JP6282005B2 - Improved process for producing oxidation products by photooxygen oxidation - Google Patents

Improved process for producing oxidation products by photooxygen oxidation Download PDF

Info

Publication number
JP6282005B2
JP6282005B2 JP2014046542A JP2014046542A JP6282005B2 JP 6282005 B2 JP6282005 B2 JP 6282005B2 JP 2014046542 A JP2014046542 A JP 2014046542A JP 2014046542 A JP2014046542 A JP 2014046542A JP 6282005 B2 JP6282005 B2 JP 6282005B2
Authority
JP
Japan
Prior art keywords
group
substituent
carbon atoms
reaction
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014046542A
Other languages
Japanese (ja)
Other versions
JP2015168667A (en
Inventor
暢之 間瀬
暢之 間瀬
松本 純一
純一 松本
良一 赤石
良一 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemicals Ind.,Ltd.
Shizuoka University NUC
Original Assignee
Osaka Organic Chemicals Ind.,Ltd.
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemicals Ind.,Ltd., Shizuoka University NUC filed Critical Osaka Organic Chemicals Ind.,Ltd.
Priority to JP2014046542A priority Critical patent/JP6282005B2/en
Publication of JP2015168667A publication Critical patent/JP2015168667A/en
Application granted granted Critical
Publication of JP6282005B2 publication Critical patent/JP6282005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は,一般的には有機化合物の酸化による化合物の製造方法に関し,特に光酸素酸化を用いた製造方法に関する。   The present invention generally relates to a method for producing a compound by oxidation of an organic compound, and particularly relates to a production method using photooxygen oxidation.

有機化合物の溶液に酸素(空気)雰囲気下に光照射して行う光酸素酸化反応はよく知られており,種々の酸化生成物の製造に適用が可能である。光酸素酸化反応は,一重項酸素による酸化反応であり,反応促進の必要上触媒として光増感剤を添加して行われる。一般に,光増感剤は,光照射を受けてそれ自身が一重項励起状態になり速やかに三重項酸素に復帰する際に,基底状態の酸素(三重項)にエネルギーを移転し,一重項酸素へと励起させる働きをし,それにより光酸素酸化反応を促進させる。   The photo-oxygen oxidation reaction performed by irradiating an organic compound solution with light in an oxygen (air) atmosphere is well known, and can be applied to the production of various oxidation products. The photooxygen oxidation reaction is an oxidation reaction with singlet oxygen, and is performed by adding a photosensitizer as a catalyst for the necessity of promoting the reaction. In general, a photosensitizer transfers energy to the ground state oxygen (triplet) when it is irradiated with light and becomes a singlet excited state and quickly returns to triplet oxygen. Exciting action to promote photo-oxygen oxidation reaction.

しかしながら,光増感剤は,高価であり目的生成物の製造コストを大きく上昇させる要因となるため,産業規模での使用には適さない。また目的生成物にとっては不純物でもあるから,可能であれば使用量を減らすことが好ましく,使用せずに済むのであれば尚更好ましい。   However, photosensitizers are expensive and cause a significant increase in the production cost of the target product, so they are not suitable for use on an industrial scale. Moreover, since it is also an impurity for the target product, it is preferable to reduce the amount used if possible, and even more preferable if it is not necessary to use it.

また,スルフィドの酸化に関しては,一重項酸素による酸化は,スルホキシドに止まらず,更にスルホンにまで酸化されて,これら双方を結果として与える場合が大半であり,スルホキシドで反応を停止させる選択的酸化は困難である(非特許文献1)。別の方法として,過酸化物を用いてスルフィドを酸化することによるスルホキシドの一般的合成法においても,過酸化物の当量数コントロールでスルホキシドへの選択的酸化を狙っても,スルホンまで酸化が進行してしまい易いため,スルホキシド選択的な合成は容易でない(非特許文献2)。   As for the oxidation of sulfides, oxidation by singlet oxygen is not limited to sulfoxide but is further oxidized to sulfone, giving both of them as a result, and selective oxidation that terminates the reaction with sulfoxide is not possible. It is difficult (Non-Patent Document 1). As another method, even in the general synthesis method of sulfoxide by oxidizing sulfide with peroxide, the oxidation proceeds to sulfone even if selective oxidation to sulfoxide is aimed at by controlling the number of equivalents of peroxide. Therefore, selective synthesis of sulfoxide is not easy (Non-patent Document 2).

光酸素酸化反応の分野ではないが,マイクロバブル或いはマイクロナノバブルと呼ばれる直径が数十μm〜数百nmの気泡を用いると酸素によるアルコールの酸化反応や,Pd等の触媒を用いた接触水素化反応が,常温,常圧下に,機械的撹拌を要することなく効率的に進行することが知られている(非特許文献3〜7)。また,そのような微細な気泡を生じさせるための装置も知られ,複数のメーカーにより市販されている。   Although not in the field of photo-oxygen oxidation reaction, if bubbles with a diameter of several tens of μm to several hundreds of nanometers called microbubbles or micronanobubbles are used, the oxidation reaction of alcohol with oxygen or the catalytic hydrogenation reaction using a catalyst such as Pd However, it is known that it proceeds efficiently at room temperature and normal pressure without requiring mechanical stirring (Non-Patent Documents 3 to 7). Devices for generating such fine bubbles are also known and are commercially available from multiple manufacturers.

マイクロナノバブルに関しては,更に,2−エチルアントラキノンを含有する溶液をマイクロリアクター中に流しつつ,マイクロリアクター内において,水素を含んだガスを濾過膜を介しマイクロバブルの形で溶液中に導入し,マイクロバブルを分散させた溶液を固定化された触媒のカラムに導入して2−エチルアントラヒドロキノンへと還元する方法も知られている(非特許文献8)。   As for micro-nano bubbles, while a solution containing 2-ethylanthraquinone is allowed to flow through the microreactor, a gas containing hydrogen is introduced into the solution in the form of microbubbles through a filtration membrane in the microreactor. A method is also known in which a solution in which bubbles are dispersed is introduced into an immobilized catalyst column and reduced to 2-ethylanthrahydroquinone (Non-patent Document 8).

To, W.-P.; Liu, Y.; Lau, T.-C.; Che, C.-M. Chem.-Eur. J. 2013, 19 (18), 5654-5664.To, W.-P .; Liu, Y .; Lau, T.-C .; Che, C.-M. Chem.-Eur. J. 2013, 19 (18), 5654-5664. Crich, D.; Banerjee, A.; Yao, Q. J. Am. Chem. Soc. 2004, 126 (45), 14930-14934.Crich, D .; Banerjee, A .; Yao, Q. J. Am. Chem. Soc. 2004, 126 (45), 14930-14934. 酒井拓磨他,中部化学関係学協会連合秋季大会後援予稿集,第43巻第127頁(2012年)Takuma Sakai et al., Chubu Chemical Association Association Autumn Meeting Sponsored Proceedings, Vol. 43, p. 127 (2012) 酒井拓磨他,日本プロセス化学会サマーシンポジウム講演要旨集,第2012巻第254-255頁(2012年)Takuma Sakai et al., Abstracts of Summer Symposium of Japanese Society for Process Chemistry, Vol.2012, pp.254-255 (2012) 酒井拓磨他,日本プロセス化学会サマーシンポジウム講演要旨集,第2012巻第137-137頁(2012年)Takuma Sakai et al., Abstracts of the Summer Symposium of the Japanese Society for Process Chemistry, Vol. 2012, pp. 137-137 (2012) 間瀬暢之他,配管技術,第53巻第5号第48-52頁(2011年)Masayuki Mase et al., Piping Technology, Vol. 53, No. 5, pp. 48-52 (2011) N. Mase, et al., Chem. Commun, Vol. 47, p. 2086-2088 (2011).N. Mase, et al., Chem. Commun, Vol. 47, p. 2086-2088 (2011). J. Tan et al., AIChE Journal, Vol. 58, No. 5, p. 1326-1335 (2012).J. Tan et al., AIChE Journal, Vol. 58, No. 5, p. 1326-1335 (2012).

上記背景の下で,本発明の目的は,有機化合物の光酸素酸化反応において,従来の方法に比べ,常温,常圧下に高い速度と効率で反応を進行させることができ,光増感剤の使用も低減し又は不要にすることのできる方法を提供することを目的とする。   Under the above background, the object of the present invention is to allow the photo-oxidation reaction of organic compounds to proceed at a higher speed and efficiency at room temperature and atmospheric pressure than conventional methods. The object is to provide a method which can also reduce or eliminate the use.

本発明者は,光酸素酸化反応において,反応に用いる酸素ガス又は空気を,1μmより小さい粒径を有する微細な気泡(ナノバブル)の形で反応溶液中に供給すると,常温,常圧で,非常に効率的に,光増感剤の使用量をごく微量とし又は光増感剤を使用しないでも,光酸素酸化反応を効率よく行わせることができることを見出した。また予想外にも,原料化合物と目的生成物との関係によっては,光増感剤量の調節により主生成物を選択できること,更には,スルフィドのスルホキシドへの高度に選択的な酸化が可能となることも見出した。以下に示す本発明は,これらの発見に基づき更に検討を重ねて完成されたものである。   When the present inventors supply oxygen gas or air used for the reaction in the form of fine bubbles (nanobubbles) having a particle size smaller than 1 μm in the reaction solution in the photo-oxygen oxidation reaction, In addition, the present inventors have found that the photooxygen oxidation reaction can be performed efficiently even if the amount of the photosensitizer used is very small or no photosensitizer is used. Unexpectedly, depending on the relationship between the raw material compound and the target product, the main product can be selected by adjusting the amount of photosensitizer, and furthermore, highly selective oxidation of sulfide to sulfoxide is possible. I also found out. The present invention described below has been completed through further studies based on these findings.

1.原料有機化合物の光酸素酸化による生成物の製造における,改良された製造方法であって,光照射下におかれた該原料有機化合物含有溶液に酸素含有気体をナノバブルの形で注入して,該溶液中に該酸素含有気体のナノバブルが分散された状態を維持することにより,該原料有機化合物の光酸素酸化反応を進行させて該生成物を得ることを特徴とする,製造方法。
2.該溶液が,光増感剤を含むものである,上記1の製造方法。
3.該光増感剤が,ローズベンガル,メチレンブルー,エオシンY,フルオレッセイン,p−ベンゾキノ,ルブレン,5,10,15,20−テトラフェニルポルフィン,及び遷移金属錯体からなる群より選ばれるものである,上記1又は2の製造方法。
4.該溶液中の光増感剤の濃度が,該原料有機化合物に対して3mol%以下である,上記1〜3の何れかの製造方法。
5.該溶液が光増感剤を含まないものである,上記1の製造方法。
6.光照射のための光源が水銀灯,ハロゲンランプ,LEDランプ及び白熱電球から選ばれるものである,上記1〜5の何れかの製造方法。
7.該原料有機化合物(M)と該生成物(P)とが,下記の組合せになるもの:
(i) M:α−テルピネン,P:アスカリドール及び/又はp−シメン
(ii) M:RCHNH,P:RCH=NCH
〔式中,Rは,置換基を有していてよい芳香族基を表す。〕
(iii) M:RCHNHR,P:RCH=NHR
〔式中,Rは上記定義に同じであり,Rは,置換基を有していてよい飽和炭化水素基又は置換基を有していてよい芳香族基を表す。〕
(iv) M:スルフィド,P:スルホキシド
より選ばれるものである,上記1〜6の何れかの製造方法。
8.Rの芳香環部分が炭素数6〜10を有するものである,上記7の製造方法。
9.Rの置換基が,R−,RO−及びXからなる群より選ばれるものであり,ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6の飽和炭化水素基を表すか,又は1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよいフェニル基を表し,Xはハロゲンを表すものである,上記7又は8の製造方法。
10.Rが,置換基を有していてよい炭素数1〜10の飽和炭化水素基,又は置換基を有していてよい炭素数6〜10の芳香族基を表すか,又はRがRと結合して環を形成していてよい飽和炭化水素基を表すものである,上記7〜9の何れかの製造方法。
11.Rの置換基が,R−,RO−及びXからなる群より選ばれるものであり,ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6の飽和炭化水素基を表すか,又は1個又は2個以上のハロゲンで置換されていてもよいフェニル基を表し,Xはハロゲン若しくはヒドロキシル基を表すものである,上記7〜10の製造方法。
12.該原料有機化合物(M)と該生成物(P)とが,(M)置換基を有してよい1,2,3,4−テトラヒドロイソキノリンと(P)置換基を有してよい3,4−ジヒドロイソキノリンである,上記7〜11の何れかの製造方法。
13.該スルフィド及びスルホキシドが,それぞれR−S−R及びR−SO−R
〔式中,R,Rは,同一又は異なって,置換基を有していてよい飽和炭化水素基,又は置換されていてよい芳香族基を表す〕で示されるものである,上記7〜12の何れかの製造方法
14.該飽和炭化水素基が,炭素数1〜10のものであり,該芳香族基の芳香環部分が炭素数6〜10のものである,上記13の製造方法。
15.R又はRの置換基が,R−,RO−又はXを表し,Rは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6のアルキル基を表し,Xはハロゲン若しくはヒドロキシル基を表すものである,上記14の製造方法。
1. An improved production method for producing a product by photo-oxygen oxidation of a raw organic compound, wherein an oxygen-containing gas is injected into the raw organic compound-containing solution under light irradiation in the form of nanobubbles, A production method, wherein the product is obtained by proceeding a photo-oxygen oxidation reaction of the raw organic compound by maintaining a state in which the nanobubbles of the oxygen-containing gas are dispersed in a solution.
2. The production method according to 1 above, wherein the solution contains a photosensitizer.
3. The photosensitizer is selected from the group consisting of rose bengal, methylene blue, eosin Y, fluorescein, p-benzoquino, rubrene, 5,10,15,20-tetraphenylporphine, and a transition metal complex. 1 or 2 above.
4). 4. The production method according to any one of 1 to 3 above, wherein the concentration of the photosensitizer in the solution is 3 mol% or less with respect to the raw material organic compound.
5. The production method according to 1 above, wherein the solution does not contain a photosensitizer.
6). 6. The method according to any one of 1 to 5 above, wherein the light source for light irradiation is selected from a mercury lamp, a halogen lamp, an LED lamp and an incandescent lamp.
7). The raw organic compound (M) and the product (P) have the following combinations:
(i) M: α-terpinene, P: ascaridol and / or p-cymene
(ii) M: R 1 CH 2 NH 2 , P: R 1 CH═NCH 2 R 1
[Wherein, R 1 represents an aromatic group which may have a substituent. ]
(iii) M: R 1 CH 2 NHR 2 , P: R 1 CH═NHR 2
[Wherein, R 1 is the same as defined above, and R 2 represents a saturated hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. ]
(iv) The production method according to any one of 1 to 6 above, which is selected from M: sulfide and P: sulfoxide.
8). 8. The production method according to 7 above, wherein the aromatic ring portion of R 1 has 6 to 10 carbon atoms.
9. The substituent of R 1 is selected from the group consisting of R 3 —, R 3 O— and X, where R 3 may be substituted with one or more halogen or hydroxyl groups. The above 7 or 7 represents a saturated hydrocarbon group having 1 to 6 carbon atoms, or a phenyl group which may be substituted with one or more halogens or hydroxyl groups, and X represents halogen. 8. Manufacturing method of 8.
10. R 2 represents a saturated hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, or an aromatic group having 6 to 10 carbon atoms which may have a substituent, or R 2 represents R The production method according to any one of the above 7 to 9, which represents a saturated hydrocarbon group which may be bonded to 1 to form a ring.
11. The substituent of R 2 is selected from the group consisting of R 4 —, RO—, and X, where R 4 is the number of carbon atoms that may be substituted with one or more halogen or hydroxyl groups. 1-6 saturated hydrocarbon groups, or a phenyl group optionally substituted by one or more halogens, X represents a halogen or hydroxyl group, Production method.
12 The starting organic compound (M) and the product (P) may have (M) 1,2,3,4-tetrahydroisoquinoline which may have a substituent and (P) substituent 3, 12. The production method according to any one of 7 to 11 above, which is 4-dihydroisoquinoline.
13. The sulfide and sulfoxide are R 6 -S—R 7 and R 6 —SO—R 7 , respectively.
[Wherein R 6 and R 7 are the same or different and each represents a saturated hydrocarbon group which may have a substituent or an aromatic group which may be substituted] The manufacturing method in any one of -12. 14. The production method according to 13 above, wherein the saturated hydrocarbon group has 1 to 10 carbon atoms, and the aromatic ring part of the aromatic group has 6 to 10 carbon atoms.
15. The substituent of R 6 or R 7 represents R 8 —, R 8 O— or X, and R 8 has 1 to 6 carbon atoms which may be substituted with one or more halogen or hydroxyl groups; 15. The production method according to 14 above, which represents an alkyl group and X represents a halogen or a hydroxyl group.

本発明によれば,原料有機化合物の光酸素酸化による生成物の製造において,常圧で効率的に反応を行わせることができる。また反応溶液の加温(60℃等)も特に必要なく,常温で行え,光増感剤の使用量をごく微量にしても,反応を効率よく行わせることが可能となり,更には,光増感剤を使用しないことさえも可能となる。更に,本発明は,光酸素酸化により複数の生成物を与える原料化合物の場合には,従来副生成物としてしか得られなかった化合物を,光増感剤の種類及び濃度等の条件選択により主生成物として選択的に得る可能性を提供するほか,広範な種々のスルフィドのスルホキシドへの高度に選択的な酸化を可能にする。
また,本発明によれば,スルフィドのスルホキシドへの選択的酸化が可能となる。
According to the present invention, in the production of a product by photo-oxygen oxidation of a raw material organic compound, a reaction can be efficiently performed at normal pressure. In addition, heating of the reaction solution (60 ° C., etc.) is not particularly necessary, and it can be performed at room temperature, allowing the reaction to be carried out efficiently even with a very small amount of photosensitizer used. It is even possible not to use a sensitizer. Further, in the present invention, in the case of a raw material compound that gives a plurality of products by photooxygen oxidation, a compound that has been obtained only as a by-product in the past can be selected mainly by selecting conditions such as the type and concentration of the photosensitizer. In addition to providing the potential to be selectively obtained as a product, it allows highly selective oxidation of a wide variety of sulfides to sulfoxides.
Further, according to the present invention, selective oxidation of sulfide to sulfoxide becomes possible.

図1は,本発明で使用する光酸素酸化反応装置の概念図である。FIG. 1 is a conceptual diagram of a photo-oxygen oxidation reaction apparatus used in the present invention. 図2は,ナノバブル発生装置で形成されるバブルの粒子径分布を示すグラフである。FIG. 2 is a graph showing the particle size distribution of bubbles formed by the nanobubble generator.

本明細書において,「ナノバブル」とは,液体中の気体の微細な泡であって,泡の全個数に対して,5nm以上1000 nm未満の粒子径を有する泡の個数が90%以上であるものをいい,好ましくは,50〜500 nmの粒子径を有する泡の個数が90%以上であるものを,更に好ましくは,50〜400 nmの粒子径を有する泡の個数が90%以上であるものをいう。   In this specification, “nano bubbles” are fine bubbles of gas in a liquid, and the number of bubbles having a particle diameter of 5 nm or more and less than 1000 nm is 90% or more with respect to the total number of bubbles. Preferably, the number of bubbles having a particle size of 50 to 500 nm is 90% or more, more preferably the number of bubbles having a particle size of 50 to 400 nm is 90% or more Say things.

本明細書において「酸素含有気体」とは,酸素ガス,空気,酸素ガスと空気の混合物,不活性気体(即ち,窒素等のように,光酸素酸化反応に影響を及ぼさない気体)と酸素との混合気体をいう。   In this specification, “oxygen-containing gas” means oxygen gas, air, a mixture of oxygen gas and air, an inert gas (that is, a gas that does not affect the photo-oxygen oxidation reaction such as nitrogen), oxygen, and the like. This is a mixed gas.

本明細書において「光照射」における「光」は,その光の照射により原料有機化合物の光酸素酸化が進行する限り,特に限定されない。通常は,紫外線を含む光とすればよいが紫外線は必須ではない。光源として水銀灯(高圧水銀灯,低圧水銀灯)の他,ハロゲンランプ,LEDランプ,白熱電球等も用いることができるが,これに限られない。   In this specification, “light” in “light irradiation” is not particularly limited as long as photo-oxygen oxidation of the raw material organic compound proceeds by the light irradiation. Usually, it may be light including ultraviolet light, but ultraviolet light is not essential. In addition to mercury lamps (high-pressure mercury lamps, low-pressure mercury lamps), halogen lamps, LED lamps, incandescent lamps, and the like can be used as the light source.

光酸素酸化反応は,熱反応と異なり,光により励起された酸素分子によって引き起こされるから,反応溶液を加熱,加温する必要はなく,反応は室温で行えばよい。反応溶液の温度は,例えば,10〜30℃であってよい。   Unlike the thermal reaction, the photo-oxygen oxidation reaction is caused by oxygen molecules excited by light. Therefore, it is not necessary to heat and heat the reaction solution, and the reaction may be performed at room temperature. The temperature of the reaction solution may be, for example, 10 to 30 ° C.

本発明によれば,反応系の加圧は不要であり,単に常圧で反応させるだけで速やかに反応を進行させることができるが,勿論,加圧をすれば更に反応速度を更に高めることも可能である。   According to the present invention, there is no need to pressurize the reaction system, and the reaction can proceed rapidly by simply reacting at normal pressure. Of course, if the pressure is applied, the reaction rate can be further increased. Is possible.

原料有機化合物と用いる光増感剤にもよるが,本発明によれば,光増感剤の添加量が微量でも反応を速やかに進行させることができるため,原料有機化合物の量に対しモル比で,例えば,0.01〜0.001%程度まで,光増感剤の添加量を削減することができる。また,原料有機化合物によっては,光増感剤の使用の必要性もなくなる(例えば,スルフィドの,スルホキシドへの酸化)。   Although depending on the photosensitizer used with the raw material organic compound, according to the present invention, the reaction can proceed promptly even if the photosensitizer is added in a very small amount, so the molar ratio with respect to the amount of the raw organic compound. Thus, for example, the amount of photosensitizer added can be reduced to about 0.01 to 0.001%. Also, depending on the starting organic compound, it is not necessary to use a photosensitizer (for example, oxidation of sulfide to sulfoxide).

本発明において,光増感剤としては,光酸素酸化に用いられることが従来知られている何れのものも使用できる。汎用のものとしては,例えば,ローズベンガル,メチレンブルー,エオシンY,フルオレッセイン,p−ベンゾキノ,ルブレン,5,10,15,20−テトラフェニルポルフィン,及び遷移金属錯体が挙げられるが,これらに限定されない。遷移金属錯体としては,例えば,[Ru(bpy)]2+錯体,[Ir(dtb−bpy)(ppy)]錯体,[Ir(dfppy)]錯体等が挙げられるが,これらに限定されない。 In the present invention, any photosensitizer that is conventionally known to be used for photooxygen oxidation can be used. General examples include, but are not limited to, rose bengal, methylene blue, eosin Y, fluorescein, p-benzoquino, rubrene, 5,10,15,20-tetraphenylporphine, and transition metal complexes. Not. Examples of the transition metal complex include [Ru (bpy) 3 ] 2+ complex, [Ir (dtb-bpy) (ppy) 2 ] + complex, [Ir (dfppy) 3 ] complex, and the like. Not.

本発明において光酸化反応に付す溶液中の原料有機化合物の濃度には,特に限定はない。従って,濃度は,用いる溶媒における原料有機化合物の溶解性,光照射に用いる光源からの光強度,原料有機化合物の溶液中における励起光の減衰の程度,反応生成物の溶解度,求める反応効率,取り扱い易さ等の要素を考慮して,適宜設定すればよい。例えば,0.01〜0.5M等とすることができるが,これに限られない。   In the present invention, the concentration of the raw material organic compound in the solution subjected to the photooxidation reaction is not particularly limited. Therefore, the concentration depends on the solubility of the starting organic compound in the solvent used, the light intensity from the light source used for light irradiation, the degree of attenuation of the excitation light in the solution of the starting organic compound, the solubility of the reaction product, the desired reaction efficiency, the handling It may be set appropriately considering factors such as ease. For example, it may be 0.01 to 0.5M, but is not limited thereto.

従来,α−テルピネンの光酸素酸化によって主生成物としてアスカリドールが,副生成物としてp-シメンが得られることが知られているが,添加する光増感剤の種類及び濃度の選択により,アルカリドールとシメンの何れか一方を主生成物として効率的に得ることが本発明者らにより見出された。例えば,光増感剤としてローズベンガル又はメチレンブルーをα−テルピネンに対し例えば15モル%付近の量で用いた場合,本発明によっても従来と同様にアルカリドールが主生成物として得られるが,光増感剤としてローズベンガルをより少ない量(α−テルピネンに対し,例えば,1〜3モル%)で用いると,p−シメンを,アルカリドールより数倍〜数十倍多く主生成物として得ることができる。光増感剤存在下における光酸素酸化反応において,酸素をナノバブルの形で供給することにより従来とは逆の主生成物を製造し得るのは従来の知見から説明できず,予想外のことであり,その機構は今のところ明らかではない。   Conventionally, it is known that ascaridol is obtained as a main product and p-cymene is obtained as a by-product by photooxygen oxidation of α-terpinene, but by selecting the type and concentration of the photosensitizer to be added, It has been found by the present inventors that either alkali dol or cymene is efficiently obtained as the main product. For example, when rose bengal or methylene blue is used as a photosensitizer in an amount of, for example, about 15 mol% with respect to α-terpinene, alkali dol can be obtained as a main product according to the present invention as in the prior art. When Rose Bengal is used as a sensitizer in a smaller amount (for example, 1 to 3 mol% with respect to α-terpinene), p-cymene can be obtained as a main product several to several tens of times more than alkali dol. it can. In the photo-oxygen oxidation reaction in the presence of a photosensitizer, the main product that is opposite to the conventional product can be produced by supplying oxygen in the form of nanobubbles. Yes, the mechanism is not clear so far.

本発明によれば,上記のα−テルピネンからアスカリドール又はp−シメンへの製造の他に,例えば以下の反応を高い効率で行わせることができる。
(1)γ−テルピネンの酸化によるp−シメンの製造。
(2)第一級アミンRCHNH〔Rは,置換基を有していてよい芳香族基を表す。〕の脱水素化ホモカップリングによるイミンRCH=NHRの製造。
ここに,Rは,その芳香環部分が炭素数6〜10を有するものであることが好ましく,フェニル基又はナフチル基であることが更に好ましい。
芳香環部分の置換基としては,R−,RO−及びX(ハロゲン)からなる群より選ばれるものが好ましい。ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6,より好ましくは炭素数1〜4,更に好ましくは炭素数1〜3の飽和炭化水素基を表すか,1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよいフェニル基を表す。使用できるハロゲンとしては,フッ素,塩素,臭素,及びヨウ素が挙げられる。
(3)第二級アミンRCHNHR〔Rは上記定義に同じ。Rは置換基を有していてよい飽和炭化水素基又は置換基を有していてよい芳香族基を表す。〕の脱水素化によるイミンRCH=NHRの製造。
ここにRは,置換基を有していてよい好ましくは炭素数1〜10,より好ましくは炭素数1〜6,更に好ましくは炭素数1〜4の飽和炭化水素基を表すか,又は置換基を有していてよい好ましくは炭素数6〜10の芳香族基(例えば,フェニル基,ナフチル基)を表すか,又はRは,Rと結合して環を形成していてよい飽和炭化水素基(例えばエチレン基)を表す。
が有することがある置換基は,好ましくはR−,RO−及びX(ハロゲン)からなる群より選ばれるものであり,ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6,好ましくは炭素数1〜4,より好ましくは炭素数1〜3の飽和炭化水素基を表すか,1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよいフェニル基を表し,Xはハロゲンを表す。ハロゲンとしては,フッ素,塩素,臭素,及びヨウ素が挙げられる。
(5)スルフィドのスルホキシドへの選択的酸化。
ここに,該スルフィド及びスルホキシドは,それぞれR−S−R及びR−SO−R〔式中,R,Rは,同一又は異なって,置換基を有していてよい飽和炭化水素基,又は置換されていてよい芳香族基を表す〕で示される。飽和炭化水素基としては,好ましくは炭素数1〜10,より好ましくは炭素数1〜6,更に好ましくは炭素数1〜4のものであり,芳香族基としては,好ましくは炭素数6〜10のもの(例えば,フェニル基,ナフチル基)である。
又はRが置換基を有するときは,その置換基は,好ましくは,R−,RO−,X(ハロゲン)又はヒドロキシル基であり,Rは,1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい好ましくは炭素数1〜6,より好ましくは炭素数1〜4,更に好ましくは炭素数1〜3の飽和炭化水素基である。
According to the present invention, in addition to the production of α-terpinene to ascaridol or p-cymene, for example, the following reaction can be performed with high efficiency.
(1) Production of p-cymene by oxidation of γ-terpinene.
(2) Primary amine R 1 CH 2 NH 2 [R 1 represents an aromatic group which may have a substituent. Production of imine R 1 CH═NHR 2 by dehydrogenation homocoupling of
Here, R 1 preferably has an aromatic ring portion having 6 to 10 carbon atoms, and more preferably a phenyl group or a naphthyl group.
As the substituent for the aromatic ring moiety, those selected from the group consisting of R 3 —, R 3 O— and X (halogen) are preferred. Here, R 3 may be substituted with one or two or more halogen or hydroxyl groups, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, still more preferably 1 to 3 carbon saturated hydrocarbons. Represents a phenyl group which may be substituted with one or more halogen or hydroxyl groups. Halogens that can be used include fluorine, chlorine, bromine, and iodine.
(3) Secondary amine R 1 CH 2 NHR 2 [R 1 is as defined above. R 2 represents a saturated hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. The production of imine R 1 CH═NHR 2 by dehydrogenation of
Here, R 2 may have a substituent, and preferably represents a saturated hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, or a substituted group. Preferably represents an aromatic group having 6 to 10 carbon atoms (for example, a phenyl group or a naphthyl group) or R 2 may be bonded to R 1 to form a ring. A hydrocarbon group (for example, ethylene group) is represented.
The substituent that R 2 may have is preferably selected from the group consisting of R 4 —, R 4 O— and X (halogen), wherein R 4 is one or more halogens or 1 to 6 carbon atoms which may be substituted with a hydroxyl group, preferably 1 to 4 carbon atoms, more preferably a saturated hydrocarbon group having 1 to 3 carbon atoms, or one or more halogen or hydroxyl Represents a phenyl group which may be substituted with a group, and X represents halogen. Halogen includes fluorine, chlorine, bromine, and iodine.
(5) Selective oxidation of sulfide to sulfoxide.
Here, the sulfide and sulfoxide are R 6 —S—R 7 and R 6 —SO—R 7 , respectively, wherein R 6 and R 7 are the same or different and may have a substituent. Represents a hydrocarbon group or an optionally substituted aromatic group]. The saturated hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, and the aromatic group preferably has 6 to 10 carbon atoms. (For example, phenyl group, naphthyl group).
When R 6 or which R 7 is substituted, the substituent is preferably, R 8 -, R 8 O-, a X (halogen) or hydroxyl group, R 8 is one or more It is preferably a saturated hydrocarbon group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 to 3 carbon atoms, which may be substituted with a halogen group or a hydroxyl group.

反応に用いる溶媒は,原料有機化合物を所望の濃度(通常,0.1M程度)まで溶解させることができ,光増感剤を添加する場合にはそれも溶解させることができるものであれば,特に制限はない。例えば,有機溶媒であり,特にメタノール,エタノール,n−プロパノール,イソプロパノール酢酸エチル,アセトニトリル,テトラヒドロフラン及びこれらの2種以上の混合溶媒が手軽に使用できるものとして挙げられるが,それらに限定されない。   The solvent used in the reaction is not particularly limited as long as it can dissolve the starting organic compound to a desired concentration (usually about 0.1M) and can also dissolve the photosensitizer when added. There is no limit. For example, organic solvents such as methanol, ethanol, n-propanol, isopropanol ethyl acetate, acetonitrile, tetrahydrofuran, and a mixture of two or more of these can be easily used, but are not limited thereto.

以下,実施例を参照して本発明を更に具体的に説明するが,本発明がそれらの実施例に限定されることは意図しない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely with reference to an Example, this invention is not intended to be limited to those Examples.

〔反応装置〕
図1は,本発明で使用する反応装置の概念図である。図において,1はナノバブル発生装置であり,3は流量制御装置であり,ナノバブル発生装置1に供給する酸素含有気体(酸素ガス,空気等)の流量を制御している。5は反応容器であり,中に反応溶液7が収容されている。反応溶液7は,原料有機化合物の溶液であり,場合により更に光増感剤も含む。反応容器5には光源である高圧水銀灯9(100W)が取り付けられており,応溶液7に光照射する。
[Reactor]
FIG. 1 is a conceptual diagram of a reactor used in the present invention. In the figure, 1 is a nanobubble generator, and 3 is a flow controller, which controls the flow rate of an oxygen-containing gas (oxygen gas, air, etc.) supplied to the nanobubble generator 1. Reference numeral 5 denotes a reaction vessel in which a reaction solution 7 is accommodated. The reaction solution 7 is a solution of a raw material organic compound and optionally further contains a photosensitizer. A high pressure mercury lamp 9 (100 W) as a light source is attached to the reaction vessel 5 to irradiate the reaction solution 7 with light.

ナノバブル発生装置1と反応容器5とは,一方の先端が反応溶液7中に浸漬されている2本のパイプ11,12で繋がれており,ナノバブル発生装置1,パイプ11,反応容器5及びパイプ12で,循環系が構成されている。ナノバブル発生装置1は,反応容器内5内の反応溶液7をパイプ12を通して吸引し,流量制御装置3から所定流量で供給される酸素(酸素ガス又は空気等。図中「Air/O2」で示されている。)をナノバブルの形で反応溶液に加えてパイプ11を通して吐出し,反応容器5内の反応溶液7に戻すように構成されている。反応時間中に連続運転されるナノバブル発生装置1により,反応容器5内の反応溶液7は,酸素を含んだナノバブルが濃厚に懸濁した液となる。この状態の反応溶液7に,高圧水銀灯9からの光が照射され,原料有機化合物は,基底状態から光照射により励起された一重項酸素による酸化を受けて生成物を与える。 The nanobubble generator 1 and the reaction vessel 5 are connected by two pipes 11 and 12 whose one end is immersed in the reaction solution 7. The nanobubble generator 1, the pipe 11, the reaction vessel 5 and the pipe are connected to each other. 12, a circulation system is configured. The nanobubble generator 1 sucks the reaction solution 7 in the reaction vessel 5 through the pipe 12 and supplies oxygen (oxygen gas or air, etc., “Air / O 2 ” in the figure) from the flow controller 3 at a predetermined flow rate. Is added to the reaction solution in the form of nanobubbles, discharged through the pipe 11, and returned to the reaction solution 7 in the reaction vessel 5. By the nanobubble generator 1 that is continuously operated during the reaction time, the reaction solution 7 in the reaction vessel 5 becomes a liquid in which nanobubbles containing oxygen are suspended in a concentrated manner. The reaction solution 7 in this state is irradiated with light from the high-pressure mercury lamp 9, and the raw organic compound is oxidized by singlet oxygen excited by light irradiation from the ground state to give a product.

ナノバブル発生装置1としては,マイクロ・ナノバブル発生装置MA3FS〔株式会社アスプ〕を用いた。ナノバブル発生装置は,液体にガスを注入し,ガス/液体混合物の流れにスタティックミキサーで剪断力を加えて液体の分割を繰り返すことで,液体中にナノバブルを作り出す機能を有する。   As the nanobubble generator 1, a micro / nanobubble generator MA3FS [Asp Co., Ltd.] was used. The nanobubble generator has a function of creating nanobubbles in a liquid by injecting a gas into the liquid, applying shearing force to the flow of the gas / liquid mixture with a static mixer, and repeating the division of the liquid.

〔バブル粒子径の測定〕
ナノバブル発生装置により形成される泡の粒子径は,ナノ粒子測定装置(NanoSight,日本カンタム・デザイン(株))により行った。測定条件は次のとおりとした。
・溶媒:酢酸エチル
・気体:空気
・ナノバブル吐出圧力:0〜1.0 MPa
・液体流量:112 mL/分
・気体流量:3 mL/分
測定の結果,測定し得た最少サイズ3nmの粒子径から泡の存在が確認された。結果を図2に示す。図において,横軸は泡の粒子径を,縦軸は,気液混合流体1mLあたりの各粒子径を有する泡の個数である(図では,約50nm以下の粒子径範囲では,グラフが横軸に接近しているため泡の個数は判別できない。)。形成された泡は実質上全数(100%)が5〜500 nmの粒子径を有しており,50〜400 nmの粒子径を有する泡が泡の全個数の95%を優に超えている。
[Measurement of bubble particle size]
The particle diameter of bubbles formed by the nanobubble generator was measured by a nanoparticle measuring device (NanoSight, Nippon Quantum Design Co., Ltd.). The measurement conditions were as follows.
・ Solvent: Ethyl acetate ・ Gas: Air ・ Nanobubble discharge pressure: 0 to 1.0 MPa
・ Liquid flow rate: 112 mL / min ・ Gas flow rate: 3 mL / min As a result of the measurement, the presence of bubbles was confirmed from the particle size of the smallest size of 3 nm that could be measured. The results are shown in FIG. In the figure, the horizontal axis is the bubble particle size, and the vertical axis is the number of bubbles with each particle size per mL of gas-liquid mixed fluid (in the figure, in the particle size range of about 50 nm or less, the graph is The number of bubbles cannot be determined because it is close to. The total number of bubbles formed (100%) has a particle size of 5 to 500 nm, and the bubbles with a particle size of 50 to 400 nm are well over 95% of the total number of bubbles. .

〔実施例1〕 α−テルピネンの光酸素酸化−1 Example 1 Photo-oxygen oxidation of α-terpinene-1

Figure 0006282005
Figure 0006282005

α−テルピネン(I)の光酸素酸化により主生成物アスカリドール(II)と副生成物p−シメン(III)が生じることが知られている。酸素原として空気をナノバブルの形で反応溶液に連続的に導入しつつ,常圧(1気圧)下にて,高圧水銀灯で反応液に光照射することによる光酸素酸化を,次のとおりに試みた。
α−テルピネンの0.1M/メタノール溶液50mLに,α−テルピネンの量に対し15モル%の量の光増感剤(ローズベンガル又はメチレンブルー)を添加し,空気をナノバブルの形で連続的に導入しつつ反応溶液温度30℃で表1に記載の時間,光酸素酸化反応に付した。なお光照射には,内部照射型光化学反応装置UVL−100HA(理工科学産業社製)(水冷式100W高圧水銀灯)を用い,光源を反応溶液中に浸漬させて照射を行った(内部照射)。
It is known that the main product ascaridol (II) and the by-product p-cymene (III) are produced by photooxygen oxidation of α-terpinene (I). While introducing air into the reaction solution continuously in the form of nanobubbles as an oxygen source, photo-oxygen oxidation by irradiating the reaction solution with a high-pressure mercury lamp under normal pressure (1 atm) was attempted as follows. It was.
A photosensitizer (Rose Bengal or Methylene Blue) in an amount of 15 mol% with respect to the amount of α-terpinene is added to 50 mL of a 0.1M α-terpinene solution in methanol, and air is continuously introduced in the form of nanobubbles. However, it was subjected to the photooxygen oxidation reaction at a reaction solution temperature of 30 ° C. for the time shown in Table 1. For the light irradiation, an internal irradiation type photochemical reaction device UVL-100HA (manufactured by Riko Kagaku Sangyo Co., Ltd.) (water-cooled 100 W high-pressure mercury lamp) was used and the light source was immersed in the reaction solution for irradiation (internal irradiation).

反応終了後の反応液をショートカラム(酢酸エチル,SiO:1g,NaSO:10mg)にて濾過し,得られた溶液をガスクロマトグラフィーにかけ,各ピーク面積から,何らかの生成物へのα−テルピネンの転化率(反応による消費率)と,生成物中におけるアスカリドール及びp−シメンの各割合とを求めた。結果を表1に示す。 The reaction solution after completion of the reaction was filtered through a short column (ethyl acetate, SiO 2 : 1 g, Na 2 SO 4 : 10 mg), and the obtained solution was subjected to gas chromatography. The conversion rate of α-terpinene (consumption rate by reaction) and the respective proportions of ascaridol and p-cymene in the product were determined. The results are shown in Table 1.

Figure 0006282005
Figure 0006282005

表1に示すように,光増感剤としてローズベンガル又はメチレンブルーを原料であるα−テルピネンに対して15モル%用いた場合,0.5〜6時間の反応により何れも原料の転化率は99%を超えおり,反応は既に実質的に完了していた。また主生成物はアルカリドールであった。   As shown in Table 1, when rose bengal or methylene blue was used as a photosensitizer at 15 mol% with respect to the raw material α-terpinene, the conversion rate of the raw material was 99 by reaction for 0.5 to 6 hours. The reaction was already substantially complete. The main product was alkali doll.

〔実施例2〕 α−テルピネンの光酸化−2
表2に示すように,原料であるα−テルピネンの濃度を0.1〜0.025M/メタノールの範囲で設定し,光増感剤としてローズベンガルを原料に対して1.0又は3.0モル%で添加し,常圧下にて,内部照射しつつ反応溶液温度30℃で0.5〜1時間,実施例1と同様に空気のナノバブルを導入しつつ,反応を行った。反応終了後,実施例1と同様にして,転化率と,成物中のアスカリドール及びp−シメンの各割合とを求めた。結果を表2に示す。
Example 2 Photooxidation of α-terpinene-2
As shown in Table 2, the concentration of α-terpinene as a raw material is set in the range of 0.1 to 0.025 M / methanol, and Rose Bengal as a photosensitizer is 1.0 or 3.0 relative to the raw material. The reaction was carried out while introducing air nanobubbles in the same manner as in Example 1 for 0.5 to 1 hour at a reaction solution temperature of 30 ° C. while being internally irradiated at normal pressure under normal pressure. After completion of the reaction, the conversion rate and the proportions of ascaridol and p-cymene in the product were determined in the same manner as in Example 1. The results are shown in Table 2.

Figure 0006282005
Figure 0006282005

表2に見られるように,光増感剤としてローズベンガルの添加量を原料に対し1.0又は3.0モル%という量に減らしても,反応溶液温度30℃,1時間の反応(No.1,No.2)のみならず0.5時間の反応(No.3,No.4)でも,原料の転化率は全て99%を超えており,反応は既に完了していた。また,予想外にもp−シメンが主生成物として得られ,アスカリドールの生成量は僅かであった。   As can be seen from Table 2, even if the amount of rose bengal added as a photosensitizer is reduced to 1.0 or 3.0 mol% with respect to the raw material, the reaction temperature (30 ° C, reaction for 1 hour) .1 and No. 2) as well as the reaction for 0.5 hours (No. 3 and No. 4), the conversion rates of all raw materials exceeded 99%, and the reaction was already completed. Unexpectedly, p-cymene was obtained as the main product, and the amount of ascaridol produced was small.

〔実施例3〕 γ−テルピネンの光酸素酸化−1 Example 3 Photo-oxygen oxidation of γ-terpinene-1

Figure 0006282005
Figure 0006282005

γ−テルピネン(IV)の光酸素酸化によるp−シメン(III)の製造を,常圧下にて種々の条件で行った。反応後,実施例1と同様にして生成物をガスクロマトグラフィーにかけ,γ−テルピネンの転化率を求めた。反応の条件及び結果を表3に示す。なお,表3の気体導入欄中,「BAB(空気)」は反応液中に(ナノバブルの形態ではなく)単なる一般的なバブリングで空気を吹き込むものであり,「BAL(空気)」は,空気で含ませた風船を反応容器に繋いで,反応容器中の気相側に空気を供給するものである。   Production of p-cymene (III) by photooxygen oxidation of γ-terpinene (IV) was carried out under various conditions under normal pressure. After the reaction, the product was subjected to gas chromatography in the same manner as in Example 1 to determine the conversion rate of γ-terpinene. The reaction conditions and results are shown in Table 3. In the gas introduction column of Table 3, “BAB (air)” means that air is simply blown into the reaction solution (not in the form of nanobubbles), and “BAL (air)” The balloon contained in is connected to the reaction vessel, and air is supplied to the gas phase side in the reaction vessel.

Figure 0006282005
Figure 0006282005

表3に見られるように,メタノールを溶媒とし,ローズベンガル(RB)を光増感剤として,ナノバブルの代わりに通常のバブリングにより空気を導入したNo.3及びバルーンによるNo.4では,2時間の反応後における原料の転化率が,それぞれ34%及び4%と低かった。これに対し,ナノバブルを用いたものでは,光増感剤を添加していないNo.14でさえ,49%の転化率を示した。   As can be seen from Table 3, methanol was used as a solvent, rose bengal (RB) as a photosensitizer, air was introduced by normal bubbling instead of nanobubbles, and No. 4 using a balloon, 2 hours. After the reaction, the raw material conversions were as low as 34% and 4%, respectively. On the other hand, in the case of using nanobubbles, even No. 14 to which no photosensitizer was added showed a conversion rate of 49%.

ナノバブルを用い,光増感剤をローズベンガル,溶媒をメタノールとして反応を行った全てのもの(No.1,2,5,10)は,1〜2時間で既に反応は実質的に完了(転化率>99%)していた。光増感剤としてローズベンガルを用いもの同士で比較すると,用いた溶媒のうちメタノール,THF/メタノール(5/1),及びイソプロパノール/メタノール(5/1)も同等に優れており(全て,転化率>99%),このことはメタノール,イソプロパノール及びTHFが同等に優れた溶媒として使用できることを示している。但し,酢酸エチル/メタノール(5/1)やアセトニトリル/メタノール(5/1)を溶媒とした場合も,転化率75%が得られているから,これらの溶媒も使用でき,特に,メタノールに溶解しにくい原料で光酸素酸化反応を行う場合における溶媒候補となる。   All the reactions (No. 1, 2, 5, and 10) that used nanobubbles, the photosensitizer as rose bengal, and the solvent as methanol (No. 1, 2, 5, and 10) were already completed in 1 to 2 hours (conversion) Rate> 99%). When compared with those using rose bengal as a photosensitizer, methanol, THF / methanol (5/1), and isopropanol / methanol (5/1) are equally superior among the solvents used (all converted) Rate> 99%), indicating that methanol, isopropanol and THF can be used as equally good solvents. However, even when ethyl acetate / methanol (5/1) or acetonitrile / methanol (5/1) is used as the solvent, a conversion rate of 75% is obtained, so these solvents can also be used. It becomes a solvent candidate in the case where the photo-oxygen oxidation reaction is carried out with a raw material that is difficult to perform.

何れもナノバブルを用いたもののうち,ローズベンガル以外の光増感剤として5,10,15,20−テトラフェニルポルフィン(TPP)を用いたもの(No.12)では,2時間の反応で原料の転化率は75%であり,メチレンブルー(MB)を用いたもの(No.11)では65%,p−ベンゾキノンを用いたもの(No.13)では62%であった。このことから,ナノバブルによる空気(又は酸素)の導入下の光酸素酸化反応において,これらの光増感剤のうちローズベンガルが取り分け優れていることが明らかである。但し,他の光増感剤も,光増感剤を用いないNo.14での結果より高い原料転化率を示していることから,ナノバブル導入下の光酸素酸化反応において有利に使用できる。   In any case where nanobubbles are used, those using 5,10,15,20-tetraphenylporphine (TPP) as photosensitizers other than rose bengal (No. 12), the raw material is reacted in 2 hours. The conversion was 75%, 65% for methylene blue (MB) (No. 11) and 62% for p-benzoquinone (No. 13). From this, it is clear that Rose Bengal is particularly superior among these photosensitizers in the photooxygen oxidation reaction under the introduction of air (or oxygen) by nanobubbles. However, other photosensitizers can also be advantageously used in the photo-oxygen oxidation reaction under the introduction of nanobubbles because they show a higher raw material conversion than the result of No. 14 in which no photosensitizer is used.

〔実施例4〕 第一級アミンの脱水素化とホモカップリングによるイミンの製造−1 [Example 4] Production of imine by dehydrogenation of primary amine and homocoupling-1

Figure 0006282005
Figure 0006282005

窒素原子にメチレン基が結合しているタイプの式Z−CH−NH〔Zは,任意の基を表す。〕の第一級アミンの一例として, 上記のアミン(V)を選び,実施例1〜2と同様にして,常圧下,反応溶液温度30℃にて,ナノバブルの形での空気又は酸素の供給下に光酸素酸化反応を行い,原料の転化率又はイミン(VI)の収率を調べた。光増感剤としてはローズベンガル又はTPPを用いた。なお,反応溶液にはデカン(10μM)を添加しておき,ガスクロマトグラフィーに際し,これを内部標準物質として原料であるベンジルアミンの定量を行った。反応の条件及び結果を次の表4に示す。 A formula Z—CH 2 —NH 2 in which a methylene group is bonded to a nitrogen atom [Z represents an arbitrary group. As an example of the primary amine, the above amine (V) is selected, and air or oxygen is supplied in the form of nanobubbles under normal pressure at a reaction solution temperature of 30 ° C. in the same manner as in Examples 1-2. A photo-oxygen oxidation reaction was performed below, and the conversion rate of raw materials or the yield of imine (VI) was examined. Rose Bengal or TPP was used as a photosensitizer. In addition, decane (10 μM) was added to the reaction solution, and benzylamine as a raw material was quantified using this as an internal standard substance in gas chromatography. The reaction conditions and results are shown in Table 4 below.

Figure 0006282005
Figure 0006282005

表4に見られるように,光増感剤としてローズベンガルを原料に対し僅か0.1モル%使用して,反応溶液温度30℃では0.3時間(18分)の反応で,転化率99%超が達成されていた(No.2)。また更に低い0.01モル%の使用では,1時間で転化率99%が達成されていた(No.3)。更に一桁低い0.001モル%の使用では,4時間で転化率70%に達していたが(No.5),これは光増感剤無添加のもの(No.6,7)の74%,47%と実質的に異ならないと考えられる。このことは寧ろ,ナノバブルの形で空気(又は酸素)を導入しつつ行う光酸素酸化によれば,光増感剤を加えないでも酸化反応が実質的に進行することを示している。   As seen in Table 4, rose bengal was used as a photosensitizer at a concentration of only 0.1 mol% based on the raw material, and the reaction rate was 30 hours at a reaction solution temperature of 0.3 hours (18 minutes). % Was achieved (No. 2). Furthermore, at a lower 0.01 mol% use, a conversion rate of 99% was achieved in 1 hour (No. 3). Furthermore, when 0.001 mol%, which is an order of magnitude lower, was used, the conversion rate reached 70% in 4 hours (No. 5), which was 74% with no photosensitizer added (No. 6, 7). % And 47% are not considered to be substantially different. Rather, this shows that the photo-oxygen oxidation performed while introducing air (or oxygen) in the form of nanobubbles substantially proceeds with the oxidation reaction without adding a photosensitizer.

また,光増感剤がTPPである場合,原料に対しごく微量の0.001モル%の使用でも,4時間でイミン収率99%が達成されていた(No.12)。   In addition, when the photosensitizer is TPP, an imine yield of 99% was achieved in 4 hours even when a very small amount of 0.001 mol% was used with respect to the raw material (No. 12).

〔実施例5〕 第一級アミンの脱水素化とホモカップリングによるイミンの製造−2 [Example 5] Production of imine by dehydrogenation of primary amine and homocoupling-2

Figure 0006282005
Figure 0006282005

実施例4において原料としたベンジルアミンに代えて,メチル基,メトキシ基,クロロ基又はトリフルオロメチル基をフェニル基上に有するベンジルアミンを原料として,実施例4と同様に光酸素酸化を試みた。比較のため,同時に,ナノバブル(NB)に代えて通常のバブリング(BAB)によっても同様に反応を試みた。原料化合物,反応条件及び結果を次の表5に示す。   Photooxygen oxidation was attempted in the same manner as in Example 4 using benzylamine having a methyl group, methoxy group, chloro group, or trifluoromethyl group on the phenyl group as a raw material instead of the benzylamine used as a raw material in Example 4. . For comparison, at the same time, the same reaction was attempted by normal bubbling (BAB) instead of nanobubbles (NB). The raw material compounds, reaction conditions and results are shown in Table 5 below.

Figure 0006282005
Figure 0006282005

表5に見られるように,何れの置換基を有するベンジルアミンにおいても,ナノバブルの形で空気を導入しつつ行う光酸素酸化が,通常のバブリングによるものに比べてはるかに高い転化率を示した。   As can be seen in Table 5, in any benzylamine having any substituent, the photo-oxygen oxidation performed while introducing air in the form of nanobubbles showed a much higher conversion rate than that obtained by normal bubbling. .

〔実施例6〕 第二級アミンの脱水素化によるイミンの製造 Example 6 Production of imine by dehydrogenation of secondary amine

Figure 0006282005
Figure 0006282005

1.N−ベンジルプロパン−2−アミン(XI)のイミン(XII)化   1. Imine (XII) conversion of N-benzylpropan-2-amine (XI)

Figure 0006282005
Figure 0006282005

式(IX)においてRがフェニル基,Rがイソプロピル基であるN−ベンジルプロパン−2−アミン(XI)を原料とし,光増感剤としてTPPを原料の0.02モル%使用して,デカン20μMを含むアセトニトリル溶液中で,反応溶液温度30℃にて1時間,上記各実施例と同様にナノバブル(空気)を導入しつつ光照射して,光酸素酸化反応を行った。その結果,対応するイミン(XII)が80%の収率で得られた。また,他の条件を同一として通常のバブリングで空気導入しつつ光酸素酸化反応を1時間行ったところ,イミン(XII)の収率は29%であった。 N-benzylpropan-2-amine (XI) in which R a is a phenyl group and R b is an isopropyl group in the formula (IX) is used as a raw material, and TPP is used as a photosensitizer using 0.02 mol% of the raw material. In a acetonitrile solution containing 20 μM of decane, a photo-oxygen oxidation reaction was carried out by irradiating with light while introducing nanobubbles (air) in the same manner as in the above examples for 1 hour at a reaction solution temperature of 30 ° C. As a result, the corresponding imine (XII) was obtained with a yield of 80%. When the photo-oxygen oxidation reaction was carried out for 1 hour while introducing air by normal bubbling under the same conditions, the yield of imine (XII) was 29%.

2.テトラヒドロイソキノリン(XIII)のイミン(XIV)化   2. Conversion of tetrahydroisoquinoline (XIII) to imine (XIV)

Figure 0006282005
Figure 0006282005

式(IX)においてRがフェニル基,Rが該フェニル基の第2位に置換しているエチレン基である1,2,3,4−テトラヒドロイソキノリン(XIII)を原料とし,上記1と同様にして,但し1.5時間,光酸素酸化反応を行い,対応する3,4−ジヒドロイソキノリン(XIV)が88%の収率で得られた。なお,他の条件は同一として通常のバブリングにより光酸素酸化反応を1.5時間行ったところ,イミン(XIV)の収率は50%であった。 Using 1,2,3,4-tetrahydroisoquinoline (XIII) in which R a is a phenyl group and R b is an ethylene group substituted at the second position of the phenyl group in the formula (IX), In the same manner, however, the photooxygen oxidation reaction was carried out for 1.5 hours, and the corresponding 3,4-dihydroisoquinoline (XIV) was obtained in a yield of 88%. When the other conditions were the same and the photooxygen oxidation reaction was carried out for 1.5 hours by normal bubbling, the yield of imine (XIV) was 50%.

3.ジベンジルアミン(XV)のイミン(XVI)化   3. Conversion of dibenzylamine (XV) to imine (XVI)

Figure 0006282005
Figure 0006282005

式(IX)においてRがフェニル基,Rがベンジル基であるジベンジルアミン(XV)を原料とし,上記1と同様にして1時間反応を行い,イミン(XVI)が99%の収率で得られた。なお,他の条件は同一として通常のバブリングにより光酸素酸化反応を1時間行ったところ,イミン(XVI)の収率は23%に止まった。 Dibenzylamine (XV), in which R a is a phenyl group and R b is a benzyl group in the formula (IX), is reacted for 1 hour in the same manner as in 1 above, and the yield of imine (XVI) is 99%. Was obtained. When the other conditions were the same and the photooxygen oxidation reaction was carried out for 1 hour by normal bubbling, the yield of imine (XVI) was only 23%.

〔実施例7〕 スルフィドの光酸素酸化によるスルホキシドの選択的製造
1.チオアニソールの光酸素酸化によるメチルスルフィニルベンゼンの選択的製造−1
Example 7 Selective Production of Sulfoxide by Photooxygen Oxidation of Sulfide Selective production of methylsulfinylbenzene by photooxygen oxidation of thioanisole-1

Figure 0006282005
Figure 0006282005

原料であるチオアニソール(XVII)を濃度0.1Mでアセトニトリル/メタノール(5/1)に溶解させ,光増感剤は使用せず,内部標準としてデカン10mMを添加して,常圧下に,内部照射しつつ反応溶液温度30℃で3時間,空気をナノバブルの形で導入しつつ,反応を行った。その結果,原料の転化率99%,スルホキシド(XVIII)の収率は78%であった。また,スルホキシド/スルホン(Ph-SO2-Me)の比が(ガスクロマトグラフィーでの面積比)99/1であり,反応はこれら2種の生成物でほぼ完全にスルホキシド選択的であった。 The raw material thioanisole (XVII) was dissolved in acetonitrile / methanol (5/1) at a concentration of 0.1 M, no photosensitizer was used, decane 10 mM was added as an internal standard, The reaction was carried out while introducing air in the form of nanobubbles for 3 hours at a reaction solution temperature of 30 ° C. while irradiating. As a result, the conversion rate of the raw material was 99%, and the yield of sulfoxide (XVIII) was 78%. The ratio of sulfoxide / sulfone (Ph-SO 2 -Me) was 99/1 (area ratio in gas chromatography), and the reaction was almost completely sulfoxide selective with these two products.

2.チオアニソールの光酸素酸化によるメチルスルフィニルベンゼンの選択的製造−2
上記に続き,溶媒,光増感剤の種類,添加量及び有無,反応時間を種々変更して,空気をナノバブルの形で導入しつつ,内部照射による光酸化によるメチルスルフィニルベンゼンの製造を試みた。条件及び結果を次の表6に示す。
2. Selective production of methylsulfinylbenzene by photooxygen oxidation of thioanisole-2
Following the above, we tried to produce methylsulfinylbenzene by photooxidation by internal irradiation while introducing air in the form of nanobubbles by changing the type of solvent, photosensitizer, amount and presence, and reaction time. . The conditions and results are shown in Table 6 below.

Figure 0006282005
Figure 0006282005

表6に見られるように,反応は,光増感剤不使用でもよく進行した。また,光増感剤の有無によらず,RSO/RSO比(スルホキシド/スルホン比)は97/3〜100/0であり,反応は高度にスルホキシド選択的であった。また,原料の転化率は,メタノール,アセトニトリル,これらの混液を用いた場合に特に高かった。 As can be seen in Table 6, the reaction proceeded well even without photosensitizer. Moreover, irrespective of the presence or absence of a photosensitizer, the R 2 SO / R 2 SO 2 ratio (sulfoxide / sulfone ratio) was 97/3 to 100/0, and the reaction was highly sulfoxide-selective. The conversion rate of the raw material was particularly high when methanol, acetonitrile, or a mixture of these was used.

3.各種スルフィドの光酸素酸化によるスルホキシドの選択的製造   3. Selective production of sulfoxides by photooxygenation of various sulfides.

Figure 0006282005
Figure 0006282005

上記1及び2で,チオアニソールの光酸素酸化で,ナノバブルを用いると,スルフィドからスルホキシドへの高度に選択的な酸化が起こること及び,光増感剤不使用でも反応がよく進行することが確認されたことから,他のスルフィドについて検討した。即ち,表7の各原料化合物を濃度0.1Mでアセトニトリル/メタノール(5/1)に溶解させ,内部標準としてデカン10mMを添加し,光増感剤の存在下又は不存在下に,30℃にて,空気をナノバブル又は通常のバブリングにより供給しつつ,内部照射で光酸素酸化を試みた。結果を併せて表7に示す。   In 1 and 2 above, it is confirmed that when nanobubbles are used in the photooxygen oxidation of thioanisole, highly selective oxidation from sulfide to sulfoxide occurs and the reaction proceeds well even without the use of a photosensitizer. Therefore, other sulfides were examined. That is, each raw material compound in Table 7 was dissolved in acetonitrile / methanol (5/1) at a concentration of 0.1 M, decane 10 mM was added as an internal standard, and 30 ° C. in the presence or absence of a photosensitizer. Then, photo-oxygen oxidation was attempted by internal irradiation while supplying air with nanobubbles or normal bubbling. The results are also shown in Table 7.

Figure 0006282005
Figure 0006282005

表に見られるとおり,光増感剤なしでも反応は進行し,ナノバブル(NB)による空気(又は酸素)導入下での光酸素酸化では,通常のバブリングによる空気導入下での反応に比べ,著しく高い転化率及びスルホキシド収率が得られた。また,転化率とスルホキシド収率との比較及び表6の結果との対比から,ナノバブルを用いた光酸素酸化においてこれら種々のスルフィドにつき高度にスルホキシド選択的な酸化が起こっていることが分かる。また,この選択性は,窒素原子に結合している基,R及びRが芳香族であるか脂肪族であるかによっては影響を受けていない。このことは,ナノバブルを用いた光酸素酸化によるスルフィドのスルホキシドへの高度に選択的な酸化の,広範な種々のスルフィド全般への適用可能性を示している。 As can be seen in the table, the reaction proceeds without photosensitizer, and the photo-oxygen oxidation under the introduction of air (or oxygen) by nanobubbles (NB) is significantly more difficult than the reaction under the introduction of air by bubbling. High conversion and sulfoxide yield were obtained. In addition, the comparison between the conversion rate and the sulfoxide yield and the comparison with the results shown in Table 6 indicate that highly selective sulfoxide oxidation occurs for these various sulfides in the photooxygen oxidation using nanobubbles. This selectivity is not affected by whether the group bonded to the nitrogen atom, R c and R d is aromatic or aliphatic. This indicates that the highly selective oxidation of sulfides to sulfoxides by photooxygen oxidation using nanobubbles can be applied to a wide variety of sulfides in general.

本発明は,光酸素酸化反応の反応効率を飛躍的向上,光増感剤の使用量低減や不使用,スルフィドのスルホキシドへの選択的光酸素酸化,及び光増感剤量の調節による主生成物の選択の可能性を拓く点で有用である。   The present invention drastically improves the reaction efficiency of the photooxygen oxidation reaction, reduces or eliminates the use of photosensitizer, selective photooxygen oxidation of sulfide to sulfoxide, and adjustment of the amount of photosensitizer. This is useful in opening up the possibility of selecting things.

1:ナノバブル発生装置
3:流量制御装置
5:反応容器
7:反応溶液
9:高圧水銀灯
11,12:パイプ
1: Nanobubble generator 3: Flow controller 5: Reaction vessel 7: Reaction solution 9: High-pressure mercury lamp 11, 12: Pipe

Claims (10)

原料有機化合物の光酸素酸化による生成物の製造における,改良された製造方法であって,光照射下におかれた該原料有機化合物含有溶液に酸素含有気体をナノバブルの形で注入して,該溶液中に該酸素含有気体のナノバブルが分散された状態を維持することにより,該原料有機化合物の光酸素酸化反応を進行させて該生成物を得ることを特徴とする製造方法であって,
該原料有機化合物が,α−テルピネン,γ−テルピネン,RCHNH〔式中,Rは,置換基を有していてよい芳香族基を表す。〕,RCHNHR〔式中,Rは前記定義に同じであり,Rは,置換基を有していてよい飽和炭化水素基又は置換基を有していてよい芳香族基を表す。〕,及びスルフィドからなる群より選ばれる1種であり,
該ナノバブルが,5nm以上1000 nm未満の粒子径を有する泡の個数が90%以上のものであり,
該溶液中の光増感剤の濃度が,
該原料有機化合物がα−テルピネン,γ−テルピネン又はスルフィドであるときはこれに対して3mol%以下であり,
該原料有機化合物がRCHNH又はRCHNHRであるときはこれに対して0.1mol%以下であり,
且つ
該光増感剤が,ローズベンガル,メチレンブルー,及び5,10,15,20−テトラフェニルポルフィンからなる群より選ばれるものであ
該原料有機化合物(M)と該生成物(P)とが,下記の組合せになるもの:
(i) M:α−テルピネン,P:p−シメン
(ii) M:R CH NH ,P:R CH=NCH
〔式中,R は,置換基を有していてよい芳香族基を表す。〕
(iii) M:R CH NHR ,P:R CH=NHR
〔式中,R は前記定義に同じであり,R は,置換基を有していてよい飽和炭化水素基又は置換基を有していてよい芳香族基を表す。〕
(iv) M:スルフィド,P:スルホキシド
より選ばれるものである,製造方法。
製造方法。
An improved production method for producing a product by photo-oxygen oxidation of a raw organic compound, wherein an oxygen-containing gas is injected into the raw organic compound-containing solution under light irradiation in the form of nanobubbles, The production method is characterized in that the product is obtained by maintaining a state in which the nanobubbles of the oxygen-containing gas are dispersed in a solution to advance a photo-oxygen oxidation reaction of the raw organic compound,
The starting organic compound is α-terpinene, γ-terpinene, R 1 CH 2 NH 2 [wherein R 1 represents an aromatic group which may have a substituent. ], R 1 CH 2 NHR 2 [wherein, R 1 is as defined above, and R 2 is a saturated hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. Represents. And one selected from the group consisting of sulfides,
The nanobubbles are those having 90% or more of bubbles having a particle diameter of 5 nm or more and less than 1000 nm,
The concentration of the photosensitizer in the solution is
When the starting organic compound is α-terpinene, γ-terpinene or sulfide, it is 3 mol% or less based on this,
When the raw organic compound is R 1 CH 2 NH 2 or R 1 CH 2 NHR 2, it is 0.1 mol% or less based on this,
And optical sensitizer, Ri Rose Bengal, methylene blue, and 5,10,15,20 der those selected from the group consisting of tetraphenyl porphine,
The raw organic compound (M) and the product (P) have the following combinations:
(i) M: α-terpinene, P: p-cymene
(ii) M: R 1 CH 2 NH 2 , P: R 1 CH═NCH 2 R 1
[Wherein, R 1 represents an aromatic group which may have a substituent. ]
(iii) M: R 1 CH 2 NHR 2 , P: R 1 CH═NHR 2
[ Wherein , R 1 is as defined above, and R 2 represents a saturated hydrocarbon group which may have a substituent or an aromatic group which may have a substituent. ]
(iv) M: sulfide, P: sulfoxide
A manufacturing method that is more selected .
Production method.
光照射のための光源が水銀灯,ハロゲンランプ,LEDランプ及び白熱電球から選ばれるものである,請求項1の製造方法。   The manufacturing method according to claim 1, wherein the light source for light irradiation is selected from a mercury lamp, a halogen lamp, an LED lamp, and an incandescent lamp. の芳香環部分が炭素数6〜10を有するものである,請求項1又は2の製造方法。 The production method according to claim 1 or 2 , wherein the aromatic ring portion of R 1 has 6 to 10 carbon atoms. の置換基が,R−,RO−及びXからなる群より選ばれるものであり,ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6の飽和炭化水素基を表すか,又は1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよいフェニル基を表し,Xはハロゲンを表すものである,請求項1〜の何れかの製造方法。 The substituent of R 1 is selected from the group consisting of R 3 —, R 3 O— and X, where R 3 may be substituted with one or more halogen or hydroxyl groups. 2. A saturated hydrocarbon group having 1 to 6 carbon atoms, or a phenyl group which may be substituted with one or more halogens or hydroxyl groups, and X represents a halogen. The manufacturing method in any one of -3 . が,置換基を有していてよい炭素数1〜10の飽和炭化水素基,又は置換基を有していてよい炭素数6〜10の芳香族基を表すか,又はRがRと結合して環を形成していてよい飽和炭化水素基を表すものである,請求項1〜の何れかの製造方法。 R 2 represents a saturated hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, or an aromatic group having 6 to 10 carbon atoms which may have a substituent, or R 2 represents R 1 combine with those representing the formed optionally may saturated hydrocarbon group a ring, either method according to claim 1-4. の置換基が,R−,RO−及びXからなる群より選ばれるものであり,ここにRは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6の飽和炭化水素基を表すか,又は1個又は2個以上のハロゲンで置換されていてもよいフェニル基を表し,Xはハロゲン若しくはヒドロキシル基を表すものである,請求項1〜の何れかの製造方法。 The substituent of R 2 is selected from the group consisting of R 4 —, RO—, and X, where R 4 is the number of carbon atoms that may be substituted with one or more halogen or hydroxyl groups. represent a 1-6 saturated hydrocarbon group, or one or two or more halogens which may be substituted phenyl, X is intended to represent a halogen or a hydroxyl group, according to claim 1 to 5 Any manufacturing method of. 該原料有機化合物(M)と該生成物(P)とが,(M)置換基を有してよい1,2,3,4−テトラヒドロイソキノリンと(P)置換基を有してよい3,4−ジヒドロイソキノリンである,請求項1〜の何れかの製造方法。 The starting organic compound (M) and the product (P) may have (M) 1,2,3,4-tetrahydroisoquinoline which may have a substituent and (P) substituent 3, The production method according to any one of claims 1 to 6 , which is 4-dihydroisoquinoline. 該スルフィド及びスルホキシドが,それぞれR−S−R及びR−SO−R〔式中,R,Rは,同一又は異なって,置換基を有していてよい飽和炭化水素基,又は置換されていてよい芳香族基を表す〕で示されるものである,請求項1〜の何れかの製造方法 The sulfide and sulfoxide are R 6 —S—R 7 and R 6 —SO—R 7 , respectively, wherein R 6 and R 7 are the same or different and may have a substituent. Or represents an optionally substituted aromatic group]. The production method according to any one of claims 1 to 7 該飽和炭化水素基が,炭素数1〜10のものであり,該芳香族基の芳香環部分が炭素数6〜10のものである,請求項の製造方法。 The method according to claim 8 , wherein the saturated hydrocarbon group has 1 to 10 carbon atoms, and the aromatic ring portion of the aromatic group has 6 to 10 carbon atoms. 又はRの置換基が,R−,RO−又はXを表し,Rは1個又は2個以上のハロゲン若しくはヒドロキシル基で置換されていてもよい炭素数1〜6のアルキル基を表し,Xはハロゲン若しくはヒドロキシル基を表すものである,請求項の製造方法。
The substituent of R 6 or R 7 represents R 8 —, R 8 O— or X, and R 8 has 1 to 6 carbon atoms which may be substituted with one or more halogen or hydroxyl groups; The production method according to claim 9 , which represents an alkyl group, and X represents a halogen or a hydroxyl group.
JP2014046542A 2014-03-10 2014-03-10 Improved process for producing oxidation products by photooxygen oxidation Expired - Fee Related JP6282005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046542A JP6282005B2 (en) 2014-03-10 2014-03-10 Improved process for producing oxidation products by photooxygen oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046542A JP6282005B2 (en) 2014-03-10 2014-03-10 Improved process for producing oxidation products by photooxygen oxidation

Publications (2)

Publication Number Publication Date
JP2015168667A JP2015168667A (en) 2015-09-28
JP6282005B2 true JP6282005B2 (en) 2018-02-21

Family

ID=54201726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046542A Expired - Fee Related JP6282005B2 (en) 2014-03-10 2014-03-10 Improved process for producing oxidation products by photooxygen oxidation

Country Status (1)

Country Link
JP (1) JP6282005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748341B (en) * 2020-06-30 2023-06-16 苏州科技大学 Phenothiazine weak light up-conversion system and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697503B2 (en) * 1999-09-08 2005-09-21 独立行政法人産業技術総合研究所 Method for oxidizing organic sulfur compounds contained in fuel oil and method for oxidative desulfurization of fuel oil

Also Published As

Publication number Publication date
JP2015168667A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
Qiu et al. Insertion of sulfur dioxide via a radical process: an efficient route to sulfonyl compounds
Wei et al. Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro [4, 5] trienones
Cambie et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment
Lee et al. Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory
Huang et al. Visible-light-induced methylsulfonylation/bicyclization of C (sp 3)-tethered 1, 7-enynes using a DMSO/H 2 O system
Discekici et al. A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations
Su et al. Photochemical transformations accelerated in continuous‐flow reactors: basic concepts and applications
Han et al. Immobilised photosensitisers for continuous flow reactions of singlet oxygen in supercritical carbon dioxide
Zhu et al. A cascade alkylarylation reaction of 2-isocyanobiphenyls with simple alkanes for 6-alkyl phenanthridines via dual C (sp3)–H/C (sp2)–H functionalizations
EP2399897B1 (en) Method for producing oxygen-containing compound
Watanabe et al. One-pot synthesis of carbazoles by palladium-catalyzed N-arylation and oxidative coupling
Yakubov et al. Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis
Prakash et al. Poly (N-vinylpyrrolidone)–H 2 O 2 and poly (4-vinylpyridine)–H 2 O 2 complexes: solid H 2 O 2 equivalents for selective oxidation of sulfides to sulfoxides and ketones to gem-dihydroperoxides
Ismaili et al. Active participation of amine-derived radicals in photoredox catalysis as exemplified by a reductive cyclization
Li et al. Visible light induced decomposition of sulfonyl hydrazides using Pd/ZrO2 nanocomposite photocatalyst
JP6282005B2 (en) Improved process for producing oxidation products by photooxygen oxidation
Azarifar et al. Oxidative cleavage of C= C bonds with singlet molecular oxygen generated from monoacetylated bishydroperoxides
Clark et al. UV PhotoVap: demonstrating how a simple and versatile reactor based on a conventional rotary evaporator can be used for UV photochemistry
JP2012521373A (en) Process for producing aliphatic carboxylic acids from aldehydes by microreaction technology
JP2008214257A (en) Method for producing sulfoxide compound
Straathof et al. Accelerating visible-light photoredox catalysis in continuous-flow reactors
JP2018154540A (en) Manufacturing method of hydrogen peroxide
Zhang et al. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation
JP2010536819A (en) Method for efficiently producing epoxides by oxidation of olefins in a homogeneous gas phase
CN110694652A (en) Method for generating ester compound by catalytic oxidation of ether compound with visible light excited silver iodide and bismuth vanadate composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6282005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees