JP6278301B2 - Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery - Google Patents

Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery Download PDF

Info

Publication number
JP6278301B2
JP6278301B2 JP2013223226A JP2013223226A JP6278301B2 JP 6278301 B2 JP6278301 B2 JP 6278301B2 JP 2013223226 A JP2013223226 A JP 2013223226A JP 2013223226 A JP2013223226 A JP 2013223226A JP 6278301 B2 JP6278301 B2 JP 6278301B2
Authority
JP
Japan
Prior art keywords
sulfur
activated carbon
positive electrode
electrode mixture
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223226A
Other languages
Japanese (ja)
Other versions
JP2015088232A (en
Inventor
千種 康男
康男 千種
裕 永田
裕 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2013223226A priority Critical patent/JP6278301B2/en
Publication of JP2015088232A publication Critical patent/JP2015088232A/en
Application granted granted Critical
Publication of JP6278301B2 publication Critical patent/JP6278301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、薄膜硫黄被覆活性炭の製造方法、薄膜硫黄被覆活性炭、正極合材及び全固体型リチウム硫黄電池に関する。 The present invention relates to a method for producing a thin film sulfur-coated activated carbon, a thin film sulfur-coated activated carbon, a positive electrode mixture, and an all solid-state lithium sulfur battery.

硫黄は、理論容量が約1672mAh/gと非常に高いことが知られており、硫黄を正極活物質として使用したリチウム硫黄電池の研究が盛んに行われている。
リチウム硫黄電池は、電解質として液体電解質を用いた液体型リチウム硫黄電池と、固体電解質を用いた全固体型リチウム硫黄電池とに大別される。
Sulfur is known to have a very high theoretical capacity of about 1672 mAh / g, and lithium sulfur batteries using sulfur as a positive electrode active material have been actively studied.
Lithium-sulfur batteries are roughly classified into liquid lithium-sulfur batteries that use liquid electrolytes as electrolytes and all-solid-state lithium-sulfur batteries that use solid electrolytes.

液体型リチウム硫黄電池においては、リチウムイオンと硫黄との反応により生成した多硫化リチウムが電解質溶液中に溶け出し、電池の充放電容量や寿命に悪影響を与えることが問題となっていた。この問題を改善するために、硫黄がコーティングされた多孔性導電材を含むカソード電極を用いた液体型リチウム硫黄電池が開示されている(特許文献1)。 In the liquid type lithium-sulfur battery, lithium polysulfide produced by the reaction between lithium ions and sulfur is dissolved in the electrolyte solution, which adversely affects the charge / discharge capacity and life of the battery. In order to improve this problem, a liquid lithium sulfur battery using a cathode electrode including a porous conductive material coated with sulfur has been disclosed (Patent Document 1).

一方、全固体型リチウム硫黄電池は、多硫化リチウムが電解質溶液に溶け出す問題が生じないため、電池の充放電容量の維持や長寿命化に適している。また、可燃性の有機溶媒を含まないため液漏れや発火のおそれがなく安全性を確保できる点や、セパレータが不要である点からは、液体型リチウム硫黄電池よりも全固体型リチウム硫黄電池が好ましい。 On the other hand, the all-solid-state lithium-sulfur battery is suitable for maintaining the charge / discharge capacity of the battery and extending its life because there is no problem that lithium polysulfide dissolves into the electrolyte solution. In addition, because it does not contain a flammable organic solvent, there is no risk of liquid leakage or ignition, and safety can be ensured. In addition, an all-solid-state lithium-sulfur battery is better than a liquid-type lithium-sulfur battery because it does not require a separator. preferable.

しかしながら、従来の全固体型リチウム硫黄電池では、正極活物質である硫黄が電気絶縁性であるため、硫黄粒子、あるいは硫黄膜の内部は、リチウムイオン伝導性及び電子伝導性が乏しく、十分に電池反応(酸化還元反応)が起こらないという課題があった。 However, in the conventional all-solid-state lithium-sulfur battery, since the positive electrode active material sulfur is electrically insulating, the inside of the sulfur particles or the sulfur film has poor lithium ion conductivity and electronic conductivity, and the battery is sufficiently charged. There was a problem that no reaction (redox reaction) occurred.

特開2003−197196号公報JP 2003-197196 A

本発明は、硫黄の持つ優れた物性を最大限に活かし、優れた放電容量とレート特性を有する全固体型リチウム硫黄電池の正極合材に好適に用いることができる薄膜硫黄被覆活性炭の製造方法を提供することを目的とする。また、当該製造方法により製造された薄膜硫黄被覆活性炭、薄膜硫黄被覆活性炭を含む正極合材、及び、正極合材を含む正極合材層を備えた全固体型リチウム硫黄電池を提供することを目的とする。 The present invention provides a method for producing a thin-film sulfur-coated activated carbon that can be suitably used for a positive electrode mixture of an all-solid-state lithium-sulfur battery having excellent discharge capacity and rate characteristics by making the best use of the excellent physical properties of sulfur. The purpose is to provide. Another object of the present invention is to provide a thin-film sulfur-coated activated carbon produced by the production method, a positive electrode mixture containing the thin-film sulfur-coated activated carbon, and an all-solid-state lithium-sulfur battery including a positive electrode mixture layer containing the positive electrode mixture. And

本発明者らは、鋭意検討の末、BET比表面積が1800m/g以上の活性炭を膜厚0.2〜1.4nmの硫黄で被覆した薄膜硫黄被覆活性炭が、優れた放電容量を有する全固体型リチウム硫黄電池の正極合材に好適であることを突き止め、このような薄膜硫黄被覆活性炭を製造するのに適した方法を見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that a thin-film sulfur-coated activated carbon obtained by coating activated carbon having a BET specific surface area of 1800 m 2 / g or more with sulfur having a film thickness of 0.2 to 1.4 nm has an excellent discharge capacity. The present invention was completed by finding a suitable method for producing such a thin-film sulfur-coated activated carbon by finding out that it is suitable for a positive electrode mixture of a solid-state lithium-sulfur battery.

本発明の薄膜硫黄被覆活性炭の製造方法は、
硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)、及び、
工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)を含む、膜厚0.2〜1.4nmの硫黄で被覆された、全固体型リチウム硫黄電池の正極合材用薄膜硫黄被覆活性炭の製造方法である。
The method for producing the thin film sulfur-coated activated carbon of the present invention is as follows.
A step of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur (a); and
An all-solid-state lithium-sulfur battery coated with sulfur having a film thickness of 0.2 to 1.4 nm, comprising the step (b) of separating the activated carbon coated with sulfur obtained in step (a) from the sulfur solution. It is a manufacturing method of the thin film sulfur covering activated carbon for positive electrode compound materials.

薄膜硫黄被覆活性炭の製造方法は、工程(b)において分離された、硫黄で被覆された活性炭を加熱処理する工程(c)をさらに含むことが好ましい。 It is preferable that the manufacturing method of a thin film sulfur covering activated carbon further includes the process (c) which heat-processes the activated carbon coat | covered with sulfur isolate | separated in the process (b).

薄膜硫黄被覆活性炭の製造方法において、工程(c)における加熱処理の温度は、60℃以上であることが好ましく、100℃以上であることがより好ましい。 In the method for producing a thin film sulfur-coated activated carbon, the temperature of the heat treatment in the step (c) is preferably 60 ° C. or higher, and more preferably 100 ° C. or higher.

薄膜硫黄被覆活性炭の製造方法において、膜厚は0.5〜1.0nmであることが好ましい。 In the method for producing a thin film sulfur-coated activated carbon, the film thickness is preferably 0.5 to 1.0 nm.

本発明の薄膜硫黄被覆活性炭は、本発明の薄膜硫黄被覆活性炭の製造方法により製造されたものであることを特徴とする。 The thin film sulfur-coated activated carbon of the present invention is produced by the method for producing a thin film sulfur-coated activated carbon of the present invention.

本発明の正極合材は、全固体型リチウム硫黄電池に用いるものであり、本発明の薄膜硫黄被覆活性炭及び固体電解質を含むことを特徴とする。 The positive electrode mixture of the present invention is used for an all-solid-state lithium-sulfur battery, and includes the thin film sulfur-coated activated carbon of the present invention and a solid electrolyte.

本発明の全固体型リチウム硫黄電池は、本発明の正極合材を含む正極合材層、固体電解質層、負極及び集電体を備えることを特徴とする。 The all-solid-state lithium-sulfur battery of the present invention includes a positive electrode mixture layer including the positive electrode mixture of the present invention, a solid electrolyte layer, a negative electrode, and a current collector.

本発明の薄膜硫黄被覆活性炭の製造方法は、BET比表面積が1800m/g以上の活性炭を所定の工程を経て硫黄で被覆するため、活性炭が、膜厚0.2〜1.4nmの硫黄で均一に被覆された薄膜硫黄被覆活性炭を簡便に製造することができる。
また、本発明の製造方法で製造された本発明の薄膜硫黄被覆活性炭は、その硫黄内部において電子及びリチウムイオンの拡散が起こりやすいとの特性を有する。そのため、薄膜硫黄被覆活性炭を全固体型リチウム硫黄電池の正極合材に用いることにより、正極合材層当たりの放電容量が大きく、レート特性に優れる全固体型リチウム硫黄電池を提供することができる。
また、本発明の正極合材は、薄膜硫黄被覆活性炭を用いているため、放電容量が大きく、レート特性に優れる正極合材層を形成するのに好適である。
更に、本発明の全固体型リチウム硫黄電池は、本発明の正極合材を用いた正極合材層を備えるため、放電容量及びレート特性に優れる。
In the method for producing a thin film sulfur-coated activated carbon of the present invention, an activated carbon having a BET specific surface area of 1800 m 2 / g or more is coated with sulfur through a predetermined process. A thin-film sulfur-coated activated carbon that is uniformly coated can be easily produced.
Moreover, the thin film sulfur covering activated carbon of this invention manufactured with the manufacturing method of this invention has the characteristic that the spreading | diffusion of an electron and lithium ion occurs easily in the sulfur inside. Therefore, by using the thin film sulfur-coated activated carbon for the positive electrode mixture of the all-solid-state lithium-sulfur battery, it is possible to provide an all-solid-state lithium-sulfur battery having a large discharge capacity per positive electrode mixture layer and excellent rate characteristics.
Moreover, since the positive electrode mixture of the present invention uses thin-film sulfur-coated activated carbon, it is suitable for forming a positive electrode mixture layer having a large discharge capacity and excellent rate characteristics.
Furthermore, since the all-solid-state lithium-sulfur battery of the present invention includes the positive electrode mixture layer using the positive electrode mixture of the present invention, it is excellent in discharge capacity and rate characteristics.

本発明の全固体型リチウム硫黄電池の実施形態の一例を模式的に表した断面図である。It is sectional drawing which represented typically an example of embodiment of the all-solid-state lithium sulfur battery of this invention.

<<薄膜硫黄被覆活性炭の製造方法>>
まず、本発明の薄膜硫黄被覆活性炭の製造方法について説明する。
本発明の薄膜硫黄被覆活性炭の製造方法は、
硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)、及び、
工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)を含む、
膜厚0.2〜1.4nmの硫黄で被覆された、全固体型リチウム硫黄電池の正極合材用薄膜硫黄被覆活性炭の製造方法である。
<< Production Method of Thin Film Sulfur-Coated Activated Carbon >>
First, the manufacturing method of the thin film sulfur covering activated carbon of this invention is demonstrated.
The method for producing the thin film sulfur-coated activated carbon of the present invention is as follows.
A step of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur (a); and
Separating the activated carbon coated with sulfur obtained in step (a) from the sulfur solution;
It is a manufacturing method of the thin film sulfur covering activated carbon for positive electrode mixtures of the all-solid-state lithium-sulfur battery covered with sulfur with a film thickness of 0.2 to 1.4 nm.

<工程(a)>
本発明の製造方法では、まず、硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)を行う。そのため、まずは硫黄溶液を調製する。硫黄溶液としては、硫黄が溶媒に溶解したものであれば特に限定されず、溶媒としては、例えば、シクロヘキサン、n−ヘキサン、トルエン、キシレン、二硫化炭素等を用いることができる。これらの溶媒は、単独で使用しても良いし、2種以上を併用しても良い。
<Process (a)>
In the production method of the present invention, first, the step (a) of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur is performed. Therefore, a sulfur solution is first prepared. The sulfur solution is not particularly limited as long as sulfur is dissolved in a solvent, and examples of the solvent include cyclohexane, n-hexane, toluene, xylene, carbon disulfide, and the like. These solvents may be used alone or in combination of two or more.

これらの溶媒のうち、使用温度における硫黄の溶解度が、1〜10重量%であるものを用いることが好ましい。溶解度が1重量%未満である溶媒では、活性炭を被覆する硫黄の量が少なくなる場合があり、一方、溶解度が10重量%を超える溶媒では、硫黄が溶媒に極めて溶解しやすく、相対的に活性炭に吸着しにくくなるため、かえって活性炭を被覆する硫黄の量が少なくなる場合があるからである。これらのことを考慮すると、硫黄(単体硫黄又は硫黄含有化合物)の種類により使用温度における硫黄の溶解度が異なるため一概には言えないが、溶媒としてシクロヘキサンを用いることが好ましい。また、硫黄溶液としては、硫黄の溶解度を上げるために加温した溶媒に硫黄を溶解させて得た硫黄溶液を用いても良いし、溶媒に硫黄を溶解させて得た硫黄溶液を加温したものを用いても良い。 Among these solvents, it is preferable to use a solvent having a sulfur solubility of 1 to 10% by weight at the operating temperature. In a solvent having a solubility of less than 1% by weight, the amount of sulfur covering the activated carbon may be reduced. On the other hand, in a solvent having a solubility of more than 10% by weight, sulfur is very easily dissolved in the solvent, and the activated carbon is relatively This is because the amount of sulfur covering the activated carbon may be reduced. Considering these matters, the solubility of sulfur at the operating temperature differs depending on the type of sulfur (single sulfur or sulfur-containing compound), but it cannot be generally stated, but it is preferable to use cyclohexane as the solvent. In addition, as the sulfur solution, a sulfur solution obtained by dissolving sulfur in a heated solvent in order to increase the solubility of sulfur may be used, or a sulfur solution obtained by dissolving sulfur in the solvent is heated. A thing may be used.

また、硫黄溶液の調製に用いる硫黄としては、単体の硫黄を用いてもよいし、硫黄含有化合物を用いてもよい。
硫黄含有化合物としては、特に限定されないが、例えば、Li、Li、Liなどの多硫化リチウム、硫化リチウム(LiS)等を用いることができる。これらの化合物は、単独で用いても良いし、2種以上を併用しても良く、更には単体の硫黄と併用してもよい。
Moreover, as sulfur used for preparation of a sulfur solution, single-piece | unit sulfur may be used and a sulfur containing compound may be used.
Examples of the sulfur-containing compound is not particularly limited, for example, lithium polysulphides such as Li 2 S 8, Li 2 S 4, Li 2 S 2, may be used lithium sulfide (Li 2 S) and the like. These compounds may be used alone or in combination of two or more, and may be used in combination with single sulfur.

工程(a)では、硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する。活性炭は、全固体型リチウム硫黄電池の正極合材において電子伝導体として機能するものである。
活性炭のBET比表面積は1800m/g以上である。BET比表面積が1800m/g未満であると、活性炭の表面を被覆する硫黄の量が少なく、その結果、正極合材に用いた際に、正極合材中の硫黄の充填率が低くなるからである。BET比表面積は、2400m/g以上が好ましく、2900以上がより好ましい。なお、BET比表面積の上限は、特に限定されないが、例えば、3500m/gである。
In the step (a), activated carbon having a BET specific surface area of 1800 m 2 / g or more is immersed in a sulfur solution, and the activated carbon is covered with sulfur. Activated carbon functions as an electron conductor in the positive electrode mixture of the all-solid-state lithium-sulfur battery.
The activated carbon has a BET specific surface area of 1800 m 2 / g or more. When the BET specific surface area is less than 1800 m 2 / g, the amount of sulfur covering the surface of the activated carbon is small, and as a result, when used for the positive electrode mixture, the filling rate of sulfur in the positive electrode mixture becomes low. It is. The BET specific surface area is preferably 2400 m 2 / g or more, and more preferably 2900 or more. In addition, although the upper limit of a BET specific surface area is not specifically limited, For example, it is 3500 m < 2 > / g.

本明細書において、BET比表面積とは、Brenauer−Emmet−Telle(BET)法により求めた比表面積をいい、具体的には、活性炭のサンプルを液体窒素温度下において、サンプルに窒素ガスを吸着して得られる窒素吸着等温線を用いて求めた比表面積をいう。BET比表面積を求めるための測定装置としては、例えば、自動比表面積/細孔分布測定装置(日本ベル株式会社製、BELSORP−miniII)を用いることができる。 In this specification, the BET specific surface area refers to a specific surface area determined by the Brenauer-Emmet-Telle (BET) method. Specifically, an activated carbon sample is adsorbed with nitrogen gas at a liquid nitrogen temperature. The specific surface area determined using the nitrogen adsorption isotherm obtained in this way. As a measuring device for obtaining the BET specific surface area, for example, an automatic specific surface area / pore distribution measuring device (BELSORP-miniII manufactured by Nippon Bell Co., Ltd.) can be used.

工程(a)において、活性炭を浸漬する際の活性炭と硫黄溶液との重量比は、硫黄溶液の溶媒として、上述したような使用温度における硫黄の溶解度が1〜10重量%である溶媒を使用した場合には、1:10〜1:1000が好ましい。その理由は、1:10より硫黄溶液が少ないと硫黄の吸着量が不十分になる場合があるためである。一方、1:1000より硫黄溶液を多くしても硫黄の吸着量は殆ど変わらず、硫黄溶液が無駄になるからである。 In the step (a), the weight ratio between the activated carbon and the sulfur solution when immersing the activated carbon was a solvent having a sulfur solubility of 1 to 10% by weight at the use temperature as described above as the solvent of the sulfur solution. In some cases, 1:10 to 1: 1000 is preferred. The reason is that if the amount of the sulfur solution is less than 1:10, the sulfur adsorption amount may be insufficient. On the other hand, even if the sulfur solution is increased from 1: 1000, the sulfur adsorption amount is hardly changed, and the sulfur solution is wasted.

工程(a)において、活性炭を浸漬する際の硫黄溶液の液温度や、浸漬時間は特に限定されないが、液温度は使用する溶媒の融点より高く、沸点以下の範囲であり、浸漬時間は10分間〜500時間であることが好ましい。液温度が溶媒の融点以下では、凍ってしまう場合があり、一方、溶媒沸点より高い温度では、それ以上硫黄の溶解度が上がるなどの利点がない。また、浸漬時間が10分間未満では、硫黄の被覆量が不十分となることがあり、一方、500時間を超えてもそれ以上硫黄の被覆量は上がらない。 In the step (a), the liquid temperature and the immersion time of the sulfur solution when immersing the activated carbon are not particularly limited, but the liquid temperature is higher than the melting point of the solvent used and in the range below the boiling point, and the immersion time is 10 minutes. It is preferably ~ 500 hours. If the liquid temperature is lower than the melting point of the solvent, it may freeze, while if the temperature is higher than the boiling point of the solvent, there is no advantage such as higher solubility of sulfur. If the immersion time is less than 10 minutes, the amount of sulfur covered may be insufficient. On the other hand, if the time exceeds 500 hours, the amount of sulfur covered will not increase any more.

また、工程(a)では、活性炭を浸漬しつつ、必要に応じて、超音波処理、撹拌処理等の処理を行っても良い。これにより、活性炭全体をより確実かつ均一に硫黄で被覆することができるからである。超音波処理の条件は、特に限定されないが、例えば、発振周波数20〜50Hzの条件下、1〜500分間行うことができる。撹拌処理は、特に限定されないが、例えば、マグネチックスターラー、メカニカルスターラー、振とう機等を用いて、使用する溶媒の融点より高く、沸点以下の温度範囲で10分間〜500時間の条件で行うことができる。 Further, in the step (a), treatments such as ultrasonic treatment and stirring treatment may be performed as necessary while immersing the activated carbon. This is because the entire activated carbon can be more reliably and uniformly coated with sulfur. Although the conditions of ultrasonic treatment are not specifically limited, For example, it can carry out for 1 to 500 minutes on conditions with an oscillation frequency of 20-50 Hz. The stirring treatment is not particularly limited, but for example, using a magnetic stirrer, mechanical stirrer, shaker or the like, the stirring process is performed at a temperature range higher than the melting point of the solvent used and lower than the boiling point for 10 minutes to 500 hours. Can do.

また、硫黄の被覆量を増やすためには、工程(a)では、初めは温度を高くして硫黄溶液の濃度を高めておき、活性炭への硫黄の吸着に伴い硫黄溶液の濃度が低下するに従い、硫黄の飽和濃度を超えないように注意しながら、徐々に温度を下げてもよい。 In addition, in order to increase the amount of sulfur covered, in step (a), the temperature is initially increased to increase the concentration of the sulfur solution, and as the concentration of the sulfur solution decreases with the adsorption of sulfur to the activated carbon. The temperature may be gradually lowered while taking care not to exceed the saturation concentration of sulfur.

本発明において、「被覆する」とは、BET法により比表面積を測定する際に、窒素ガスが吸着する部分に硫黄が付着することをいう。 In the present invention, “cover” means that sulfur adheres to a portion where nitrogen gas is adsorbed when the specific surface area is measured by the BET method.

<工程(b)>
本発明の製造方法では、次に、工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)を行う。工程(b)において、硫黄で被覆された活性炭を硫黄溶液から分離する方法としては、特に限定されないが、濾過、遠心分離、デカンテーション等の公知の方法を用いることができる。濾過としては、特に限定されないが、例えば、自然濾過、吸引濾過(減圧濾過)、加圧濾過、遠心濾過等を採用することができる。工程(b)を経ることで、硫黄で被覆された活性炭(薄膜硫黄被覆活性炭)を得ることができる。
<Step (b)>
Next, in the production method of the present invention, the step (b) of separating the sulfur-coated activated carbon obtained in the step (a) from the sulfur solution is performed. In the step (b), a method for separating the activated carbon covered with sulfur from the sulfur solution is not particularly limited, and known methods such as filtration, centrifugation, and decantation can be used. Although it does not specifically limit as filtration, For example, natural filtration, suction filtration (vacuum filtration), pressure filtration, centrifugal filtration, etc. are employable. Through the step (b), activated carbon coated with sulfur (thin film sulfur-coated activated carbon) can be obtained.

<工程(c)>
本発明の製造方法では、工程(b)において分離された、硫黄で被覆された活性炭を加熱処理する工程(c)を行うことが好ましい。工程(c)を行うことにより、硫黄で被覆された活性炭に残存する溶媒をより確実に除去することができるからである。また、活性炭を被覆する硫黄を活性炭により強固に密着させることができ、固体界面の抵抗(硫黄と活性炭との間の抵抗)を低減できる。なお、工程(c)においては、複数回の加熱処理を、温度条件を変えながら段階的に行っても良い。
<Step (c)>
In the manufacturing method of this invention, it is preferable to perform the process (c) which heat-processes the activated carbon coat | covered with sulfur isolate | separated in the process (b). This is because the solvent remaining on the activated carbon coated with sulfur can be more reliably removed by performing the step (c). Moreover, the sulfur covering the activated carbon can be firmly adhered to the activated carbon, and the resistance at the solid interface (resistance between sulfur and activated carbon) can be reduced. In the step (c), a plurality of heat treatments may be performed step by step while changing temperature conditions.

工程(c)における、硫黄で被覆された活性炭の加熱処理は、特に限定されないが、例えば、アルゴン、窒素、空気等の雰囲気下、1秒間〜50時間行うことができる。また、硫黄が昇華しない条件で、減圧して行っても良い。加熱処理(工程(c)において、複数回の加熱処理を温度条件を変えながら段階的に行う場合には、最後の加熱処理)の温度は、特に限定されないが、60℃以上であることが好ましく、100℃以上であることがより好ましい。温度が60℃未満であると、上述の界面抵抗低減効果を享受することができない場合がある。加熱処理の温度の上限は特に限定されないが、250℃とすることが好ましい。その理由は、温度を250℃より高くしても、上述の界面抵抗低減効果はそれ以上向上しないため、加熱に要するエネルギーが無駄になるからである。なお、加熱処理は、従来公知の乾燥装置を用いて行えばよく、具体的には、例えば、定温乾燥機、送風乾燥機、減圧乾燥機、赤外線乾燥機等を用いて行えばよい。 The heat treatment of the activated carbon covered with sulfur in the step (c) is not particularly limited, and can be performed, for example, in an atmosphere of argon, nitrogen, air, or the like for 1 second to 50 hours. Moreover, you may carry out under reduced pressure on the conditions which sulfur does not sublime. The temperature of the heat treatment (in the step (c), when the heat treatment is performed a plurality of times step by step while changing the temperature condition) is not particularly limited, but is preferably 60 ° C. or higher. More preferably, the temperature is 100 ° C. or higher. If the temperature is lower than 60 ° C., the above-mentioned interface resistance reduction effect may not be enjoyed. Although the upper limit of the temperature of heat processing is not specifically limited, It is preferable to set it as 250 degreeC. The reason is that, even if the temperature is higher than 250 ° C., the above-described interface resistance reduction effect is not further improved, so that the energy required for heating is wasted. In addition, what is necessary is just to perform heat processing using a conventionally well-known drying apparatus, specifically, for example, using a constant temperature dryer, a ventilation dryer, a vacuum dryer, an infrared dryer, etc.

薄膜硫黄被覆活性炭において、硫黄の膜厚は0.2〜1.4nmである。膜厚が0.2nmより薄いと、薄膜硫黄被覆活性炭中の硫黄の量が少なくなり正極合材に対する硫黄の充填率が低くなる。また、膜厚が1.4nmを超えると、硫黄内部の拡散抵抗が増大し、放電容量が低下したり、レート特性が悪化したりする場合がある。膜厚は0.5〜1.0nmであることが好ましい。なお、硫黄の膜厚は、薄膜硫黄被覆活性炭中に占める活性炭及び硫黄のそれぞれの重量、並びに、活性炭のBET比表面積と硫黄の比重に基づいて算出すればよい。 In the thin film sulfur-coated activated carbon, the film thickness of sulfur is 0.2 to 1.4 nm. When the film thickness is thinner than 0.2 nm, the amount of sulfur in the thin film sulfur-coated activated carbon is reduced, and the filling rate of sulfur with respect to the positive electrode mixture is lowered. On the other hand, if the film thickness exceeds 1.4 nm, the diffusion resistance inside sulfur increases, and the discharge capacity may decrease or the rate characteristics may deteriorate. The film thickness is preferably 0.5 to 1.0 nm. In addition, what is necessary is just to calculate the film thickness of sulfur based on the weight of each of the activated carbon and sulfur which occupy in thin film sulfur covering activated carbon, and the BET specific surface area and sulfur specific gravity of activated carbon.

本発明の製造方法において、硫黄の膜厚は、活性炭の種類と量、溶媒の種類と量、硫黄溶液の濃度と温度、活性炭の硫黄溶液への浸漬時間、撹拌条件等を調整することにより制御することができる。 In the production method of the present invention, the film thickness of sulfur is controlled by adjusting the type and amount of activated carbon, the type and amount of solvent, the concentration and temperature of the sulfur solution, the immersion time of the activated carbon in the sulfur solution, the stirring conditions, and the like. can do.

薄膜硫黄被覆活性炭において、硫黄の含有量は、薄膜硫黄被覆活性炭中、50〜93重量%であることが好ましく、70〜90重量%であることがより好ましい。含有量が93重量%を超えると、硫黄の膜厚が厚くなり硫黄内部の拡散抵抗が高くなりすぎる場合があり、一方、含有量が50重量%未満では、硫黄の量が少なくなり正極合材中の硫黄の充填率が低くなる場合があるからである。 In the thin film sulfur-coated activated carbon, the sulfur content in the thin film sulfur-coated activated carbon is preferably 50 to 93% by weight, and more preferably 70 to 90% by weight. When the content exceeds 93% by weight, the sulfur film becomes thick and the diffusion resistance inside the sulfur may become too high. On the other hand, when the content is less than 50% by weight, the amount of sulfur decreases and the positive electrode mixture. It is because the filling rate of sulfur inside may become low.

本発明の製造方法によれば、BET比表面積が1800m/g以上の活性炭が、膜厚0.2〜1.4nmの硫黄で均一に被覆された薄膜硫黄被覆活性炭を製造することができる。また、本発明の製造方法により製造された薄膜硫黄被覆活性炭も本発明の1つである。薄膜硫黄被覆活性炭は、硫黄内部の電子及びリチウムイオンの拡散が起こりやすいとの特性を有するため、薄膜硫黄被覆活性炭を全固体型リチウム硫黄電池の正極合材に用いることにより、正極合材層当たりの放電容量が大きく、レート特性に優れる全固体型リチウム硫黄電池を提供することができる。 According to the production method of the present invention, it is possible to produce a thin film sulfur-coated activated carbon in which activated carbon having a BET specific surface area of 1800 m 2 / g or more is uniformly coated with sulfur having a film thickness of 0.2 to 1.4 nm. Moreover, the thin film sulfur covering activated carbon manufactured by the manufacturing method of this invention is also one of this invention. Thin-film sulfur-coated activated carbon has the property that electrons and lithium ions in sulfur can easily diffuse. Therefore, by using thin-film sulfur-coated activated carbon for the positive electrode mixture of all-solid-state lithium-sulfur batteries, An all-solid-state lithium-sulfur battery having a large discharge capacity and excellent rate characteristics can be provided.

<<正極合材>>
次に、本発明の正極合材について説明する。
本発明の正極合材は、本発明の製造方法により製造された薄膜硫黄被覆活性炭及び固体電解質を含む、全固体型リチウム硫黄電池に用いるものであり、正極合材層を形成するための材料である。
<< Positive electrode mixture >>
Next, the positive electrode mixture of the present invention will be described.
The positive electrode mixture of the present invention is a material for forming a positive electrode mixture layer, which is used for an all-solid-state lithium-sulfur battery including a thin film sulfur-coated activated carbon and a solid electrolyte produced by the production method of the present invention. is there.

正極合材において、薄膜硫黄被覆活性炭の含有量は、特に限定されないが、正極合材中、40〜80重量%であることが好ましい。含有量が40重量%未満であると、正極合材中の硫黄の充填率が低くなり、正極合材層当たりの放電容量が小さくなる場合があり、一方、含有量が80重量%を超えると、固体電解質の充填率が下がることにより正極合材層のイオン伝導率が低下し、正極合材層当たりの放電容量が小さくなる場合がある。 In the positive electrode mixture, the content of the thin film sulfur-coated activated carbon is not particularly limited, but is preferably 40 to 80% by weight in the positive electrode mixture. When the content is less than 40% by weight, the filling rate of sulfur in the positive electrode mixture may be low, and the discharge capacity per positive electrode mixture layer may be reduced. On the other hand, when the content exceeds 80% by weight When the solid electrolyte filling rate is lowered, the ionic conductivity of the positive electrode mixture layer is lowered, and the discharge capacity per positive electrode mixture layer may be reduced.

<固体電解質>
固体電解質としては、特に限定されないが、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖及びポリオキシアルキレン鎖の少なくとも一種を含む高分子化合物等の高分子固体電解質等を用いることができる。また、硫化物系固体電解質及び/又は酸化物系固体電解質等の無機固体電解質を用いることができる。
酸化物系固体電解質としては、例えば、リン及び酸素の少なくとも1種とリチウムとを含む無機固体電解質を好適に用いることができる。より具体的には、例えば、LiO−P、LiO−SiO、LiO−Nb、LiO−P−SiO、LiO−SiO−B、LiO−Al−GeO−P、LiO−Al−TiO−P等を用いることができる。
硫化物系固体電解質としては、例えば、リン及び硫黄の少なくとも1種とリチウムとを含む無機固体電解質を好適に用いることができる。より具体的には、例えば、LiS−P、LiS−P−P、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiSiO等を用いることができる。
これらの固体電解質は、単独で使用しても良いし、2種以上を併用しても良い。
<Solid electrolyte>
The solid electrolyte is not particularly limited, and for example, a polymer solid electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain and a polyoxyalkylene chain, and the like can be used. Moreover, inorganic solid electrolytes, such as a sulfide type solid electrolyte and / or an oxide type solid electrolyte, can be used.
As the oxide solid electrolyte, for example, an inorganic solid electrolyte containing at least one of phosphorus and oxygen and lithium can be suitably used. More specifically, for example, Li 2 O—P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—Nb 2 O 5 , Li 2 O—P 2 O 5 —SiO 2 , Li 2 O—SiO 2 -B 2 O 3, Li 2 O-Al 2 O 3 -GeO 2 -P 2 O 5, Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 or the like can be used.
As the sulfide-based solid electrolyte, for example, an inorganic solid electrolyte containing at least one of phosphorus and sulfur and lithium can be preferably used. More specifically, for example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -P 2 O 5, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S—SiS 2 —LiSiO 4 or the like can be used.
These solid electrolytes may be used alone or in combination of two or more.

固体電解質の含有量は、特に限定されないが、正極合材中、20〜60重量%であることが好ましい。含有量が20重量%未満であると、正極合材層中のリチウムイオン伝導率が低下し、正極合材層当たりの放電容量が小さくなったり、レート特性が悪くなったりする場合があり、一方、含有量が60重量%を超えると、正極合材中の硫黄の充填率が低くなり、正極合材層当たりの放電容量が小さくなる場合がある。 The content of the solid electrolyte is not particularly limited, but is preferably 20 to 60% by weight in the positive electrode mixture. When the content is less than 20% by weight, the lithium ion conductivity in the positive electrode mixture layer is lowered, and the discharge capacity per positive electrode mixture layer may be reduced, or the rate characteristics may be deteriorated. When the content exceeds 60% by weight, the filling rate of sulfur in the positive electrode mixture is lowered, and the discharge capacity per positive electrode mixture layer may be reduced.

正極合材は、必要に応じて、バインダー、溶媒等の任意成分を含んでいても良い。 The positive electrode mixture may contain optional components such as a binder and a solvent as necessary.

<バインダー>
バインダーとしては、特に限定されないが、熱可塑性樹脂や熱硬化性樹脂等を用いることができ、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体等が挙げられる。これらのバインダーは、単独で使用しても良いし、2種以上を併用してもよい。バインダーの含有量は、特に限定されないが、正極合材中、0.01〜10重量%であることが好ましい。
<Binder>
Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. can be used, for example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetra Fluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoro Propylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether -Tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, etc. are mentioned. These binders may be used alone or in combination of two or more. Although content of a binder is not specifically limited, It is preferable that it is 0.01 to 10 weight% in a positive electrode compound material.

<溶媒>
溶媒としては、特に限定されないが、例えば、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミン等のアミン系溶媒、テトラヒドロフラン等のエーテル系溶媒、メチルエチルケトン等のケトン系溶媒、酢酸メチル等のエステル系溶媒、ジメチルアセトアミド、1−メチル−2−ピロリドン等のアミド系溶媒、トルエン、キシレン、n−ヘキサン、シクロヘキサン等の炭化水素系溶媒等が挙げられる。これらの溶媒は、単独で使用しても良いし、2種以上を併用しても良い。溶媒の含有量は、特に限定されないが、正極合材中、10〜99重量%であることが好ましい。溶媒を含有する正極合材を用いることにより、正極合材層を作製しやすくすることができる。溶媒は、正極合材層の作製後、乾燥により除去される。
<Solvent>
The solvent is not particularly limited, and examples thereof include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, ester solvents such as methyl acetate, dimethyl Examples thereof include amide solvents such as acetamide and 1-methyl-2-pyrrolidone, and hydrocarbon solvents such as toluene, xylene, n-hexane and cyclohexane. These solvents may be used alone or in combination of two or more. Although content of a solvent is not specifically limited, It is preferable that it is 10 to 99 weight% in a positive electrode compound material. By using a positive electrode mixture containing a solvent, the positive electrode mixture layer can be easily produced. The solvent is removed by drying after the production of the positive electrode mixture layer.

<正極合材の作製方法>
正極合材は、薄膜硫黄被覆活性炭及び固体電解質、更には、必要に応じてバインダーや溶媒等の任意成分を混合することにより得ることができる。これらを混合する方法としては、特に限定されず従来公知の方法を用いることができるが、例えば、遊星ボールミル(フリッチュ社製)、ハイブリダイゼーションシステム(奈良機械製作所社製)、コスモス(川崎重工業社製)、メカノフュージョンシステム(ホソカワミクロン社製)、メカノミル(岡田精工社製)、シータコンポーザ(徳寿工作所社製)、ナノソニックミル(井上製作所社製)、ニーダー(井上製作所社製)、スーパーマスコロイダー(増幸産業社製)、ナノメック・リアクター(テクノアイ社製)、コーネルデスパ(浅田鉄工所社製)、プラネタリミキサ(浅田鉄工所社製)等を用いて混合する方法が挙げられる。
<Method for producing positive electrode mixture>
The positive electrode mixture can be obtained by mixing a thin film sulfur-coated activated carbon and a solid electrolyte, and further, if necessary, optional components such as a binder and a solvent. A method for mixing these is not particularly limited, and a conventionally known method can be used. For example, planetary ball mill (manufactured by Fritsch), hybridization system (manufactured by Nara Machinery Co., Ltd.), cosmos (manufactured by Kawasaki Heavy Industries, Ltd.) ), Mechano-fusion system (manufactured by Hosokawa Micron Corporation), mechano mill (manufactured by Okada Seiko Co., Ltd.), theta composer (manufactured by Tokusu Kosakusho Co., Ltd.), nanosonic mill (manufactured by Inoue Seisakusho Co., Ltd.), kneader (manufactured by Inoue Seisakusho Co., Ltd.), super mass collider (Masuyuki Industrial Co., Ltd.), Nanomec Reactor (Techno Eye Co., Ltd.), Cornell Despa (Asada Iron Works Co., Ltd.), Planetary Mixer (Asada Iron Works Co., Ltd.) and the like.

正極合材の作製においては、各成分を混合した後、加熱処理を行うことが好ましい。正極合材に含まれる硫黄、活性炭及び固体電解質の接触界面を強固にすることができ、界面抵抗を低減することができるからである。加熱処理は、本発明の薄膜硫黄被覆活性炭の製造方法における工程(c)の加熱処理条件と同様の条件で行えばよい。 In the production of the positive electrode mixture, it is preferable to perform heat treatment after mixing the respective components. This is because the contact interface between sulfur, activated carbon and solid electrolyte contained in the positive electrode mixture can be strengthened, and the interface resistance can be reduced. What is necessary is just to perform heat processing on the conditions similar to the heat processing conditions of the process (c) in the manufacturing method of the thin film sulfur covering activated carbon of this invention.

このような加熱処理は、正極合材の作製に用いた薄膜硫黄被覆活性炭として、上述の薄膜硫黄被覆活性炭の製造方法において工程(c)を行うことなく製造した薄膜硫黄被覆活性炭を用いる場合に行うのが特に好適である。正極合材の作製時に加熱処理を行う効果、即ち、正極合材に含まれる硫黄、活性炭及び固体電解質の界面抵抗低減の効果を特に顕著に享受することができるからである。 Such heat treatment is performed when the thin film sulfur-coated activated carbon produced without performing the step (c) in the above-described method for producing the thin film sulfur-coated activated carbon is used as the thin film sulfur-coated activated carbon used for the production of the positive electrode mixture. Is particularly preferred. This is because the effect of heat treatment at the time of producing the positive electrode mixture, that is, the effect of reducing the interfacial resistance of sulfur, activated carbon, and solid electrolyte contained in the positive electrode mixture can be particularly remarkably enjoyed.

<<全固体型リチウム硫黄電池>>
次に、本発明の全固体型リチウム硫黄電池について、図面を参照しながら説明する。
本発明の全固体型リチウム硫黄電池は、本発明の正極合材を含む正極合材層、固体電解質層、負極及び集電体を備えた全固体型リチウム硫黄電池である。
<< All solid-state lithium-sulfur battery >>
Next, the all solid-state lithium-sulfur battery of the present invention will be described with reference to the drawings.
The all-solid-state lithium-sulfur battery of the present invention is an all-solid-state lithium-sulfur battery including a positive electrode mixture layer including the positive electrode mixture of the present invention, a solid electrolyte layer, a negative electrode, and a current collector.

本明細書において、「全固体型」とは、電解質として高分子固体電解質及び/又は無機固体電解質を用いたものであり、負極、固体電解質層及び正極合材層に実質的に溶媒を含有しないものをいう。また、本明細書において、「実質的に溶媒を含有しない」とは、溶媒が微量に残存しても良いことを意味する。 In the present specification, the “all solid type” means a polymer solid electrolyte and / or an inorganic solid electrolyte as an electrolyte, and contains substantially no solvent in the negative electrode, the solid electrolyte layer, and the positive electrode mixture layer. Say things. Further, in the present specification, “substantially does not contain a solvent” means that a trace amount of the solvent may remain.

図1は、全固体型リチウム硫黄電池の実施形態の一例を模式的に表した断面図である。
図1に示すように、全固体型リチウム硫黄電池10は、負極2、固体電解質層3、正極合材層4が順に積層され、その両側に集電体(負極集電体1、正極集電体5)が配置された構造を備える。
以下、集電体(負極集電体、正極集電体)、負極、固体電解質層、正極合材層のそれぞれについて順に説明する。
FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of an all solid-state lithium-sulfur battery.
As shown in FIG. 1, an all-solid-state lithium-sulfur battery 10 includes a negative electrode 2, a solid electrolyte layer 3, and a positive electrode mixture layer 4 that are stacked in order, and current collectors (negative electrode current collector 1 and positive electrode current collector) on both sides thereof. It has a structure in which the body 5) is arranged.
Hereinafter, each of the current collector (negative electrode current collector, positive electrode current collector), negative electrode, solid electrolyte layer, and positive electrode mixture layer will be described in order.

<集電体>
集電体としては、特に限定されないが、例えば、Al、Cu、Ni、ステンレス等を用いることができる。負極集電体としては、リチウムと合金を作り難い点、及び、薄膜に加工しやすい点から、Cuを用いることが好ましい。正極集電体としては、薄膜に加工しやすく、安価であるという点でAlを用いることが好ましい。
<Current collector>
Although it does not specifically limit as a collector, For example, Al, Cu, Ni, stainless steel, etc. can be used. As the negative electrode current collector, Cu is preferably used because it is difficult to make an alloy with lithium and it can be easily processed into a thin film. As the positive electrode current collector, Al is preferably used because it is easy to process into a thin film and is inexpensive.

<負極>
負極としては、リチウムイオンを吸蔵放出する材料を負極活物質として含んでいるものであれば、特に限定されるものではない。ここで、リチウムイオンを吸蔵放出する材料としては、例えば、金属リチウム、リチウム合金、金属酸化物、金属硫化物、リチウムイオンを吸蔵放出する炭素質物質等が挙げられる。
リチウム合金としては、例えば、アルミニウム、シリコン、スズ、マグネシウム、インジウム、カルシウム等とリチウムとの合金が挙げられる。金属酸化物としては、例えば、スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。金属硫化物としては、例えば、スズ硫化物やチタン硫化物等が挙げられる。リチウムイオンを吸蔵放出する炭素質物質としては、例えば、黒鉛、コークス、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素等が挙げられる。
<Negative electrode>
The negative electrode is not particularly limited as long as it contains a material that absorbs and releases lithium ions as a negative electrode active material. Here, examples of the material that occludes and releases lithium ions include metallic lithium, lithium alloy, metal oxide, metal sulfide, and a carbonaceous substance that occludes and releases lithium ions.
Examples of the lithium alloy include alloys of lithium with aluminum, silicon, tin, magnesium, indium, calcium, and the like. Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the carbonaceous material that absorbs and releases lithium ions include graphite, coke, mesophase pitch-based carbon fiber, spherical carbon, and resin-fired carbon.

負極を得る方法としては、特に限定されないが、リチウムイオンを吸蔵放出する材料をプレスする方法、リチウムイオンを吸蔵放出する材料と溶媒とを含む負極前駆体分散液を負極集電体に塗布、乾燥後プレスする方法等が挙げられる。負極前駆体分散液に含まれる溶媒としては、上述の正極合材に用いられるものと同様のものを用いることができる。なお、溶媒は負極前駆体分散液の塗布を助けるために使用され、塗布後は乾燥により除去される。 The method for obtaining the negative electrode is not particularly limited, but a method of pressing a material that absorbs and releases lithium ions, a negative electrode precursor dispersion containing a material that absorbs and releases lithium ions and a solvent is applied to a negative electrode current collector, and then dried. The method of post-pressing etc. is mentioned. As the solvent contained in the negative electrode precursor dispersion, the same solvents as those used for the positive electrode mixture described above can be used. The solvent is used to assist the application of the negative electrode precursor dispersion and is removed by drying after the application.

<固体電解質層>
固体電解質層は、固体電解質を加圧成形する方法、固体電解質を溶媒に分散させた後塗布・乾燥させる方法等により得ることができる。これらの方法により固体電解質層を得る際、固体電解質層の界面抵抗の低減、及び、緻密性の向上を目的に、任意のタイミングで加熱処理を行っても良い。固体電解質を加圧成形する方法としては、特に限定されないが、例えば、負極集電体と正極集電体とで固体電解質を挟み込んでプレスする方法、加圧成形機の治具でプレスする方法等が挙げられる。固体電解質を溶媒に分散させた後塗布・乾燥させる方法により固体電解質層を得る場合には、乾燥後の固体電解質層を上記と同様の方法でプレスしてもよい。
<Solid electrolyte layer>
The solid electrolyte layer can be obtained by a method in which the solid electrolyte is pressure-molded, a method in which the solid electrolyte is dispersed in a solvent, and then applied and dried. When a solid electrolyte layer is obtained by these methods, heat treatment may be performed at an arbitrary timing for the purpose of reducing the interface resistance of the solid electrolyte layer and improving the denseness. The method for pressure forming the solid electrolyte is not particularly limited. For example, a method of sandwiching and pressing the solid electrolyte between a negative electrode current collector and a positive electrode current collector, a method of pressing with a jig of a pressure molding machine, etc. Is mentioned. When a solid electrolyte layer is obtained by a method in which the solid electrolyte is dispersed in a solvent and then applied and dried, the dried solid electrolyte layer may be pressed by the same method as described above.

<正極合材層>
正極合材層は、例えば、正極集電体に正極合材を担持させる方法、正極合材を加圧成形する方法等により得ることができる。正極集電体に正極合材を担持させる方法としては、特に限定されないが、例えば、加圧成型する方法、有機溶媒等を用いてペースト化した正極合材を正極集電体に塗布、乾燥後プレスするなどして固着する方法等が挙げられる。正極合材を正極集電体に塗布する方法としては、特に限定されないが、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。正極合材を加圧成形する方法としては、特に限定されないが、例えば、負極集電体及び固体電解質層と、正極集電体との間に正極合材を挟み込んでプレスする方法、加圧成形機の治具でプレスする方法等が挙げられる。これらの方法により正極合材層を得る際、正極合材層の界面抵抗の低減、及び、緻密性の向上を目的に、任意のタイミングで加熱処理を行っても良い。
<Positive electrode mixture layer>
The positive electrode mixture layer can be obtained by, for example, a method of supporting the positive electrode mixture on the positive electrode current collector, a method of pressure forming the positive electrode mixture, or the like. The method for supporting the positive electrode mixture on the positive electrode current collector is not particularly limited. For example, after applying the positive electrode mixture formed into a paste using an organic solvent or the like to the positive electrode current collector and drying, Examples thereof include a method of fixing by pressing. The method for applying the positive electrode mixture to the positive electrode current collector is not particularly limited, and examples thereof include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method. It is done. The method for pressure forming the positive electrode mixture is not particularly limited. For example, the method of pressing the positive electrode mixture between the negative electrode current collector and the solid electrolyte layer and the positive electrode current collector, and pressure forming The method of pressing with the jig of a machine is mentioned. When the positive electrode mixture layer is obtained by these methods, heat treatment may be performed at an arbitrary timing for the purpose of reducing the interface resistance of the positive electrode mixture layer and improving the denseness.

全固体型リチウム硫黄電池は、上述の負極集電体、負極、固体電解質層、正極合材層、正極集電体のほか、セパレータ等を有していても良い。 The all solid-state lithium-sulfur battery may have a separator in addition to the above-described negative electrode current collector, negative electrode, solid electrolyte layer, positive electrode mixture layer, and positive electrode current collector.

<全固体型リチウム硫黄電池の作製方法>
全固体型リチウム硫黄電池の作製方法は、特に限定されないが、例えば、以下の方法等が挙げられる。
まず、負極集電体と正極集電体とで固体電解質を挟み込んでプレスし、固体電解質層を作製する。次に、一旦、正極集電体を取り除き、固体電解質層の片側に正極合材を堆積し、その両端を集電体(固体電解質層側に負極集電体、正極合材側に正極集電体)で挟み込んでプレスし、固体電解質層の一方の面に正極合材層と正極集電体とを積層し、固体電解質層のもう一方の面に負極集電体を積層する。最後に、一旦、負極集電体を取り除き、固体電解質層の正極合材層側と反対側に負極を入れ、さらに、負極側に負極集電体を入れてプレスし、固体電解質層の他方の面に負極と負極集電体とを積層する。また、上記のように一層ずつプレスしても良いし、二層以上を堆積させて、複数層をまとめてプレスして積層させても良い。このような方法により、全固体型リチウム硫黄電池を作製することができる。
<Method for producing all solid-state lithium-sulfur battery>
Although the manufacturing method of an all-solid-type lithium sulfur battery is not specifically limited, For example, the following methods etc. are mentioned.
First, a solid electrolyte is sandwiched between a negative electrode current collector and a positive electrode current collector and pressed to produce a solid electrolyte layer. Next, the positive electrode current collector is once removed, the positive electrode mixture is deposited on one side of the solid electrolyte layer, and both ends of the positive electrode current collector (the negative electrode current collector on the solid electrolyte layer side and the positive electrode current collector on the positive electrode mixture side) The positive electrode mixture layer and the positive electrode current collector are laminated on one surface of the solid electrolyte layer, and the negative electrode current collector is laminated on the other surface of the solid electrolyte layer. Finally, once remove the negative electrode current collector, put the negative electrode on the side opposite to the positive electrode mixture layer side of the solid electrolyte layer, and further press the negative electrode current collector on the negative electrode side and press the other side of the solid electrolyte layer A negative electrode and a negative electrode current collector are stacked on the surface. Moreover, it may be pressed one layer at a time as described above, or two or more layers may be deposited, and a plurality of layers may be pressed together and laminated. By such a method, an all solid-state lithium-sulfur battery can be produced.

全固体型リチウム硫黄電池の形状は、特に限定されないが、例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型等が挙げられる。 The shape of the all solid-state lithium-sulfur battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a rectangular type.

<全固体型リチウム硫黄電池の用途>
全固体型リチウム硫黄電池の用途としては、特に限定されないが、例えば、ハイブリッド自動車や電気自動車等、高いエネルギー密度が要求される電気製品に好適に用いることができる。
<Applications of all-solid-state lithium-sulfur batteries>
Although it does not specifically limit as a use of an all-solid-state type lithium sulfur battery, For example, it can use suitably for the electric products by which high energy density is requested | required, such as a hybrid vehicle and an electric vehicle.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

1.使用原料
以下の実施例及び比較例においては、以下の材料を使用した。
1−1.正極活物質
硫黄(Aldrich社製、比重2g/cm
1−2.活性炭
活性炭A(関西熱化学社製、BET比表面積:3000m/g)
活性炭B(関西熱化学社製、BET比表面積:2500m/g)
活性炭C(クラレケミカル社製YP−80F、BET比表面積:1900m/g)
活性炭D(関西熱化学社製、BET比表面積:1500m/g)
1−3.負極材料
リチウムシート(フルウチ化学社製、厚さ0.25mm)
インジウムシート(フルウチ化学社製、厚さ0.30mm)
1−4.薄膜硫黄被覆活性炭作製用の有機溶媒
シクロヘキサン(和光純薬工業社製、試薬特級)
1−5.固体電解質作製用の原料
硫化リチウム(フルウチ化学社製、LiS)
五硫化二りん(Aldrich社製、P
1. Raw materials used In the following examples and comparative examples, the following materials were used.
1-1. Positive electrode active material sulfur (manufactured by Aldrich, specific gravity 2 g / cm 3 )
1-2. Activated carbon activated carbon A (manufactured by Kansai Thermochemical Co., Ltd., BET specific surface area: 3000 m 2 / g)
Activated carbon B (manufactured by Kansai Thermochemical Co., Ltd., BET specific surface area: 2500 m 2 / g)
Activated carbon C (YP-80F manufactured by Kuraray Chemical Co., BET specific surface area: 1900 m 2 / g)
Activated carbon D (manufactured by Kansai Thermochemical Co., Ltd., BET specific surface area: 1500 m 2 / g)
1-3. Anode material lithium sheet (Furuuchi Chemical Co., Ltd., thickness 0.25 mm)
Indium sheet (Furuuchi Chemical Co., Ltd., thickness 0.30mm)
1-4. Organic solvent cyclohexane (made by Wako Pure Chemical Industries, special reagent grade) for the production of thin-film sulfur-coated activated carbon
1-5. Raw material lithium sulfide for production of solid electrolyte (manufactured by Furuuchi Chemical Co., Li 2 S)
Phosphorus pentasulfide (manufactured by Aldrich, P 2 S 5 )

2.固体電解質の作製
(合成例1)固体電解質Aの作製
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス(美和製作所社製、MDB−1KP型)内で、LiSとPを40:60のモル比で合計2.0gとなるように秤量し、乳鉢で混合したものと4mmΦのジルコニアボール180gとを容量80mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度250rpm、公転速度500rpm(自転と逆回転)で10時間処理して、固体電解質Aを作製した。
2. Production of Solid Electrolyte (Synthesis Example 1) Production of Solid Electrolyte A In a glove box (MDB-1KP type, manufactured by Miwa Seisakusho) in an argon atmosphere with a dew point temperature of −70 ° C. or lower, Li 2 S and P 2 S 5 Weighed so that the total molar ratio of 40:60 was 2.0 g, and mixed in a mortar and 180 g of 4 mmφ zirconia balls in a zirconia container with 80 ml capacity (manufactured by Fritsch, for Premium line P-7). The solid electrolyte A was produced by processing with a planetary ball mill (Premium line P-7, manufactured by Fritsch) at a rotation speed of 250 rpm and a revolution speed of 500 rpm (rotation and reverse rotation) for 10 hours.

(合成例2)固体電解質Bの作製
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス(美和製作所社製、MDB−1KP型)内で、LiSとPを80:20のモル比で合計2.0gとなるように秤量し、乳鉢で混合したものと4mmΦのジルコニアボール180gとを容量80mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度250rpm、公転速度500rpm(自転と逆回転)で10時間処理して、固体電解質Bを作製した。
(Synthesis Example 2) Production of solid electrolyte B In a glove box (MDB-1KP type, manufactured by Miwa Seisakusho Co., Ltd.) in an argon atmosphere with a dew point temperature of −70 ° C. or less, Li 2 S and P 2 S 5 were 80:20 Weighing so that the total molar ratio is 2.0 g and mixing in a mortar and 180 g of 4 mmφ zirconia balls are put in a zirconia container (Fritch company, Premium line P-7) with a capacity of 80 ml, and a planetary ball mill The solid electrolyte B was produced by processing for 10 hours at a rotation speed of 250 rpm and a revolution speed of 500 rpm (rotation and reverse rotation) with Fritsch (Premium line P-7).

3.全固体型リチウム硫黄電池の作製方法
下記の電池作製は、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で行った。
ポリカーボネート製の円筒管治具(内径10mmΦ、外径23mmΦ、高さ20mm)の下側から負極集電体としてSUS304製の円筒治具(10mmΦ、高さ10mm)を差し込み、ポリカーボネート製の円筒管治具の上側から固体電解質A又はB70.0mgを入れて、さらに正極集電体としてSUS304製の円筒治具(10mmΦ、高さ15mm)をポリカーボネート製の円筒管治具の上側から差し込んで固体電解質A又はBを挟み込み、200MPaの圧力で1分間プレスすることにより直径10mmΦ、厚さ約0.6mmの固体電解質層を作製した。
次に、上側から差し込んだSUS304製の円筒治具(正極集電体)を一旦抜き取り、ポリカーボネート製の円筒管内の固体電解質層の上に正極合材7.5mgを入れ、再び上側からSUS304製の円筒治具(正極集電体)を差し込み、200MPaの圧力で3分間プレスすることで、直径10mmΦ、厚さ約0.1mmの正極合材層を形成した。
次に、下側から差し込んだSUS304製の円筒治具(負極集電体)を抜き取り、負極としてリチウムシートを穴あけポンチで直径8mmΦに打ち抜いたものとインジウムシートを穴あけポンチで直径9mmΦに打ち抜いたものを重ねてポリカーボネート製の円筒管治具の下側から入れて、再び下側からSUS304製の円筒治具(負極集電体)を差し込み、80MPaの圧力で3分間プレスすることでリチウム−インジウム合金負極を形成した。
以上のようにして、下側から順に、負極集電体、リチウム−インジウム合金負極、固体電解質層、正極合材層、正極集電体が積層された全固体型リチウム硫黄電池を作製した。
3. Production Method of All Solid Type Lithium Sulfur Battery The battery production described below was performed in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or lower.
A cylindrical jig made of SUS304 (10 mmφ, height 10 mm) is inserted as a negative electrode current collector from the lower side of a cylindrical tube jig made of polycarbonate (inner diameter 10 mmΦ, outer diameter 23 mmΦ, height 20 mm). 70.0 mg of solid electrolyte A or B is put from the upper side of the tool, and a cylindrical jig made of SUS304 (10 mmΦ, height 15 mm) is further inserted as a positive electrode current collector from the upper side of the cylindrical pipe jig made of polycarbonate. Alternatively, B was sandwiched and pressed at a pressure of 200 MPa for 1 minute to produce a solid electrolyte layer having a diameter of 10 mmΦ and a thickness of about 0.6 mm.
Next, the cylindrical jig (positive electrode current collector) made of SUS304 inserted from the upper side is once extracted, 7.5 mg of the positive electrode mixture is put on the solid electrolyte layer in the polycarbonate cylindrical tube, and again made of SUS304 from the upper side. A cylindrical jig (positive electrode current collector) was inserted and pressed at 200 MPa for 3 minutes to form a positive electrode mixture layer having a diameter of 10 mmΦ and a thickness of about 0.1 mm.
Next, a cylindrical jig (negative electrode current collector) made of SUS304 inserted from the lower side is extracted, and a lithium sheet as a negative electrode is punched into a diameter of 8 mmΦ, and an indium sheet is punched into a diameter of 9 mmΦ with a punch. Are inserted from the lower side of the cylindrical tube jig made of polycarbonate, and the cylindrical jig made of SUS304 (negative electrode current collector) is inserted again from the lower side, and pressed at a pressure of 80 MPa for 3 minutes to form a lithium-indium alloy. A negative electrode was formed.
As described above, an all-solid-state lithium-sulfur battery in which the negative electrode current collector, the lithium-indium alloy negative electrode, the solid electrolyte layer, the positive electrode mixture layer, and the positive electrode current collector were stacked in this order from the bottom was produced.

4.評価方法
下記の実施例及び比較例においては、以下の評価を実施した。
(a)BET比表面積
自動比表面積/細孔分布測定装置(日本ベル株式会社製、BELSORP−mini II)を用いて測定し、BET法により測定した。
(b)放電容量
充放電試験装置(アスカ電子社製、ACD−M01A)を用いて、0.20mA(0.25mA/cm)の電流値で、カットオフ電圧を0.5〜2.5Vとして充放電を繰り返し、2サイクル目の放電容量を測定した。
測定した放電容量を、正極合材中の薄膜硫黄被覆活性炭(比較例2〜4、6、7、9〜11にあっては、硫黄と活性炭の混合物)に含まれる硫黄の重量(g)で除して得た数値を硫黄当たりの放電容量とし、正極合材層の重量(0.015g)で除して得た数値を正極合材層当たりの放電容量とした。
なお、下記表1において、硫黄当たりの放電容量が、理論容量である約1672mAh/gよりも高くなっている実施例がいくつか存在するが、これは、正極合材中の固体電解質A又はBに残存する硫化リチウム(LiS)の一部も正極活物質として働いているためと考えられる。
4). Evaluation Method In the following examples and comparative examples, the following evaluations were performed.
(A) It measured using the BET specific surface area automatic specific surface area / pore distribution measuring apparatus (Nippon Bell Co., Ltd. make, BELSORP-mini II), and measured by BET method.
(B) Using a discharge capacity charge / discharge test apparatus (ACD-M01A, manufactured by Asuka Electronics Co., Ltd.), with a current value of 0.20 mA (0.25 mA / cm 2 ), the cut-off voltage is 0.5 to 2.5 V. Then, charge and discharge were repeated, and the discharge capacity at the second cycle was measured.
The measured discharge capacity is the weight (g) of sulfur contained in the thin-film sulfur-coated activated carbon (a mixture of sulfur and activated carbon in Comparative Examples 2 to 4, 6, 7, and 9 to 11) in the positive electrode mixture. The numerical value obtained by dividing the value was taken as the discharge capacity per sulfur, and the value obtained by dividing by the weight of the positive electrode mixture layer (0.015 g) was taken as the discharge capacity per positive electrode mixture layer.
In Table 1 below, there are several examples in which the discharge capacity per sulfur is higher than the theoretical capacity of about 1672 mAh / g. This is because the solid electrolyte A or B in the positive electrode mixture is present. It is considered that a part of lithium sulfide (Li 2 S) remaining in the metal works as a positive electrode active material.

(比較例1)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A1000mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、0.990wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、800mgの硫黄が1000mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は44.4wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.13nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、1589mg(収率88.3%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、148mg(収率74.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 1)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 1000 mg of activated carbon A was immersed in this cyclohexane solution of sulfur and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was settled by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 0.990 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 800 mg of sulfur coats 1000 mg of activated carbon A. Therefore, sulfur in the activated carbon coated with sulfur is 44.4 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.13 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 1589 mg (yield 88.3%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 148 mg (yield 74.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例1)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A600mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、0.892wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、820mgの硫黄が600mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は57.7wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.23nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、1257mg(収率88.5%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
Example 1
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 600 mg of activated carbon A was immersed in this cyclohexane solution of sulfur and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was sedimented by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 0.892 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 820 mg of sulfur coats 600 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 57.7 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.23 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 1257 mg (88.5% yield) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 143 mg (yield 71.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例2)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A400mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.220wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、753mgの硫黄が400mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は65.3wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.31nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、1005mg(収率87.2%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、146mg(収率73.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 2)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, activated carbon A (400 mg) was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was sedimented by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.220 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 753 mg of sulfur coats 400 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 65.3 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.31 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 1005 mg (yield 87.2%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 146 mg (yield 73.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例3)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A300mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、0.951wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、781mgの硫黄が300mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は72.2wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.43nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、951mg(収率88.0%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、145mg(収率72.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 3)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, activated carbon A (300 mg) was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and activated carbon coated with sulfur was settled by centrifugal separation. The solid content of the supernatant sulfur solution was measured and found to be 0.951 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 781 mg of sulfur coats 300 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 72.2 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.43 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 951 mg (yield 88.0%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 145 mg (yield 72.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例4)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A200mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.196wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、758mgの硫黄が200mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は79.1wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.63nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、839mg(収率87.6%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、147mg(収率73.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
Example 4
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 200 mg of activated carbon A was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and activated carbon coated with sulfur was precipitated by centrifugal separation. The solid content of the supernatant sulfur solution was measured and found to be 1.196 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 758 mg of sulfur coats 200 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 79.1 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.63 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 839 mg (yield 87.6%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 147 mg (yield 73.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例5)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A150mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.283wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、740mgの硫黄が150mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は83.1wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚0.82nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、777mg(収率87.3%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、144mg(収率72.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 5)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 150 mg of activated carbon A was immersed in this cyclohexane solution of sulfur and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was sedimented by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.283 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 740 mg of sulfur coats 150 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 83.1 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 0.82 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 777 mg (yield 87.3%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 144 mg (yield 72.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例2)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄99.8mgと活性炭A20.2mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、146mg(収率73.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 2)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, a zirconia ball 40 g of 5 mmΦ, 99.8 mg of sulfur, and 20.2 mg of activated carbon A are made of zirconia with a capacity of 45 ml (for French, Premium line P-7). In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 146 mg (yield 73.0%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例6)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A120mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.142wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、769mgの硫黄が120mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は86.5wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚1.07nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、783mg(収率88.1%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、148mg(収率74.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 6)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 120 mg of activated carbon A was immersed in this cyclohexane solution of sulfur and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was sedimented by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.142 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 769 mg of sulfur coats 120 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 86.5 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 1.07 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 783 mg (yield 88.1%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 148 mg (yield 74.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例3)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄103.8mgと活性炭A16.2mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 3)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or lower, a zirconia ball 40 g of 5 mmΦ, 103.8 mg of sulfur, and 16.2 mg of activated carbon A are made of zirconia with a capacity of 45 ml (manufactured by Fritsch, for Premium line P-7). In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 143 mg (yield 71.5%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例7)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A100mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.200wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、757mgの硫黄が100mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は88.3wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚1.26nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、759mg(収率88.6%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、146mg(収率73.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 7)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, activated carbon A (100 mg) was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and activated carbon coated with sulfur was settled by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.200 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 757 mg of sulfur coats 100 mg of activated carbon A. Therefore, sulfur in the activated carbon coated with sulfur is 88.3 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a thickness of 1.26 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 759 mg (yield 88.6%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 146 mg (yield 73.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例4)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄106.0mgと活性炭A14.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、145mg(収率72.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 4)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, a zirconia container having a capacity of 45 ml containing 40 g of 5 mmφ zirconia balls, 106.0 mg of sulfur, and 14.0 mg of activated carbon A (for Fritsch, Premium line P-7) In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further processing with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 145 mg (yield 72.5%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例5)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭A50mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Aを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Aに硫黄を吸着させることにより、硫黄で活性炭Aを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.166wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、764mgの硫黄が50mgの活性炭Aを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は93.9wt%(表1)になる。用いた活性炭AのBET比表面積は3000m/gなので、比重2g/cmの硫黄は膜厚2.55nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、716mg(収率87.9%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 5)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 50 mg of activated carbon A was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon A. Subsequently, the activated carbon A was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon A.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was settled by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.166 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 764 mg of sulfur coats 50 mg of activated carbon A. Therefore, the sulfur in the activated carbon coated with sulfur is 93.9 wt% (Table 1). Since the activated carbon A used has a BET specific surface area of 3000 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 2.55 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 716 mg (yield 87.9%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 143 mg (yield 71.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例8)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭B150mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Bを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Bに硫黄を吸着させることにより、硫黄で活性炭Bを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.051wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、788mgの硫黄が150mgの活性炭Bを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は84.0wt%(表1)になる。用いた活性炭BのBET比表面積は2500m/gなので、比重2g/cmの硫黄は膜厚1.05nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、822mg(収率87.7%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、144mg(収率72.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 8)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 150 mg of activated carbon B was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon B. Subsequently, the activated carbon B was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon B.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and activated carbon coated with sulfur was settled by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.051 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 788 mg of sulfur coats 150 mg of activated carbon B. Therefore, the sulfur in the activated carbon coated with sulfur is 84.0 wt% (Table 1). Since the activated carbon B used has a BET specific surface area of 2500 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a thickness of 1.05 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 822 mg (yield 87.7%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 144 mg (yield 72.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例6)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄100.8mgと活性炭B19.2mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 6)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, a zirconia container having a capacity of 45 ml containing 40 g of zirconia balls of 5 mmΦ, 100.8 mg of sulfur, and 19.2 mg of activated carbon B (made by Fritsch, Premium line P-7) In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 143 mg (yield 71.5%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例9)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭C150mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Cを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Cに硫黄を吸着させることにより、硫黄で活性炭Cを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.108wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、776mgの硫黄が150mgの活性炭Cを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は83.8wt%(表1)になる。用いた活性炭CのBET比表面積は1900m/gなので、比重2g/cmの硫黄は膜厚1.36nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、811mg(収率87.6%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.0mgと合成例1で作製した固体電解質A80.0mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、148mg(収率74.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
Example 9
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 150 mg of activated carbon C was immersed in this cyclohexane solution of sulfur and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse activated carbon C. Subsequently, the activated carbon C was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon C.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and the activated carbon coated with sulfur was sedimented by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.108 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 776 mg of sulfur coats 150 mg of activated carbon C. Therefore, the sulfur in the activated carbon coated with sulfur is 83.8 wt% (Table 1). Since the activated carbon C used has a BET specific surface area of 1900 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 1.36 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 811 mg (yield: 87.6%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.0 mg of thin-film sulfur-coated activated carbon, and 80.0 mg of the solid electrolyte A prepared in Synthesis Example 1 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 148 mg (yield 74.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例7)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄100.6mgと活性炭C19.4mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、146mg(収率73.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 7)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, a zirconia container having a capacity of 45 ml containing 40 g of 5 mmφ zirconia balls, 100.6 mg of sulfur, and 19.4 mg of activated carbon C (made by Fritsch, for Premium line P-7) In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 146 mg (yield 73.0%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例8)
硫黄1000mgとシクロヘキサン20gを50mlのスクリュー管に入れて、60℃に加熱しながら、マグネチックスターラーで撹拌して硫黄を溶解させた。次に、この硫黄のシクロヘキサン溶液に活性炭D150mgを浸漬し、超音波処理(出力100W、発振周波数28Hz、40分間)を行い、活性炭Dを分散させた。続いて、25℃で7日間、マグネチックスターラーで撹拌して活性炭Dに硫黄を吸着させることにより、硫黄で活性炭Dを被覆した。
硫黄被覆後の分散液の内、約2gを抜き取り遠心分離により硫黄で被覆された活性炭を沈降させ、上澄みの硫黄溶液の固形分含有率を測定したところ、1.022wt%であった。もとの硫黄溶液の濃度は4.762wt%であるので、793mgの硫黄が150mgの活性炭Dを被覆したことになる。従って、硫黄で被覆された活性炭中の硫黄は84.1wt%(表1)になる。用いた活性炭DのBET比表面積は1500m/gなので、比重2g/cmの硫黄は膜厚1.76nmとなっている。
硫黄の被覆量及び膜厚計算のために抜き取った約2g以外の残り全量を吸引ろ過することにより、硫黄で被覆された活性炭を硫黄溶液から分離し、160℃で1時間加熱処理することにより、831mg(収率88.1%)の薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭119.9mgと合成例1で作製した固体電解質A80.1mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 8)
1000 mg of sulfur and 20 g of cyclohexane were put into a 50 ml screw tube and stirred with a magnetic stirrer while heating to 60 ° C. to dissolve the sulfur. Next, 150 mg of activated carbon D was immersed in this sulfur cyclohexane solution and subjected to ultrasonic treatment (output 100 W, oscillation frequency 28 Hz, 40 minutes) to disperse the activated carbon D. Subsequently, the activated carbon D was coated with sulfur by stirring with a magnetic stirrer at 25 ° C. for 7 days to adsorb the sulfur to the activated carbon D.
About 2 g of the dispersion liquid after the sulfur coating was extracted, and activated carbon coated with sulfur was settled by centrifugation, and the solid content of the supernatant sulfur solution was measured and found to be 1.022 wt%. Since the concentration of the original sulfur solution is 4.762 wt%, 793 mg of sulfur coats 150 mg of activated carbon D. Therefore, the sulfur in the activated carbon coated with sulfur is 84.1 wt% (Table 1). Since the activated carbon D used has a BET specific surface area of 1500 m 2 / g, sulfur having a specific gravity of 2 g / cm 3 has a film thickness of 1.76 nm.
By separating the activated carbon covered with sulfur from the sulfur solution by suction filtration of the remaining amount other than about 2 g extracted for calculating the coating amount and film thickness of sulfur, heat treatment at 160 ° C. for 1 hour, 831 mg (yield 88.1%) of thin film sulfur-coated activated carbon was obtained.
Next, in a glove box having an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 119.9 mg of thin-film sulfur-coated activated carbon, and 80.1 mg of the solid electrolyte A prepared in Synthesis Example 1 were made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 143 mg (yield 71.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例9)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄100.8mgと活性炭D19.1mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.1mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、142mg(収率71.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 9)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, a zirconia container having a capacity of 45 ml containing 40 g of zirconia balls of 5 mmΦ, 100.8 mg of sulfur, and 19.1 mg of activated carbon D (made by Fritsch, for Premium line P-7) In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.1 mg of the solid electrolyte A produced in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 142 mg (yield 71.0%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例10)
実施例2と同様の方法により薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.4mgと合成例2で作製した固体電解質B79.6mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、147mg(収率73.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 10)
A thin film sulfur-coated activated carbon was obtained in the same manner as in Example 2.
Next, in a glove box having an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.4 mg of thin-film sulfur-coated activated carbon, and 79.6 mg of the solid electrolyte B prepared in Synthesis Example 2 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 147 mg (yield 73.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例11)
実施例3と同様の方法により薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.4mgと合成例2で作製した固体電解質B79.6mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、145mg(収率72.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 11)
A thin film sulfur-coated activated carbon was obtained in the same manner as in Example 3.
Next, in a glove box having an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.4 mg of thin-film sulfur-coated activated carbon, and 79.6 mg of the solid electrolyte B prepared in Synthesis Example 2 are made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 145 mg (yield 72.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例12)
実施例4と同様の方法により薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.3mgと合成例2で作製した固体電解質B79.7mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、146mg(収率73.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 12)
A thin film sulfur-coated activated carbon was obtained in the same manner as in Example 4.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.3 mg of thin-film sulfur-coated activated carbon, and 79.7 mg of the solid electrolyte B produced in Synthesis Example 2 were made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 146 mg (yield 73.0%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例13)
実施例5と同様の方法により薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.3mgと合成例2で作製した固体電解質B79.7mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、143mg(収率71.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 13)
A thin film sulfur-coated activated carbon was obtained in the same manner as in Example 5.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.3 mg of thin-film sulfur-coated activated carbon, and 79.7 mg of the solid electrolyte B produced in Synthesis Example 2 were made of zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 143 mg (yield 71.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例14)
実施例7と同様の方法により薄膜硫黄被覆活性炭を得た。
次に、露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと薄膜硫黄被覆活性炭120.2mgと合成例2で作製した固体電解質B79.8mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、145mg(収率72.5%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Example 14)
A thin film sulfur-coated activated carbon was obtained in the same manner as in Example 7.
Next, in a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or less, 40 g of 5 mmφ zirconia balls, 120.2 mg of thin-film sulfur-coated activated carbon, and 79.8 mg of the solid electrolyte B prepared in Synthesis Example 2 were manufactured by zirconia having a capacity of 45 ml. Put in a container (French, Premium line P-7) and process for 2 hours with planetary ball mill (Fritch, Premium line P-7) at a rotation speed of 185 rpm and a rotation speed of 370 rpm (rotation and reverse rotation). As a result, 145 mg (yield 72.5%) of the positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(実施例15〜19)
硫黄溶液から分離した、硫黄で被覆された活性炭の加熱処理温度を、それぞれ25℃、40℃、60℃、100℃、250℃とした点を除き、実施例6と同様にして正極合材を得た。
これらの正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Examples 15 to 19)
The positive electrode mixture was treated in the same manner as in Example 6 except that the heat treatment temperature of the activated carbon coated with sulfur separated from the sulfur solution was 25 ° C., 40 ° C., 60 ° C., 100 ° C., and 250 ° C., respectively. Obtained.
Using these positive electrode composites, a battery was produced according to the battery production method described above, and the discharge capacity was measured.

(比較例10)
露点温度が−70℃以下のアルゴン雰囲気のグローブボックス内で、5mmΦのジルコニアボール40gと硫黄103.8mgと活性炭A16.2mgを容量45mlのジルコニア製容器(フリッチュ社製、Premium line P−7用)に入れ、遊星ボールミル(フリッチュ社製、Premium line P−7)で、自転速度185rpm、公転速度370rpm(自転と逆回転)で1時間処理し、その後25℃で1時間加熱処理し、続いて合成例1で作製した固体電解質A80.0mgを加えて、さらに遊星ボールミルで、自転速度185rpm、公転速度370rpm(自転と逆回転)で2時間処理することにより、148mg(収率74.0%)の正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 10)
In a glove box in an argon atmosphere with a dew point temperature of −70 ° C. or lower, a zirconia ball 40 g of 5 mmΦ, 103.8 mg of sulfur, and 16.2 mg of activated carbon A are made of zirconia with a capacity of 45 ml (manufactured by Fritsch, for Premium line P-7) In a planetary ball mill (Premium line P-7, manufactured by Fritsch) for 1 hour at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation), followed by heat treatment at 25 ° C. for 1 hour, followed by synthesis By adding 80.0 mg of the solid electrolyte A prepared in Example 1 and further treating with a planetary ball mill at a rotation speed of 185 rpm and a revolution speed of 370 rpm (rotation and reverse rotation) for 2 hours, 148 mg (yield 74.0%) A positive electrode mixture was obtained.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

(比較例11)
加熱処理温度を160℃とした点を除き、比較例10と同様にして正極合材を得た。
この正極合材を用いて、上述した電池作製方法に従い電池を作製し、放電容量を測定した。
(Comparative Example 11)
A positive electrode mixture was obtained in the same manner as in Comparative Example 10, except that the heat treatment temperature was 160 ° C.
Using this positive electrode mixture, a battery was prepared according to the battery preparation method described above, and the discharge capacity was measured.

比較例1〜11及び実施例1〜19における、活性炭の種類及びBET比表面積、硫黄被覆の有無、膜厚、硫黄で被覆された活性炭中の硫黄及び活性炭の重量比(比較例2〜4、6、7、9〜11を除く)、加熱処理温度、固体電解質の種類、正極合材組成、並びに、硫黄1g当たりの放電容量及び正極合材層1g当たりの放電容量を表1に示す。 In Comparative Examples 1 to 11 and Examples 1 to 19, the type of activated carbon and the BET specific surface area, the presence or absence of sulfur coating, the film thickness, the weight ratio of sulfur and activated carbon in activated carbon coated with sulfur (Comparative Examples 2 to 4, Tables 1 to 6 show the heat treatment temperature, the type of solid electrolyte, the composition of the positive electrode mixture, the discharge capacity per gram of sulfur, and the discharge capacity per gram of the positive electrode mixture layer.

Figure 0006278301
Figure 0006278301

以上の結果から、本発明の製造方法により所定の膜厚の硫黄で均一に被覆された薄膜硫黄被覆活性炭を簡便に得ることができ、また、この薄膜硫黄被覆活性炭を全固体型リチウム硫黄電池の正極合材に用いることにより、正極合材層当たりの放電容量が大きく、レート特性に優れる全固体型リチウム硫黄電池を得ることができることが明らかとなった。 From the above results, a thin film sulfur-coated activated carbon uniformly coated with sulfur having a predetermined film thickness can be easily obtained by the production method of the present invention. It has been clarified that the use of the positive electrode mixture can provide an all-solid-state lithium-sulfur battery having a large discharge capacity per positive electrode mixture layer and excellent rate characteristics.

1 負極集電体
2 負極
3 固体電解質層
4 正極合材層
5 正極集電体
10 全固体型リチウム硫黄電池

DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode 3 Solid electrolyte layer 4 Positive electrode compound material layer 5 Positive electrode collector 10 All solid-state lithium-sulfur battery

Claims (7)

硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)、及び、
工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)を含む、膜厚0.2〜1.4nmの硫黄で被覆された、全固体型リチウム硫黄電池の正極合材用薄膜硫黄被覆活性炭の製造方法。
A step of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur (a); and
An all-solid-state lithium-sulfur battery coated with sulfur having a film thickness of 0.2 to 1.4 nm, comprising the step (b) of separating the activated carbon coated with sulfur obtained in step (a) from the sulfur solution. A method for producing a thin film sulfur-coated activated carbon for a positive electrode mixture.
工程(b)において分離された、硫黄で被覆された活性炭を加熱処理する工程(c)をさらに含む、
請求項1記載の薄膜硫黄被覆活性炭の製造方法。
A step (c) of heat-treating the activated carbon coated with sulfur separated in step (b);
The manufacturing method of the thin film sulfur covering activated carbon of Claim 1.
工程(c)において、加熱処理の温度は60℃以上である、請求項2記載の薄膜硫黄被覆活性炭の製造方法。 The manufacturing method of the thin film sulfur covering activated carbon of Claim 2 whose temperature of heat processing is 60 degreeC or more in a process (c). 工程(c)において、加熱処理の温度は100℃以上である、請求項3記載の薄膜硫黄被覆活性炭の製造方法。 The manufacturing method of the thin film sulfur covering activated carbon of Claim 3 whose temperature of heat processing is 100 degreeC or more in a process (c). 膜厚は0.5〜1.0nmである、請求項1〜4のいずれか1項に記載の薄膜硫黄被覆活性炭の製造方法。 The manufacturing method of the thin film sulfur covering activated carbon of any one of Claims 1-4 whose film thickness is 0.5-1.0 nm. 硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)、
工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)、及び、
工程(b)で得られた膜厚0.2〜1.4nmの硫黄で被覆された薄膜硫黄被覆活性炭及び固体電解質を混合し、正極合材を得る工程を含む、全固体型リチウム硫黄電池に用いる正極合材の製造方法。
A step of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur (a),
Separating the sulfur-coated activated carbon obtained in step (a) from the sulfur solution; and
An all-solid-state lithium-sulfur battery comprising a step of mixing a thin film sulfur-coated activated carbon coated with sulfur having a film thickness of 0.2 to 1.4 nm obtained in step (b) and a solid electrolyte to obtain a positive electrode mixture A method for producing a positive electrode mixture to be used.
硫黄溶液にBET比表面積が1800m/g以上の活性炭を浸漬し、活性炭を硫黄で被覆する工程(a)、
工程(a)で得られた硫黄で被覆された活性炭を硫黄溶液から分離する工程(b)、
工程(b)で得られた膜厚0.2〜1.4nmの硫黄で被覆された薄膜硫黄被覆活性炭及び固体電解質を混合し、正極合材を得る工程、及び、
得られた正極合材を固体電解質層の片面に堆積させる工程を含む、正極合材層、固体電解質層、負極及び集電体を備えた全固体型リチウム硫黄電池の製造方法。
A step of immersing activated carbon having a BET specific surface area of 1800 m 2 / g or more in a sulfur solution and coating the activated carbon with sulfur (a),
Separating the activated carbon coated with sulfur obtained in step (a) from the sulfur solution (b);
Mixing the thin film sulfur-coated activated carbon coated with sulfur having a film thickness of 0.2 to 1.4 nm obtained in step (b) and a solid electrolyte to obtain a positive electrode mixture; and
A method for producing an all-solid-state lithium-sulfur battery comprising a positive electrode mixture layer, a solid electrolyte layer, a negative electrode, and a current collector, comprising a step of depositing the obtained positive electrode mixture on one side of a solid electrolyte layer.
JP2013223226A 2013-10-28 2013-10-28 Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery Active JP6278301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223226A JP6278301B2 (en) 2013-10-28 2013-10-28 Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223226A JP6278301B2 (en) 2013-10-28 2013-10-28 Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery

Publications (2)

Publication Number Publication Date
JP2015088232A JP2015088232A (en) 2015-05-07
JP6278301B2 true JP6278301B2 (en) 2018-02-14

Family

ID=53050834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223226A Active JP6278301B2 (en) 2013-10-28 2013-10-28 Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery

Country Status (1)

Country Link
JP (1) JP6278301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4235856A1 (en) 2020-10-26 2023-08-30 Nissan Motor Co., Ltd. Positive electrode material for electrical devices, positive electrode for electrical devices using same, and electrical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275313A (en) * 1993-03-22 1994-09-30 Matsushita Electric Ind Co Ltd Lithium battery
JP3670931B2 (en) * 2000-04-25 2005-07-13 三洋電機株式会社 Electrode material for lithium secondary battery and lithium secondary battery
EP2658011B1 (en) * 2010-12-24 2022-09-28 Idemitsu Kosan Co., Ltd. Positive electrode material for lithium ion batteries, and lithium ion battery

Also Published As

Publication number Publication date
JP2015088232A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP6061139B2 (en) Method for producing positive electrode mixture for all-solid-state lithium-sulfur battery
KR101780578B1 (en) Positive electrode mixture and all-solid-state lithium sulfur cell
JP6380883B2 (en) Positive electrode mixture, method for producing the same, and all solid-state lithium-sulfur battery
JP5445809B1 (en) Positive electrode mixture and all-solid-state lithium-sulfur battery
JP6108267B2 (en) Positive electrode mixture and all-solid-state lithium-sulfur battery
JP6160950B2 (en) Thin-film sulfur-coated conductive carbon, positive electrode mixture, and all-solid-state lithium-sulfur battery
JP6531887B2 (en) Positive electrode composite material and all solid lithium-sulfur battery
JP6160951B2 (en) Method for producing thin-film sulfur-coated conductive carbon, thin-film sulfur-coated conductive carbon, positive electrode mixture, and all-solid-state lithium-sulfur battery
JP6531888B2 (en) Positive electrode composite material and all solid lithium-sulfur battery
JP6249213B2 (en) Thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery
JP6531886B2 (en) Positive electrode composite material and all solid lithium-sulfur battery
JP6278301B2 (en) Thin-film sulfur-coated activated carbon manufacturing method, thin-film sulfur-coated activated carbon, positive electrode mixture and all-solid-state lithium-sulfur battery
WO2021251031A1 (en) Positive electrode mixture for composite all-solid-state lithium sulfur battery
JP6292436B2 (en) Positive electrode mixture and all-solid-state lithium-sulfur battery
JP6380884B2 (en) Positive electrode mixture and all-solid-state sodium-sulfur battery
JP2022133785A (en) Method for producing sulfide solid electrolyte
JP6657671B2 (en) Stabilized lithium powder, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6278301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250