JP6276567B2 - Non-waveguide line-waveguide converter - Google Patents

Non-waveguide line-waveguide converter Download PDF

Info

Publication number
JP6276567B2
JP6276567B2 JP2013241475A JP2013241475A JP6276567B2 JP 6276567 B2 JP6276567 B2 JP 6276567B2 JP 2013241475 A JP2013241475 A JP 2013241475A JP 2013241475 A JP2013241475 A JP 2013241475A JP 6276567 B2 JP6276567 B2 JP 6276567B2
Authority
JP
Japan
Prior art keywords
waveguide
probe
line
conductor
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241475A
Other languages
Japanese (ja)
Other versions
JP2015103886A (en
Inventor
靖典 岸澤
靖典 岸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2013241475A priority Critical patent/JP6276567B2/en
Publication of JP2015103886A publication Critical patent/JP2015103886A/en
Application granted granted Critical
Publication of JP6276567B2 publication Critical patent/JP6276567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は非導波管線路−導波管変換器、特にマイクロ波回路に使用される分布定数線路又は同軸線路等の非導波管線路と導波管の間の変換に使用され、高入力電力耐性を有する変換器の構成に関する。   The present invention is used for non-waveguide line-waveguide converters, particularly for conversion between non-waveguide lines and waveguides, such as distributed constant lines or coaxial lines used in microwave circuits, and high input The present invention relates to a configuration of a converter having power tolerance.

従来から、マイクロ波回路として増幅器や周波数変換器等が用いられており、これらの回路から外部回路へのマイクロ波信号の伝送には、伝送損失の少ない導波管を利用することが多い。そして、このマイクロ波回路内では、その回路構成や使用部品の都合上、マイクロストリップ線路等に代表される分布定数伝送線路や同軸線路が使用されるため、これら伝送線路と導波管の伝送モードを変換する非導波管線路−導波管変換器が必要であり、その変換器としては、例えば下記特許文献1,2に開示される技術がある。   Conventionally, amplifiers, frequency converters, and the like have been used as microwave circuits, and waveguides with low transmission loss are often used for transmission of microwave signals from these circuits to external circuits. In this microwave circuit, a distributed constant transmission line and a coaxial line typified by a microstrip line are used because of the circuit configuration and parts used. A non-waveguide line-waveguide converter for converting the above is required, and examples of the converter include techniques disclosed in Patent Documents 1 and 2 below.

図3には、特許文献1と同様に、前置回路からの伝送線路であるマイクロストリップ線路を導波管内に挿入し先端開放プローブとして利用する一般的な構造が示されている。即ち、図3に示されるように、導波管1には短絡面(ショート面)2が設けられ、この導波管1のH面(図の上面で磁界に平行な面)から、誘電体基板3及びこの基板3に形成されたマイクロストリップ線路4が導波管内まで延長挿入され、この線路の先端がプローブ4aとなる。このような構造によれば、非導波管線路−導波管変換器が簡便かつ安価に実現できるという利点がある。   FIG. 3 shows a general structure in which a microstrip line, which is a transmission line from a front circuit, is inserted into a waveguide and used as an open-ended probe, as in Patent Document 1. That is, as shown in FIG. 3, the waveguide 1 is provided with a short-circuit surface (short surface) 2. From the H surface of the waveguide 1 (surface parallel to the magnetic field in the upper surface of the figure), a dielectric is formed. The substrate 3 and the microstrip line 4 formed on the substrate 3 are extended and inserted into the waveguide, and the tip of this line becomes the probe 4a. According to such a structure, there is an advantage that a non-waveguide line-waveguide converter can be realized simply and inexpensively.

一方、特許文献2(第5図)に示されるように、階段状突起を有するリッジを変換部に設ける特殊な構造を持つ同軸導波管変換器も存在する。   On the other hand, as shown in Patent Document 2 (FIG. 5), there is also a coaxial waveguide converter having a special structure in which a ridge having a stepped protrusion is provided in a conversion portion.

実開昭61−93005号公報Japanese Utility Model Publication No. 61-93005 実開昭62−77903号公報Japanese Utility Model Publication No. 62-77903

しかしながら、従来の非導波管線路−導波管変換器では、回路を構成する材料やその材料の表面状態等に起因する伝送損失が存在するため、特に使用する信号電力が大きくなった場合は、その部位での発熱が増大し、構成材料によっては、材料の溶融や変形、炭化といった破損を引き起こすという問題があった。しかも、発熱により高温になることで発生する熱電子放出や整合条件の著しい変化による高電界部位の発生等を起因として、放電に至るといった不具合も起こることがある。   However, in the conventional non-waveguide line-waveguide converter, there is a transmission loss due to the material constituting the circuit and the surface state of the material. However, there is a problem that heat generation at the part increases, and depending on the constituent material, the material may be damaged such as melting, deformation, and carbonization. In addition, there may be a problem such as discharge due to emission of thermoelectrons generated due to a high temperature due to heat generation or generation of a high electric field site due to a significant change in matching conditions.

上述のように、分布定数伝送線路としてのマイクロストリップ線路(4)の先端部(4a:開放部)や同軸線路の中心導体の先端開放部をプローブとして導波管内に挿入する一般的で簡便かつ安価に実現できる構造の変換器においては、細い線状のプローブを空間内に配置する等の構造上、等価熱抵抗が大きくなることから、上述した不具合が発生し易く、高電力を扱えないという問題があった。   As described above, a general, simple, and easy insertion of a tip end portion (4a: open portion) of a microstrip line (4) serving as a distributed constant transmission line or a tip end open portion of a central conductor of a coaxial line into a waveguide as a probe. In a converter with a structure that can be realized at low cost, because the equivalent thermal resistance increases due to the structure such as the arrangement of thin linear probes in the space, the above-mentioned problems are likely to occur and high power cannot be handled. There was a problem.

また、従来例としての上記特許文献2は、特許文献1とは異なりプローブ部の熱抵抗を低く抑えることが可能であるが、その反面、階段状のリッジを持つ変換部の構造が複雑となり、製作コストがかかるという問題がある。   Moreover, although the said patent document 2 as a prior art example can hold down the thermal resistance of a probe part low unlike patent document 1, on the other hand, the structure of the conversion part with a stepped ridge becomes complicated, There is a problem that the production cost is high.

本発明は上記問題点に鑑みてなされたものであり、その目的は、簡便かつ安価な構造を維持しながら、導波管内に挿入されるプローブ及びその周辺部の熱抵抗を低下させ、高い電力を扱うことのできる非導波管線路−導波管変換器を提供することにある。   The present invention has been made in view of the above problems, and its object is to reduce the thermal resistance of the probe inserted in the waveguide and its peripheral portion while maintaining a simple and inexpensive structure, and to achieve high power. It is an object to provide a non-waveguide line-waveguide converter capable of handling the above.

上記目的を達成するために、請求項1に係る発明は、短絡面が設けられた導波管と、この導波管内へそのプローブ挿入H面(磁界に平行な面)から対向する対向H面へ向けて挿入された非導波管線路のプローブと、を有し、上記非導波管線路と上記導波管との間の伝送モード変換を行う非導波管線路−導波管変換器において、上記プローブの先端部から上記導波管のE面(電界に平行な面)へ向けて短絡用導体を形成すると共に、この短絡用導体の端部を上記E面の対向H面寄りに接合し、かつ上記短絡用導体のプローブ挿入H面側の形状は段部を有し、上記短絡用導体の対向H面側の形状は上記E面との接合面を除いて段部なく、上記対向H面と平行に直線状となるようにしたことを特徴とする。
請求項2の発明は、上記短絡用導体と上記プローブの連結部の角部、上記短絡用導体と上記導波管E面の連結部の角部又は短絡用導体自体の角部は、緩やかな曲線(弧状)となるように形成したことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a waveguide provided with a short-circuit surface, and an opposing H surface facing the probe insertion H surface (surface parallel to the magnetic field) into the waveguide. anda probe non waveguide line inserted toward the non-waveguide line for transmitting mode conversion between the unguided pipe line and the waveguide - waveguide converter , The short-circuiting conductor is formed from the tip of the probe toward the E-plane (surface parallel to the electric field) of the waveguide, and the end of the short-circuiting conductor is close to the opposite H-plane of the E-plane. The shape of the shorting conductor on the probe insertion H surface side has a stepped portion, and the shape of the opposing H surface side of the shorting conductor has no stepped portion except for the joining surface with the E surface, It is characterized by being linear in parallel with the opposing H surface .
According to a second aspect of the present invention, the corner of the connecting portion between the shorting conductor and the probe, the corner of the connecting portion between the shorting conductor and the waveguide E surface, or the corner of the shorting conductor itself is gentle. It is formed so as to have a curved line (arc shape).

請求項1の構成によれば、プローブと導波管E面とを連結する短絡用導体によって、プローブ部から周辺部への等価熱抵抗が大幅に減少し、プローブ部から発生する熱が放出される。
請求項2の構成によれば、短絡用導体とプローブの連結部、短絡用導体と導波管E面の連結部又は短絡用導体自体の角部が鋭い角となっていないため、この角部に電界が集中することが避けられる。
According to the first aspect of the present invention, the equivalent thermal resistance from the probe part to the peripheral part is greatly reduced by the short-circuiting conductor connecting the probe and the waveguide E surface, and the heat generated from the probe part is released. The
According to the configuration of claim 2, since the connecting portion between the shorting conductor and the probe, the connecting portion between the shorting conductor and the waveguide E surface, or the corner portion of the shorting conductor itself is not a sharp corner, It is possible to avoid the concentration of the electric field in

本発明の非導波管線路−導波管変換器によれば、プローブ部から周辺部への等価熱抵抗を大幅に減少させることができ、その結果、プローブ部で発生する熱を効率よく放出でき、材料の溶融や変形、炭化といった一次破損や、これらを引き金とする放電等の二次的破損が発生することがなく、またこれらの破損を生じさせる入射電力が相対的に向上し、簡便かつ安価な構造でありながら高い大きな電力を取り扱うことができるという効果がある。   According to the non-waveguide line-waveguide converter of the present invention, the equivalent thermal resistance from the probe part to the peripheral part can be greatly reduced, and as a result, the heat generated in the probe part is efficiently released. No primary damage such as melting, deformation, or carbonization of the material, or secondary damage such as discharge triggered by these, and the incident power that causes these damages is relatively improved and simple. In addition, there is an effect that a large amount of electric power can be handled while being an inexpensive structure.

また、短絡用導体と各部との連結部や短絡用導体自体の角部を緩やかな曲線とすることで、短絡用導体を設けた場合でも、電界の集中を緩和する効果があるため、高入力電力耐性を向上させることが可能となる。   In addition, even if a shorting conductor is provided by connecting the shorting conductor to each part and the corners of the shorting conductor itself, it has the effect of reducing the concentration of the electric field. It becomes possible to improve electric power tolerance.

本発明の第1実施例に係る非導波管線路(マイクロストリップ線路)−導波管変換器の構成を示し、図(A)は導波管開口側から見た正面図、図(B)は図(A)の中央断面図である。1 shows a configuration of a non-waveguide line (microstrip line) -waveguide converter according to a first embodiment of the present invention, in which FIG. (A) is a front view seen from the waveguide opening side, and FIG. These are the center sectional views of Drawing (A). 第2実施例の非導波管線路(同軸線路)−導波管変換器の構成を示し、図(A)は導波管開口側から見た正面図、図(B)は図(A)の中央断面図、図(C)は導波管内から上側を見た図である。The structure of the non-waveguide line (coaxial line)-waveguide converter of 2nd Example is shown, A figure (A) is the front view seen from the waveguide opening side, A figure (B) is a figure (A). FIG. 4C is a diagram showing the upper side from inside the waveguide. 従来の非導波管線路(マイクロストリップ線路)−導波管変換器の構成を示し、図(A)は導波管開口側から見た正面図、図(B)は図(A)の中央断面図である。The structure of the conventional non-waveguide line (microstrip line) -waveguide converter is shown, FIG. (A) is a front view seen from the waveguide opening side, and FIG. (B) is the center of FIG. (A). It is sectional drawing.

図1(A),(B)には、本発明の第1実施例に係る非導波管線路−導波管変換器の構成が示されており、この第1実施例は、非導波管線路としてマイクロストリップ線路を用いたものである。
図1において、図3でも説明したように、1は導波管、2は短絡面(ショート面)、3は誘電体基板、4はこの基板3に形成された前置回路からのマイクロストリップ線路(分布定数線路)、4aが導波管1内に突出挿入されたマイクロストリップ線路4の先端のプローブ、5はスルーホールである。
1A and 1B show the configuration of a non-waveguide line-waveguide converter according to a first embodiment of the present invention. This first embodiment is a non-waveguide. A microstrip line is used as the tube line.
In FIG. 1, as described in FIG. 3, 1 is a waveguide, 2 is a shorted surface (short surface), 3 is a dielectric substrate, and 4 is a microstrip line from a pre-circuit formed on the substrate 3. (Distributed constant line) 4a is a probe at the tip of the microstrip line 4 projectingly inserted into the waveguide 1, and 5 is a through hole.

そして、実施例では、プローブ4aの先端側に短絡用(放熱用)導体10が一体に形成され、この短絡用導体10は、プローブ4aの挿入方向、即ち電界方向に対し直交する方向へ長くなるように設けられ、その左右両端部が導波管1の左右のE面(図の左右壁面で電界方向に平行な面)に接触して短絡される。   In the embodiment, a short-circuit (heat-dissipating) conductor 10 is integrally formed on the distal end side of the probe 4a, and the short-circuit conductor 10 is elongated in the direction in which the probe 4a is inserted, that is, in the direction orthogonal to the electric field direction. The left and right ends of the waveguide 1 are in contact with the left and right E planes (surfaces parallel to the electric field direction on the left and right wall surfaces in the figure) and short-circuited.

また、矢示(g)で示したように、短絡用導体10とプローブ4aとの連結部の角部、短絡用導体10と導波管1の左右E面との連結部の角部、そして短絡用導体10自体の角部は、尖った角を取って丸くし、緩やかな曲線(弧状)となるようにしている。   Further, as indicated by the arrow (g), the corner of the connecting portion between the shorting conductor 10 and the probe 4a, the corner of the connecting portion between the shorting conductor 10 and the left and right E surfaces of the waveguide 1, and The corners of the short-circuiting conductor 10 itself are rounded with sharp corners so as to have a gentle curve (arc shape).

上記の第1実施例の構成によれば、プローブ4aと導波管1の左右のE面が短絡用導体10によって連結されるので、プローブ4aの部分から周辺部への等価熱抵抗が大幅に減少することになり、プローブ部分からの発生熱が良好に放出される。そして、短絡用導体10がプローブ4aの挿入方向(電界E方向)と直交し、導波管内伝送波の磁界(H)の向きと並行に配置されるため、プローブ4aが導波管1に対し短絡状態となっていても、導波管内の伝送波に影響を与えることはない。   According to the configuration of the first embodiment, since the probe 4a and the left and right E surfaces of the waveguide 1 are connected by the short-circuiting conductor 10, the equivalent thermal resistance from the portion of the probe 4a to the peripheral portion is greatly increased. As a result, the heat generated from the probe portion is released well. Since the short-circuiting conductor 10 is orthogonal to the insertion direction (electric field E direction) of the probe 4 a and is disposed in parallel with the direction of the magnetic field (H) of the transmission wave in the waveguide, the probe 4 a is located with respect to the waveguide 1. Even in the short-circuit state, the transmission wave in the waveguide is not affected.

しかし、この変換部はマイクロストリップ線路4を伝送してきた準TEM波が導波管伝送モードであるTE波にモード変換される部分であり、故に完全なTE波にはなっていないため、この短絡用導体10の影響を完全に無視することはできない。そこで、実施にあたっては、下記のような条件に留意し、電磁界シミュレータ等を使用して最適なプローブ4aと短絡用導体10の形状を設定することが好ましい。
1.導波管E面への短絡用導体10の幅は、プローブ4aで発生する熱を効率よく逃がすという観点では、可能な限り太い方が望ましい。
2.より高電力での耐性を得るためには、プローブ4a及び短絡用導体10の導体形状は、電界の集中し易い鋭い角は避けた形状とする。
なお、上記説明は、信号がマイクロストリップ線路4側から入力され、導波管1に向かって伝送する方向で説明したが、この変換回路は、可逆性を有しているので、信号が導波管1側から入力され、マイクロストリップ線路4に向かって進む場合でも、上記説明が成立することになる。
However, this conversion unit is a part in which the quasi-TEM wave transmitted through the microstrip line 4 is mode-converted into a TE wave that is a waveguide transmission mode, and therefore is not a complete TE wave. The influence of the conductor 10 cannot be completely ignored. Therefore, in the implementation, it is preferable to pay attention to the following conditions and set the optimal shape of the probe 4a and the short-circuiting conductor 10 using an electromagnetic field simulator or the like.
1. The width of the short-circuiting conductor 10 to the surface of the waveguide E is desirably as thick as possible from the viewpoint of efficiently releasing the heat generated by the probe 4a.
2. In order to obtain higher power resistance, the conductor shapes of the probe 4a and the short-circuiting conductor 10 are made to avoid the sharp corner where the electric field tends to concentrate.
In the above description, a signal is input from the microstrip line 4 side and transmitted toward the waveguide 1. However, since this conversion circuit has reversibility, the signal is guided. The above description is valid even when input from the tube 1 side and proceed toward the microstrip line 4.

また、実施例では、上述のように、短絡用導体10とプローブ4aとの連結部(g)、短絡用導体10と導波管1の左右E面との連結部の角部(g)、そして短絡用導体10自体の角部(g)を鋭くせず、緩やかな曲線としたので、各角部における電界の集中が減少し、高電力入力に対する耐性が向上するという利点がある。   In the embodiment, as described above, the connecting portion (g) between the shorting conductor 10 and the probe 4a, the corner portion (g) of the connecting portion between the shorting conductor 10 and the right and left E surfaces of the waveguide 1, Since the corner (g) of the short-circuiting conductor 10 itself is not a sharp curve but a gentle curve, there is an advantage that the concentration of the electric field at each corner is reduced and the resistance to high power input is improved.

図2には、第2実施例に係る非導波管線路−導波管変換器の構成が示されており、この第2実施例は、非導波管線路として同軸線路を用いたものである。
図2に示されるように、短絡面2が設けられた導波管1のH面へ向けて同軸部誘電体7を介して同軸線路8が配置され、この中心導体がプローブ9としてH面から導波管内へ挿入される。
FIG. 2 shows a configuration of a non-waveguide line-waveguide converter according to the second embodiment. This second embodiment uses a coaxial line as the non-waveguide line. is there.
As shown in FIG. 2, a coaxial line 8 is arranged via a coaxial dielectric 7 toward the H plane of the waveguide 1 provided with the short-circuit plane 2, and this central conductor serves as a probe 9 from the H plane. It is inserted into the waveguide.

そして、このプローブ9はその挿入方向(電界方向)に対し直交する方向へ長くなる短絡用導体12に接続され(一体的に取り付けられ)、この短絡用導体12の左右両端部が導波管1の左右のE側面(電界方向に平行な面)に接触して短絡される。また、短絡用導体12とプローブ9や導波管1の左右E側面との連結部の角部(g)、そして短絡用導体12自体の角部が緩やかな曲線に形成される。   The probe 9 is connected to (attached to) the short-circuiting conductor 12 that is elongated in a direction orthogonal to the insertion direction (electric field direction). The left and right E side surfaces (surfaces parallel to the electric field direction) are contacted and short-circuited. Further, the corner portion (g) of the connecting portion between the short-circuit conductor 12 and the right and left E side surfaces of the probe 9 and the waveguide 1 and the corner portion of the short-circuit conductor 12 itself are formed in a gentle curve.

このような同軸線路の第2実施例においても、第1実施例と同様に、プローブ9の部分から周辺部への等価熱抵抗が大幅に減少し、プローブ部分からの発生熱が良好に放出され、また各角部(g)においての電界の集中も緩和されるという利点がある。   Also in the second embodiment of such a coaxial line, as in the first embodiment, the equivalent thermal resistance from the probe 9 portion to the peripheral portion is greatly reduced, and the generated heat from the probe portion is released well. Also, there is an advantage that the concentration of the electric field at each corner (g) is alleviated.

以上のように、第1及び第2実施例においては、材料の溶融、変形又は炭化等の一次破損、これらを引き金とする放電等の二次的破損が発生せず、また高入力電力耐性により高電力を扱う機器への使用が有用となる。   As described above, in the first and second embodiments, primary damage such as melting, deformation, or carbonization of the material, secondary damage such as discharge triggered by these does not occur, and high input power resistance is achieved. Use in equipment that handles high power is useful.

上記各実施例では、方形導波管の構成について説明したが、円形導波管の場合も同様に適用でき、電界(E)方向へ向けて挿入配置したプローブに上記実施例と同様の短絡用導体を連結し、この短絡用導体を電界(E)に略平行となる側面に短絡するように構成すればよい。   In each of the above-described embodiments, the configuration of the rectangular waveguide has been described. However, the present invention can be similarly applied to a circular waveguide, and a short circuit similar to that of the above-described embodiment can be applied to a probe inserted and arranged in the electric field (E) direction. What is necessary is just to comprise so that a conductor may be connected and this shorting conductor may be short-circuited to the side surface substantially parallel to the electric field (E).

1…導波管、 2…短絡面(ショート面)、
3…誘電体基板、 4…マイクロストリップ線路、
4a,9…プローブ、 8…同軸線路、
10,12…短絡用導体。
DESCRIPTION OF SYMBOLS 1 ... Waveguide, 2 ... Short-circuit surface (short surface),
3 ... Dielectric substrate, 4 ... Microstrip line,
4a, 9 ... probe, 8 ... coaxial line,
10, 12 ... Short-circuiting conductor.

Claims (2)

短絡面が設けられた導波管と、この導波管内へそのプローブ挿入H面から対向する対向H面へ向けて挿入された非導波管線路のプローブと、を有し、上記非導波管線路と上記導波管との間の伝送モード変換を行う非導波管線路−導波管変換器において、
上記プローブの先端部から上記導波管のE面へ向けて短絡用導体を形成すると共に、この短絡用導体の端部を上記E面の対向H面寄りに接合し、かつ
上記短絡用導体のプローブ挿入H面側の形状は段部を有し、上記短絡用導体の対向H面側の形状は上記E面との接合面を除いて段部なく、上記対向H面と平行に直線状となるようにしたことを特徴とする非導波管線路−導波管変換器。
A waveguide having a short-circuited surface, and a probe of a non-waveguide line that is inserted into the waveguide from the probe insertion H surface toward the opposing H surface. In a non-waveguide line-waveguide converter that performs transmission mode conversion between the tube line and the waveguide,
Forming a short-circuiting conductor from the tip of the probe toward the E-plane of the waveguide, and joining the end of the short-circuiting conductor closer to the opposite H-plane of the E-plane; and
The shape on the probe insertion H surface side of the shorting conductor has a stepped portion, and the shape on the facing H surface side of the shorting conductor has no stepped portion except for the joint surface with the E surface, A non-waveguide line-waveguide converter characterized by being linear in parallel .
上記短絡用導体と上記プローブの連結部の角部、上記短絡用導体と上記導波管E面の連結部の角部又は短絡用導体自体の角部は、緩やかな曲線となるように形成したことを特徴とする請求項1記載の非導波管線路−導波管変換器。

The corner portion of the connecting portion between the shorting conductor and the probe, the corner portion of the connecting portion between the shorting conductor and the waveguide E surface, or the corner portion of the shorting conductor itself is formed to have a gentle curve. The non-waveguide line-waveguide converter according to claim 1.

JP2013241475A 2013-11-22 2013-11-22 Non-waveguide line-waveguide converter Active JP6276567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241475A JP6276567B2 (en) 2013-11-22 2013-11-22 Non-waveguide line-waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241475A JP6276567B2 (en) 2013-11-22 2013-11-22 Non-waveguide line-waveguide converter

Publications (2)

Publication Number Publication Date
JP2015103886A JP2015103886A (en) 2015-06-04
JP6276567B2 true JP6276567B2 (en) 2018-02-07

Family

ID=53379287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241475A Active JP6276567B2 (en) 2013-11-22 2013-11-22 Non-waveguide line-waveguide converter

Country Status (1)

Country Link
JP (1) JP6276567B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887662B (en) * 2015-12-16 2019-04-30 北京空间飞行器总体设计部 Coaxial line and waveguide adaptor
DE112016006983T5 (en) * 2016-07-22 2019-02-28 Mitsubishi Electric Corporation Coaxial waveguide hollow waveguide transition circuit
CN114188686B (en) * 2021-10-30 2023-03-31 西南电子技术研究所(中国电子科技集团公司第十研究所) H-face waveguide/microstrip probe conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB781882A (en) * 1954-11-10 1957-08-28 Nat Res Dev Waveguide/co-axial transmission line transformers
GB865474A (en) * 1958-08-25 1961-04-19 Cossor Ltd A C Improvements in and relating to radio frequency coupling devices

Also Published As

Publication number Publication date
JP2015103886A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US11303003B2 (en) Waveguide microstrip line converter
US2981904A (en) Microwave transition device
US20110267153A1 (en) Waveguide-microstrip line converter
JPWO2009004729A1 (en) Transmission line converter
JP6896109B2 (en) Waveguide microstrip line converters and antenna devices
JP6276567B2 (en) Non-waveguide line-waveguide converter
JP6143971B2 (en) Coaxial microstrip line conversion circuit
JP6362820B2 (en) Coaxial line-waveguide converter
JP2010056920A (en) Waveguide microstrip line converter
JP5705035B2 (en) Waveguide microstrip line converter
JP5780995B2 (en) Rectangular waveguide connection structure
JP4013851B2 (en) Waveguide planar line converter
JP7129263B2 (en) converter
JP4588648B2 (en) Waveguide / microstrip line converter
KR101713769B1 (en) Spatial power combiner based on coaxial waveguide
JP4458452B2 (en) Non-radioactive dielectric line and waveguide conversion circuit
JP2017017638A (en) Directional coupler
JP2006081160A (en) Transmission path converter
JP5053245B2 (en) 180 degree hybrid
JP6391560B2 (en) Waveguide conversion circuit and antenna device
KR101336880B1 (en) Opened waveguide Transition device and Horn antenna
WO2021176712A1 (en) Waveguide microstrip line converter
JP2005311978A (en) Coaxial waveguide converter
KR101158720B1 (en) Broadband radio frequency window apparatus in w-band, inside apparatus applied to the same
KR101307270B1 (en) Inside apparatus applied to broadband radio frequency window apparatus in w-band

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6276567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250