JP6287481B2 - Crack measuring method and crack repairing method for furnace body - Google Patents

Crack measuring method and crack repairing method for furnace body Download PDF

Info

Publication number
JP6287481B2
JP6287481B2 JP2014069875A JP2014069875A JP6287481B2 JP 6287481 B2 JP6287481 B2 JP 6287481B2 JP 2014069875 A JP2014069875 A JP 2014069875A JP 2014069875 A JP2014069875 A JP 2014069875A JP 6287481 B2 JP6287481 B2 JP 6287481B2
Authority
JP
Japan
Prior art keywords
crack
coal
particle size
coke oven
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069875A
Other languages
Japanese (ja)
Other versions
JP2015189918A (en
Inventor
正治 一色
正治 一色
昭男 菊池
昭男 菊池
善信 岡崎
善信 岡崎
克也 中野
克也 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014069875A priority Critical patent/JP6287481B2/en
Publication of JP2015189918A publication Critical patent/JP2015189918A/en
Application granted granted Critical
Publication of JP6287481B2 publication Critical patent/JP6287481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、コークス炉の炉体である燃焼室と炭化室とを区分する隔壁の亀裂測定方法および亀裂補修方法に関する。   The present invention relates to a crack measurement method and a crack repair method for a partition wall that separates a combustion chamber and a carbonization chamber, which are a furnace body of a coke oven.

石炭を乾留してコークスとするコークス炉は、耐火レンガを段違いに組み込みダボで固定されて構成される隔壁により区切られる炭化室と燃焼室が交互に配置されて構成されている。コークス炉では、炭化室の上方の装炭口から石炭を装入し、石炭が装入された炭化室を隣接する燃焼室により加熱して石炭を乾留する。乾留完了後、形成されたコークスは、炭化室の側方から押し出し機によって炭化室から押し出される。   A coke oven for carbonizing coal to produce coke is configured by alternately arranging carbonization chambers and combustion chambers separated by partition walls in which refractory bricks are stepped and fixed with dowels. In a coke oven, coal is charged from a coal charging port above the carbonization chamber, and the coal chamber charged with coal is heated by an adjacent combustion chamber to dry-distill the coal. After completion of dry distillation, the formed coke is extruded from the carbonization chamber by an extruder from the side of the carbonization chamber.

このようなコークス炉の炉体は耐火物により構成されているが、炭化室の隔壁は乾留サイクルにより400℃から1200℃までの温度変動を受けて熱収縮を繰り返す。このため、隔壁を構成する耐火レンガは熱応力を繰り返し受け、この熱応力が耐火レンガの許容応力を超えると耐火レンガに亀裂が生じる。耐火レンガに亀裂が生じると、隔壁の強度が低下し、コークス押し出し時にかかる側圧で耐火レンガが脱落したり、さらには広範囲にわたって崩壊したりする可能性もある。また、隔壁に生じた亀裂の貫通により炭化室内に装入した微粉の石炭が燃焼室内に流入し、この流入した微粉炭が燃焼排ガスと共に煙突から流出する場合がある。したがって、隔壁の損傷状態を適切に把握して、損傷部を補修する必要がある。   The furnace body of such a coke oven is made of a refractory, but the partition wall of the carbonization chamber repeatedly undergoes thermal contraction due to temperature fluctuations from 400 ° C. to 1200 ° C. due to the dry distillation cycle. For this reason, the firebrick which comprises a partition receives a thermal stress repeatedly, and when this thermal stress exceeds the allowable stress of a firebrick, a crack will arise in a firebrick. When cracks occur in the refractory brick, the strength of the partition walls decreases, and the refractory brick may fall off due to the side pressure applied when the coke is extruded, or even collapse over a wide range. In addition, pulverized coal charged into the carbonization chamber may flow into the combustion chamber due to penetration of cracks generated in the partition walls, and the pulverized coal that flows in may flow out of the chimney together with the combustion exhaust gas. Therefore, it is necessary to properly grasp the damaged state of the partition wall and repair the damaged part.

従来、コークス炉において、隔壁の亀裂等の炉体の損傷状態の把握は、CCDカメラ等を用いて撮影された炭化室の壁面を観察して行うが一般的である。例えば特許文献1には、炭化室の隔壁に光ビームを照射して、照射した光ビームの反射光を含む隔壁表面の光情報を炉壁光検出装置により検出し、光ビームの反射光の状態から隔壁の破孔の有無を判断する破孔検出装置が開示されている。   Conventionally, in a coke oven, the damage state of a furnace body such as a crack in a partition wall is generally grasped by observing a wall surface of a carbonization chamber photographed using a CCD camera or the like. For example, in Patent Document 1, a light beam is irradiated onto a partition wall of a carbonization chamber, light information on the partition surface including reflected light of the irradiated light beam is detected by a furnace wall light detection device, and the reflected light state of the light beam is detected. Discloses a hole detection device for determining the presence or absence of a hole in a partition wall.

特開2004−168958号公報JP 2004-168958 A

しかし、上記特許文献1のように、CCDカメラを用いて隔壁を観察する場合、CCDカメラのような精密機器を高温環境にて使用するため、機器自体高価であり冷却装置の設置も必要となる。また、機器を設置した部位しか観察できず、隔壁の亀裂が検出されても亀裂の大きさや亀裂が貫通しているかまで把握するのは困難である。さらに、隔壁を観察できるタイミングも限られており、連続して隔壁の状態を把握することができない。   However, when a partition wall is observed using a CCD camera as in Patent Document 1, a precision device such as a CCD camera is used in a high-temperature environment, so the device itself is expensive and a cooling device must be installed. . Moreover, only the site | part which installed the apparatus can be observed, and even if the crack of a partition is detected, it is difficult to grasp | ascertain whether the magnitude | size of a crack and the crack have penetrated. Furthermore, the timing at which the partition walls can be observed is limited, and the state of the partition walls cannot be grasped continuously.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、隔壁に生じた亀裂の大きさを容易に測定することが可能な炉体の亀裂測定方法および隔壁の亀裂を適切に補修する亀裂補修方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a crack measuring method for a furnace body capable of easily measuring the size of a crack generated in a partition wall, and An object of the present invention is to provide a crack repairing method for appropriately repairing a crack in a partition wall.

上記課題を解決するために、本発明のある観点によれば、コークス炉の燃焼室と炭化室とを区分する隔壁に生じた亀裂の大きさを測定する亀裂測定方法が提供される。かかる亀裂測定方法では、コークス炉に装入する石炭の粒度分布を予め測定し、石炭の乾留のためにコークス炉で発生した排ガス中に含まれる煤煙濃度を測定し、石炭の粒度分布と煤煙濃度との間に高い相関がある石炭の粒度の粒径を、コークス炉の隔壁に生じた亀裂の大きさする。
In order to solve the above problems, according to an aspect of the present invention, there is provided a crack measurement method for measuring the size of a crack generated in a partition wall that separates a combustion chamber and a carbonization chamber of a coke oven. In this crack measurement method, the particle size distribution of the coal charged into the coke oven is measured in advance, the soot concentration contained in the exhaust gas generated in the coke oven for the dry distillation of coal is measured, and the coal particle size distribution and soot concentration are measured. the particle size of the particle size of the coal is high correlation between the, and the size of the cracks caused in the partition wall of the coke oven.

煤煙濃度は、コークス炉で発生した排ガスが排出される煙道に設置された煤煙濃度計により測定してもよい。   The soot concentration may be measured by a soot concentration meter installed in the flue where the exhaust gas generated in the coke oven is discharged.

また、上記課題を解決するために、本発明の別の観点によれば、コークス炉の燃焼室と炭化室とを区分する隔壁に生じた亀裂を補修する亀裂補修方法が提供される。かかる亀裂補修方法では、コークス炉に装入する石炭の粒度分布を予め測定し、石炭の乾留のためにコークス炉で発生した排ガス中に含まれる煤煙濃度を測定し、石炭の粒度分布と煤煙濃度との間に高い相関がある石炭の粒度の粒径を、コークス炉の隔壁に生じた亀裂の大きさし、亀裂の大きさに対応する粒度の目地材を炭化室に吹き込み、隔壁の亀裂に充填させる。
Moreover, in order to solve the said subject, according to another viewpoint of this invention, the crack repairing method of repairing the crack which arose in the partition which divides the combustion chamber and carbonization chamber of a coke oven is provided. In such a crack repair method, the particle size distribution of the coal charged into the coke oven is measured in advance, the smoke concentration contained in the exhaust gas generated in the coke oven for the carbonization of coal is measured, and the coal particle size distribution and the smoke concentration are measured. high granularity of the particle size of the correlation is coal, and the size of the crack generated in the partition wall of the coke oven, blowing joint material particle size corresponding to the size of the crack in the carbonization chamber, septum crack between the To fill.

以上説明したように本発明によれば、隔壁に生じた亀裂の大きさを容易に測定することができる。また、亀裂の大きさに応じて、隔壁の亀裂を適切に補修することができる。   As described above, according to the present invention, the size of a crack generated in a partition wall can be easily measured. Moreover, according to the magnitude | size of a crack, the crack of a partition can be repaired appropriately.

本発明の実施形態に係るコークス炉の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the coke oven which concerns on embodiment of this invention. 燃焼室から煤煙が発生するメカニズムを示す説明図であって、コークス押出後の状態を示す。It is explanatory drawing which shows the mechanism in which soot is generated from a combustion chamber, Comprising: The state after coke extrusion is shown. 燃焼室から煤煙が発生するメカニズムを示す説明図であって、隔壁に付着したカーボンを除去する工程を示す。It is explanatory drawing which shows the mechanism in which soot is generated from a combustion chamber, Comprising: The process of removing the carbon adhering to a partition is shown. 燃焼室から煤煙が発生するメカニズムを示す説明図であって、炭化室に石炭を装入した直後の状態を示す。It is explanatory drawing which shows the mechanism in which soot generate | occur | produces from a combustion chamber, Comprising: The state immediately after charging coal in a carbonization chamber is shown. 燃焼室から煤煙が発生するメカニズムを示す説明図であって、石炭挿入から所定時間経過後の状態を示す。It is explanatory drawing which shows the mechanism in which soot is generated from a combustion chamber, Comprising: The state after predetermined time progress is shown from coal insertion. 同実施形態に係る亀裂測定処理および亀裂補修処理を示すフローチャートである。It is a flowchart which shows the crack measurement process and crack repair process which concern on the same embodiment. 実施例として、装入炭の粒度が0.1mm以下の粒度分布と煤煙濃度との関係のグラフを示す。As an Example, the graph of the relationship between the particle size distribution and the smoke density | concentration whose particle size of charging coal is 0.1 mm or less is shown. 実施例として、装入炭の粒度が0.3mm以下の粒度分布と煤煙濃度との関係のグラフを示す。As an Example, the graph of the relationship between the particle size distribution and the smoke density | concentration with the particle size of charging coal 0.3 mm or less is shown.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.コークス炉の概略構成>
まず、図1を参照して、本発明の実施形態に係るコークス炉100の概略構成について説明する。図1は、本実施形態に係る水平室炉式コークス炉100の概略構成を示す説明図である。
<1. Schematic configuration of coke oven>
First, a schematic configuration of a coke oven 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram showing a schematic configuration of a horizontal chamber furnace type coke oven 100 according to the present embodiment.

コークス炉100は、石炭を乾留してコークスを生成する設備である。コークス炉100は、乾留する石炭が装入される炭化室110と、炭化室110に装入された石炭を乾留する燃焼室120とが、耐火レンガで形成された隔壁(図3の符号140(140A〜140D))によって交互に配置されている。   The coke oven 100 is a facility for producing coke by dry distillation of coal. The coke oven 100 includes a partition wall (reference numeral 140 in FIG. 3) in which a carbonization chamber 110 charged with coal to be carbonized and a combustion chamber 120 for carbonizing the coal charged to the carbonization chamber 110 are formed of refractory bricks. 140A-140D)).

炭化室110に上方から装入された石炭(装入炭)は、1000〜1200℃程度の高温で10〜20時間乾留され、コークス5となる。コークス5は、炭化室110の一側方から押し出し機130によって水平方向に押し出され、炉外に排出される。   Coal charged to the carbonization chamber 110 from above (charged coal) is carbonized at a high temperature of about 1000 to 1200 ° C. for 10 to 20 hours to become coke 5. The coke 5 is extruded in the horizontal direction from one side of the carbonization chamber 110 by the extruder 130 and discharged outside the furnace.

一方、燃焼室120は、隣接する炭化室110に対して、装入炭を乾留するために必要な熱を供給する。燃焼室120には、燃料ガスがガス供給部150から供給される。また、燃焼室120には燃焼空気供給部160から燃焼用空気が蓄熱室170を介して供給され、燃料ガスは燃焼室120内で燃焼される。   On the other hand, the combustion chamber 120 supplies heat necessary for dry distillation of the charged coal to the adjacent carbonization chamber 110. Fuel gas is supplied from the gas supply unit 150 to the combustion chamber 120. Further, combustion air is supplied from the combustion air supply unit 160 to the combustion chamber 120 via the heat storage chamber 170, and the fuel gas is combusted in the combustion chamber 120.

このとき発生する燃焼排ガスは、蓄熱室170を介して煙道175へ排出される。蓄熱室170では、燃焼室120から排出される高温の燃焼排ガスと、燃焼室110へ供給される燃焼用空気あるいは燃料ガスとで熱交換が行われる。煙道175は工場内の地上煙道10と連結されており、燃焼排ガスは煙道175から地上煙道10を通り、煙突20から排出される。   The combustion exhaust gas generated at this time is discharged to the flue 175 through the heat storage chamber 170. In the heat storage chamber 170, heat exchange is performed between the high-temperature combustion exhaust gas discharged from the combustion chamber 120 and the combustion air or fuel gas supplied to the combustion chamber 110. The flue 175 is connected to the ground flue 10 in the factory, and the combustion exhaust gas passes from the flue 175 through the ground flue 10 and is discharged from the chimney 20.

煙道175内には、燃焼排ガスに含まれる煤煙濃度を測定する煤煙濃度計(光透過式煤煙濃度計)180が設置されている。煤煙濃度計180は、投光器と受光器とを組み合わせて測定される光の透過率に基づき煤煙濃度を連続して測定可能な装置である。煤煙濃度は、リンゲルマン濃度として表される。リンゲルマン濃度は0度〜5度の範囲で表され、光の透過率が100%のときリンゲルマン濃度は0度であり、光の透過率が低くなるにつれてリンゲルマン濃度は大きくなり、光の透過率が0%のときリンゲルマン濃度は5度となる。   A smoke concentration meter (light transmission type smoke concentration meter) 180 for measuring the concentration of smoke contained in the combustion exhaust gas is installed in the flue 175. The soot concentration meter 180 is a device that can continuously measure the soot concentration based on the light transmittance measured by combining a projector and a light receiver. The soot concentration is expressed as Ringermann concentration. The Ringerman concentration is expressed in the range of 0 to 5 degrees. When the light transmittance is 100%, the Ringerman concentration is 0 degree. As the light transmittance decreases, the Ringerman concentration increases. When the transmittance is 0%, the Ringermann concentration is 5 degrees.

煤煙濃度計180の設置位置については特に限定されないが、例えば、コークス炉100のすべての燃焼室120からの燃焼排ガスが集約され、地上煙道10または該地上煙道10と連通する煙道175に煤煙濃度計180を設けると、コークス炉100全体の煤煙濃度を測定できる。また、例えば、コークス炉100の燃焼室120毎に設けられる煙道に煤煙濃度計180を設けると、各燃焼室120について燃焼排ガスの煤煙濃度を測定できる。   The installation position of the soot concentration meter 180 is not particularly limited. For example, the flue gas from all the combustion chambers 120 of the coke oven 100 is aggregated, and the ground flue 10 or the flue 175 communicating with the ground flue 10 is collected. When the soot concentration meter 180 is provided, the soot concentration of the entire coke oven 100 can be measured. Further, for example, when the soot concentration meter 180 is provided in the flue provided for each combustion chamber 120 of the coke oven 100, the soot concentration of the combustion exhaust gas can be measured for each combustion chamber 120.

<2.コークス炉の炉体の亀裂測定方法および亀裂補修方法>
次に、本実施形態に係るコークス炉100の炉体の亀裂測定方法および亀裂補修方法について説明する。
<2. Crack measurement method and crack repair method for coke oven furnace>
Next, a crack measuring method and a crack repairing method for the furnace body of the coke oven 100 according to the present embodiment will be described.

[2−1.煤煙発生のメカニズム]
本実施形態に係る炉体の亀裂測定方法は、コークス炉100の炭化室110への装入炭の粒度とコークス炉100で発生する燃焼排ガスに含まれる煤煙との関係に基づき、亀裂の大きさを測定するものである。そこで、本実施形態に係る炉体の亀裂測定方法の説明に先立ち、図2〜図5に基づいて、コークス炉100で発生する燃焼排ガスに煤煙が含まれるメカニズムを説明する。なお、図2〜図5は、燃焼室120から煤煙が発生するメカニズムを示す説明図であって、図2はコークス押出後の状態を示し、図3は隔壁140に付着したカーボンを除去する工程を示し、図4は炭化室110に石炭を装入した直後の状態を示し、図5は石炭装入から所定時間経過後の状態を示す。
[2-1. Smoke generation mechanism]
The crack measuring method of the furnace body according to the present embodiment is based on the relationship between the particle size of the coal charged into the carbonization chamber 110 of the coke oven 100 and the soot contained in the combustion exhaust gas generated in the coke oven 100. Is to measure. Therefore, prior to the description of the method for measuring cracks in the furnace body according to the present embodiment, a mechanism in which soot is included in the combustion exhaust gas generated in the coke oven 100 will be described based on FIGS. 2 to 5 are explanatory views showing a mechanism for generating soot from the combustion chamber 120, FIG. 2 shows a state after coke extrusion, and FIG. 3 is a process of removing carbon adhering to the partition wall 140. 4 shows a state immediately after charging coal into the carbonization chamber 110, and FIG. 5 shows a state after a predetermined time has elapsed since the charging of coal.

図1に示したコークス炉100について、図2〜図5では、4つの隔壁140A〜140Dにより形成された2つの炭化室110A、110Bおよび燃焼室120Aを模式的に示している。各隔壁140A〜140Dは、耐火レンガ142を段違いに組み込みダボで固定して構成されている。積み上げられた耐火レンガ142間の目地144は目地止めされ閉塞されている。   Regarding the coke oven 100 shown in FIG. 1, FIGS. 2 to 5 schematically show two carbonization chambers 110 </ b> A and 110 </ b> B and a combustion chamber 120 </ b> A formed by four partition walls 140 </ b> A to 140 </ b> D. Each of the partition walls 140 </ b> A to 140 </ b> D is configured by incorporating the refractory bricks 142 in steps and fixing them with dowels. The joints 144 between the stacked refractory bricks 142 are jointed and closed.

隔壁140A〜140Dは、熱収縮を繰り返すことにより亀裂145が生じる場合がある。亀裂145が貫通すると、炭化室110Aと燃焼室120Aとが連通するが、例えば図2に示すように、石炭からコークスが形成され、当該コークスを押し出して空窯となった炭化室110Aの隔壁140A、140Bには、石炭乾留時の微粉がカーボン7となって付着している。カーボン7が付着している領域の亀裂145は、このカーボン7によって閉塞され、炭化室110Aと燃焼室120Aとが区切られる。なお、図2の隔壁140Bの上部のように隔壁140Bの表面温度が他の部分と比べて低くなる付近では、隔壁140Bの表面にカーボン7が付着し難く、薄いものとなる。   The partition walls 140 </ b> A to 140 </ b> D may have a crack 145 due to repeated thermal contraction. When the crack 145 penetrates, the carbonization chamber 110A and the combustion chamber 120A communicate with each other. For example, as shown in FIG. 2, coke is formed from coal, and the coke is extruded to form an empty kiln. , 140B, fine powder at the time of coal dry distillation is attached as carbon 7. The crack 145 in the region where the carbon 7 is adhered is blocked by the carbon 7, and the carbonization chamber 110A and the combustion chamber 120A are separated. In addition, in the vicinity where the surface temperature of the partition 140B is lower than that of the other portions as in the upper portion of the partition 140B in FIG. 2, the carbon 7 is difficult to adhere to the surface of the partition 140B and becomes thin.

炭化室110Aからコークスが押し出されると、図3に示すように、空窯となった炭化室110Aに焼却装置125が挿入され、炭化室110A内に空気が噴射される。これにより、隔壁140A、140Bに付着したカーボン7が焼却され、目地144や亀裂145を覆っていたカーボン7がなくなる。つまり、隔壁140A〜140Dの亀裂145が貫通し、炭化室110Aと燃焼室120Aとが連通した状態となることがある。特に、隔壁140Bの上部、すなわち、炭化室110A又は110Bの上部がこの現象が著しい。   When coke is pushed out from the carbonization chamber 110A, as shown in FIG. 3, the incinerator 125 is inserted into the carbonization chamber 110A that has become an empty kiln, and air is injected into the carbonization chamber 110A. Thereby, the carbon 7 adhering to the partition walls 140 </ b> A and 140 </ b> B is incinerated, and the carbon 7 covering the joints 144 and the cracks 145 disappears. That is, the cracks 145 of the partition walls 140A to 140D may penetrate and the carbonization chamber 110A and the combustion chamber 120A may communicate with each other. In particular, this phenomenon is remarkable at the upper part of the partition wall 140B, that is, the upper part of the carbonization chamber 110A or 110B.

隔壁140A、140Bに付着したカーボン7が焼却された後の空窯(炭化室110A)には、図4に示すように、新たに石炭3が装入される。このとき、該石炭が炭化室110A内の炉底及び隔壁に接触すると該接触部及びその近傍の石炭がガス化して炭化室110A内の圧力が高まる。そして、炭化室110A内のガスは、亀裂145を介して圧力の低い燃焼室120Aへ流れ込む。このとき、炭化室110A内に装入された一部の微粉炭が該ガスの流れに含まれて燃焼室120Aへ流れ込もうとする。ここで、このガスの流れに含まれる微粉炭のうち亀裂145を通過可能な大きさ(粒径)の微粉炭は、亀裂145を通過して、隣接する燃焼室120Aへ流れ込む。そして、燃焼室120Aに流れ込んだ微粉炭を含む燃焼排ガスが煙道175へ流れ、外部煙道10を通って煙突20から排出される。微粉炭を含む燃焼排ガスを煤煙ともいう。   As shown in FIG. 4, coal 3 is newly charged into the empty kiln (carbonization chamber 110 </ b> A) after the carbon 7 attached to the partition walls 140 </ b> A and 140 </ b> B has been incinerated. At this time, when the coal comes into contact with the furnace bottom and partition walls in the carbonization chamber 110A, the contact portion and the coal in the vicinity thereof are gasified to increase the pressure in the carbonization chamber 110A. The gas in the carbonization chamber 110A flows into the combustion chamber 120A having a low pressure through the crack 145. At this time, a part of the pulverized coal charged into the carbonization chamber 110A is included in the gas flow and tends to flow into the combustion chamber 120A. Here, of the pulverized coal contained in the gas flow, the pulverized coal having a size (particle size) that can pass through the crack 145 passes through the crack 145 and flows into the adjacent combustion chamber 120A. The combustion exhaust gas containing pulverized coal that has flowed into the combustion chamber 120 </ b> A flows into the flue 175, passes through the external flue 10, and is discharged from the chimney 20. Combustion exhaust gas containing pulverized coal is also called soot.

なお、燃焼室120Aに流れ込んだ微粉炭が該燃焼室120Aで燃焼しないのは、炭化室110Aまたは110Bの上部に対応する燃焼室120A上部の温度が低く(約200℃〜300℃)、しかも、酸素量も少なくなっているためである。   The pulverized coal flowing into the combustion chamber 120A does not burn in the combustion chamber 120A because the temperature of the upper portion of the combustion chamber 120A corresponding to the upper portion of the carbonization chamber 110A or 110B is low (about 200 ° C. to 300 ° C.), This is because the amount of oxygen is also reduced.

一方、亀裂145を通過できない粒径の大きな微粉炭は、該亀裂145に徐々に詰まっていき、石炭装入から所定時間(例えば約10分程度)経過すると、図5に示すように、炭化室110Aと燃焼室120Aとの間の隔壁140Bに生じた亀裂145を閉塞させる。したがって、燃焼室120Aに流れ込む微粉炭も徐々に低下し、その後燃焼排ガスには微粉炭が含まれなくなる。   On the other hand, the pulverized coal having a large particle diameter that cannot pass through the crack 145 gradually clogs the crack 145, and when a predetermined time (for example, about 10 minutes) elapses from the coal charging, as shown in FIG. The crack 145 generated in the partition wall 140B between 110A and the combustion chamber 120A is closed. Therefore, the pulverized coal flowing into the combustion chamber 120A also gradually decreases, and thereafter the pulverized coal is not contained in the combustion exhaust gas.

このように、コークス炉100から外部に排出される微粉炭は、炭化室110に装入された石炭の微粉が、隔壁140の耐火レンガ142に生じた亀裂145より燃焼室120に漏洩し、燃焼排ガスとともに排出されるものである。   Thus, the pulverized coal discharged to the outside from the coke oven 100 leaks into the combustion chamber 120 from the cracks 145 generated in the refractory bricks 142 of the partition wall 140 due to the coal pulverized powder charged into the carbonization chamber 110. It is discharged together with the exhaust gas.

[2−2.亀裂測定方法]
本願発明者は、上述した煤煙発生のメカニズムに着目し、炭化室110への装入炭の粒度分布と煤煙の煤煙濃度との関係を解析することで、隔壁140に生じた亀裂145の大きさを特定することを想到した。ここで、「亀裂の大きさ」とは、亀裂145の開口幅(「亀裂幅」ともいう。)をいい、例えば亀裂145を通過可能な最大粒径とすることができる。煤煙は、炭化室110に装入した石炭の微粉が隔壁140に生じた亀裂145より漏洩して発生することから、亀裂145を通過できない粒度の微粉は煤煙にはほとんど含まれないと考えられる。
[2-2. Crack measurement method]
The inventor of the present application pays attention to the above-described mechanism of soot generation, and analyzes the relationship between the particle size distribution of the coal charged into the carbonization chamber 110 and the soot concentration of the soot, thereby determining the size of the crack 145 generated in the partition wall 140. I came up with a specific idea. Here, the “crack size” refers to the opening width of the crack 145 (also referred to as “crack width”), and can be, for example, the maximum particle size that can pass through the crack 145. The soot is generated when the fine coal powder charged into the carbonization chamber 110 leaks from the crack 145 generated in the partition wall 140, so that it is considered that the soot does not substantially contain fine powder having a particle size that cannot pass through the crack 145.

そこで、本実施形態に係る炉体の亀裂測定方法では、まず、予め炭化室110に装入した石炭の粒度分布を測定する。そして、この石炭を炭化室110に装入した後に発生する煤煙の煤煙濃度を測定し、予め測定した装入炭の粒度分布との相関関係をとる。各粒度についてこれらの相関関係をみた際、相関の高い微粉の粒度が亀裂145の大きさと対応していることとなり、亀裂145の大きさを特定することができる。   Therefore, in the crack measurement method for a furnace body according to this embodiment, first, the particle size distribution of coal previously charged in the carbonization chamber 110 is measured. And the smoke density | concentration of the smoke produced | generated after charging this coal into the carbonization chamber 110 is measured, and the correlation with the particle size distribution of the charged coal measured beforehand is taken. When these correlations are observed for each particle size, the particle size of the fine powder having a high correlation corresponds to the size of the crack 145, and the size of the crack 145 can be specified.

以下、図6に基づいて、本実施形態に係る炉体の亀裂測定方法について詳細に説明する。まず、炭化室110に装入される石炭の粒度分布を予め測定する(S100)。炭化室110に装入される石炭の粒度は、一般に2〜3mm以下の大きさである(塊成炭除く。)。装入炭の粒度は、微粒、細粒、中粒、粗粒等のように区分できる。より具体的には、例えば、0.1mm以下、0.3mm以下、0.5mm以下、1.0mm以下、1.0mm超等のように装入炭の粒径により粒度を規定してもよい。ステップS100では、各粒度の微粉炭が装入炭に含まれる割合が求められる。   Hereinafter, based on FIG. 6, the crack measuring method of the furnace body which concerns on this embodiment is demonstrated in detail. First, the particle size distribution of the coal charged into the carbonization chamber 110 is measured in advance (S100). The particle size of the coal charged into the carbonization chamber 110 is generally 2 to 3 mm or less (excluding agglomerated coal). The particle size of the charged coal can be classified into fine particles, fine particles, medium particles, coarse particles, and the like. More specifically, for example, the particle size may be defined by the particle size of the charged coal such as 0.1 mm or less, 0.3 mm or less, 0.5 mm or less, 1.0 mm or less, or more than 1.0 mm. . In step S100, the ratio in which the pulverized coal of each particle size is included in the charging coal is obtained.

次に、煤煙濃度計180によってコークス炉100から排出される燃焼排ガスの煤煙濃度を測定する(S110)。煤煙濃度の測定は、例えば、常時連続して測定してもよく、装入炭を炭化室110に装入したタイミングで測定してもよい。本実施形態では、煙道175に設置された煤煙濃度計180を用いて煤煙濃度の測定をするので、煤煙濃度を連続して測定することが可能である。煤煙濃度計180は、測定した煤煙濃度を情報処理装置(図示せず。)へ出力する。   Next, the soot concentration of the combustion exhaust gas discharged from the coke oven 100 is measured by the soot concentration meter 180 (S110). The soot concentration may be measured continuously, for example, or may be measured at the timing when charged coal is charged into the carbonization chamber 110. In the present embodiment, the soot density is measured using the soot density meter 180 installed in the flue 175, so that the soot density can be continuously measured. The soot concentration meter 180 outputs the measured soot concentration to an information processing device (not shown).

燃焼排ガスの煤煙濃度が測定されると、ステップS100にて予め取得した装入炭の粒度分布と、ステップS120にて測定された煤煙濃度との相関関係が解析される(S120)。当該処理は、例えば、煤煙濃度計180による測定結果が出力される情報処理装置により行ってもよく、あるいは、装入炭の粒度分布や煤煙濃度計180により測定された煤煙濃度を管理する別途の端末等により行ってもよい。ステップS120では、例えばコークス炉100のいずれかの炭化室110に石炭が装入される毎に、装入炭の各粒度について、装入炭に含まれる割合と測定された煤煙濃度との関係を取る。   When the soot concentration of the combustion exhaust gas is measured, the correlation between the particle size distribution of the charging coal previously acquired in step S100 and the soot concentration measured in step S120 is analyzed (S120). The processing may be performed by, for example, an information processing device that outputs a measurement result by the soot concentration meter 180, or may be a separate unit that manages the particle size distribution of the charging coal and the soot concentration measured by the soot concentration meter 180. You may perform by a terminal etc. In step S120, for example, every time coal is charged into any one of the coking ovens 110 of the coke oven 100, for each particle size of the charged coal, the relationship between the ratio contained in the charged coal and the measured smoke concentration is determined. take.

ステップS100〜S120の処理は繰り返し実行され、1サイクル実行される毎に、装入炭の各粒度について、装入炭に含まれる割合と測定された煤煙濃度との関係が1つ取得される。ステップS100の処理は、定期的(例えば、シフトに1回(1日に4回)程度)に実行され、装入炭の粒度分布を改めて取得した後、装入炭に含まれる割合と測定された煤煙濃度との関係を取得するようにする。上記装入炭の粒度と煤煙濃度の関係のデータ数は判定精度から粒度別に50〜250個程度であれば充分である。   The processing of steps S100 to S120 is repeatedly executed, and each time one cycle is executed, one relationship between the ratio contained in the charging coal and the measured smoke concentration is acquired for each particle size of the charging coal. The process of step S100 is periodically performed (for example, once every shift (about four times a day)), and after obtaining the particle size distribution of the charging coal again, it is measured as a ratio included in the charging coal. Try to get a relationship with the smoke concentration. It is sufficient that the number of data on the relationship between the particle size of the charged coal and the smoke concentration is about 50 to 250 for each particle size from the determination accuracy.

その後、ステップS120にて取得された各粒度についての装入炭に含まれる割合と測定された煤煙濃度との関係より、相関が最も高い粒度が特定され、隔壁140に生じている亀裂の大きさが特定される(S130)。   Thereafter, the particle size having the highest correlation is specified from the relationship between the ratio of the charged coal for each particle size obtained in step S120 and the measured soot concentration, and the size of the crack generated in the partition 140 Is identified (S130).

煤煙濃度計180では、煤煙濃度の大小(すなわち、燃焼排ガス中に含まれる微粉炭の割合)を把握できる。装入炭に含まれる割合と測定された煤煙濃度との相関が高い状態とは、その粒度の微分炭が装入炭に含まれている割合が多ければ煙道175へ排出される量も多く、煤煙濃度も大きくなり、装入炭に含まれている割合が少なければ煙道175へ排出される量も少なく、煤煙濃度も小さくなるということである。つまり、その粒度の微粉炭が隔壁140の亀裂145を通って燃焼室120へ流出できる状態であるといえる。   The soot concentration meter 180 can grasp the magnitude of the soot concentration (that is, the proportion of pulverized coal contained in the combustion exhaust gas). The state in which the proportion of the charged coal and the measured smoke concentration is high is that the amount of the differential coal having the particle size contained in the charged coal is large, the amount discharged to the flue 175 is large. The soot concentration increases, and if the proportion contained in the charging coal is small, the amount discharged to the flue 175 is small and the soot concentration decreases. That is, it can be said that the pulverized coal having the particle size can flow out to the combustion chamber 120 through the crack 145 of the partition wall 140.

一方、装入炭に含まれる割合と測定された煤煙濃度との相関が低い状態とは、その粒度の微分炭が装入炭に含まれる量に寄らず煙道175へ排出される量はほぼ変動がなく、煤煙濃度の変動との関係性が低いということである。また、微粉炭の粒度が亀裂145の大きさより小さければ亀裂145を通過することは可能であるから、これらの相関が低い粒度の微粉炭は亀裂145を通過できないということになる。   On the other hand, a state in which the correlation between the proportion contained in the charging coal and the measured smoke concentration is low means that the amount of differential coal having the particle size discharged to the flue 175 is almost equal to the amount contained in the charging coal. There is no change and the relationship with the change in smoke concentration is low. Further, if the particle size of the pulverized coal is smaller than the size of the crack 145, it is possible to pass through the crack 145. Therefore, the pulverized coal having a particle size having a low correlation cannot pass through the crack 145.

したがって、各粒度についての装入炭に含まれる割合と測定された煤煙濃度との相関の高い粒度の微粉炭に対応する大きさの亀裂145が形成されていると考えられる。例えば、粒径が0.1mm以下の微粉炭が装入炭に含まれる割合と煤煙濃度との間に高い相関がある場合には、隔壁140には約0.1mmの亀裂145が生じていると特定できる。また、例えば粒径が0.3mm以下の微粉炭が装入炭に含まれる割合と煤煙濃度との間に高い相関がある場合には、隔壁140には約0.3mmの亀裂145が生じていると特定できる。なお、粒径が0.3mm以下の微粉炭が装入炭に含まれる割合と煤煙濃度との間に高い相関がある場合には、粒径が0.1mm以下の微粉炭が装入炭に含まれる割合と煤煙濃度にも高い相関が表れる。このように、亀裂145を通過した微粉炭の粒度より、隔壁140に生じた亀裂145の大きさを測定することが可能となる。   Therefore, it is thought that the crack 145 of the magnitude | size corresponding to the pulverized coal of a particle size with a high correlation with the ratio contained in the charging coal about each particle size and the measured smoke density | concentration is formed. For example, when there is a high correlation between the proportion of pulverized coal having a particle size of 0.1 mm or less and the concentration of soot and the soot concentration, cracks 145 of about 0.1 mm are generated in the partition wall 140. Can be specified. For example, when there is a high correlation between the proportion of pulverized coal having a particle size of 0.3 mm or less and the concentration of soot and the soot concentration, cracks 145 of about 0.3 mm are generated in the partition wall 140. Can be identified. In addition, when there is a high correlation between the ratio of the pulverized coal having a particle size of 0.3 mm or less and the soot concentration contained in the charging coal, the pulverized coal having a particle size of 0.1 mm or less is used as the charging coal. A high correlation also appears in the ratio of inclusion and smoke concentration. As described above, the size of the crack 145 generated in the partition wall 140 can be measured from the particle size of the pulverized coal that has passed through the crack 145.

本実施形態に係る亀裂145の大きさの測定方法は、コークス炉100を構成する各隔壁140について亀裂145の位置や大きさを特定するものではなく、隔壁140に生じた亀裂145の大きさの傾向を特定するのに有効な測定方法である。   The method for measuring the size of the crack 145 according to the present embodiment does not specify the position or size of the crack 145 for each partition 140 constituting the coke oven 100, but the size of the crack 145 generated in the partition 140. This is an effective measurement method for identifying trends.

本実施形態に係る亀裂測定方法により取得される装入炭の粒度分布と煤煙濃度との関係は、煤煙濃度計180の設置位置や石炭が装入される炭化室110毎に多少変化する。例えば、石炭が装入された炭化室110に隣接する燃焼室120から排出される煤煙のみが通過する煙道175上に煤煙濃度計180を設けると、石炭が装入された炭化室110と燃焼室120との間の隔壁140に生じている亀裂145の大きさの傾向を把握できる。また、例えば、コークス炉100のすべての燃焼室120から排出される煤煙が集約される煙道175上に煤煙濃度計180を設けると、コークス炉100を構成するすべての隔壁140に生じている亀裂145の平均的な大きさを把握することができる。   The relationship between the particle size distribution of the charged coal obtained by the crack measurement method according to the present embodiment and the soot concentration varies somewhat depending on the installation position of the soot concentration meter 180 and the carbonization chamber 110 into which the coal is charged. For example, when the soot concentration meter 180 is provided on the flue 175 through which only the soot discharged from the combustion chamber 120 adjacent to the carbonization chamber 110 charged with coal passes, the combustion of the carbonization chamber 110 charged with coal and the combustion is performed. The tendency of the size of the crack 145 generated in the partition wall 140 between the chamber 120 and the chamber 120 can be grasped. Further, for example, when the soot concentration meter 180 is provided on the flue 175 where the soot discharged from all the combustion chambers 120 of the coke oven 100 is collected, cracks generated in all the partition walls 140 constituting the coke oven 100. The average size of 145 can be grasped.

なお、本実施形態に係る亀裂測定方法は、装入炭の粒度分布と煤煙濃度計180により測定された煤煙濃度とから、亀裂145の大きさを測定できる。煤煙濃度計180は煙道175に常時設置することができるので、煤煙濃度は連続的に測定することが可能である。したがって、例えば半年〜数年の長期にわたってこれらの関係を取得することで、亀裂145の大きさの変化も把握することができる。また、上述したようにコークス炉100のすべての燃焼室120から排出される煤煙が集約される煙道175上に煤煙濃度計180を設置した場合にも、石炭を装入する炭化室110と装入タイミングを特定することで、この煤煙濃度計180の測定結果を用いて特定の隔壁140の亀裂の大きさを特定できる。   In addition, the crack measuring method which concerns on this embodiment can measure the magnitude | size of the crack 145 from the particle size distribution of charging coal, and the smoke density | concentration measured by the smoke density meter 180. FIG. Since the soot concentration meter 180 can be always installed in the flue 175, the soot concentration can be continuously measured. Therefore, for example, by acquiring these relationships over a long period of six months to several years, it is possible to grasp the change in the size of the crack 145. In addition, as described above, even when the soot concentration meter 180 is installed on the flue 175 where the soot discharged from all the combustion chambers 120 of the coke oven 100 is collected, the coking chamber 110 and the equipment for charging coal are installed. By specifying the input timing, the crack size of the specific partition wall 140 can be specified using the measurement result of the smoke concentration meter 180.

[2−3.亀裂補修方法]
本実施形態に係る亀裂測定方法により亀裂145の大きさを特定することで、亀裂145を塞ぐ補修処理を適切に行うことが可能となる(S140)。コークス炉100の隔壁140に生じた亀裂145の補修は、例えば目地材を炭化室110に吹き込み、炭化室110内に浮遊させた目地材を亀裂145に入り込ませて亀裂145を塞ぐドライシーリングによって行われる。目地材としては、例えばモルタルやファイバー系の目地材等がある。
[2-3. Crack repair method]
By specifying the size of the crack 145 by the crack measurement method according to the present embodiment, a repair process for closing the crack 145 can be appropriately performed (S140). Repair of the crack 145 generated in the partition wall 140 of the coke oven 100 is performed by dry sealing that blows the joint material into the carbonization chamber 110 and causes the joint material suspended in the carbonization chamber 110 to enter the crack 145 and close the crack 145, for example. Is called. Examples of joint materials include mortar and fiber joint materials.

隔壁140の亀裂145を適切に補修するためには、亀裂145の大きさに合った目地材を用いる必要がある。亀裂145の大きさより粒度の大きい目地材を用いると、亀裂145に目地材が入り込まないため、亀裂145を確実に塞ぐことができない。そこで、本実施形態では、装入炭の粒度分布と煤煙濃度との相関関係から測定した隔壁140の亀裂の大きさに基づき、亀裂145の大きさより小さい粒径の目地材を用いて亀裂145を補修する。これにより、確実に目地材を亀裂145に入り込ませて、亀裂を塞ぐことができる。   In order to appropriately repair the crack 145 of the partition wall 140, it is necessary to use a joint material suitable for the size of the crack 145. If a joint material having a particle size larger than the size of the crack 145 is used, the joint material does not enter the crack 145, so that the crack 145 cannot be reliably closed. Therefore, in the present embodiment, the crack 145 is formed using a joint material having a particle size smaller than the size of the crack 145 based on the size of the crack in the partition wall 140 measured from the correlation between the particle size distribution of the charged coal and the smoke concentration. Repair. As a result, the joint material can surely enter the crack 145 to close the crack.

なお、亀裂145の補修に使用する目地材には、粒径の異なる複数の目地材を用いてもよい。この場合、これらの目地材の粒径は亀裂145の大きさより小さいものとし、粒径の小さい目地材から順に炭化室110に吹き込んで補修するのがよい。   A plurality of joint materials having different particle diameters may be used as joint materials used for repairing the crack 145. In this case, the particle diameter of these joint materials is preferably smaller than the size of the crack 145, and repair is preferably performed by blowing into the carbonization chamber 110 in order from the joint material having a smaller particle diameter.

<3.まとめ>
以上、本実施形態に係るコークス炉100の炉体の亀裂測定方法について説明した。本実施形態によれば、装入炭の粒度分布と煤煙濃度との相関関係を解析し、相関の最も高い粒度のサイズを亀裂145の大きさとして特定するという簡易な方法で、炉体に生じた貫通する亀裂145の平均的な大きさを把握することができる。また、煤煙濃度は連続して測定可能であり、経時的な亀裂145の大きさの変化を把握することもできる。さらに、本実施形態に係る亀裂測定方法により測定された亀裂145の大きさに基づき、亀裂145を補修するための目地材を適切に選定することができる。
<3. Summary>
In the above, the crack measuring method of the furnace body of the coke oven 100 which concerns on this embodiment was demonstrated. According to the present embodiment, the correlation between the particle size distribution of the charged coal and the soot concentration is analyzed, and the size of the particle size having the highest correlation is specified as the size of the crack 145, which is generated in the furnace body. It is possible to grasp the average size of the cracks 145 that pass through. Further, the smoke concentration can be continuously measured, and the change in the size of the crack 145 over time can be grasped. Furthermore, based on the size of the crack 145 measured by the crack measuring method according to the present embodiment, a joint material for repairing the crack 145 can be appropriately selected.

実施例として、コークス炉全体において、炭化室に装入される石炭の粒度分布と煤煙濃度計(光透過方式ばいじん濃度連続測定装置(大東計器(株)製、DSM5100A SERIES))により測定された煤煙濃度との関係を調べた。本実施例では、コークス炉のすべての燃焼室から排出された煤煙が集約される位置において煤煙濃度を測定した。石炭の粒度分布は各シフトで1回(1日に4回)測定し、煤煙濃度計での煤煙の測定は、各炭化室に石炭が装入される毎に行い、その結果を粒度毎にマッピングして装入炭の粒度分布と煤煙濃度との関係をみた。図7および図8に、その結果を示す。なお、装入炭の各粒度と煤煙濃度との関係のデータ数は各々200個である。   As an example, in the whole coke oven, the particle size distribution of coal charged in the carbonization chamber and the soot concentration meter (light transmission type soot concentration continuous measuring device (DSM5100A SERIES, manufactured by Daito Keiki Co., Ltd.)) The relationship with concentration was examined. In this example, the smoke concentration was measured at a position where the smoke discharged from all the combustion chambers of the coke oven was collected. The particle size distribution of coal is measured once for each shift (four times a day), and the soot concentration measurement with a soot concentration meter is performed each time coal is charged into each carbonization chamber, and the result is determined for each particle size. Mapping was performed to see the relationship between the particle size distribution of the charged coal and the smoke concentration. The results are shown in FIG. 7 and FIG. In addition, the number of data of the relationship between each particle size and soot density of charging coal is 200 each.

図7は装入炭の粒度が0.1mm以下の粒度分布と煤煙濃度との関係のグラフであり、図8は装入炭の粒度が0.3mm以下の粒度分布と煤煙濃度との関係のグラフである。まず、図7に示すように、最小二乗法を用いて装入炭の粒度が0.1mm以下の粒度分布と煤煙濃度との関係を一次関数で表すと、各プロットは概ね算出した一次関数に沿って集まっており、ばらつきも小さく、高い相関がみられる。一方、0.3mm以下の粒度分布と煤煙濃度との関係についても同様に最小二乗法により一次関数を求めると、図8に示すように、プロットのばらつきが大きく、一次関数との関連性が低い。   FIG. 7 is a graph showing the relationship between the particle size distribution of the charged coal with a particle size of 0.1 mm or less and the smoke concentration, and FIG. 8 shows the relationship between the particle size distribution of the charged coal with a particle size of 0.3 mm or less and the smoke concentration. It is a graph. First, as shown in FIG. 7, when the relationship between the particle size distribution of the charged coal having a particle size of 0.1 mm or less and the soot concentration is expressed by a linear function using the least square method, each plot is approximately a linear function calculated. They are gathered along with small variations and high correlation. On the other hand, regarding the relationship between the particle size distribution of 0.3 mm or less and the soot concentration, when a linear function is obtained by the least square method, the plot variation is large and the relevance to the linear function is low as shown in FIG. .

これより、本実施例においては、装入炭の粒度が0.1mm以下の粒度分布と煤煙濃度とに高い相関があることから、コークス炉の隔壁に生じている亀裂の平均的な大きさは0.1mmとして特定することができる。   From this, in this example, since there is a high correlation between the particle size distribution of the charged coal with a particle size of 0.1 mm or less and the soot concentration, the average size of cracks occurring in the partition wall of the coke oven is It can be specified as 0.1 mm.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

3 石炭
5 コークス
7 カーボン
10 外部煙道
20 煙突
100 コークス炉
110 炭化室
120 燃焼室
125 焼却装置
130 押し出し機
140 隔壁
142 耐火レンガ
144 目地
145 亀裂
150 ガス供給部
160 燃焼空気供給部
170 蓄熱室
175 煙道
180 煤煙濃度計
3 Coal 5 Coke 7 Carbon 10 External flue 20 Chimney 100 Coke oven 110 Coking chamber 120 Combustion chamber 125 Incinerator 130 Extruder 140 Bulkhead 142 Refractory brick 144 Joint 145 Crack 150 Gas supply section 160 Combustion air supply section 170 Thermal storage chamber 175 Smoke Road 180 Smoke concentration meter

Claims (3)

コークス炉の燃焼室と炭化室とを区分する隔壁に生じた亀裂の大きさを測定する亀裂測定方法であって、
前記コークス炉に装入する石炭の粒度分布を予め測定し、
前記石炭の乾留のために前記コークス炉で発生した排ガス中に含まれる煤煙濃度を測定し、
前記コークス炉に装入された石炭の粒度分布と前記煤煙濃度との相関関係から、前記石炭の粒度分布と前記煤煙濃度との間に高い相関がある前記石炭の粒度の粒径を、前記コークス炉の隔壁に生じた亀裂の大きさする、亀裂測定方法。
A crack measurement method for measuring the size of a crack generated in a partition wall that separates a combustion chamber and a carbonization chamber of a coke oven,
Pre-measure the particle size distribution of the coal charged into the coke oven,
Measure the soot concentration contained in the exhaust gas generated in the coke oven for carbonization of the coal,
From the correlation between the particle size distribution of the coal charged into the coke oven and the smoke concentration, the particle size of the coal particle size having a high correlation between the particle size distribution of the coal and the smoke concentration is determined as the coke. A crack measurement method in which the size of a crack generated in a partition wall of a furnace is used.
前記煤煙濃度は、前記コークス炉で発生した排ガスが排出される煙道に設置された煤煙濃度計により測定される、請求項に記載の亀裂測定方法。 The crack measuring method according to claim 1 , wherein the smoke concentration is measured by a smoke concentration meter installed in a flue from which exhaust gas generated in the coke oven is discharged. コークス炉の燃焼室と炭化室とを区分する隔壁に生じた亀裂を補修する亀裂補修方法であって、
前記コークス炉に装入する石炭の粒度分布を予め測定し、
前記石炭の乾留のために前記コークス炉で発生した排ガス中に含まれる煤煙濃度を測定し、
前記コークス炉に装入された石炭の粒度分布と前記煤煙濃度との相関関係から、前記石炭の粒度分布と前記煤煙濃度との間に高い相関がある前記石炭の粒度の粒径を、前記コークス炉の隔壁に生じた亀裂の大きさし、
前記亀裂の大きさに対応する粒度の目地材を前記炭化室に吹き込み、前記隔壁の亀裂に充填させる、亀裂補修方法。
A crack repairing method for repairing a crack generated in a partition wall that separates a combustion chamber and a carbonization chamber of a coke oven,
Pre-measure the particle size distribution of the coal charged into the coke oven,
Measure the soot concentration contained in the exhaust gas generated in the coke oven for carbonization of the coal,
From the correlation between the particle size distribution of the coal charged into the coke oven and the smoke concentration, the particle size of the coal particle size having a high correlation between the particle size distribution of the coal and the smoke concentration is determined as the coke. the size of a crack generated in the furnace of the partition wall,
A crack repairing method in which joint material having a particle size corresponding to the size of the crack is blown into the carbonization chamber to fill the crack in the partition wall.
JP2014069875A 2014-03-28 2014-03-28 Crack measuring method and crack repairing method for furnace body Active JP6287481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069875A JP6287481B2 (en) 2014-03-28 2014-03-28 Crack measuring method and crack repairing method for furnace body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069875A JP6287481B2 (en) 2014-03-28 2014-03-28 Crack measuring method and crack repairing method for furnace body

Publications (2)

Publication Number Publication Date
JP2015189918A JP2015189918A (en) 2015-11-02
JP6287481B2 true JP6287481B2 (en) 2018-03-07

Family

ID=54424703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069875A Active JP6287481B2 (en) 2014-03-28 2014-03-28 Crack measuring method and crack repairing method for furnace body

Country Status (1)

Country Link
JP (1) JP6287481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341281B (en) * 2016-12-08 2021-03-30 江苏方天电力技术有限公司 Coal-fired unit smoke concentration analysis method based on big data technology
KR101974563B1 (en) * 2017-12-14 2019-05-02 주식회사 포스코 Repairing Apparatus and Method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943205B2 (en) * 1997-09-19 2007-07-11 新日鐵化学株式会社 How to prevent black smoke from the coke oven chimney
JP2005272822A (en) * 2004-02-25 2005-10-06 Jfe Steel Kk Coke oven furnace diagnosis system, furnace diagnosis method and control program for furnace diagnosis system

Also Published As

Publication number Publication date
JP2015189918A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
Panahi et al. Combustion details of raw and torrefied biomass fuel particles with individually-observed size, shape and mass
Shimogori et al. Effects of fine ash particles and alkali metals on ash deposition characteristics at the initial stage of ash deposition determined in 1.5 MWth pilot plant tests
JP6287481B2 (en) Crack measuring method and crack repairing method for furnace body
JP2004361368A (en) Method for predicting/evaluating adhesion of coal ash, and method for preventing adhesion of coal ash
US8126657B2 (en) Method and apparatus for the calculation of coal ash fusion values
JP5461768B2 (en) Coke oven carbonization chamber diagnostic method
JP6278185B2 (en) Combustion carbon removal method in carbonization chamber of coke oven.
Huang et al. In situ diagnostics on the dynamic processes of ash deposit formation, shedding, and heat transfer in a self-sustained down-fired furnace
JP2007169533A (en) Method for incinerating carbon attached to coke oven carbonization chamber
JP2009068765A (en) Profile measuring method of refractory in coke oven, and wear amount measuring method of refractory
Vega-Nieva et al. Slagging and fouling risks derived from the combustion of solid biofuels
JP6724738B2 (en) Judging completion method for coke oven
JP4142333B2 (en) Coke oven coking chamber diagnostic method
JP2615139B2 (en) Brick wall damage detection method in coke oven carbonization room
JP6655316B2 (en) Furnace temperature estimation method and furnace temperature estimation device
JP2009046637A (en) Method of monitoring combustion state of coke furnace
JP2009068755A (en) Reactor device and reactor gas temperature estimating method
Ng et al. Development of TGA technique for carbon type characterisation in blast furnace dust
JP2002285163A (en) Method for checking damage of coke oven carbonizing chamber
JP6825609B2 (en) Coke furnace blockage identification method and coke oven
JP5838993B2 (en) Coke oven fire detection method
JPS5441902A (en) Maintenance of furnace of coke oven
JP4820467B2 (en) Method of grasping carbon adhesion on coke oven carbonization chamber wall
Alekhnovich Initial slagging temperature as a coal slagging index: determination and application
JP6252526B2 (en) Coke oven operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350