JP6279978B2 - Inorganic granular material - Google Patents

Inorganic granular material Download PDF

Info

Publication number
JP6279978B2
JP6279978B2 JP2014114687A JP2014114687A JP6279978B2 JP 6279978 B2 JP6279978 B2 JP 6279978B2 JP 2014114687 A JP2014114687 A JP 2014114687A JP 2014114687 A JP2014114687 A JP 2014114687A JP 6279978 B2 JP6279978 B2 JP 6279978B2
Authority
JP
Japan
Prior art keywords
vibration
inorganic
seismic isolation
present
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014114687A
Other languages
Japanese (ja)
Other versions
JP2015229821A (en
Inventor
岡本 道孝
道孝 岡本
勝利 藤崎
勝利 藤崎
隆志 小原
隆志 小原
秀幸 照井
秀幸 照井
健一 川野
健一 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014114687A priority Critical patent/JP6279978B2/en
Publication of JP2015229821A publication Critical patent/JP2015229821A/en
Application granted granted Critical
Publication of JP6279978B2 publication Critical patent/JP6279978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無機粒体材料に関する。更に詳しくは、材料供給安定性と経済性に優れる無機粒体材料と水分のみを主たる成分として生成することができる材料でありながら、免振材料及びアンカー構造用充填材料としての優れた物性を有する、新規な無機粒体材料に関する。   The present invention relates to an inorganic granular material. More specifically, it has excellent physical properties as a vibration-isolating material and a filling material for anchor structure, although it is a material that can be produced mainly with inorganic granular materials and water that are excellent in material supply stability and economy. The present invention relates to a novel inorganic granular material.

地震時の振動エネルギーを減衰させて、構造物の免震性を高めるための手段として、例えば、高層ビル等の巨大な建築物等においては、その上部構造体と基礎側の下部構造体との間に免震ダンパー等の各種の免震装置を設置する免震方法が広く採用されている(特許文献1及び2参照)。   As a means for attenuating the vibration energy at the time of earthquake and improving the seismic isolation of the structure, for example, in a huge building such as a high-rise building, the upper structure and the lower structure on the foundation side A seismic isolation method in which various seismic isolation devices such as a seismic isolation damper are installed in between (see Patent Documents 1 and 2).

一方、構造物の免震性を高めるための他のアプローチとして、構造物を設置する地盤内に充填することによって、対象地盤に免震性を備えさせることを企図した各種の免震材料も提案されている(特許文献3)。そのような充填タイプの免震材料として、近年では、シリコーン系の免震材料中に耐衝撃性、形状復元性に優れるプラスティックマイクロバルーンを配合した免震材料等が開発されている(特許文献4参照)。   On the other hand, as another approach to improve the seismic isolation of the structure, various seismic isolation materials were also proposed that are intended to provide the target ground with seismic isolation by filling the ground where the structure is installed. (Patent Document 3). As such a filling type seismic isolation material, in recent years, a seismic isolation material in which a plastic microballoon excellent in impact resistance and shape restoration property is blended in a silicone-based seismic isolation material has been developed (Patent Document 4). reference).

又、一方、コンクリート等からなる構造物にアンカー金物を固着させてなる、所謂アンカー構造の一般的な施工方法として、コンクリート構造物等の表面にアンカー挿入孔を形成し、該アンカー挿入孔にアンカー金物を挿入後、アンカー金物と挿入孔の内周面との隙間の空間に充填材料を充填する方法が行われており(特許文献5参照)、その際に用いる充填材料としては、固化後に所望の引張り抵抗力を発現可能な、反応性液状樹脂材料やセメント係のもの(主材料がセメント、硬化剤が水或いは水ガラス)が用いられている(特許文献6参照)。   On the other hand, as a general construction method of a so-called anchor structure in which an anchor metal is fixed to a structure made of concrete or the like, an anchor insertion hole is formed on the surface of the concrete structure or the like, and the anchor insertion hole is anchored to the anchor insertion hole. A method of filling the space between the anchor hardware and the inner peripheral surface of the insertion hole with a filling material after inserting the metal fitting is performed (see Patent Document 5). A reactive liquid resin material or a cement-related material (the main material is cement and the hardener is water or water glass) capable of exhibiting the tensile resistance of the above is used (see Patent Document 6).

特開平11−223045号公報Japanese Patent Laid-Open No. 11-2223045 特開2002−227898号公報JP 2002-227898 A 特開平9−105440号公報JP-A-9-105440 特開2002−21106号公報Japanese Patent Laid-Open No. 2002-21106 特開2001−311224号公報JP 2001-31224 A 特開2011−42963号公報JP 2011-42963 A

ここで、特許文献1及び2に記載の免震装置は製造、設置、及びその後の保守にかかるコストが膨大である。よって、高層ビル等、費用対効果が特に優れた建造物への適用以外の場合には、経済的な理由から採用が困難である場合が多い。   Here, the seismic isolation devices described in Patent Documents 1 and 2 have a huge cost for manufacturing, installation, and subsequent maintenance. Therefore, in cases other than the application to buildings with particularly high cost-effectiveness such as high-rise buildings, the adoption is often difficult for economic reasons.

又、特許文献3及び4に記載の免震材料については、これらを地盤内等に充填する免震手段は、上記の免震装置の設置よりは一般に経済性に優れる場合が多い。しかしながら、これらの免震材料はいずれもシリコーン等の主剤樹脂に加えて、耐衝撃性、形状復元性等を備える何らかの分散材料を添加してなるものである。これらの免震材料はいずれも免震効果を発現させるために、上記の分散剤の添加が必須となっており、上記のプラスティックマイクロバルーン等特定材料への依存度が高い。上記の特定材料については、必ずしも常に安価で安定的な大量供給が保障されてはいない。よって、より経済性に優れる免震材料が求められていた。   Moreover, about the seismic isolation material of patent documents 3 and 4, the seismic isolation means which fills these in the ground etc. is generally more economical than installation of said seismic isolation apparatus. However, each of these seismic isolation materials is obtained by adding some dispersion material having impact resistance, shape restoration property, etc. in addition to the main resin such as silicone. All of these seismic isolation materials require the addition of the above-mentioned dispersing agent in order to develop a seismic isolation effect, and are highly dependent on specific materials such as the above-described plastic microballoons. The above-mentioned specific materials are not always guaranteed to be cheap and stable in large quantities. Therefore, seismic isolation materials that are more economical are in demand.

又、特許文献6に記載のアンカー構造を形成するために用いられている充填材料についても、必要な固化後の引張り抵抗力を保持しつつ、更に経済性を高めた材料の開発が求められていた。   In addition, as for the filling material used for forming the anchor structure described in Patent Document 6, there is a demand for the development of a material that further increases the economic efficiency while maintaining the necessary tensile resistance after solidification. It was.

本発明は、優れた免震効果を有する免振材料、及び、優れた引張り抵抗力を有するアンカー構造を形成するためのアンカー構造用充填材料としても用いることができる無機粒体材料であって、従来品よりも遙かに経済性に優れる無機粒体材料を提供することを課題とする。   The present invention is an inorganic particulate material that can also be used as a vibration isolating material having an excellent seismic isolation effect, and an anchor structure filling material for forming an anchor structure having an excellent tensile resistance, It is an object to provide an inorganic particulate material that is far more economical than conventional products.

本発明者らは、鋭意検討を行った結果、例えば、石灰石粉等に代表される汎用的で入手容易な無機粒体を主材料とし、その他の成分としては、水分と少量の混和剤のみで構成される無機粒体材料でありながら、主材料である無機粒体の粒径や間隙比を、特定の範囲に限定することにより、それらの無機粒体材料の従来用法からは全く予測不可能であった極めて優れた効果を発現させることができることを見出し、本発明を完成させるに至った。より具体的には、本発明は以下のものを提供する。   As a result of intensive studies, the present inventors, for example, use general-purpose and easily available inorganic particles represented by limestone powder as the main material, and other components include only moisture and a small amount of an admixture. Although it is composed of inorganic granular materials, it is totally unpredictable from the conventional methods for these inorganic granular materials by limiting the particle size and gap ratio of the main inorganic particles to a specific range. As a result, the present inventors have found that an extremely excellent effect can be expressed, and have completed the present invention. More specifically, the present invention provides the following.

(1) 粒径75μm以下の無機粒子を70%以上含んでなり、間隙比が0.3以上0.6以下であり、混和剤を0.08%以上10%以下含有する無機粒体材料。   (1) An inorganic particulate material comprising 70% or more of inorganic particles having a particle size of 75 μm or less, a gap ratio of 0.3 to 0.6, and an admixture of 0.08% to 10%.

(1)の発明によれば、無機粒体と水分を主成分とし、その他の成分としては、少量の混和剤を添加したのみという組成からなり、極めて経済性に優れる材料でありながら、免振材料、及び、アンカー構造用充填材料として用いることができる他用途の無機粒体材料を得ることができる。   According to the invention of (1), the composition is composed mainly of inorganic particles and water, and a small amount of admixture is added as the other components. It is possible to obtain an inorganic particle material for other uses that can be used as a material and a filler for anchor structure.

(2) (1)に記載の無機粒体材料からなる免振材料。   (2) A vibration-isolating material comprising the inorganic granular material according to (1).

(2)の発明によれば、無機粒体材料と水分を主成分とし、その他の成分としては、少量の混和剤を添加したのみという組成からなり、極めて経済性に優れる材料でありながら、従来公知の免振材料と同等以上の免振効果を発揮する全く新しい免震材料を提供することができる。又、この免振材料は、地震等の振動のみならず、交通振動等の高周波数に対する振動低減効果をも併せ持つ。   According to the invention of (2), the inorganic particulate material and water are the main components, and the other components are composed of only a small amount of an admixture, which is a material that is extremely excellent in economic efficiency. It is possible to provide a completely new seismic isolation material that exhibits a seismic isolation effect equivalent to or better than that of known vibration isolation materials. In addition, this vibration isolation material has not only vibrations such as earthquakes but also vibration reduction effects for high frequencies such as traffic vibrations.

(3) 前記無機粒子が石灰石粉である(2)に記載の免振材料。   (3) The vibration isolation material according to (2), wherein the inorganic particles are limestone powder.

(3)の発明によれば、極めて汎用的で、広範に、安価で流通している供給安定性の高い材料である石灰石粉によって、(2)の免振材料を製造することができる。よって(2)の発明の経済性、実施容易性を更に高めることができる。   According to the invention of (3), the vibration-isolating material of (2) can be produced by limestone powder, which is a very versatile, widely distributed, inexpensive and highly stable material. Therefore, the economical efficiency and ease of implementation of the invention of (2) can be further enhanced.

(4) 周波数0.1Hzの正弦波を、片振幅せん断ひずみが2%となるまで載荷した場合に、せん断弾性係数比が0.1以下に低下し、前記載荷終了後には、せん断弾性係数比が、自発的に0.8以上にまで回復することを特徴とする(2)又は(3)に記載の免振材料。   (4) When a sine wave with a frequency of 0.1 Hz is loaded until the half-amplitude shear strain becomes 2%, the shear elastic modulus ratio decreases to 0.1 or less. However, the vibration-isolating material according to (2) or (3), which spontaneously recovers to 0.8 or more.

(4)の発明によれば、この免振材料からなる免震構造体は、地震時には剛性が低下して免震効果を発現し、地震後には、剛性が回復する。よって、長年に亘って、メンテナンスフリーで、繰返し免震効果を発揮することができる。   According to the invention of (4), the seismic isolation structure made of this vibration isolation material has a reduced rigidity during an earthquake and exhibits a seismic isolation effect, and the rigidity recovers after the earthquake. Therefore, for many years, maintenance-free and repeated seismic isolation effect can be exhibited.

(5) (2)から(4)のいずれかに記載の免振材料が、可撓性を有する袋体又は筒体に充填されてなる免振部材   (5) A vibration isolating member in which the vibration isolating material according to any one of (2) to (4) is filled in a flexible bag or cylinder.

(5)の発明によれば、そのような免震部材の免振性、長期耐久性、経済性を著しく向上させることができる。好ましい実施形態の一具体例として、特許第3729169号に記載の表層処理法において、軟弱地盤の表層処理に用いる剛性補強体における可撓性ホース部分に充填する充填材料として、(1)から(3)のいずれかに記載の免振材料を用いる例を挙げることができる。   According to the invention of (5), the seismic isolation performance, long-term durability, and economic efficiency of such a seismic isolation member can be significantly improved. As a specific example of a preferred embodiment, in the surface layer treatment method described in Japanese Patent No. 3729169, as a filling material to be filled in a flexible hose portion in a rigid reinforcement used for surface layer treatment of soft ground, (1) to (3 An example using the vibration-isolating material described in any of (1) can be given.

(6) (1)に記載の無機粒体材料からなるアンカー構造用充填材料。   (6) An anchor structure filling material comprising the inorganic particulate material according to (1).

(6)の発明によれば、無機粒体材料と水分を主成分とし、その他の成分としては、少量の混和剤を添加したのみという組成からなり、極めて経済性に優れる材料でありながら、従来公知のアンカー構造用充填材料と同等以上の引張り抵抗力を発現する全く新しいアンカー構造用充填材料を提供することができる。   According to the invention of (6), the inorganic particulate material and moisture are the main components, and the other components are composed of only a small amount of an admixture, which is a material that is extremely excellent in economic efficiency. It is possible to provide a completely new anchor structure filling material that exhibits a tensile resistance equal to or greater than that of a known anchor structure filling material.

(7) 前記無機粒子が石灰石粉である(6)に記載のアンカー構造用充填材料。   (7) The anchor structure filling material according to (6), wherein the inorganic particles are limestone powder.

(7)の発明によれば、極めて汎用的で、広範に、安価で流通している供給安定性の高い材料である石灰石粉によって、(6)のアンカー構造用充填材料を製造することができる。よって(6)の発明の経済性、実施容易性を更に高めることができる。   According to the invention of (7), the filling material for anchor structure of (6) can be manufactured by limestone powder, which is a very versatile, widely distributed, inexpensive and highly stable material. . Therefore, the economic efficiency and ease of implementation of the invention of (6) can be further enhanced.

(8) (6)又は(7)に記載のアンカー構造用充填材料が、型枠内に充填されてなるアンカー係止部にアンカー部材が係止されてなるアンカー構造。   (8) An anchor structure in which an anchor member is locked to an anchor locking portion in which the anchor structure filling material according to (6) or (7) is filled in a mold.

(8)の発明によれば、アンカー構造に求められる、アンカー金物やアンカーボルトについての十分な引張り抵抗力を保持したま、アンカー構造の施工における製造コストを顕著に低減させることができる。   According to the invention of (8), the manufacturing cost in the construction of the anchor structure can be significantly reduced while maintaining a sufficient tensile resistance for the anchor hardware and anchor bolt required for the anchor structure.

本発明によれば、優れた免震効果を有する免振材料、及び、優れた引張り抵抗力を有するアンカー構造用充填材料としても用いることができる無機粒体材料であって、従来品よりも遙かに経済性に優れる無機粒体材料を提供することができる。   According to the present invention, it is an inorganic granular material that can also be used as a vibration isolating material having an excellent seismic isolation effect and a filling material for anchor structure having an excellent tensile resistance, which is much lower than conventional products. It is possible to provide an inorganic particulate material that is highly economical.

本発明の無機粒体材料の間隙比と含水比の関係を示すグラフ図である。It is a graph which shows the relationship between the gap ratio of the inorganic granular material of this invention, and a water content ratio. 本発明の無機粒体材料からなる免振材料についての三軸圧縮試験の結果を示すグラフ図である。It is a graph which shows the result of the triaxial compression test about the vibration isolation material which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料についての免振効果及び振動低減効果の確認試験の結果を示すグラフ図である。It is a graph which shows the result of the confirmation test of the vibration isolation effect and vibration reduction effect about the vibration isolation material which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料についての経年劣化の影響を確認する試験の結果を示すグラフ図である。It is a graph which shows the result of the test which confirms the influence of aged deterioration about the vibration isolation material which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなるアンカー構造用充填材料についての引張り抵抗力に係る試験結果を示すグラフ図である。It is a graph which shows the test result which concerns on the tensile resistance about the filling material for anchor structures which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料の好ましい一実施形態である地中構造物への適用例の説明に供する模式図である。It is a schematic diagram with which it uses for description of the example of application to the underground structure which is preferable one Embodiment of the vibration isolation material which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料の好ましい一実施形態である地中構造物への他の適用例の説明に供する模式図である。It is a schematic diagram with which it uses for description of the other application example to the underground structure which is preferable one Embodiment of the vibration isolating material which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料の好ましい一実施形態である道路舗装直下への適用例の説明に供する模式図である。It is a schematic diagram with which it uses for description of the example of application to the road pavement which is one preferable embodiment of the vibration isolator which consists of an inorganic granular material of this invention. 本発明の無機粒体材料からなる免振材料の好ましい一実施形態である免振構造体への充填材料として用いた例の説明に供する模式図である。It is a schematic diagram with which it uses for description of the example used as a filling material to the vibration isolation structure which is preferable one Embodiment of the vibration isolation material consisting of the inorganic granular material of this invention. 本発明の無機粒体材料からなるアンカー構造用充填材料の好ましい一実施形態であるアンカー構造の説明に供する模式図である。It is a schematic diagram with which it uses for description of the anchor structure which is preferable one Embodiment of the filling material for anchor structures which consists of an inorganic granular material of this invention.

本発明の無機粒体材料は、特定の粒状を有する無機粒子を主たる成分とする無機粒体材料である。そして、本発明の無機粒体材料は、従来のこの分野の技術的知見からは予測不可能であった、少なくとも二つの用途における優れた物性を発現する。二つの用途のうちの一の用途は、免震材料としての用途、他の用途は、アンカー構造用充填材料としての用途である。以下、本発明の無機粒体材料の概要、「免震材料」として用いた場合の好ましい実施形態、「アンカー構造用充填材料」として用いた場合の好ましい実施形態について、順次説明する。   The inorganic granular material of the present invention is an inorganic granular material mainly composed of inorganic particles having a specific granularity. And the inorganic granular material of this invention expresses the outstanding physical property in at least two uses which was unpredictable from the technical knowledge of this field conventionally. One of the two applications is an application as a seismic isolation material, and the other is an application as a filling material for anchor structures. Hereinafter, an outline of the inorganic particulate material of the present invention, a preferred embodiment when used as a “seismic isolation material”, and a preferred embodiment when used as a “filling material for anchor structure” will be sequentially described.

<無機粒体材料>
本発明の無機粒体材料は、主材料とする無機粒体と水分、及び、その他の添加材料として混和剤の3つの成分を最小限の必須成分とする。特許文献3及び4に記載の免震材料のように、従来の免震材料においては、本発明の構成要素たる上記3成分に加えて、更に免振作用を発現させるための特殊なゴムやプラスチック等、特定素材料が必須の成分となる。これに対して、本発明の無機粒体材料は、上記の通り、その材料の成分組成としては、極めて、安価な材料のみからなる単純な組成であることを特徴とする。
<Inorganic granular material>
The inorganic granule material of the present invention has the minimum three essential components of the admixture as an inorganic granule and water as main materials and other additive materials. As in the base isolation materials described in Patent Documents 3 and 4, in the conventional base isolation material, in addition to the above three components as the constituent elements of the present invention, special rubber and plastic for further expressing the base isolation function The specific raw material is an essential component. On the other hand, the inorganic granular material of the present invention is characterized in that, as described above, the component composition of the material is a simple composition made of only extremely inexpensive materials.

無機粒体材料を構成する無機粒子としては、非水硬性物質である各種の無機粒子物を用いることができる。例えば、石灰石粉(炭酸カルシウム)、シルト、粘土、砕石、高炉スラグ、石炭灰等を用いることができる。中でも、土木材料分野において、極めて汎用的で、且つ、広範に安価で流通している供給安定性の高い材料である石灰石粉を好ましく用いることができる。石灰石粉は、石灰石(CaCO主体の鉱物)を粉砕した粉体(コンクリート用として規定される砕石に由来するもの、及び工業製品として用意されている石灰石粉に由来するものの一方又は両方を含むことができる)を好ましく用いることができる。 As the inorganic particles constituting the inorganic particulate material, various inorganic particles that are non-hydraulic substances can be used. For example, limestone powder (calcium carbonate), silt, clay, crushed stone, blast furnace slag, coal ash and the like can be used. Among them, in the civil engineering material field, it is possible to preferably use limestone powder, which is a material that is extremely versatile and is widely distributed at low cost and has high supply stability. Limestone powder includes one or both of powders obtained by pulverizing limestone (a mineral mainly composed of CaCO 3 ) (derived from crushed stone defined for concrete and limestone powder prepared as an industrial product) Can be preferably used.

無機粒体材料を構成する無機粒子の粒径及び粒度分布については、例えば一般的なセメント系材料(モルタル及びコンクリート)と比べて極めて小さい粒径であり、又、粒度の分散も小さいものであることが好ましい。具体的には、本願発明に用いる無機粒子は、粒径75μm以下の粒子を70%以上、好ましくは75%以上、含んでなるものである。   About the particle size and particle size distribution of the inorganic particles constituting the inorganic particle material, for example, the particle size is extremely small compared to general cementitious materials (mortar and concrete), and the particle size dispersion is also small. It is preferable. Specifically, the inorganic particles used in the present invention comprise 70% or more, preferably 75% or more of particles having a particle size of 75 μm or less.

混和剤としては、混練物の流動性を阻害しない限り、一般的なコンクリート製造に使用される種々のものが使用できる。具体例として、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、遅延剤、分散剤、増粘剤等が挙げられる。これらの混和剤は、混練物中に占める質量割合が10%以下となる範囲で添加することができるが、1%以下の添加量(例えば、0.1%以上1%以下)としても、良好な結果が得られる。   As the admixture, various materials used for general concrete production can be used as long as the fluidity of the kneaded material is not impaired. Specific examples include water reducing agents, AE water reducing agents, high performance water reducing agents, high performance AE water reducing agents, retarders, dispersants, thickeners, and the like. These admixtures can be added in a range where the mass ratio in the kneaded product is 10% or less, but even when the addition amount is 1% or less (for example, 0.1% or more and 1% or less) Results.

本発明の無機粒体材料は、上記の無機粒体、混和剤に、水を加えてなるものであるが、その間隙比が極めて小さいことを特徴とする。具体的には、本発明の無機粒体材料の間隙比は、0.3以上0.6以下、好ましくは、0.40以上0.55以下である。本発明の無機粒体材料に用いる無機粒体の粒子形状と粒径から間隙比の物理的下限は、ほぼ0.3程度である。又、間隙比が0.6を超えると、即ち、水が多くなり泥水に近い状態となり、本発明特有の効果を発揮するための前提となるチキソトロピー性が失われてしまう。尚、本発明の無機粒体材料の上記の間隙比の値は、いずれも、締固め等の特段の追加加工処理を必要とせずに実現されうる数値である。   The inorganic particle material of the present invention is obtained by adding water to the above-mentioned inorganic particles and admixture, and is characterized by an extremely small gap ratio. Specifically, the gap ratio of the inorganic granular material of the present invention is 0.3 or more and 0.6 or less, preferably 0.40 or more and 0.55 or less. From the particle shape and particle size of the inorganic particles used in the inorganic particle material of the present invention, the physical lower limit of the gap ratio is about 0.3. Further, when the gap ratio exceeds 0.6, that is, the amount of water increases and the state becomes close to muddy water, and the thixotropy, which is a precondition for exhibiting the effect unique to the present invention, is lost. In addition, all the values of the above-mentioned gap ratio of the inorganic granular material of the present invention are numerical values that can be realized without requiring special additional processing such as compaction.

このような小さな間隙比を有する無機粒体材料は、上記の通りの特定の粒度分布を有する石灰石粉等の無機粒体を使用し、混和剤と水分の配合割合を特定範囲に調整することにより生成することができる。ここで、図1は、無機粒体として石灰石粉を用いた場合の本発明の無機粒体材料の含水比と間隙比の相関を表すグラフである。このグラフから分る通り、無機粒体として石灰石粉を用いた場合には、含水比を概ね6%〜22%の範囲とすることによって間隙比を、上記の低間隙比、即ち、0.3以上0.6以下の範囲に調整することができる。尚、本明細書における無機粒体材料の含水費については、JIS Z 1203:1999の「土の含水比試験方法」により測定した含水比のことを言うものとする。又、本明細書における無機粒体材料の間隙比とは、無機粒体材料における無機粒体以外の配合成分(近似的には水分のみ)の体積の無機粒体の体積に対する体積比のことを言う。具体的には、「間隙比(e)≒水分の体積/無機粒体材料の体積(VV)」である。本発明の実施に際しては、含水比、水の密度、及び無機粒体の密度が分かれば、それらの各値から間隙比を実用上十分な精度で近似的に把握して、適切に実施することが可能である。   The inorganic granular material having such a small gap ratio uses inorganic particles such as limestone powder having a specific particle size distribution as described above, and adjusts the mixing ratio of the admixture and moisture to a specific range. Can be generated. Here, FIG. 1 is a graph showing the correlation between the water content ratio and the gap ratio of the inorganic particulate material of the present invention when limestone powder is used as the inorganic particulate material. As can be seen from this graph, when limestone powder is used as the inorganic particles, the water content ratio is set in a range of approximately 6% to 22%, so that the gap ratio is set to the above low gap ratio, that is, 0.3%. It can be adjusted to a range of 0.6 or less. In addition, about the moisture content cost of the inorganic granular material in this specification, it shall say the moisture content measured by "the soil moisture content test method" of JIS Z 1203: 1999. In addition, the gap ratio of the inorganic particle material in the present specification refers to the volume ratio of the volume of the compounding component other than the inorganic particles (approximately only moisture) in the inorganic particle material to the volume of the inorganic particles. say. Specifically, “gap ratio (e) ≈volume of moisture / volume of inorganic particulate material (VV)”. In carrying out the present invention, if the water content ratio, the water density, and the density of the inorganic particles are known, the gap ratio should be approximately grasped from each of these values with sufficient practical accuracy and appropriately implemented. Is possible.

<免震材料>
本発明の無機粒体材料は、免振材料として好ましく用いることができる。尚、本発明の「免振材料」という呼称については、地震等の揺れに対する「免震効果」のみならず、交通振動等の周波数の高い微細な振動を含む振動全般に対して振動エネルギーを減衰する効果を奏する材料であることから、この類の材料についての従来の一般的な呼称である「免震材料」ではなく、敢えて「免振材料」と称することとしたものである。
<Seismic isolation material>
The inorganic granular material of the present invention can be preferably used as a vibration isolating material. The name “isolation material” of the present invention attenuates vibration energy not only for “seismic isolation effect” against vibrations such as earthquakes, but also for all vibrations including fine vibrations with high frequency such as traffic vibrations. Therefore, it is not a “general isolation material” that is a conventional general name for this type of material, but a “isolation material”.

本発明の無機粒体材料からなる免振材料(以下、単に「免振材料」とも言う)は、間隙比が上記範囲の極めて小さい粒体材料であることによりチキソトロピー性を有するものとなっている。チキソトロピー性を有する本発明の免震材料は、振動が加わると剛性が低下し、振動が停止後には、剛性が自立的に回復する。この特異な物性によって、例えば地震時には優れた免震性能を発揮し、更に、地震後は剛性が自己回復するため、交換や保守を要することなく繰返し使用することが可能なメンテナンスフリーの免振材料として用いることができる。   The vibration isolation material made of the inorganic granular material of the present invention (hereinafter also simply referred to as “vibration isolation material”) has thixotropic properties because it is a granular material having a very small gap ratio in the above range. . The seismic isolation material of the present invention having thixotropy decreases in rigidity when vibration is applied, and recovers independently after the vibration stops. Because of this unique physical property, for example, it exhibits excellent seismic isolation performance in the event of an earthquake. Furthermore, since the rigidity is self-recovering after an earthquake, it is a maintenance-free material that can be used repeatedly without replacement or maintenance. Can be used as

又、本発明の免振材料は、間隙比が極めて小さい粒体材料であることにより、軸ひずみが増加するほど正のダイレンシー効果が卓越し、粒状体材料内部に負圧が生じる。これにより、本発明の免振材料からなる免振構造体は、大ひずみ領域でも破壊されることがないという、ひずみ増加に対する強度の耐久性を有するものとなる。   In addition, since the vibration-isolating material of the present invention is a granular material having a very small gap ratio, the positive strain effect becomes more prominent as the axial strain increases, and a negative pressure is generated inside the granular material. Thereby, the vibration-isolating structure made of the vibration-isolating material of the present invention has durability with respect to an increase in strain that is not broken even in a large strain region.

本発明によれば、主材料とする無機粒体材料の粒径と粒度分布、及び、間隙比を上記範囲に特定することによって、当該主材料に水分と混和剤を添加したのみの単純な組成でありながら、極めて、優れた免振性能を有する免振材料を得ることができる。このことは、当業者といえども従来公知のいかなる知見からも容易には想到することができない全く新しい知見であり、本発明の免震材料は、従来公知の免震材料の中に比較すべきものが全く存在しない新規な免振材料である。   According to the present invention, by specifying the particle size and particle size distribution of the inorganic particulate material as the main material and the gap ratio in the above range, a simple composition in which moisture and an admixture are simply added to the main material. However, it is possible to obtain a vibration isolation material having extremely excellent vibration isolation performance. This is a completely new knowledge that even those skilled in the art cannot easily come up with any known knowledge, and the seismic isolation material of the present invention should be compared with the conventionally known seismic isolation materials. Is a novel vibration-isolating material that does not exist at all.

以上説明した本発明の免振材料は、例えば、免振対象となる構造物付近の地盤中に充填し、免振材料からなる免振構造体を形成することによって、当該構造物に免振性能を付与することができる。   The above-described vibration-isolating material of the present invention is filled in the ground near the structure to be vibration-isolated, for example, to form a vibration-isolating structure made of the vibration-isolating material, so that the structure is subjected to vibration-isolating performance. Can be granted.

図6〜図8は、それぞれ本発明の免振材料による免振構造体の形成例を模式的に示す図である。図6は、地面Gの下に配置形成される地中構造物2の直下の空間に本発明の免振材料を充填して免振構造体1Aを形成した状態を示す。又、図7は、地中構造物2の側面に同様の免振処理により免振構造体1Bを形成した状態を示す。更に、図8は、本発明の免振材料を道路舗装直下へ充填して免振構造体1Cを形成した状態を示す。いずれの例においても、本発明の免振材料からなる免振構造体(1A、1B、1C)は、地震及び交通振動等あらゆる振動に対してその振動エネルギーを減衰させる効果を十分に発揮することができる。   6-8 is a figure which shows typically the example of formation of the vibration isolation structure by the vibration isolation material of this invention, respectively. FIG. 6 shows a state in which the vibration isolation material 1A is formed by filling the space immediately below the underground structure 2 arranged and formed below the ground G with the vibration isolation material of the present invention. FIG. 7 shows a state where the vibration isolation structure 1B is formed on the side surface of the underground structure 2 by the same vibration isolation process. Further, FIG. 8 shows a state where the vibration isolating material 1C is formed by filling the vibration isolating material of the present invention directly under the road pavement. In any example, the vibration isolation structure (1A, 1B, 1C) made of the vibration isolation material of the present invention sufficiently exhibits the effect of attenuating the vibration energy against any vibration such as earthquake and traffic vibration. Can do.

図6〜図8に例示されるように、本発明の免振材料を地盤中に充填して免振構造体を形成するための工法としては、特許文献3に記載されているような従来工法を適宜採用することができる、即ち、削孔ロッドによって地盤を削孔するか、或いは空洞形成を行い、その後、流体吐出用ロッドによって免振材料を充填する工法等である。このような工法により免振材料を地盤内に充填する場合、従来の免震材料を用いた場合には、材料中に配合されるプラスティックマイクロバルーン等の分散材料が流体吐出用ロッドの吐出機構に負担をかけて吐出効率が低下してしまう場合があった。又、この問題を回避するために、主材料と分散材料を別途のロッドで充填し、充填しつつ攪拌を行うという工法が採用される場合もあった。いずれにしても、免震工事における作業性の低下が問題となっていた。本発明の免震材料は分散材料を含有しない単純な組成であるため、そのような作業性低下の問題は起こりえない。このように免震工事の作業性向上の観点からも本発明の免振材料は従来の免震材料よりも大いに有利な効果を奏するものとなっている。   As illustrated in FIGS. 6 to 8, as a method for forming the vibration isolation structure by filling the vibration isolation material of the present invention into the ground, a conventional method as described in Patent Document 3 is used. That is, a method of drilling the ground with a drilling rod or forming a cavity and then filling a vibration isolating material with a fluid discharge rod. When filling the ground with vibration-isolating material by such a construction method, when using conventional seismic isolation materials, the dispersion material such as plastic microballoons blended in the material becomes the discharge mechanism of the fluid discharge rod. In some cases, the discharge efficiency is lowered due to a burden. In order to avoid this problem, there has been a case where a method of filling the main material and the dispersion material with separate rods and stirring while filling is sometimes employed. In any case, deterioration of workability in seismic isolation work has been a problem. Since the seismic isolation material of the present invention has a simple composition that does not contain a dispersion material, such a problem of reduced workability cannot occur. Thus, also from the viewpoint of improving workability of the seismic isolation work, the vibration isolation material of the present invention has a much more advantageous effect than the conventional seismic isolation material.

本発明の免震材料は、又、上記説明した通り、特殊なチキソトロピー性と、ひずみ増加に対する強度の耐久性を持つものであるため、図9に示すような可撓性を有する袋体又は筒体に充填されてなる免振部材3への充填材料1Dとしても好ましく用いることができる。このような免震部材の好ましい適用の実施例として、特許第3729169号に開示されている「軟弱地盤の表層処理方法」への本発明の免震材料の適用が考えられる。同処理方法において、可撓性のホース内に充填する充填材料として、従来のモルタル等に代えて、本発明の免震材料を充填材料1Dとして充填することによって、面状補強材料に剛性を付与しつつ、同時に地震時等における耐震性を付与することができる。   Since the seismic isolation material of the present invention has special thixotropy and durability against an increase in strain as described above, a flexible bag or cylinder as shown in FIG. It can also be preferably used as a filling material 1D for the vibration isolation member 3 filled in the body. As an example of preferable application of such a seismic isolation member, application of the seismic isolation material of the present invention to the “surface treatment method for soft ground” disclosed in Japanese Patent No. 3729169 can be considered. In the same processing method, instead of the conventional mortar as a filling material to be filled in the flexible hose, the seismic isolation material of the present invention is filled as the filling material 1D, thereby giving rigidity to the planar reinforcing material. At the same time, it is possible to provide earthquake resistance during an earthquake.

<アンカー構造用充填材料>
本発明の無機粒体材料は、又、アンカー構造用充填材料としても好ましく用いることができる。本発明の無機粒体材料からなるアンカー構造用充填材料(以下、単に「アンカー構造用充填材料」とも言う)は、上記の通り、チキソトロピー流体に近く粘性が高いことから、鋼棒等の周辺にこのアンカー構造用充填材料を充填してなる係止部を形成することにより、鋼棒等の引き抜きに対する引張抵抗力を発揮する。
<Filling material for anchor structure>
The inorganic particulate material of the present invention can also be preferably used as a filling material for anchor structure. As described above, the anchor structure filling material (hereinafter also referred to simply as “anchor structure filling material”) made of the inorganic granular material of the present invention is close to a thixotropic fluid and has a high viscosity. By forming a locking portion filled with this anchor structure filling material, a tensile resistance against pulling out of a steel bar or the like is exhibited.

本発明によれば、主材料とする無機粒体の粒径と粒度分布、及び、間隙比を上記範囲に特定することによって、当該主材料に水分と混和剤を添加したのみの単純な組成でありながら、優れた引張抵抗力を有するアンカー構造用充填材料を得ることができる。このことは、当業者といえども従来公知のいかなる知見からも容易には想到することができない全く新しい知見であり、本発明のアンカー構造用充填材料は、従来公知のアンカー構造用充填材料の中に比類すべきものが全く存在しない新規なアンカー構造用充填材料である。尚、本明細書における「アンカー構造用充填材料」は、アンカー構造におけるアンカー定着部や、その他の支持抗定着部等、引張り抵抗力が求められる構造部分を形成するために用いられる充填材料全般を含む概念である。   According to the present invention, by specifying the particle size and particle size distribution of the inorganic particles as the main material, and the gap ratio in the above range, the simple material has a simple composition in which moisture and an admixture are added to the main material. Nevertheless, an anchor structure filling material having excellent tensile resistance can be obtained. This is a completely new finding that cannot be easily reached from any known knowledge even by those skilled in the art, and the anchor structure filling material of the present invention is one of the conventionally known anchor structure filling materials. It is a novel anchoring structure filling material that does not have anything comparable. In addition, the “filling material for anchor structure” in this specification refers to all the filling materials used for forming a structural part that requires tensile resistance, such as an anchor fixing part and other supporting and fixing part in the anchor structure. It is a concept that includes.

以上説明した本発明のアンカー構造用充填材料は、例えば、アンカーボルト等のアンカー部材を係止するために、当該アンカー部材周辺の隙間空間に充填することにより、廉価で安定性の高いアンカー構造を形成することができる。   The anchor structure filling material according to the present invention described above has an inexpensive and highly stable anchor structure by, for example, filling a gap space around the anchor member in order to lock the anchor member such as an anchor bolt. Can be formed.

図10は、本発明のアンカー構造用充填材料によるアンカー構造の形成例を模式的に示す図である。コンクリート構造物5の表面に設けられた挿入孔に配置されたアンカーボルト4の周辺の隙間空間に本発明のアンカー構造用充填材料を充填することにより、アンカー構造10におけるアンカー係止部1Eが形成されている。本発明の無機粒体材料からなるアンカー係止部1Eは、廉価な材料でありながら、十分な引張り抵抗力を発揮しうるものであるため、アンカー構造10の好ましい性能を保持したまま、その経済性を向上させることができる。   FIG. 10 is a diagram schematically showing an example of forming an anchor structure using the anchor structure filling material of the present invention. By filling the clearance space around the anchor bolt 4 arranged in the insertion hole provided on the surface of the concrete structure 5 with the filling material for anchor structure of the present invention, the anchor locking portion 1E in the anchor structure 10 is formed. Has been. Since the anchor locking portion 1E made of the inorganic granular material of the present invention is a low-cost material and can exhibit a sufficient tensile resistance, its economy can be maintained while maintaining the preferable performance of the anchor structure 10. Can be improved.

以下、本発明を実施例により詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.

先ず、以下の材料を用いて、下記表1に示す配合割合の無機粒体材料を作製した。
〔材料〕
無機粒体:石灰石粉(石灰石を粉砕して得た粉末(炭酸カルシウム粉末))、75μmの篩を通過する粒子を70質量%以上含有するもの。

混和剤:高性能減水剤
First, inorganic granular materials having the blending ratios shown in Table 1 below were prepared using the following materials.
〔material〕
Inorganic particles: Limestone powder (powder obtained by pulverizing limestone (calcium carbonate powder)), containing 70% by mass or more of particles passing through a 75 μm sieve.
Water admixture: High performance water reducing agent

Figure 0006279978
Figure 0006279978

[免震材料としての適性試験]
実施例の無機粒体材料について、免震材料としての適性を検証した。
[Applicability test as seismic isolation material]
About the inorganic granular material of an Example, the suitability as a seismic isolation material was verified.

(免振効果と剛性回復効果)
本発明の無機粒体材料の免振材料としての免震効果と剛性回復の効果を検証するため、繰返し三軸試験を行った。実施例1の無機粒体材料で、φ50mm×h100mmの供試体を作製した後、周波数0.1Hzの繰返し軸変位(波形:正弦波)を片振幅せん断ひずみが2%程度となるまで連続して載荷した。載荷前、載荷直後、及び載荷後30分経過後のせん断弾性係数比(Gn/G)を、それぞれ、地震前、地震直後、及び地震後30分経過後のせん断弾性係数比(Gn/G)として測定した。結果は、下記表2の通りであった。尚、比較例の無機粒体材料について上記と同じ試験を行ったが、チキソトロピー性のない比較例の無機粒体材料については、実施例のような剛性回復が期待できず、地震前、地震直後、及び地震後30分経過後において、せん断弾性係数比(Gn/G)について、実施例ほどの大幅な変動は観察されなかった。
(Vibration isolation effect and stiffness recovery effect)
In order to verify the seismic isolation effect and the stiffness recovery effect of the inorganic granular material of the present invention as a vibration isolation material, repeated triaxial tests were performed. After preparing a specimen of φ50 mm × h100 mm with the inorganic granular material of Example 1, repeated axial displacement (waveform: sine wave) with a frequency of 0.1 Hz was continuously performed until the half amplitude shear strain became about 2%. It was loaded. The shear elastic modulus ratio (Gn / G 0 ) before loading, immediately after loading, and after 30 minutes from loading, respectively, is calculated as the shear elastic modulus ratio (Gn / G 0 ) before the earthquake, immediately after the earthquake, and after 30 minutes after the earthquake, respectively. 0 ). The results were as shown in Table 2 below. In addition, the same test as above was performed for the inorganic particle material of the comparative example, but for the inorganic particle material of the comparative example having no thixotropy, recovery of rigidity as in the example cannot be expected, before the earthquake, immediately after the earthquake And after 30 minutes from the earthquake, as much as the examples of the shear elastic modulus ratio (Gn / G 0 ) was not observed.

Figure 0006279978
Figure 0006279978

表2より、本発明の免震材料を用いた免振構造体は、地震による振動等を受けた場合に、せん断弾性係数比が0.1未満に低下して、振動を減衰させることが可能な状態となり、且つ、振動停止後には、自発的に剛性が十分に回復するものであることが分かる。   From Table 2, the vibration isolation structure using the vibration isolation material of the present invention can attenuate the vibration by reducing the shear modulus ratio to less than 0.1 when subjected to vibration due to an earthquake, etc. It can be seen that, after the vibration is stopped, the rigidity is sufficiently recovered spontaneously.

(ひずみ力に対する耐久性)
次に実施例1〜4及び比較例の免震構造の供試体について、三軸圧縮試験を行い、応力−ひずみ曲線からひずみ増加に対する耐久性を調べた。試験結果をグラフ化したものを図2に示す。
(Durability against strain force)
Next, the triaxial compression test was done about the specimen of the base isolation structure of Examples 1-4 and the comparative example, and durability with respect to the strain increase was investigated from the stress-strain curve. A graph of the test results is shown in FIG.

図2より、本発明の免震材料を用いた免振構造体は、限界間隙比に近いことから、正のダイレイタンシー効果が顕著であり、ひずみ増加に伴って免震構造体内部に負圧が発生する。そのため,大ひずみ領域でも免震構造体が破壊されることがなく、ひずみ増大に対する耐久性に優れるものであることが分る。尚、比較例の無機粒体材料について上記と同じ試験を行ったが、チキソトロピー性がなく限界間隙比近くまで達していない比較例の無機粒体材料については、過剰間隙水圧が負圧となることはなく、免震構造体は試験後すぐに破壊状態に至った。   From FIG. 2, the seismic isolation structure using the seismic isolation material according to the present invention is close to the critical gap ratio, so that the positive dilatancy effect is remarkable, and as the strain increases, the seismic isolation structure becomes negative inside the seismic isolation structure. Pressure is generated. Therefore, it can be seen that the seismic isolation structure is not destroyed even in a large strain region, and is excellent in durability against strain increase. Although the same test as described above was performed for the inorganic granular material of the comparative example, the excess pore water pressure becomes a negative pressure for the inorganic granular material of the comparative example that does not have thixotropy and does not reach the critical gap ratio. However, the seismic isolation structure was destroyed immediately after the test.

(振動低減効果)
実施例1の無機粒体材料について、遠心模型実験を行い、振動低減効果を検証した。遠心模型実験は、実施例1の無機粒体材料を、幅700mm×奥行220mm×高さ70mmのせん断土槽に設置し、免震構造の供試体とした後、レベル2地震相当の地震波を入力した。振動低減効果は、地盤底面からの入力加速度と、地表面での応答加速度を測定することで評価した。試験結果をグラフ化したものを図3に示す。図3の(a)は、地盤底面で測定した入力加速度、同(b)は、地表面での応答加速度を示すグラフである。尚、図3のグラフは、7Hzの振動における実験結果をグラフ化したものであるが、同様の試験を2〜14Hzの周波数域において行ってもほぼ同様の振動低減効果を得られることが確認されている。
(Vibration reduction effect)
About the inorganic granular material of Example 1, the centrifugal model experiment was conducted and the vibration reduction effect was verified. In the centrifugal model experiment, the inorganic granular material of Example 1 was installed in a shear soil tank with a width of 700 mm, a depth of 220 mm, and a height of 70 mm. did. The vibration reduction effect was evaluated by measuring the input acceleration from the ground bottom and the response acceleration on the ground surface. A graph of the test results is shown in FIG. FIG. 3A is a graph showing the input acceleration measured on the ground bottom surface, and FIG. 3B is a graph showing the response acceleration on the ground surface. The graph of FIG. 3 is a graph of the experimental results at 7 Hz vibration, but it is confirmed that the same vibration reduction effect can be obtained even if the same test is performed in the frequency range of 2 to 14 Hz. ing.

図3より、本発明の免震材料を用いた免振構造体は地震による震動の減衰効果の高いものであることが分る。又、地震等の低周波振動のみならず交通振動等の高周波振動に対しても幅広く振動低減効果を発揮しうる物であることが分る。   From FIG. 3, it can be seen that the vibration isolation structure using the vibration isolation material of the present invention has a high vibration damping effect due to the earthquake. In addition, it can be seen that the present invention can exhibit a wide range of vibration reduction effects not only for low frequency vibrations such as earthquakes but also for high frequency vibrations such as traffic vibrations.

(経年耐久性)
実施例1の無機粒体材料について、三軸圧縮試験を行い、経年耐久性を検証した。三軸圧縮試験は、実施例1の無機粒体材料で、φ50mm×h100mmの供試体を作製し、作製直後と6ヶ月間の20℃封緘養生後の各供試体の力学特性を評価した。又、更に、無機粒体として一般的な砂質土として扱われる豊浦砂を用い、比較例の供試体として同様の試験を行った。尚、上記の豊浦砂は、SiO:92.6%、Al2O:3.7%、その他(Fe3、CaO、MgO、有機物)からなるものであり、粒径75μm以下の無機粒子を0.1%程度含んでなり、間隙比が0.78程度の無機粒体材料である。試験結果をグラフ化したものを図4に示す。
(Aging durability)
About the inorganic granular material of Example 1, the triaxial compression test was done and the aging durability was verified. In the triaxial compression test, specimens of φ50 mm × h100 mm were produced using the inorganic granular material of Example 1, and the mechanical properties of each specimen immediately after production and after sealing at 20 ° C. for 6 months were evaluated. Furthermore, the same test was performed as a specimen of a comparative example using Toyoura sand treated as a general sandy soil as an inorganic granule. The above Toyoura sand, SiO 2: 92.6%, Al2O 3: 3.7%, others are made of (Fe 2 O 3, CaO, MgO, organic) from the particle size 75μm or less of the inorganic particle Is an inorganic granular material having a gap ratio of about 0.78. A graph of the test results is shown in FIG.

図4より、本発明の免震材料を用いた免振構造体は、経年劣化の影響を受けない保守容易性に優れるものであることが分る。又、一般的な無機粒体材料からなる構造体と比較して振動の減衰効果が高いものであることも分る。   From FIG. 4, it can be seen that the vibration-isolating structure using the seismic isolation material of the present invention is excellent in ease of maintenance that is not affected by aging deterioration. It can also be seen that the vibration damping effect is higher than that of a structure made of a general inorganic granular material.

[アンカー構造用充填材料としての適性試験]
実施例の無機粒体材料について、アンカー構造用充填材料としての適性を検証した。
[Applicability test as filling material for anchor structure]
About the inorganic granular material of an Example, the suitability as a filler for anchor structures was verified.

(引張り抵抗力)
本発明の無機粒体材料のアンカー構造用充填材料としての引張り抵抗力を検証する試験を行った。実施例1の無機粒体材料を、幅450mm×奥行300mm×高さ100mmの型枠内に充填し、直径50mm長さ30mmの円柱状の鋼棒を、上記材料充填直後に材料中に挿入した。挿入後10分経過後に引き抜き試験を行い、引張り抵抗力を測定した。試験結果をグラフ化したものを図5に示す。試験は2回繰り返し行い、それぞれグラフ上で系列1、2と示した。尚、その他の無機粒体材料に関して、通常の無機粒体材料は締固めを併用しない場合は粘着力等がなく引張抵抗力を全く発揮しないことから、その他の無機粒体材料は比較対象外とした。
(Tensile resistance)
A test was conducted to verify the tensile resistance of the inorganic granular material of the present invention as a filler for anchor structure. The inorganic granular material of Example 1 was filled into a mold having a width of 450 mm, a depth of 300 mm, and a height of 100 mm, and a columnar steel rod having a diameter of 50 mm and a length of 30 mm was inserted into the material immediately after the filling of the material. . A pull-out test was performed 10 minutes after the insertion, and the tensile resistance was measured. A graph of the test results is shown in FIG. The test was repeated twice and indicated as series 1 and 2 on the graph. In addition, regarding other inorganic granular materials, normal inorganic granular materials have no adhesive force and the like and do not exhibit tensile resistance at all unless compaction is used together. did.

図5より、本発明の無機粒体材料は、アンカー構造用充填材料としても好ましく用いることができるものであることが分る。   From FIG. 5, it can be seen that the inorganic granular material of the present invention can be preferably used as a filling material for anchor structure.

1A、1B、1C 免振構造体
1D 充填材料
1E アンカー係止部
2 地中構造物
3 免振部材
4 アンカーボルト
5 コンクリート構造物
10 アンカー構造
G 地面
1A, 1B, 1C Isolation structure 1D Filling material 1E Anchor locking part 2 Underground structure 3 Isolation member 4 Anchor bolt 5 Concrete structure 10 Anchor structure G Ground

Claims (2)

アンカー構造用充填材料が型枠内に充填されてなるアンカー係止部に、アンカー部材が係止されてなり、
前記アンカー構造用充填材料が、
粒径75μm以下の無機粒子を70%以上含んでなり、
間隙比が0.3以上0.6以下であり、
混和剤を0.08%以上10%以下含有する無機粒体材料である、アンカー構造。
The anchor locking portion anchoring structural filler material is filled in the mold, Ri anchoring member name is locked,
The anchor structure filling material is
70% or more of inorganic particles having a particle size of 75 μm or less,
The gap ratio is 0.3 or more and 0.6 or less,
An anchor structure which is an inorganic granular material containing 0.08% or more and 10% or less of an admixture .
前記無機粒子が石灰石粉である請求項1に記載のアンカー構造。The anchor structure according to claim 1, wherein the inorganic particles are limestone powder.
JP2014114687A 2014-06-03 2014-06-03 Inorganic granular material Active JP6279978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114687A JP6279978B2 (en) 2014-06-03 2014-06-03 Inorganic granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114687A JP6279978B2 (en) 2014-06-03 2014-06-03 Inorganic granular material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018006490A Division JP6469900B2 (en) 2018-01-18 2018-01-18 Isolation material

Publications (2)

Publication Number Publication Date
JP2015229821A JP2015229821A (en) 2015-12-21
JP6279978B2 true JP6279978B2 (en) 2018-02-14

Family

ID=54886767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114687A Active JP6279978B2 (en) 2014-06-03 2014-06-03 Inorganic granular material

Country Status (1)

Country Link
JP (1) JP6279978B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660353A1 (en) * 1990-03-30 1991-10-04 Technologies Speciales Ingenie Earthquake resistance methods and shields
JP2599121B2 (en) * 1994-09-22 1997-04-09 建設基礎エンジニアリング株式会社 Grout of anchor
JP3729169B2 (en) * 2002-10-18 2005-12-21 鹿島建設株式会社 Surface treatment method for soft ground
JP4958612B2 (en) * 2007-04-12 2012-06-20 鹿島建設株式会社 Seismic isolation structure
JP2013139367A (en) * 2012-01-06 2013-07-18 Taisei Corp Cement-based mixed material
JP2013245502A (en) * 2012-05-28 2013-12-09 Asahi Kasei Homes Co Seismic isolation structure
JP5196059B1 (en) * 2012-06-29 2013-05-15 株式会社タケウチ建設 Seismic reduction foundation structure and seismic reduction method using the same
JP6224903B2 (en) * 2012-07-31 2017-11-01 出光興産株式会社 Method for removing sulfur in pulverized coal combustion equipment

Also Published As

Publication number Publication date
JP2015229821A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
Güllü et al. Use of cement based grout with glass powder for deep mixing
Chenari et al. Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash
Saygili et al. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers
Alengaram et al. Comparison of mechanical and bond properties of oil palm kernel shell concrete with normal weight concrete
Miccoli et al. Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading
Keramatikerman et al. Experimental study on effect of fly ash on liquefaction resistance of sand
Li et al. Investigation of ultra-high performance concrete under static and blast loads
Fattah et al. Consolidation properties of compacted soft soil stabilized with lime-silica fume mix
Tian et al. Experimental study on the mechanical performance of grouted specimen with composite ultrafine cement grouts
JP6469900B2 (en) Isolation material
Muthusamy et al. Exploratory study of oil palm shell as partial sand replacement in concrete
JP6279978B2 (en) Inorganic granular material
Zhou et al. Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading
Sarsam Influence of nano materials addition as partial replacement of cement in the properties of concrete pavement
Wu Soil-based flowable fill for pipeline construction
Amiralian et al. Laboratory investigation on the effect of fly ash on the compressibility of soil
Chompoorat et al. Engineering properties of controlled low-strength material (CLSM) as an alternative fill material
Bazhenova et al. at Earthquake Resistant Construction
CN104446223A (en) High-strength concrete building block
JP2008031638A (en) Underground filler and repair method for earth structure
KR101620559B1 (en) Quick-setting mortar composition for compaction grouting process
WO2022018509A1 (en) Concrete mixture having enhanced static and dynamic properties and a process for preparing the same
RU2705113C1 (en) Granular magnetic polymer and grouting mixture for cementing of casing columns based on magnetic polymer
Adajar et al. Soil-structure interface behavior of cemented-paste backfill material mixed with mining waste
Ali et al. Improvement of shear strength of sandy soil by cement grout with fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6279978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250