出面4a,4bまでの距離に応じて決まる。したがって、本発明によっても低エネルギー放射線検出面4aに自己像を写し込むのはある特定の波長を有する低エネルギーのX線であり、高エネルギー放射線検出面4bに自己像を写し込むのはある特定の波長を有する高エネルギーのX線である。
このように、デュアルエナジー出力タイプのX線源3を用いなくても図9,図10で説明した透視画像P1a、P1bを取得することができる。なお、検出面4a,4b上でどの波長のX線の自己像が現れるかは、位相格子5と検出面4a,4bとの距離だけではなく、位相格子5に配列される吸収線5aのピッチによっても決まる。したがって、自己像を発生させるX線の波長は、位相格子5と検出面4a,4bとの距離と、位相格子5の吸収線5aのピッチを適宜変更して選択することができる。
(8) Although the above-mentioned X-ray source 3 is a dual energy output type, the present invention is not limited to this configuration. Instead of this, the X-ray source 3 of the present invention can be configured to output broadband X-rays. Since such an X-ray source 3 outputs X-rays of various wavelengths, monochromatic X-rays are not incident on the low energy radiation detection surface 4a and the high energy radiation detection surface 4b. However, the wavelength of the X-ray that can participate in the generation of the self-image is determined according to the distance from the phase grating 5 to the detection surfaces 4a and 4b. Therefore, according to the present invention, it is low-energy X-rays having a specific wavelength that captures a self-image on the low-energy radiation detection surface 4a, and it is certain that a self-image is captured on the high-energy radiation detection surface 4b. Energy X-rays having a wavelength of
Thus, the fluoroscopic images P1a and P1b described with reference to FIGS. 9 and 10 can be acquired without using the dual energy output type X-ray source 3. The wavelength of the X-ray self-image that appears on the detection surfaces 4a and 4b is determined not only by the distance between the phase grating 5 and the detection surfaces 4a and 4b, but also by the pitch of the absorption lines 5a arranged on the phase grating 5. It depends on. Therefore, the wavelength of the X-ray that generates the self-image can be selected by appropriately changing the distance between the phase grating 5 and the detection surfaces 4a and 4b and the pitch of the absorption lines 5a of the phase grating 5.

3 X線源(放射線源)
4 FPD(検出部)
4a 低エネルギー放射線検出面
4b 高エネルギー放射線検出面
5 位相格子(格子)
11 自己像生成部(自己像生成部)
12 透視画像生成部(透視画像生成部)
13 撮像系移動機構(位置変更部)
3 X-ray source (radiation source)
4 FPD (detector)
4a Low energy radiation detection surface 4b High energy radiation detection surface 5 Phase grating (grating)
11 Self-image generator (self-image generator)
12 perspective image generation unit (perspective image generation unit)
13 Imaging system moving mechanism (position changing unit)

Claims (5)

高エネルギーの放射線と低エネルギーの放射線とを照射する放射線源と、
放射線を吸収する1方向に伸びる吸収体が1方向と直交する方向に配列されているとともに、放射線が透過することによりタルボ干渉を生じさせる格子と、
高エネルギーの放射線に係る前記格子の自己像を検出する高エネルギー放射線検出面と、低エネルギーの放射線に係る前記格子の自己像を検出する低エネルギー放射線検出面とを備えた検出部とを備え、
前記放射線源、前記格子、および前記検出部の位置関係が保たれたまま前記検出面上で被写体の投影が移動するように前記放射線源、前記格子、および前記検出部で構成される撮像系と前記被写体との相対位置を変更させる位置変更部と
前記検出部が前記高エネルギー放射線検出面で放射線を検出した結果から第1の自己像をイメージングするとともに、前記検出部が前記低エネルギー放射線検出面で放射線を検出した結果から第2の自己像をイメージングする自己像生成部と、
前記自己像生成部がイメージングした高エネルギーの放射線に係る前記第1の自己像から被写体の第1の透視画像または第1の小角散乱画像を生成するとともに、前記自己像生成部がイメージングした低エネルギーの放射線に係る前記第2の自己像から被写体の第2の透視画像または第2の小角散乱画像を生成する透視画像生成部とを備えることを特徴とする放射線位相差撮影装置。
A radiation source that emits high and low energy radiation;
A grating that absorbs radiation and extends in one direction is arranged in a direction orthogonal to one direction, and causes Talbot interference by transmitting radiation;
A detection unit comprising a high-energy radiation detection surface for detecting a self-image of the grating related to high-energy radiation and a low-energy radiation detection surface for detecting a self-image of the grating related to low-energy radiation;
An imaging system including the radiation source, the grating, and the detection unit so that the projection of the subject moves on the detection surface while maintaining the positional relationship among the radiation source, the grating, and the detection unit; A position changing unit for changing a relative position with respect to the subject ;
The detection unit images a first self-image from the result of detecting radiation on the high-energy radiation detection surface, and the detection unit generates a second self-image from the result of detection of radiation on the low-energy radiation detection surface. A self-image generation unit for imaging;
Low energy imaged by the self-image generation unit while generating a first fluoroscopic image or a first small-angle scattered image of the subject from the first self-image related to high-energy radiation imaged by the self-image generation unit A radiation phase difference imaging apparatus, comprising: a perspective image generation unit configured to generate a second perspective image or a second small-angle scattered image of a subject from the second self-image related to the radiation of
請求項1に記載の放射線位相差撮影装置において、
前記格子は、高エネルギーの放射線が透過する部分と、低エネルギーの放射線が透過する部分とを有する1つの格子であり、
前記検出部が有する前記高エネルギー放射線検出面から前記格子までの距離と、前記低エネルギー放射線検出面から前記格子までの距離とは互いに異なり、前記検出部が有する前記高エネルギー放射線検出面から前記格子までの距離は高エネルギーの放射線に対応するタルボ距離に基づいて設定され、前記低エネルギー放射線検出面から前記格子までの距離は低エネルギーの放射線に対応するタルボ距離に基づいて設定されていることを特徴とする放射線位相差撮影装置。
The radiation phase difference imaging apparatus according to claim 1,
The grating is one grating having a portion through which high energy radiation is transmitted and a portion through which low energy radiation is transmitted;
The distance from the high energy radiation detection surface of the detection unit to the grating is different from the distance from the low energy radiation detection surface to the grating, and the detection unit has the distance from the high energy radiation detection surface to the grating. Is set based on the Talbot distance corresponding to the high energy radiation, and the distance from the low energy radiation detection surface to the grating is set based on the Talbot distance corresponding to the low energy radiation. A radiation phase contrast imaging apparatus.
請求項1または請求項2に記載の放射線位相差撮影装置において、
前記位置変更部が前記高エネルギー放射線検出面と前記低エネルギー放射線検出面との位置関係を保った状態で前記検出部を移動させることを特徴とする放射線位相差撮影装置。
In the radiation phase contrast imaging apparatus according to claim 1 or 2,
A radiation phase difference imaging apparatus, wherein the position changing unit moves the detection unit while maintaining a positional relationship between the high energy radiation detection surface and the low energy radiation detection surface.
請求項1ないし請求項3のいずれかに記載の放射線位相差撮影装置において、In the radiation phase contrast imaging apparatus according to any one of claims 1 to 3,
前記自己像生成部が、前記撮像系と前記被写体との相対位置を変更する際の移動方向に幅狭の画像を時系列順に前記移動方向に並べてつなぎあわせることにより、前記第1の自己像および前記第2の自己像をイメージングすることを特徴とする放射線位相差撮影装置。  The self-image generating unit arranges the narrow self-aligned images in the moving direction when changing the relative position between the imaging system and the subject in time-sequential order and joins the first self-image and A radiation phase difference imaging apparatus for imaging the second self-image.
請求項1ないし請求項4のいずれかに記載の放射線位相差撮影装置において、In the radiation phase contrast imaging apparatus according to any one of claims 1 to 4,
前記位置変更部は、前記放射線源、前記格子、および前記検出部の位置関係が保たれたまま前記検出面上で被写体の投影が平行移動するように前記放射線源、前記格子、および前記検出部で構成される撮像系と前記被写体との相対位置を変更させることを特徴とする放射線位相差撮影装置。The position changing unit includes the radiation source, the grating, and the detection unit so that the projection of the subject translates on the detection surface while maintaining the positional relationship of the radiation source, the grating, and the detection unit. A radiation phase difference imaging apparatus, wherein a relative position between an imaging system constituted by the object and the subject is changed.
JP2014258714A 2014-12-22 2014-12-22 Radiation phase contrast imaging device Expired - Fee Related JP6287813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258714A JP6287813B2 (en) 2014-12-22 2014-12-22 Radiation phase contrast imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258714A JP6287813B2 (en) 2014-12-22 2014-12-22 Radiation phase contrast imaging device

Publications (2)

Publication Number Publication Date
JP2016116736A JP2016116736A (en) 2016-06-30
JP6287813B2 true JP6287813B2 (en) 2018-03-07

Family

ID=56242508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258714A Expired - Fee Related JP6287813B2 (en) 2014-12-22 2014-12-22 Radiation phase contrast imaging device

Country Status (1)

Country Link
JP (1) JP6287813B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015356B4 (en) * 2006-02-01 2016-09-22 Siemens Healthcare Gmbh Method for producing projective and tomographic phase-contrast images with an X-ray system

Also Published As

Publication number Publication date
JP2016116736A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP7020169B2 (en) X-ray system
US9750465B2 (en) Scanning system for differential phase contrast imaging
JP6402780B2 (en) Radiation phase contrast imaging device
US20130148779A1 (en) Radiation tomography apparatus
JP5375655B2 (en) Radiography equipment
WO2010050032A1 (en) Radioactive imaging apparatus
JP2010240106A (en) X-ray imaging device, control method therefor and computer program
KR101076319B1 (en) A cone-beam ct apparatus with dynamically controlled collimator
JP5923889B2 (en) Trabecular bone analyzer
JP6287813B2 (en) Radiation phase contrast imaging device
JP6424760B2 (en) Radiation phase contrast imaging device
JP2009156788A5 (en) X-ray inspection device
WO2018061456A1 (en) Radiation phase difference imaging device
JP2014087697A (en) X-ray photographing apparatus, and control method and computer program for the same
JP5880850B2 (en) Radiography equipment
JP6372614B2 (en) Radiation source and radiation phase contrast imaging apparatus having the same
JP2014014379A (en) Radiographic system and radiographic method
JP5380916B2 (en) Radiation tomography apparatus and noise removal method in radiation tomography apparatus
JP6680356B2 (en) Radiography device
JP6665504B2 (en) X-ray Talbot imaging device
JP4946927B2 (en) X-ray tomography equipment
JP2012254191A (en) Radiographic apparatus
JP2015167722A (en) radiographic apparatus
US10441234B2 (en) Radiation-phase-contrast imaging device
JP2012115560A (en) Radiation tomograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees