JP6279675B2 - Fluid control device - Google Patents

Fluid control device Download PDF

Info

Publication number
JP6279675B2
JP6279675B2 JP2016160035A JP2016160035A JP6279675B2 JP 6279675 B2 JP6279675 B2 JP 6279675B2 JP 2016160035 A JP2016160035 A JP 2016160035A JP 2016160035 A JP2016160035 A JP 2016160035A JP 6279675 B2 JP6279675 B2 JP 6279675B2
Authority
JP
Japan
Prior art keywords
flow rate
fluid
pressure
drive signal
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160035A
Other languages
Japanese (ja)
Other versions
JP2016192243A (en
Inventor
祐紀 田中
祐紀 田中
明人 高橋
明人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2016160035A priority Critical patent/JP6279675B2/en
Publication of JP2016192243A publication Critical patent/JP2016192243A/en
Application granted granted Critical
Publication of JP6279675B2 publication Critical patent/JP6279675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Flow Control (AREA)

Description

この発明は、例えば半導体製造プロセスで用いられる材料ガス等の流量を制御する流体制御装置に関するものである。   The present invention relates to a fluid control apparatus that controls the flow rate of a material gas or the like used in, for example, a semiconductor manufacturing process.

この種の流体制御装置は、流体が流れる流路上に設けられた流量センサと流量調整弁とを有しており、別体又は一体で設けた制御回路によって、流量センサによる流体の測定流量が目標流量となるように、前記流量調整弁をフィードバック制御する構成となっている。   This type of fluid control device has a flow rate sensor and a flow rate adjustment valve provided on a flow path through which the fluid flows, and a target flow rate measured by the flow rate sensor is controlled by a separate or integrated control circuit. The flow rate adjusting valve is feedback-controlled so as to achieve a flow rate.

ところで、流体を流し始めるとき、すなわち、全閉状態から目標流量に向かって流量制御し始めるときに、最初からフィードバック制御をすると、測定流量が目標流量に落ち着くまでに時間がかかることがある。なぜならば、流量調整弁には、その駆動信号の値がある閾値を超えないと動き出さないという特性があるところ、目標流量と測定流量の偏差に応じて流量調整弁の駆動信号値(印加電圧)を算出するというフィードバック制御を最初から行うと、最初の何回かの制御ループの中で算出された印加電圧が前記閾値を超えず、実際に流量調整弁が動き出すまでに、その何回かの制御ループの時間が無駄に消費されるからである。   By the way, when starting the flow of the fluid, that is, when starting the flow control from the fully closed state toward the target flow rate, if feedback control is performed from the beginning, it may take time until the measured flow rate settles to the target flow rate. This is because the flow rate adjustment valve has a characteristic that it does not start unless the value of the drive signal exceeds a certain threshold, and the drive signal value (applied voltage) of the flow rate adjustment valve according to the deviation between the target flow rate and the measured flow rate. When the feedback control is performed from the beginning, the applied voltage calculated in the first several control loops does not exceed the threshold, and the flow control valve actually starts moving This is because the time of the control loop is wasted.

もちろん、制御係数を大きくすることによって、偏差に基づいて出力される印加電圧が前記閾値をすぐに超えるように設定し、応答性を向上させることも可能ではあるが、そうすると、発振したりして制御が不安定になる恐れが生じる。   Of course, by increasing the control coefficient, it is possible to set the applied voltage output based on the deviation so that it immediately exceeds the threshold value, thereby improving the responsiveness. The control may become unstable.

そこで、特許文献1では、全閉状態から流量制御し始めるときには、最初に出力される印加電圧を前記閾値を超える値に強制的に設定し、この値を初期値(初期印加電圧)として、ここからフィードバック制御を始めるようにしている。   Therefore, in Patent Document 1, when the flow control is started from the fully closed state, the first applied voltage is forcibly set to a value exceeding the threshold, and this value is set as an initial value (initial applied voltage). The feedback control is started from.

特開2001−236125号公報JP 2001-236125 A

しかしながら、前記初期印加電圧が、流量調整弁が動くはずの値に定められていたとしても、場合によっては、流量調整弁が動かず、応答性に不具合が生じることを本発明者は見出した。そして、この現象について鋭意検討した結果、流体の種類、圧力、温度によって流量調整弁の不感帯が変動することに原因があることを本発明者は突き止めた。   However, the present inventor has found that even if the initial applied voltage is set to a value at which the flow rate adjustment valve should move, the flow rate adjustment valve does not move in some cases, causing a problem in response. As a result of intensive studies on this phenomenon, the present inventor has found that the cause is that the dead zone of the flow rate adjusting valve varies depending on the type, pressure, and temperature of the fluid.

例えば、図4に、流量調整弁よりも上流側圧力が変わったときの該流量調整弁の動き出し印加電圧の変化について示す。上流側圧力が150KPaGのときには印加電圧約1.3Vで流量調整弁が動き出すに対し、上流側圧力が350KPaGになると、印加電圧が約1.9Vでようやく流量調整弁が動き出す。その結果、ほぼ同様の初期印加電圧を設定しているにもかかわらず、全閉状態から目標流量に向かって流量制御し始めるときに、圧力が150KPaGのときには、比較的短時間で弁が動き出して流量制御が行われるのに対し、350KPaGのときには、弁が動き出すまでにかなりの時間を要し、測定流量が目標流量に達するまで時間がかかることがわかる。このときの流量制御弁は、上流側の流体圧力が弁体を閉止側に付勢する構造であり、弁体を動かすのに必要な力は該圧力が高いほど大きくなる構造であり、これが原因で、流量調整弁の動き出し印加電圧が変化したと考えられる。   For example, FIG. 4 shows the change in the applied voltage when the flow regulating valve starts moving when the upstream pressure changes from the flow regulating valve. When the upstream pressure is 150 KPaG, the flow rate adjustment valve starts to move at an applied voltage of about 1.3 V, whereas when the upstream pressure becomes 350 KPaG, the flow rate adjustment valve finally starts to move at an applied voltage of about 1.9 V. As a result, when almost the same initial applied voltage is set, when the flow control is started from the fully closed state toward the target flow rate, when the pressure is 150 KPaG, the valve starts to move in a relatively short time. In contrast to the flow rate control, it can be seen that at 350 KPaG, it takes a considerable time until the valve starts to move, and it takes time until the measured flow rate reaches the target flow rate. The flow control valve at this time has a structure in which the upstream fluid pressure urges the valve body toward the closing side, and the force required to move the valve body increases as the pressure increases. Thus, it is considered that the applied voltage has changed since the flow regulating valve started to move.

また、図6、図7に、流体の種類が変わったときの流量調整弁の動き出し印加電圧の変化について示す。ここでは、N2ガスとSF6ガスとの比較である。分子量の大きいガス(N2ガス)のほうの印加電圧を大きく変化させないと(ここではノーマルオープンタイプの流量調整弁を用いているので、印加電圧の下げ幅を大きくしないと)、流量調整弁が動き出さず、流体が流れ始めない。   FIG. 6 and FIG. 7 show changes in the applied voltage when the flow regulating valve starts moving when the type of fluid changes. Here, it is a comparison between N2 gas and SF6 gas. If the applied voltage of the gas with a higher molecular weight (N2 gas) is not changed significantly (the normal open type flow rate adjustment valve is used here, the flow rate adjustment valve must be increased). The fluid does not begin to flow.

本発明は、流量調整弁の上述した不具合を解決すべくなされたものであって、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときの流量を、周囲状況に寄らず、目標流量に素早く到達させ、なおかつ安定的に制御できるようにすることをその主たる所期課題としたものである。   The present invention has been made to solve the above-described problems of the flow rate adjustment valve, and the flow rate when the flow rate adjustment valve starts to be controlled to make the measured flow rate equal to the target flow rate from the fully closed state is changed to the ambient condition. The main intended task is to allow the target flow rate to be reached quickly and to be controlled stably without approaching.

すなわち、本発明に係る流体制御装置は、駆動信号の値に応じて開度が変化し、流路を流れる流体の流量を調整する流量調整弁と、前記流路を流れる流体の流量を測定する流量センサと、前記流量センサによる測定流量が与えられた目標流量と等しくなるように、駆動信号を出力して前記流量調整弁を制御する制御回路とを具備したものであって、前記制御回路が、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときには、そのときの流体の種類、圧力、温度の少なくともいずれかをパラメータとして初期駆動信号値を設定することを特徴とする。   That is, the fluid control device according to the present invention measures the flow rate of the fluid that flows through the flow path and the flow rate adjustment valve that adjusts the flow rate of the fluid that flows through the flow path, with the opening degree changing according to the value of the drive signal. A flow rate sensor; and a control circuit that controls the flow rate adjustment valve by outputting a drive signal so that a flow rate measured by the flow rate sensor is equal to a given target flow rate, the control circuit comprising: When starting to control the flow rate adjustment valve to make the measured flow rate equal to the target flow rate from the fully closed state, the initial drive signal value is set using at least one of the fluid type, pressure, and temperature as parameters. And

このような構成によれば、流体の種類、圧力、温度によって流量調整弁の不感帯が変動しても、前記初期駆動信号値、すなわち、全閉状態から流量調整弁に与える最初の駆動信号値が、それに対応するように変化するので、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときの流量を、周囲状況に寄らず、目標流量に素早く到達させ、なおかつ安定的に制御することができるようになる。   According to such a configuration, even if the dead zone of the flow rate adjustment valve varies depending on the type, pressure, and temperature of the fluid, the initial drive signal value, that is, the first drive signal value to be given to the flow rate adjustment valve from the fully closed state is the same. Therefore, the flow rate when starting to control the flow rate adjustment valve to make the measured flow rate equal to the target flow rate from the fully closed state quickly reaches the target flow rate regardless of the ambient conditions, and is stable. Can be controlled automatically.

流体の種類、圧力又は温度をパラメータとして定められる最適な初期駆動信号値は、機差があり、かつ、流量制御弁やその周辺機器の特性が経時変化することによっても変わっていく。   The optimum initial drive signal value determined using the type, pressure, or temperature of the fluid as a parameter varies depending on machine differences, and also changes with the passage of time in the characteristics of the flow control valve and its peripheral devices.

これに対応できるようにするには学習機能をもたせることが好ましい。
その具体的な態様としては、前記制御回路が、全閉状態から流量調整弁が動き出したときの駆動信号値である動き出し駆動信号値とそのときの流体の種類、圧力、温度の少なくともいずれかとを対にして記憶する記憶部と、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときには、そのときの流体の種類、圧力、温度の少なくともいずれかをパラメータとして、前記記憶部に記憶されている過去の動き出し駆動信号値を参照し、前記初期駆動信号の値を設定する初期駆動信号値設定部とを具備しているものが好ましい。
In order to cope with this, it is preferable to provide a learning function.
As a specific aspect thereof, the control circuit includes a movement start drive signal value that is a drive signal value when the flow rate adjustment valve starts moving from a fully closed state, and at least one of the fluid type, pressure, and temperature at that time. When starting to control the flow rate adjusting valve so as to make the measured flow rate equal to the target flow rate from the fully closed state, the storage unit that stores in pairs, and at least one of the fluid type, pressure, and temperature at that time as a parameter, It preferably includes an initial drive signal value setting unit that sets a value of the initial drive signal with reference to a past motion start drive signal value stored in the storage unit.

また、その他の学習機能の態様としては、前記制御回路が、全閉状態から流量調整弁が動き出した時点の駆動信号の値である動き出し駆動信号値及びその時点の流体の種類、圧力、温度の少なくともいずれかを取得し、それらの関係から、流体の種類、圧力又は温度をパラメータとして定められた、初期駆動信号値を求めるための関数乃至表を更新するようにしたものを挙げることができる。   In addition, as another aspect of the learning function, the control circuit is configured to determine the movement start drive signal value that is the value of the drive signal when the flow rate adjustment valve starts moving from the fully closed state and the fluid type, pressure, and temperature at that time. A function or table for obtaining an initial drive signal value obtained by acquiring at least one of them and determining a fluid type, pressure, or temperature as a parameter from the relationship can be given.

前記動き出し駆動信号値は、前記流量測定手段によって全閉状態から最初に0を超える流量が測定された時点での駆動信号値をもってその値とすることが、専用のセンサーを不要化できるなどの観点から好ましい。   The movement start drive signal value is set to the drive signal value at the time when a flow rate exceeding 0 is first measured from the fully closed state by the flow rate measuring means, so that a dedicated sensor can be made unnecessary. To preferred.

本流体制御装置は、流量制御のみならず、圧力制御にも応用できる。すなわち、駆動信号の値に応じて開度が変化し、流路を流れる流体の圧力を調整する圧力調整弁と、前記流路を流れる流体の圧力を測定するための圧力測定手段と、前記圧力測定手段によって得られた測定圧力が、与えられた目標圧力と等しくなるように、駆動信号を出力して前記圧力調整弁を制御する制御回路とを具備したものであって、前記制御回路が、全閉状態から測定圧力を目標圧力に等しくすべく圧力調整弁を制御し始めるときには、そのときの流体の種類、流量、温度の少なくともいずれかをパラメータとして初期駆動信号の値を設定するものでも構わない。   This fluid control apparatus can be applied not only to flow control but also to pressure control. That is, the pressure change valve that adjusts the pressure of the fluid flowing through the flow path, the opening degree of which changes according to the value of the drive signal, the pressure measuring means for measuring the pressure of the fluid flowing through the flow path, and the pressure A control circuit that outputs a drive signal and controls the pressure regulating valve so that the measured pressure obtained by the measuring means is equal to a given target pressure, the control circuit comprising: When starting to control the pressure regulating valve to make the measured pressure equal to the target pressure from the fully closed state, the value of the initial drive signal may be set using at least one of the fluid type, flow rate, and temperature as parameters. Absent.

本発明の一実施形態における流体制御装置の全体構成図。1 is an overall configuration diagram of a fluid control device according to an embodiment of the present invention. 同実施形態における弁体及び弁座の拡大図。The enlarged view of the valve body and valve seat in the embodiment. 同実施形態における制御回路の機能ブロック図。The functional block diagram of the control circuit in the embodiment. 上流側圧力が変わったときの流量調整弁の動き出し印加電圧の変化を示す実験グラフ。The experiment graph which shows the movement of the flow regulating valve when the upstream pressure changes, and the change of applied voltage. N2ガスを流したときの流量調整弁の動き出し印加電圧を示す実験グラフ。The experiment graph which shows the movement start applied voltage of the flow regulating valve when N2 gas is flowed. SF6ガスを流したときの流量調整弁の動き出し印加電圧を示す実験グラフ。The experiment graph which shows the movement start applied voltage of the flow regulating valve when SF6 gas is flowed.

以下、本発明の一実施形態を、図面を参照して説明する。
本実施形態の流体制御装置は、図1に示すように、半導体製造に用いられる材料ガス等の流体流量を制御するものであって、前記流体が流れる流路51を貫通させたボディ5と、前記流路51上に設けられた流量調整弁7と、この流量調整弁7よりも上流側に設けられて当該流路51を流れる流体の流量を測定する流量測定手段2と、流量測定手段2による測定流量が予め定めた目標流量になるように前記流量調整弁7の弁開度を制御する制御回路1とを具備している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the fluid control device of the present embodiment controls a flow rate of a material gas or the like used in semiconductor manufacturing, and includes a body 5 that penetrates a flow path 51 through which the fluid flows, A flow rate adjusting valve 7 provided on the flow path 51, a flow rate measuring means 2 provided on the upstream side of the flow rate adjusting valve 7 to measure the flow rate of the fluid flowing through the flow path 51, and the flow rate measuring means 2 And a control circuit 1 for controlling the valve opening degree of the flow rate adjusting valve 7 so that the measured flow rate by the above becomes a predetermined target flow rate.

流量調整弁7は、図1、図2に示すように、前記流路51から流れてきた流体が流れ出す開口7aが形成された弁座71と、前記弁座71に離接可能に設けられて前記開口7aを開閉する弁体72と、前記弁体72の裏側に接続されて該弁体72を弁座71に対して離接動作させるピエゾアクチュエータ73とを具備している。そして、ピエゾアクチュエータ73に駆動信号である電圧信号を与えることによって、ピエゾアクチュエータ73が伸縮し、弁体72と開口7aとの距離が変わって、弁開度が変化するように構成してある。なお、この流量調整弁7は、電圧が印加されない状態では弁体72が開口7aから最も離れて全開状態となるノーマルオープンタイプのものである。   As shown in FIGS. 1 and 2, the flow rate adjusting valve 7 is provided so as to be detachable from the valve seat 71 formed with an opening 7 a through which the fluid flowing from the flow path 51 flows out. A valve body 72 that opens and closes the opening 7a and a piezo actuator 73 that is connected to the back side of the valve body 72 and separates the valve body 72 from the valve seat 71 are provided. By applying a voltage signal as a drive signal to the piezo actuator 73, the piezo actuator 73 expands and contracts, the distance between the valve body 72 and the opening 7a is changed, and the valve opening is changed. The flow regulating valve 7 is of a normally open type in which the valve body 72 is farthest away from the opening 7a and fully opened when no voltage is applied.

流量測定手段2としては、熱式、差圧式、コリオリ式、超音波式など種々考えられるが、ここでは、熱式のものを採用しており、具体的に言えば、この流量測定手段2は、前記流路51を流れる流体のうちの所定割合の流体が導かれるように当該流路51と並列接続した細管21と、この細管21に設けた図示しないヒータ及びその前後に設けた一対の温度センサ22、23とを具備してなる。そして、前記細管21に流体が流れると、二つの温度センサ22、23の間にその質量流量に対応した温度差が生じることから、この温度差に基づいて流量を算出できるように構成してある。温度差から流量を算出するのは、後述する制御回路1に設けられた流量算出部11である。   As the flow rate measuring means 2, various types such as a thermal type, a differential pressure type, a Coriolis type, and an ultrasonic type are conceivable, but here, a thermal type is adopted. The narrow tube 21 connected in parallel with the flow channel 51 so that a predetermined proportion of the fluid flowing in the flow channel 51 is guided, a heater (not shown) provided in the thin tube 21 and a pair of temperatures provided before and after the heater. Sensors 22 and 23 are provided. When a fluid flows through the narrow tube 21, a temperature difference corresponding to the mass flow rate is generated between the two temperature sensors 22 and 23. Therefore, the flow rate can be calculated based on the temperature difference. . The flow rate calculation unit 11 provided in the control circuit 1 to be described later calculates the flow rate from the temperature difference.

制御回路1は、物理的には、CPU、メモリ、ADコンバータ、DAコンバータ、増幅器、通信インタフェース等を具備したアナログ、デジタル混在回路であり、前記メモリに記憶されたプログラムにしたがってCPUやその周辺機器が協働することにより、図3に示すように、前記流量算出部11に加えて、後述する目標流量記憶部12、制御本体部13などの機能を発揮する。   The control circuit 1 is physically a mixed analog and digital circuit having a CPU, memory, AD converter, DA converter, amplifier, communication interface, etc., and the CPU and its peripheral devices according to the program stored in the memory As shown in FIG. 3, in addition to the flow rate calculation unit 11, functions such as a target flow rate storage unit 12 and a control main body unit 13 described later are exhibited.

次にこの制御回路1の具体的な機能を説明する。
この制御回路1は、基本的には、流量測定手段2からの出力に基づいて算出した測定流量が、外部機器から受信した目標流量となるように流量調整弁7をフィードバック制御するが、その他に、全閉指令や全開指令などを受け付けた場合には、目標流量を無視して強制的に弁開度を設定することもできる。
Next, specific functions of the control circuit 1 will be described.
The control circuit 1 basically performs feedback control of the flow rate adjusting valve 7 so that the measured flow rate calculated based on the output from the flow rate measuring unit 2 becomes the target flow rate received from the external device. When a fully closed command, a fully opened command, or the like is received, the valve opening can be forcibly set ignoring the target flow rate.

そこで、まず、この制御回路1による基本フィードバック制御動作を説明する。
目標流量は、メモリに設けた目標流量記憶部12に蓄積されている。この目標流量は、例えば外部機器からの指令により更新可能である。
First, the basic feedback control operation by the control circuit 1 will be described.
The target flow rate is accumulated in the target flow rate storage unit 12 provided in the memory. This target flow rate can be updated by a command from an external device, for example.

そして、制御本体部13は、前記流量測定手段2及び流量算出部11によって測定された測定流量と前記目標流量記憶部12に記憶されている目標流量との偏差を算出し、その偏差を打ち消すような印加電圧を、例えばPID演算により算出して流量調整弁7に出力する。この制御ループを繰り返して、制御回路1は、測定流量が目標流量となるように流量調整弁7をフィードバック制御する。   Then, the control body 13 calculates a deviation between the measured flow rate measured by the flow rate measuring means 2 and the flow rate calculation unit 11 and the target flow rate stored in the target flow rate storage unit 12, and cancels the deviation. The applied voltage is calculated by, for example, PID calculation and output to the flow rate adjustment valve 7. By repeating this control loop, the control circuit 1 performs feedback control of the flow rate adjusting valve 7 so that the measured flow rate becomes the target flow rate.

一方、全閉指令又は全開指令を受け付けたときには、制御本体部13は、フィードバック制御を行わず、すなわち、目標流量や測定流量を参照せず、予め定められた全閉印加電圧又は全開印加電圧を流量調整弁7に出力する。ここで流量調整弁7はノーマルオープンであるから、全開印加電圧は0であり、全閉印加電圧はこの流量調整弁7の定格最大電圧である。   On the other hand, when receiving the full-close command or the full-open command, the control main body unit 13 does not perform feedback control, that is, does not refer to the target flow rate or the measured flow rate, and applies a predetermined full-close application voltage or full-open application voltage. Output to the flow control valve 7. Here, since the flow regulating valve 7 is normally open, the fully open applied voltage is 0, and the fully closed applied voltage is the rated maximum voltage of the flow regulating valve 7.

しかして本実施形態では、全閉状態、すなわち、全閉指令が出力されているか又は目標流量が0に設定されていて測定流量が0の状態から、予め定めた一定値を超えた目標流量に向かってフィードバック制御を開始するとき(以下、初期時とも言う。)に、最初に与える初期印加電圧(請求項で言う初期駆動信号値)を、そのときの流体の種類、圧力及び温度に応じて定めるようにしている。そしてその後、引き続いて、前記フィードバック制御を開始する。
全閉印加電圧から初期印加電圧への変化分である初期変化電圧と、流体の種類、圧力及び温度との関係は、具体的には、以下の通りである。
Thus, in the present embodiment, the fully closed state, that is, the fully closed command is output or the target flow rate is set to 0 and the measured flow rate is 0 to the target flow rate that exceeds a predetermined constant value. When the feedback control is started (hereinafter also referred to as the initial time), the initial applied voltage (initial drive signal value referred to in the claims) applied first is determined according to the fluid type, pressure and temperature at that time. It is determined. Then, subsequently, the feedback control is started.
The relationship between the initial change voltage, which is the change from the fully closed applied voltage to the initial applied voltage, and the fluid type, pressure, and temperature is specifically as follows.

流体の種類との関係について言えば、粘性の高い流体ほど初期変化電圧を大きくして、初期時に流量調整弁7を開けようとする力が大きくなるようにしている。粘性の高い流体とは、例えば半導体材料ガスの場合は分子量が大きいもののことである。なお、制御本体部13は、流体の種類を、例えば外部機器から送信されてきた流体種類情報によって認識する。   As for the relationship with the type of fluid, the initial change voltage is increased as the viscosity of the fluid increases, and the force for opening the flow rate adjusting valve 7 at the initial stage is increased. A fluid with high viscosity is, for example, a semiconductor material gas having a large molecular weight. The control main body 13 recognizes the type of fluid based on, for example, fluid type information transmitted from an external device.

圧力との関係について言えば、ここでは流量調整弁7の上流側圧力が低いほど、初期変化電圧を大きくして、初期時に弁を開けようとする力が大きくなるようにしている。なお、制御本体部13は、前記上流側圧力を、図示しない圧力センサから取得する。   Speaking of the relationship with the pressure, here, the lower the pressure on the upstream side of the flow rate adjusting valve 7, the larger the initial change voltage and the greater the force for opening the valve at the initial stage. Note that the control main body 13 acquires the upstream pressure from a pressure sensor (not shown).

温度との関係について言えば、ここでは流体の温度が低いほど、初期変化電圧を大きくして、初期時に流量調整弁7を開けようとする力が大きくなるようにしている。なお、制御本体部13は、流体温度を、例えば、ボディ5の内部に設けた図示しない温度センサから取得する。   Regarding the relationship with temperature, here, the lower the temperature of the fluid, the larger the initial change voltage, and the greater the force for opening the flow rate adjusting valve 7 at the initial stage. The control main body 13 acquires the fluid temperature from, for example, a temperature sensor (not shown) provided in the body 5.

理解の容易のため、より具体的な初期変化電圧の設定方法の一例を説明する。ここでは、基準変化電圧が予め定めてあるとともに、流体種類、圧力及び温度に応じてそれぞれ電圧設定係数が設定してあり、前記予め定めた基準変化電圧に、取得した流体種類、圧力及び温度に応じて定まる電圧設定係数をかけることによって、初期変化電圧を算出する。例えば、基準変化電圧が2Vであり、流体種類による電圧設定係数が0.9、圧力による電圧設定係数が1.2、温度による電圧設定係数が1であったとすると、初期変化電圧は、2×0.9×1.2×1=2.16Vと算出される。そして、初期印加電圧は、全閉印加電圧が5Vとすると、これから初期変化電圧を差し引いて、5−2.16=2.84Vとなる。   For easier understanding, an example of a more specific method of setting the initial change voltage will be described. Here, the reference change voltage is determined in advance, and the voltage setting coefficient is set according to the fluid type, pressure, and temperature, respectively, and the acquired fluid type, pressure, and temperature are set to the predetermined reference change voltage. The initial change voltage is calculated by applying a voltage setting coefficient determined accordingly. For example, if the reference change voltage is 2V, the voltage setting coefficient by the fluid type is 0.9, the voltage setting coefficient by pressure is 1.2, and the voltage setting coefficient by temperature is 1, the initial change voltage is 2 × It is calculated as 0.9 × 1.2 × 1 = 2.16V. Then, assuming that the fully closed application voltage is 5V, the initial applied voltage is 5-2.16 = 2.84V by subtracting the initial change voltage therefrom.

このように構成すれば、流体の種類、圧力、温度によって流量調整弁の不感帯が変動しても、流量調整弁に与える初期駆動信号値が、それに対応するように変化するので、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときの流量を、周囲状況に寄らず、目標流量に素早く到達させ、なおかつ安定的に制御することができるようになる。   If configured in this way, even if the dead zone of the flow rate adjustment valve varies depending on the type, pressure, and temperature of the fluid, the initial drive signal value given to the flow rate adjustment valve changes correspondingly, so that from the fully closed state The flow rate when starting to control the flow rate adjustment valve to make the measured flow rate equal to the target flow rate can be quickly reached and stably controlled without depending on the surrounding conditions.

なお、本発明は前記実施形態に限られない。例えばノーマルクローズタイプの流量調整弁の場合は、全閉印加電圧が0となるから、これに初期変化電圧を加えれば、初期印加電圧を算出できる。
また、前記実施形態では、初期印加電圧を定めるパラメータとして、流体種類、圧力、温度の全てを用いていたが、いずれか少なくとも1つでもよい。
初期駆動信号値を、流体の種類、圧力又は温度をパラメータとして予め定められた、初期駆動信号値を求めるための関数又は表から算出しても構わない。
The present invention is not limited to the above embodiment. For example, in the case of a normally closed type flow rate adjustment valve, the fully closed applied voltage is 0. Therefore, the initial applied voltage can be calculated by adding the initial change voltage thereto.
In the embodiment, all of the fluid type, pressure, and temperature are used as parameters for determining the initial applied voltage. However, at least one of them may be used.
The initial drive signal value may be calculated from a function or table for obtaining the initial drive signal value, which is determined in advance using the type, pressure, or temperature of the fluid as a parameter.

初期変化電圧(初期駆動信号値)は、流体種類、圧力又は温度をパラメータとする予め定められた表や関数から算出するようにしてもよい。なお、それら表や関数は、出荷時試験やシミュレーションなどで求め、メモリに予め記憶させておけばよい。
流体の種類、圧力又は温度をパラメータとして定められる最適な初期駆動信号値は、機差があり、かつ、流量制御弁やその周辺機器の使用などによる経時変化によっても変化する場合がある。このような機差や経時変化等に対応するには、学習機能をもたせておくことが好ましい。
The initial change voltage (initial drive signal value) may be calculated from a predetermined table or function using the fluid type, pressure, or temperature as parameters. These tables and functions may be obtained by a shipping test or simulation and stored in the memory in advance.
The optimum initial drive signal value determined using the type, pressure, or temperature of the fluid as a parameter varies depending on the machine and may change due to changes over time due to the use of a flow control valve and its peripheral devices. In order to cope with such machine differences and changes over time, it is preferable to provide a learning function.

具体的には、前記制御回路において、全閉状態から流量調整弁が動き出したときの駆動信号の値である動き出し駆動信号値及びそのときの流体の種類、圧力、温度の少なくともいずれか(以下、周囲条件とも言う)を対にして記憶する記憶部を設け、過去の動き出し駆動信号値を参照できるようにしておく。そして、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときには、制御回路は、そのときの流体種類、圧力又は温度を測定し、その測定されたパラメータ条件に一定以上近い周囲条件を前記記憶部から検索し、その周囲条件と対になっている駆動信号値を初期駆動信号値として設定する。また、前記測定されたパラメータ条件と前記周囲条件との偏差によって、駆動信号値を補正して初期駆動信号値を定めてもよい。   Specifically, in the control circuit, at least one of a movement start drive signal value that is a value of a drive signal when the flow rate adjustment valve starts to move from the fully closed state, and the fluid type, pressure, and temperature at that time (hereinafter, A storage unit that stores a pair of “ambient conditions” is also provided so that past movement start drive signal values can be referred to. When starting to control the flow rate adjustment valve so that the measured flow rate becomes equal to the target flow rate from the fully closed state, the control circuit measures the fluid type, pressure or temperature at that time, and the measured parameter condition exceeds a certain level. A nearby ambient condition is retrieved from the storage unit, and a drive signal value paired with the ambient condition is set as an initial drive signal value. The initial drive signal value may be determined by correcting the drive signal value based on a deviation between the measured parameter condition and the ambient condition.

その他の学習機能の態様としては、前記制御回路が、全閉状態から流量調整弁が動き出した時点の駆動信号の値である動き出し駆動信号値と、その時点の流体の種類、圧力、温度の少なくともいずれかとを取得し、それらの関係から、前述した初期駆動信号値を求めるための関数又は表を更新するようにしたものを挙げることができる。   As another aspect of the learning function, the control circuit is a movement start drive signal value that is a value of the drive signal when the flow rate adjustment valve starts moving from the fully closed state, and at least the type, pressure, and temperature of the fluid at that time One of them is obtained, and the function or table for obtaining the initial drive signal value described above is updated from the relationship between them.

なお、前記動き出し駆動信号値は、前記流量測定手段によって全閉状態から最初に0を超える流量が測定された時点での駆動信号値をもってその値とすることが、専用のセンサーを不要化できるなどの観点から好ましい。   The movement start drive signal value can be set to the drive signal value at the time when the flow rate measurement unit first measures the flow rate exceeding 0 from the fully closed state, thereby eliminating the need for a dedicated sensor. From the viewpoint of

前記実施形態では、上流側の流体圧力が弁体を開成側に付勢する構造であり、弁体を動かすのに必要な力は該圧力が高いほど小さくなる、言い換えれば、圧力が低いほど大きくなるため、初期印加電圧と圧力との関係について、圧力が低いほど初期印加電圧を大きくして、初期時に弁を開けようとする力が大きくなるようにしている。しかし、上流側の流体圧力が弁体を閉止側に付勢する構造の場合は、初期印加電圧と圧力との関係は逆になる。   In the embodiment, the fluid pressure on the upstream side biases the valve body toward the opening side, and the force required to move the valve body is smaller as the pressure is higher, in other words, the force is larger as the pressure is lower. Therefore, regarding the relationship between the initial applied voltage and the pressure, the lower the pressure, the larger the initial applied voltage, and the greater the force for opening the valve at the initial stage. However, in the case of a structure in which the upstream fluid pressure biases the valve body toward the closing side, the relationship between the initial applied voltage and the pressure is reversed.

また、温度が上昇するほど、例えば、膨張して摩擦が増え弁体が動きにくくなるような構造であれば、流体の温度が高いほど、初期印加電圧を大きくする必要がある。   In addition, as the temperature rises, for example, if the structure expands and friction increases to make the valve body difficult to move, it is necessary to increase the initial applied voltage as the fluid temperature increases.

さらに、本発明は、流量制御のみならず、圧力制御にも応用できる。すなわち、駆動信号の値に応じて開度が変化し、流路を流れる流体の圧力を調整する圧力調整弁と、前記流路を流れる流体の圧力を測定するための圧力測定手段と、前記圧力測定手段によって得られた測定圧力が、与えられた目標圧力と等しくなるように、駆動信号を出力して前記圧力調整弁を制御する制御回路とを具備した圧力制御装置に適用できる。
この場合、前記制御回路が、全閉状態から測定圧力を目標圧力に等しくすべく圧力調整弁を制御し始めるときには、そのときの流体の種類、流量、温度の少なくともいずれかをパラメータとして初期駆動信号の値を設定するように構成しておけばよい。
Furthermore, the present invention can be applied not only to flow rate control but also to pressure control. That is, the pressure change valve that adjusts the pressure of the fluid flowing through the flow path, the opening degree of which changes according to the value of the drive signal, the pressure measuring means for measuring the pressure of the fluid flowing through the flow path, and the pressure The present invention can be applied to a pressure control device including a control circuit that outputs a drive signal and controls the pressure regulating valve so that the measured pressure obtained by the measuring means is equal to a given target pressure.
In this case, when the control circuit starts to control the pressure regulating valve to make the measured pressure equal to the target pressure from the fully closed state, the initial drive signal is set with at least one of the fluid type, flow rate, and temperature as parameters. It may be configured to set the value of.

その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, some or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .

100 ・・・流体制御装置
1・・・制御回路
2・・・流量測定手段
51・・・流路
7・・・流量調整弁
DESCRIPTION OF SYMBOLS 100 ... Fluid control apparatus 1 ... Control circuit 2 ... Flow rate measurement means 51 ... Flow path 7 ... Flow rate adjustment valve

Claims (2)

駆動信号の値に応じて開度が変化し、流路を流れる流体の流量を調整する流量調整弁と、前記流路を流れる流体の流量を測定するための流量測定手段と、前記流量測定手段によって得られた測定流量が、与えられた目標流量と等しくなるように、駆動信号を出力して前記流量調整弁を制御する制御回路とを具備したものであって、
前記制御回路が、全閉状態から測定流量を目標流量に等しくすべく流量調整弁を制御し始めるときには、そのときの流体の圧力又は温度をパラメータとして初期駆動信号の値を設定するように構成されており、
前記制御回路が、流体の圧力又は温度に応じて定まる電圧設定係数を予め定められた基準変化電圧にかけ合わせて初期変化電圧を算出し、予め定められた全閉印加電圧から前記初期変化電圧を差し引いて前記初期駆動信号の値を算出することを特徴とする流体制御装置。
A flow rate adjusting valve that adjusts the flow rate of the fluid flowing through the flow path, the opening degree of which changes according to the value of the drive signal, a flow rate measuring means for measuring the flow rate of the fluid flowing through the flow path, and the flow rate measuring means And a control circuit for controlling the flow rate adjusting valve by outputting a drive signal so that the measured flow rate obtained by the method is equal to a given target flow rate,
When the control circuit starts to control the flow rate adjustment valve so as to make the measured flow rate equal to the target flow rate from the fully closed state, the control circuit is configured to set the value of the initial drive signal using the pressure or temperature of the fluid at that time as a parameter. And
The control circuit calculates an initial change voltage by multiplying a predetermined reference change voltage by a voltage setting coefficient determined according to the pressure or temperature of the fluid, and subtracts the initial change voltage from a predetermined fully-closed applied voltage. And calculating the value of the initial drive signal .
前記制御回路が、流体の圧力及び温度の両方をパラメータとする関数を用いて前記初期駆動信号の値を算出することを特徴とする請求項1記載の流体制御装置。   2. The fluid control apparatus according to claim 1, wherein the control circuit calculates a value of the initial drive signal using a function having both the pressure and temperature of the fluid as parameters.
JP2016160035A 2016-08-17 2016-08-17 Fluid control device Active JP6279675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160035A JP6279675B2 (en) 2016-08-17 2016-08-17 Fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160035A JP6279675B2 (en) 2016-08-17 2016-08-17 Fluid control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012238407A Division JP6027395B2 (en) 2012-10-29 2012-10-29 Fluid control device

Publications (2)

Publication Number Publication Date
JP2016192243A JP2016192243A (en) 2016-11-10
JP6279675B2 true JP6279675B2 (en) 2018-02-14

Family

ID=57245673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160035A Active JP6279675B2 (en) 2016-08-17 2016-08-17 Fluid control device

Country Status (1)

Country Link
JP (1) JP6279675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071909A (en) 2020-11-24 2022-05-31 가부시키가이샤 호리바 에스텍 Fluid control apparatus, fluid control method, and program recording medium in which program for fluid control apparatus is recorded

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159928B (en) * 2018-02-13 2021-04-20 辛耘企业股份有限公司 Fluid control device
JP2022047691A (en) 2020-09-14 2022-03-25 株式会社堀場エステック Fluid control valve and fluid control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417391B2 (en) * 2000-09-07 2003-06-16 日立金属株式会社 Flow control method
JP4974000B2 (en) * 2007-10-01 2012-07-11 日立金属株式会社 Mass flow controller and actual gas mass flow control method
US8321060B2 (en) * 2010-04-27 2012-11-27 Hitachi Metals, Ltd Method and system of on-tool and on-site MFC optimization providing consistent response
US8915262B2 (en) * 2011-08-09 2014-12-23 Hitachi Metals, Ltd. Mass flow controller algorithm with adaptive valve start position

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071909A (en) 2020-11-24 2022-05-31 가부시키가이샤 호리바 에스텍 Fluid control apparatus, fluid control method, and program recording medium in which program for fluid control apparatus is recorded
US11531359B2 (en) 2020-11-24 2022-12-20 Horiba Stec, Co., Ltd. Fluid control apparatus, fluid control method, and program recording medium in which program for fluid control apparatus is recorded

Also Published As

Publication number Publication date
JP2016192243A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6027395B2 (en) Fluid control device
JP7245600B2 (en) Flow control device and program for flow control device
KR101990155B1 (en) Pressure control device, flow rate control device and recording medium having programs used for pressure control device, recording medium having programs used for flow rate control device
KR102106825B1 (en) Mass flow controller and method for improved performance across fluid types
KR102384043B1 (en) Fluid control unit and program storage media for fluid control unit
JP6279675B2 (en) Fluid control device
KR102421587B1 (en) Flow control method and flow control device
US11269362B2 (en) Flow rate control method and flow rate control device
WO2019163676A1 (en) Flow rate control device and flow rate control method
JP2019117592A (en) Apparatus and method for preparing calibration data and flow-rate controller
JP6793026B2 (en) Valve device and valve control device
JP6220699B2 (en) Flow control device and program for flow control device
JP7148302B2 (en) Flow controller
TW202221441A (en) Fluid control apparatus, control method of fluid control apparatus, and program recording medium in which program for fluid control apparatus is recorded
JPWO2019026700A1 (en) Fluid control system and flow measurement method
JP6903946B2 (en) Mass flow control device and mass flow control method
JP6520945B2 (en) Method of controlling flow rate of fluid, mass flow control device for executing the method, and mass flow control system using the mass flow control device
JP3637270B2 (en) Mass flow controller
JP4578607B2 (en) Mass flow controller
JP6215120B2 (en) Flow control device inspection method, flow control device inspection system, and flow control device inspection system program
JP7169034B2 (en) Flow control device and flow control method
JP2019105338A (en) Fluid control device and program for fluid control device
US20220228896A1 (en) Pressure control system, pressure control method, and pressure control program
JP5868815B2 (en) Flow control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250