JP6274570B2 - Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide - Google Patents

Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide Download PDF

Info

Publication number
JP6274570B2
JP6274570B2 JP2014085895A JP2014085895A JP6274570B2 JP 6274570 B2 JP6274570 B2 JP 6274570B2 JP 2014085895 A JP2014085895 A JP 2014085895A JP 2014085895 A JP2014085895 A JP 2014085895A JP 6274570 B2 JP6274570 B2 JP 6274570B2
Authority
JP
Japan
Prior art keywords
polynucleotide
thrombin
solution
reaction
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014085895A
Other languages
Japanese (ja)
Other versions
JP2015117228A (en
Inventor
正靖 桑原
正靖 桑原
井上 裕介
裕介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2014085895A priority Critical patent/JP6274570B2/en
Publication of JP2015117228A publication Critical patent/JP2015117228A/en
Application granted granted Critical
Publication of JP6274570B2 publication Critical patent/JP6274570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Description

本発明は、新規ヌクレオシド誘導体、それを含むポリヌクレオチドならびに該ポリヌクレオチドを用いたボトムアップ的三次元細胞培養方法および核酸アプタマーの選択方法に関する。   The present invention relates to a novel nucleoside derivative, a polynucleotide containing the derivative, a bottom-up three-dimensional cell culture method and a nucleic acid aptamer selection method using the polynucleotide.

細胞培養においては、より生体組織を模倣できるように、培養細胞を三次元的に培養する方法が望まれている。   In cell culture, a method of three-dimensionally culturing cultured cells is desired so that a living tissue can be mimicked more.

非特許文献1に見られるように、従来の三次元細胞培養法では、特殊な三次元培養プラットフォームを用いて細胞を培養させたり、二次元培養した細胞を三次元の型にはめ込みそこに生着させたりする方法、或いは、二次元培養と足場材等の塗布を反復することで三次元化する方法が知られている。また、トップダウン的微細加工技術(非特許文献2)によって培養基材を加工し、そこに三次元的に細胞を培養する技術も知られている。しかしながら、これらの方法では、培養基材の作製に時間やコストがかかっており、より簡便な三次元培養方法が望まれていた。   As seen in Non-Patent Document 1, in the conventional three-dimensional cell culture method, cells are cultured using a special three-dimensional culture platform, or two-dimensionally cultured cells are inserted into a three-dimensional mold and engrafted there. Or a method of making it three-dimensional by repeating application of two-dimensional culture and scaffolding material or the like is known. In addition, a technique for processing a culture substrate by a top-down microfabrication technique (Non-patent Document 2) and culturing cells three-dimensionally there is also known. However, in these methods, production of the culture substrate takes time and cost, and a simpler three-dimensional culture method has been desired.

Advanced Materials,2011,23,3506-3510Advanced Materials, 2011,23,3506-3510 Scientific Reports, 2013, 3:1316Scientific Reports, 2013, 3: 1316

本発明は、細胞膜親和性に優れる修飾ヌクレオシド構造を見出し、それを用いてポリヌクレオチド(核酸アプタマー)を作製し、細胞の効率的な三次元培養方法や核酸アプタマーの選択方法を提供することを課題とする。   An object of the present invention is to find a modified nucleoside structure excellent in cell membrane affinity, to produce a polynucleotide (nucleic acid aptamer) using the structure, and to provide an efficient method for three-dimensional cell culture and a method for selecting a nucleic acid aptamer And

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、化学構造中に親油性基及び両親媒性基を有する新規ヌクレオシド誘導体を合成することに成功し、これを含み、さらにトロンビン結合配列を組み込んだポリヌクレオチドを用いて細胞を培養することで、フィブリンゲルが細胞近傍に効率よく形成され、その結果、細胞を効率よく三次元培養できることを見出した。そして、生理的条件下でヒトトロンビンとフィブリノゲンを反応させるとフィブリンゲルが形成されることが知られているが、その際、ヒトトロンビンがフィブリンゲルに取り込まれることを見出した。さらに、ヒトトロンビンを、それをリガンドとする核酸アプタマーと複合体化させることにより、核酸アプタマーもフィブリンゲルに取り込まれることを明らかにした。すなわち、トロンビン結合性アプタマーを用いて任意の機能基をフィブリンゲルに導入できることが、本研究により初めて示された。また、新規ヌクレオシド誘導体を用いたポリヌクレオチドが核酸アプタマーの選択に効率よく使用できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have succeeded in synthesizing a novel nucleoside derivative having a lipophilic group and an amphiphilic group in its chemical structure, including this, It has been found that by culturing cells using a polynucleotide incorporating a thrombin binding sequence, fibrin gel is efficiently formed in the vicinity of the cells, and as a result, the cells can be efficiently three-dimensionally cultured. Then, it is known that fibrin gel is formed when human thrombin and fibrinogen are reacted under physiological conditions. At that time, it was found that human thrombin is taken into fibrin gel. Furthermore, it was clarified that the nucleic acid aptamer is also incorporated into the fibrin gel by complexing human thrombin with the nucleic acid aptamer having it as a ligand. In other words, this study showed for the first time that any functional group can be introduced into a fibrin gel using a thrombin-binding aptamer. In addition, the inventors have found that a polynucleotide using a novel nucleoside derivative can be efficiently used for selection of nucleic acid aptamers, and completed the present invention.

即ち、本発明は以下の通りである。
[1] 下記式(I−1)〜(I−4)の何れかの式で表されるヌクレオシド誘導体又はその塩。
(式(I−1)〜(I−4)中、R1は水素原子(−H)、フッ素原子(−F)、ヒドロキシル基(−OH)、アミノ基(−NH2)、又はメルカプト基(−SH)を、R2はそれぞれ独立に水素原子(−H)又はヒドロキシル基の保護基を、R3はそれぞれ独立に水素原子(−H)又は炭素数1〜6の炭化水素基を、Aは−CONH−または−CHNHCO−を、Yは分岐構造及び/又は不飽和結合を含んでいてもよい炭素数2〜12の2価の炭化水素基を、nは2〜20の整数を、pは1〜6の整数を、qは1〜20の整数を、rは1〜6の整数を表す。)
[2] [1]に記載のヌクレオシド誘導体の5’−リン酸エステル、ホスホロチオエート体又はそれらの塩。
[3] [2]に記載の5’−リン酸エステル、ホスホロチオエート体もしくはそれらの塩、又はこれに標識物質を導入した標識ヌクレオチド誘導体を含む、ポリヌクレオチド合成用基質溶液。
[4] [3]に記載のポリヌクレオチド合成用基質溶液を含む、ポリヌクレオチド合成用試薬。
[5] [2]に記載の5’−リン酸エステル、ホスホロチオエート体もしくはそれらの塩、又はこれらに標識物質を導入した標識ヌクレオチド誘導体を合成用基質として用いることを特徴とする、ポリヌクレオチドの製造方法。
[6] [2]に記載のヌクレオシド誘導体の5’−リン酸エステル及び/又はそのホスホロチオエート体を構成単位として含むポリヌクレオチド。
[7] リガンド結合配列を含む、に記載のポリヌクレオチド。
[8] リガンド結合配列がトロンビンもしくはフィブリン、フィブリノゲン結合配列である、[7]に記載のポリヌクレオチド。
[9] [7]または[8]に記載のポリヌクレオチドとトロンビン、もしくはポリヌクレオチドとトロンビン及びフィブリノゲンを用いて細胞を培養することを特徴とする、細胞培養方法。
[10] [7]または[8]に記載のポリヌクレオチドとトロンビン、もしくは該ポリ
ヌクレオチドとトロンビン及びフィブリノゲンを含む、フィブリンゲル。
[11] 核酸アプタマーである、[6]に記載のポリヌクレオチド。
[12] [6]または[11]に記載のポリヌクレオチドを含む、ポリヌクレオチドライブラリー。
[13] [12]に記載のポリヌクレオチドライブラリーを用いて標的物質結合性ポリヌクレオチドを選択する工程を含む、核酸アプタマーの選択方法。
That is, the present invention is as follows.
[1] A nucleoside derivative represented by any one of the following formulas (I-1) to (I-4) or a salt thereof.
(In the formulas (I-1) to (I-4), R 1 is a hydrogen atom (—H), a fluorine atom (—F), a hydroxyl group (—OH), an amino group (—NH 2 ), or a mercapto group. (—SH), R 2 independently represents a hydrogen atom (—H) or a hydroxyl protecting group, R 3 independently represents a hydrogen atom (—H) or a hydrocarbon group having 1 to 6 carbon atoms, A represents —CONH— or —CH 2 NHCO—, Y represents a divalent hydrocarbon group having 2 to 12 carbon atoms which may contain a branched structure and / or an unsaturated bond, and n represents an integer of 2 to 20 P represents an integer of 1 to 6, q represents an integer of 1 to 20, and r represents an integer of 1 to 6.)
[2] A 5′-phosphate ester, a phosphorothioate derivative or a salt thereof of the nucleoside derivative according to [1].
[3] A substrate solution for polynucleotide synthesis comprising the 5′-phosphate ester, phosphorothioate compound or a salt thereof according to [2], or a labeled nucleotide derivative having a labeling substance introduced thereto.
[4] A polynucleotide synthesis reagent comprising the polynucleotide synthesis substrate solution according to [3].
[5] Production of a polynucleotide, characterized in that the 5′-phosphate ester, phosphorothioate compound or salt thereof according to [2], or a labeled nucleotide derivative having a labeling substance introduced thereto is used as a substrate for synthesis. Method.
[6] A polynucleotide comprising a 5′-phosphate ester of the nucleoside derivative according to [2] and / or a phosphorothioate derivative thereof as a structural unit.
[7] The polynucleotide according to [ 6 ] , comprising a ligand binding sequence.
[8] The polynucleotide according to [7], wherein the ligand binding sequence is thrombin, fibrin, or fibrinogen binding sequence.
[9] A cell culture method, comprising culturing cells using the polynucleotide according to [7] or [8] and thrombin, or the polynucleotide, thrombin and fibrinogen.
[10] A fibrin gel comprising the polynucleotide according to [7] or [8] and thrombin, or the polynucleotide, thrombin and fibrinogen.
[11] The polynucleotide according to [6], which is a nucleic acid aptamer.
[12] A polynucleotide library comprising the polynucleotide according to [6] or [11].
[13] A method for selecting a nucleic acid aptamer, comprising a step of selecting a target substance-binding polynucleotide using the polynucleotide library according to [12].

本発明のヌクレオシド誘導体を含むポリヌクレオチドは、化学構造中に親油性基及び両親媒性基が導入されているため、細胞膜にアンカリングしやすいという特徴やフィブリンのような巨大重合分子に対し相互作用を示すという特徴がある。
本発明のヌクレオシド誘導体を含むポリヌクレオチドがリガンド結合配列を含むことにより、リガンドと結合した状態で細胞表面上に固定化されることができる。これにより、リガンド成分が細胞表面上に濃縮されるので、細胞が足場や接着面を形成しやすくなり、さらに親油性基及び両親媒性基と生成したフィブリンとの相互作用により、細胞どうしの接着が促進され、細胞が三次元的に集合し、育成される。
本発明は、培地に試薬等を添加するだけで、細胞の三次元的生育を可能にするための方法論を与える。これにより、従来法にみられるような細胞の撒布と足場材の塗布の反復などといった煩雑な操作や、特殊な三次元培養プラットフォーム等を省略することができる。また、集合体形成が細胞の自発的生長に委ねられるため、血管内皮細胞等との共培養により、従来のトップダウン的微細加工技術等を要することなく、酸素や養分、排泄物等を運搬する血管網を有する人工組織・器官等の作製が期待できる。また、トロンビン結合性アプタマーを介して細胞生長の足場となるフィブリンゲルに種々の機能基を導入できることで、組織培養のみならず、細胞の組織形成を阻害できることも考えられるため、固形がんの形成阻害剤等の新しいタイプの抗がん剤が開発されることが期待される。
このようなボトムアップ的な三次元細胞培養法は、試験管や培養器中での器官形成や組織再生への応用が期待される。本発明は、再生医療や医薬品開発、発生・分化や疾患メカニズムの解明研究など、ライフイノベーションにおける重大分野に幅広く応用されることが期待される。
本発明の修飾ヌクレオシド三リン酸を同時に複数種用いることで多重修飾DNAが酵素的
に合成可能であり、SELEX法などによる核酸アプタマーの選択を効率よく行うことができ
る。
The polynucleotide comprising the nucleoside derivative of the present invention has a lipophilic group and an amphiphilic group introduced in its chemical structure, and thus is easily anchored to the cell membrane and interacts with macropolymer molecules such as fibrin. It has the feature of showing.
When the polynucleotide containing the nucleoside derivative of the present invention contains a ligand binding sequence, it can be immobilized on the cell surface in a state of being bound to the ligand. This concentrates the ligand component on the cell surface, making it easier for the cell to form a scaffold or an adhesion surface, and the interaction between the lipophilic group and the amphiphilic group and the generated fibrin to adhere cells. Is promoted, and the cells gather and grow three-dimensionally.
The present invention provides a methodology for enabling three-dimensional growth of cells simply by adding a reagent or the like to a medium. As a result, it is possible to omit complicated operations such as repeated application of cells and scaffolding, as in conventional methods, and special three-dimensional culture platforms. In addition, because aggregate formation is left to the spontaneous growth of cells, oxygen, nutrients, excrement, etc. are transported by co-culture with vascular endothelial cells, etc., without the need for conventional top-down microfabrication techniques, etc. Production of artificial tissues / organs having a vascular network can be expected. In addition, since various functional groups can be introduced into fibrin gel, which is a scaffold for cell growth, through thrombin-binding aptamers, it is considered that not only tissue culture but also cell tissue formation can be inhibited. It is expected that new types of anticancer agents such as inhibitors will be developed.
Such a bottom-up three-dimensional cell culture method is expected to be applied to organ formation and tissue regeneration in test tubes and incubators. The present invention is expected to be widely applied to critical fields in life innovation such as regenerative medicine, drug development, development / differentiation, and research on elucidation of disease mechanisms.
By using a plurality of modified nucleoside triphosphates of the present invention at the same time, multiple modified DNA can be synthesized enzymatically, and nucleic acid aptamers can be efficiently selected by the SELEX method or the like.

PCRによって合成した、修飾アデノシン誘導体A5を含むポリヌクレオチドの電気泳動写真。An electrophoretogram of a polynucleotide containing a modified adenosine derivative A5 synthesized by PCR. PCRによって合成した、修飾チミジン誘導体T5を含むポリヌクレオチドの電気泳動写真。An electrophoretogram of a polynucleotide comprising a modified thymidine derivative T5 synthesized by PCR. PCRによって合成した、修飾シチジン誘導体C3を含むポリヌクレオチドの電気泳動写真。An electrophoretogram of a polynucleotide containing a modified cytidine derivative C3 synthesized by PCR. PCRによって合成した、修飾グアノシン誘導体G12-1を含むポリヌクレオチドの電気泳動写真。An electrophoretogram of a polynucleotide containing a modified guanosine derivative G12-1 synthesized by PCR. PCRによって合成した、修飾ヌクレオシド三リン酸各1種類を含むポリヌクレオチドの電気泳動写真。Electrophoresis photograph of a polynucleotide synthesized by PCR and containing one modified nucleoside triphosphate. PCRによって合成した、修飾ヌクレオシド三リン酸各2種類を含むポリヌクレオチドの電気泳動写真。Electrophoretic photograph of a polynucleotide synthesized by PCR and containing two modified nucleoside triphosphates. PCRによって合成した、修飾ヌクレオシド三リン酸4種類を含むポリヌクレオチドの電気泳動写真。An electrophoretogram of a polynucleotide synthesized by PCR and containing four types of modified nucleoside triphosphates. PCR(5%MeCN添加)によって合成した、修飾ヌクレオシド三リン酸4種類を含むポリヌクレオチド(15%修飾DNA)の電気泳動写真。矢印が目的のPCR産物を示す。Electrophoretic photograph of a polynucleotide (15% modified DNA) containing 4 types of modified nucleoside triphosphates synthesized by PCR (5% MeCN added). The arrow indicates the target PCR product. PCR(5%MeCN添加)によって合成した、修飾ヌクレオシド三リン酸4種類を含むポリヌクレオチド(20%修飾DNA)の電気泳動写真。矢印が目的のPCR産物を示す。Electrophoresis photograph of polynucleotide (20% modified DNA) synthesized by PCR (5% MeCN added) and containing 4 types of modified nucleoside triphosphates. The arrow indicates the target PCR product. アプタマーや細胞接着因子等を加えて培養した細胞の解離処理前および解離処理後の顕微鏡写真。(A)〜(D)の説明は表10に示す。Photomicrographs before and after dissociation of cells cultured with aptamer or cell adhesion factor added. The description of (A) to (D) is shown in Table 10. アプタマーや細胞接着因子等を加えて培養した細胞の解離処理前および解離処理後の顕微鏡写真。(A)〜(D)の説明は表10に示す。Photomicrographs before and after dissociation of cells cultured with aptamer or cell adhesion factor added. The description of (A) to (D) is shown in Table 10. 各濃度のアプタマーや細胞接着因子等を加えて培養した細胞の、培養開始直後(0時間)及び72時間後の顕微鏡写真。(A)〜(D)の説明は表11に示す。Photomicrographs immediately after the start of culture (0 hour) and after 72 hours of cells cultured with the addition of aptamers or cell adhesion factors at various concentrations. The explanation of (A) to (D) is shown in Table 11. 各濃度のアプタマーや細胞接着因子等を加えて培養した細胞の、培養開始直後(0時間)及び72時間後の顕微鏡写真。(A)〜(D)の説明は表11に示す。Photomicrographs immediately after the start of culture (0 hour) and after 72 hours of cells cultured with the addition of aptamers or cell adhesion factors at various concentrations. The explanation of (A) to (D) is shown in Table 11. 各濃度のアプタマーや細胞接着因子等を加えて培養した細胞の、培養開始直後(0時間)及び72時間後の顕微鏡写真。(A)〜(D)の説明は表12に示す。Photomicrographs immediately after the start of culture (0 hour) and after 72 hours of cells cultured with the addition of aptamers or cell adhesion factors at various concentrations. The description of (A) to (D) is shown in Table 12. 各濃度のアプタマーや細胞接着因子等を加えて培養した細胞の、培養開始直後(0時間)及び72時間後の顕微鏡写真。(A)〜(D)の説明は表12に示す。Photomicrographs immediately after the start of culture (0 hour) and after 72 hours of cells cultured with the addition of aptamers or cell adhesion factors at various concentrations. The description of (A) to (D) is shown in Table 12. TBA又はTBA-m4存在下におけるヒトトロンビン活性を示すグラフ。The graph which shows the human thrombin activity in presence of TBA or TBA-m4. 蛍光偏光法によるフィブリンゲルへのアプタマー取り込み測定を示すグラフ。縦軸は(蛍光偏光度の変化量)を、横軸はフィブリノゲン濃度を表す。The graph which shows the aptamer uptake | capture measurement to the fibrin gel by a fluorescence polarization method. The vertical axis represents (amount of change in the degree of fluorescence polarization), and the horizontal axis represents the fibrinogen concentration. フィブリノゲン、トロンビン及び/又はTBA-m4添加による培養細胞への影響を示す写真。(A)コントロール(添加なし)、(B)フィブリノゲン添加、(C)フィブリノゲン及びDNA-トロンビン複合体を添加、(D)フィブリノゲン及びTBA-m4-トロンビン複合体を添加。The photograph which shows the influence on a cultured cell by fibrinogen, thrombin, and / or TBA-m4 addition. (A) Control (no addition), (B) Fibrinogen addition, (C) Fibrinogen and DNA-thrombin complex added, (D) Fibrinogen and TBA-m4-thrombin complex added.

本発明のヌクレオシド誘導体及びその塩、ヌクレオシド誘導体の5’−リン酸エステル及びその塩、並びにポリヌクレオチドを説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。   In describing the nucleoside derivative and salt thereof, the 5′-phosphate ester of the nucleoside derivative and salt thereof, and the polynucleotide, specific examples will be described, but the following contents are included unless departing from the gist of the present invention. However, the present invention is not limited to this, and can be implemented with appropriate modifications.

<ヌクレオシド誘導体又はその塩>
本発明の一態様であるヌクレオシド誘導体は、下記式(I−1)〜(I−4)の何れかの式で表されることを特徴とする。なお、かかるヌクレオシド誘導体から得られる塩も本発明の範囲に含まれるものとし、以下、ヌクレオシド誘導体とその塩を含めて「本発明のヌクレオシド誘導体等」と略す場合がある。
<Nucleoside derivative or salt thereof>
The nucleoside derivative which is one embodiment of the present invention is represented by any one of the following formulas (I-1) to (I-4). Note that salts obtained from such nucleoside derivatives are also included in the scope of the present invention, and hereinafter, the nucleoside derivatives and salts thereof may be abbreviated as “nucleoside derivatives of the present invention”.

(式(I−1)〜(I−4)中、R1は水素原子(−H)、フッ素原子(−F)、ヒド
ロキシル基(−OH)、アミノ基(−NH2)、又はメルカプト基(−SH)を、R2はそれぞれ独立に水素原子(−H)又はヒドロキシル基の保護基を、R3はそれぞれ独立に水
素原子(−H)又は炭素数1〜6の炭化水素基を、Aは−CONH−または−CHNHCO−を、Yは分岐構造及び/又は不飽和結合を含んでいてもよい炭素数2〜10の2価の炭化水素基を、nは2〜20の整数を表し、pは1〜6の整数を、qは1〜20の整数を、rは1〜6の整数を表す。)
(In the formulas (I-1) to (I-4), R 1 is a hydrogen atom (—H), a fluorine atom (—F), a hydroxyl group (—OH), an amino group (—NH 2 ), or a mercapto group. (—SH), R 2 independently represents a hydrogen atom (—H) or a hydroxyl protecting group, R 3 independently represents a hydrogen atom (—H) or a hydrocarbon group having 1 to 6 carbon atoms, A represents —CONH— or —CH 2 NHCO—, Y represents a divalent hydrocarbon group having 2 to 10 carbon atoms which may contain a branched structure and / or an unsaturated bond, and n represents an integer of 2 to 20 P represents an integer of 1 to 6, q represents an integer of 1 to 20, and r represents an integer of 1 to 6.)

式(I−1)〜(I−4)中、R1は水素原子(−H)、フッ素原子(−F)、ヒドロ
キシル基(−OH)、アミノ基(−NH3)、又はメルカプト基(−SH)を表している
が、水素原子であること、即ち、ヌクレオシド誘導体等の糖部位は、デオキシリボースであることが好ましい。
In formulas (I-1) to (I-4), R 1 represents a hydrogen atom (—H), a fluorine atom (—F), a hydroxyl group (—OH), an amino group (—NH 3 ), or a mercapto group ( -SH), it is preferably a hydrogen atom, that is, a sugar moiety such as a nucleoside derivative is preferably deoxyribose.

2はそれぞれ独立に水素原子(−H)又はヒドロキシル基の保護基を表しているが、
保護基はヒドロキシル基の保護基として利用されるものであれば特に限定されない。例えばメチル基、ベンジル基、p−メトキシベンジル基、tert−ブチル基等のエーテル系保護基;アセチル基、ピバロイル基、ベンゾイル基等のアシル系保護基;トリメチルシリル基、トリエチルシリル基、tert−ブチルジメチルシリル基、トリイソプロピルシリル基、tert−ブチルジフェニルシリル基等のシリルエーテル系保護基等が挙げられる。
Each R 2 independently represents a hydrogen atom (—H) or a protecting group for a hydroxyl group,
The protecting group is not particularly limited as long as it is used as a protecting group for a hydroxyl group. For example, ether type protective groups such as methyl group, benzyl group, p-methoxybenzyl group, tert-butyl group; acyl type protective groups such as acetyl group, pivaloyl group, benzoyl group; trimethylsilyl group, triethylsilyl group, tert-butyldimethyl Examples include silyl ether protecting groups such as silyl group, triisopropylsilyl group, and tert-butyldiphenylsilyl group.

3はそれぞれ独立に水素原子又は炭素数1〜6の炭化水素基を表しているが、R3の炭素数は、好ましくは5以下、より好ましくは4以下である。 R 3 independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and the carbon number of R 3 is preferably 5 or less, more preferably 4 or less.

Aは−CONH−または−CHNHCO−を表すが、好ましくは−CONH−であり、その場合、下記の(I’−1)〜(I’−4)の構造となる。
A is -CONH- or represents the -CH 2 NHCO-, preferably -CONH-, in which case, a structure of the following (I'-1) ~ (I' -4).

Yは分岐構造及び/又は不飽和結合を含んでいてもよい炭素数2〜10の2価の炭化水素基を表しているが、Zの炭素数は、好ましくは8以下、より好ましくは6以下である。Zとしては、エチレン基(−CH2−CH2−)、ビニレン基(−CH=CH−)、イソプロピレン基(−CH2−CH(CH3)−)、イソプロピレニレン基(−CH=C(CH3
)−)、n−ブチレン基(−CH2−CH2−CH2−CH2−)、n−ブタンジエニレン基(−CH=CH−CH=CH−)等が挙げられる。
Y represents a divalent hydrocarbon group having 2 to 10 carbon atoms which may contain a branched structure and / or an unsaturated bond, and the carbon number of Z is preferably 8 or less, more preferably 6 or less. It is. As Z, ethylene group (—CH 2 —CH 2 —), vinylene group (—CH═CH—), isopropylene group (—CH 2 —CH (CH 3 ) —), isopropylenylene group (—CH═ C (CH 3
)-), N-butylene group (—CH 2 —CH 2 —CH 2 —CH 2 —), n-butanedienylene group (—CH═CH—CH═CH—) and the like.

nは2〜20の整数を表すが、10〜18の整数であることがより好ましい。pは1〜6の整数を表し、1〜3の整数であることがより好ましい。qは1〜20の整数を表し、10〜18の整数であることがより好ましい。rは1〜6の整数を表し、1〜3の整数であることがより好ましい。   Although n represents the integer of 2-20, it is more preferable that it is an integer of 10-18. p represents an integer of 1 to 6, and is more preferably an integer of 1 to 3. q represents an integer of 1 to 20, and more preferably an integer of 10 to 18. r represents an integer of 1 to 6, and is more preferably an integer of 1 to 3.

より具体的には、以下の(I”−1)〜(I”−4)の化合物が例示される(
mは2〜20の整数を表す)。
More specifically, the following compounds (I ″ -1) to (I ″ -4) are exemplified (
m represents an integer of 2 to 20).

本発明のヌクレオシド誘導体等の製造方法は、特に限定されず、公知の合成法を適宜組み合わせて製造することができるが、例えば後述の実施例に記載の方法に従って製造することができる。   The method for producing the nucleoside derivative and the like of the present invention is not particularly limited, and can be produced by appropriately combining known synthetic methods. For example, it can be produced according to the methods described in the examples below.

<ヌクレオシド誘導体の5’−リン酸エステル、ホスホロチオエート体又はそれらの塩>
本発明のヌクレオシド誘導体等は、結合親和性や標的多様性に優れる核酸アプタマーを製造するために有用な化合物であるが、本発明のヌクレオシド誘導体をリン酸化して得られるヌクレオチド、即ちヌクレオシド誘導体の5’−リン酸エステルやホスホロチオエート体も本発明の一態様である。なお、本発明の5’−リン酸エステルやホスホロチオエート体から得られる塩も本発明の範囲に含まれるものとする。
<5'-phosphate ester of nucleoside derivative, phosphorothioate or salt thereof>
The nucleoside derivative and the like of the present invention are useful compounds for producing a nucleic acid aptamer excellent in binding affinity and target diversity. The nucleotide obtained by phosphorylating the nucleoside derivative of the present invention, that is, the nucleoside derivative 5 A '-phosphate ester or a phosphorothioate form is also an embodiment of the present invention. In addition, the salt obtained from the 5′-phosphate ester or phosphorothioate compound of the present invention is also included in the scope of the present invention.

本発明の5’−リン酸エステルおよびホスホロチオエート体は、例えば下記式(II−1)〜(II−4)の何れかの式で表すことができる。
The 5′-phosphate ester and phosphorothioate compound of the present invention can be represented by any one of the following formulas (II-1) to (II-4), for example.

なお、式(II−1)〜(II−4)中、Zはそれぞれ独立に酸素原子又は硫黄原子を表し、R1、R2、R3、A、Y、n、p、qおよびrについてはそれぞれ前述した本発明
のヌクレオシド誘導体等と同義である。
In formulas (II-1) to (II-4), each Z independently represents an oxygen atom or a sulfur atom, and R 1 , R 2 , R 3 , A, Y, n, p, q, and r Are synonymous with the aforementioned nucleoside derivatives of the present invention.

本発明の5’−リン酸エステルとして、より好ましくは以下のものが挙げられる。
More preferable examples of the 5′-phosphate ester of the present invention include the following.

本発明の5’−リン酸エステルまたはホスホロチオエート体は、蛍光物質等の標識物質を導入した標識ヌクレオチド誘導体の形態であってもよい。標識物質を結合させた5’−リン酸エステルやホスホロチオエート体を構成単位として含むポリヌクレオチドは、有用なプローブ等となり得る。標識物質は、核酸の標識として用いられる公知の物質であれば特に限定されないが、例えば、フルオレスセイン,Cy5,テトラメチルカルボキシローダミン,ピレン等の蛍光標識物質が挙げられる。また、標識物質は、例えば5’−リン酸エステルまたはホスホロチオエート体のアミノ基に導入することができる。なお、蛍光標識以外にも、種々の機能性物質を本発明の5’−リン酸エステルまたはホスホロチオエート体に導入することにより、機能性修飾ポリヌクレオチド、例えば触媒、核酸アプタマーを合成することもできる。また、阻害剤を結合させることも可能である。   The 5'-phosphate ester or phosphorothioate form of the present invention may be in the form of a labeled nucleotide derivative into which a labeling substance such as a fluorescent substance is introduced. A polynucleotide containing a 5'-phosphate ester or a phosphorothioate conjugated with a labeling substance as a constituent unit can be a useful probe or the like. The labeling substance is not particularly limited as long as it is a known substance used as a label for nucleic acids, and examples thereof include fluorescent labeling substances such as fluorescein, Cy5, tetramethylcarboxyrhodamine, and pyrene. The labeling substance can be introduced into, for example, the amino group of 5'-phosphate ester or phosphorothioate. In addition to fluorescent labels, functional modified polynucleotides such as catalysts and nucleic acid aptamers can also be synthesized by introducing various functional substances into the 5'-phosphate ester or phosphorothioate form of the present invention. It is also possible to bind an inhibitor.

<ポリヌクレオチド合成用基質溶液・ポリヌクレオチド合成用試薬・ポリヌクレオチドの製造方法>
本発明の5’−リン酸エステル及びその塩、ホスホロチオエート体及びその塩、又はそれ並びにこれらに標識物質を導入した標識ヌクレオチド誘導体は、ポリヌクレオチドを合成するために有用な合成用基質であるが、これらの少なくとも1種を含むポリヌクレオチド合成用基質溶液、このポリヌクレオチド合成用基質溶液を含むポリヌクレオチド合成用試薬、さらにこれらを合成用基質として用いるポリヌクレオチドの製造方法も本発明の一態様である。
<Polynucleotide Synthesis Substrate Solution / Polynucleotide Synthesis Reagent / Polynucleotide Production Method>
The 5′-phosphate ester and salt thereof, phosphorothioate compound and salt thereof, or a labeled nucleotide derivative having a labeling substance introduced into them is a synthetic substrate useful for synthesizing a polynucleotide. A polynucleotide synthesis substrate solution containing at least one of these, a polynucleotide synthesis reagent containing the polynucleotide synthesis substrate solution, and a method for producing a polynucleotide using these as a synthesis substrate are also one aspect of the present invention. .

<ポリヌクレオチド>
本発明のヌクレオシド誘導体等は、結合親和性や標的多様性に優れる核酸アプタマーを製造するために有用な化合物であるが、本発明のヌクレオシド誘導体等を用いて製造される核酸、即ち本発明の5’−リン酸エステル及び/又はそのホスホロチオエート体を構成単位として含むポリヌクレオチドも本発明の一態様である(以下、「本発明のポリヌクレオチド」と略す場合がある。)。なお、蛍光物質等の標識物質を導入した5’−リン酸エステルを構成単位として含む標識ポリヌクレオチドも本発明の範囲に含まれるものとする。
本発明のポリヌクレオチドは、例えば下記式(III−1)〜(III−4)の何れか
の式で表すことができるヌクレオチド構造を少なくとも含むものが挙げられる。
<Polynucleotide>
The nucleoside derivative or the like of the present invention is a useful compound for producing a nucleic acid aptamer excellent in binding affinity or target diversity. However, a nucleic acid produced using the nucleoside derivative or the like of the present invention, that is, 5 of the present invention. A polynucleotide containing a '-phosphate ester and / or its phosphorothioate as a structural unit is also an embodiment of the present invention (hereinafter, may be abbreviated as “polynucleotide of the present invention”). In addition, the labeled polynucleotide which contains 5'-phosphate ester which introduce | transduced labeling substances, such as a fluorescent substance, as a structural unit shall also be contained in the scope of the present invention.
Examples of the polynucleotide of the present invention include those containing at least a nucleotide structure that can be represented by any one of the following formulas (III-1) to (III-4).

なお、式(III−1)〜(III−4)中、Zはそれぞれ独立に酸素原子又は硫黄原子を表し、R1、R2、R3、A、Y、n、p、qおよびrについてはそれぞれ前述した本
発明のヌクレオシド誘導体等と同義である。また、式(III−1)〜(III−4)中の括弧書きは、隣接したヌクレオチド構造との結合位置をそれぞれ表している。さらに、「そのホスホロチオエート体」とは、Zが硫黄原子であるものを意味するものとする。
In formulas (III-1) to (III-4), Z independently represents an oxygen atom or a sulfur atom, and R 1 , R 2 , R 3 , A, Y, n, p, q, and r Are synonymous with the aforementioned nucleoside derivatives of the present invention. In addition, the parentheses in the formulas (III-1) to (III-4) represent the binding positions with adjacent nucleotide structures, respectively. Further, “the phosphorothioate form” means that Z is a sulfur atom.

本発明のポリヌクレオチドは、本発明の5’−リン酸エステル及び/又はそのホスホロチオエート体を構成単位として含むものであれば特に限定されないが、本発明の5’−リ
ン酸エステルを複数個含んでもよいし、複数種類(アデノシン誘導体、シチジン誘導体、チミジン誘導体、グアノシンの2種類以上)含んでもよい。また、本発明のポリヌクレオチドの塩基数は、通常10以上、好ましくは15以上であり、通常200以下、好ましくは100以下、より好ましくは70以下である。
The polynucleotide of the present invention is not particularly limited as long as it contains the 5′-phosphate ester of the present invention and / or its phosphorothioate compound as a structural unit, but may contain a plurality of 5′-phosphate esters of the present invention. A plurality of types (two or more types of adenosine derivatives, cytidine derivatives, thymidine derivatives, and guanosine) may be included. The number of bases of the polynucleotide of the present invention is usually 10 or more, preferably 15 or more, and is usually 200 or less, preferably 100 or less, more preferably 70 or less.

本発明のポリヌクレオチドの製造方法は、特に限定されず、例えば本発明の5’−リン酸エステルやホスホロチオエート体等を原料(基質)として利用して、公知の合成法により適宜製造することができる。例えば、DNAの製造の場合、DNAシンセサイザーを用いてポリヌクレオチドを合成したり、PCRによってポリヌクレオチドを合成したりするこ
とができる。本発明の5’−リン酸エステルを基質としてPCRによってポリヌクレオチド
を合成する場合、反応系にアセトニトリルを加えることが好ましい。特に、本発明の5’−リン酸エステルを複数種類用いてPCRを行う場合、ポリヌクレオチドの増幅効率が向上
するので好ましい。ポリヌクレオチドを合成した後、陰イオン交換カラムクロマトグラフィー等を用いて精製することによって、本発明のポリヌクレオチドを製造することができる。
また、本発明のポリヌクレオチドにおけるホスホロチオエート体構造は、公知のホスホロチオエート基の導入方法を適宜採用して形成することができる。
The method for producing the polynucleotide of the present invention is not particularly limited, and can be suitably produced by a known synthesis method using, for example, the 5′-phosphate ester or phosphorothioate compound of the present invention as a raw material (substrate). . For example, in the case of DNA production, a polynucleotide can be synthesized using a DNA synthesizer, or a polynucleotide can be synthesized by PCR. When a polynucleotide is synthesized by PCR using the 5′-phosphate ester of the present invention as a substrate, acetonitrile is preferably added to the reaction system. In particular, when PCR is performed using a plurality of types of 5′-phosphate esters of the present invention, it is preferable because the amplification efficiency of the polynucleotide is improved. After the polynucleotide is synthesized, the polynucleotide of the present invention can be produced by purification using anion exchange column chromatography or the like.
In addition, the phosphorothioate structure in the polynucleotide of the present invention can be formed by appropriately adopting known methods for introducing phosphorothioate groups.

本発明のポリヌクレオチドは、蛍光物質等の標識物質が導入されたポリヌクレオチドであってもよいが、一本鎖にしてマイクロアレイのプローブに用いたりすることもできる。
また、本発明のポリヌクレオチドの用途は特に限定されず、触媒、核酸アプタマー等の公知の用途に適宜利用することができるが、核酸アプタマーとして利用することが好ましい。例えば、アンチセンス分子やアンチジーン分子等の遺伝子発現を調節するための核酸医薬として利用することもできる。本発明のポリヌクレオチドは、優れた細胞膜透過性や遺伝子抑制作用、副作用の緩和、ヌクレアーゼ耐性を発揮することができ、有効な核酸医薬として利用できる。
The polynucleotide of the present invention may be a polynucleotide into which a labeling substance such as a fluorescent substance is introduced, but it can also be used as a probe for a microarray in a single strand.
In addition, the use of the polynucleotide of the present invention is not particularly limited and can be appropriately used for known uses such as a catalyst and a nucleic acid aptamer, but is preferably used as a nucleic acid aptamer. For example, it can also be used as a nucleic acid drug for regulating gene expression such as antisense molecules and antigene molecules. The polynucleotide of the present invention can exhibit excellent cell membrane permeability, gene suppression activity, alleviation of side effects, and nuclease resistance, and can be used as an effective nucleic acid drug.

<核酸アプタマーの選択方法>
本発明のポリヌクレオチドは、SELEX法等に使用するポリヌクレオチドライブラリーに利用することができるが、本発明のポリヌクレオチドを含むポリヌクレオチドライブラリー、並びにこのポリヌクレオチドライブラリーを用いて標的物質結合性ポリヌクレオチドを選択する工程を含む核酸アプタマーの選択方法も本発明の一態様である。
ポリヌクレオチドライブラリーは、本発明のポリヌクレオチドを含むものであればその他については特に限定されないが、ランダム配列を含む複数種類のポリヌクレオチドを含むことが好ましい。
選択方法は、ポリヌクレオチドライブラリーを用いて標的物質結合性ポリヌクレオチドを選択する工程を含むものであればその他については特に限定されず、例えばSELEX法において行われる工程を含むことができる。なお、SELEX法は、通常、標的物質をビーズ等の担体に固定化し、これにポリヌクレオチドライブラリーを添加し、標的物質に結合する核酸を回収し、回収したポリヌクレオチドを増幅し、増幅したポリヌクレオチドを再び標的物質に添加するという一連の工程を繰り返して、標的物質に対する特異性および結合力が高いポリヌクレオチドを濃縮し、その塩基配列を決定することで、標的物質結合性アプタマーを獲得する方法である。
本発明の選択方法によって、種々の生体関連物質等に対する核酸アプタマーや特定反応を触媒するリボザイム等、実用可能性があるさまざまな機能性核酸をスクリーニングすることができる。すなわち、ランダムなポリヌクレオチドを複数合成し、その中から酵素活性などを指標に特定のポリヌクレオチドを選択することにより、生理活性を有するアプタマーやリボザイムを得ることができる。
<Method of selecting nucleic acid aptamer>
The polynucleotide of the present invention can be used in a polynucleotide library used in the SELEX method, etc., and a polynucleotide library containing the polynucleotide of the present invention, as well as target substance binding properties using this polynucleotide library. A method for selecting a nucleic acid aptamer including a step of selecting a polynucleotide is also an embodiment of the present invention.
The polynucleotide library is not particularly limited as long as it includes the polynucleotide of the present invention, but preferably includes a plurality of types of polynucleotides including random sequences.
The selection method is not particularly limited as long as it includes a step of selecting a target substance-binding polynucleotide using a polynucleotide library. For example, the selection method can include a step performed in the SELEX method. In the SELEX method, the target substance is usually immobilized on a carrier such as a bead, a polynucleotide library is added thereto, the nucleic acid binding to the target substance is recovered, the recovered polynucleotide is amplified, and the amplified polynucleotide is recovered. A method for obtaining a target substance-binding aptamer by repeating a series of steps of adding nucleotides to a target substance again, concentrating polynucleotides having high specificity and binding power to the target substance, and determining the base sequence thereof It is.
According to the selection method of the present invention, various functional nucleic acids such as nucleic acid aptamers for various biological substances and ribozymes that catalyze a specific reaction can be screened. That is, aptamers and ribozymes having physiological activity can be obtained by synthesizing a plurality of random polynucleotides and selecting a specific polynucleotide from the enzyme activity as an index.

<本発明のポリヌクレオチドを用いたリガンドの細胞ターゲッティング>
また、本発明のポリヌクレオチドはランダム配列を含むポリヌクレオチドライブラリーであってもよいが、トロンビンもしくはフィブリノゲンやフィブリンが結合し得る配列を含むもの(トロンビンやフィブリノゲン結合アプタマー)が好ましい。また、当該結合により、トロンビンの活性がある程度阻害されるものであってもよい。さらに、他のリガンドが結合し得るリガンド結合配列を含む他のアプタマーと共に用いることも有り得る。
本発明のポリヌクレオチドは親油性または両親媒性の基を有するため、このようなリガンド結合配列を細胞膜の構成成分等にターゲッティングすることができる。
<Cell targeting of a ligand using the polynucleotide of the present invention>
The polynucleotide of the present invention may be a polynucleotide library containing random sequences, but those containing sequences to which thrombin, fibrinogen or fibrin can bind (thrombin or fibrinogen binding aptamer) are preferable. Further, the binding may inhibit thrombin activity to some extent. Furthermore, it may be used with other aptamers that contain a ligand binding sequence to which other ligands can bind.
Since the polynucleotide of the present invention has a lipophilic or amphiphilic group, such a ligand-binding sequence can be targeted to a component of a cell membrane or the like.

トロンビンやフィブリノゲン結合アプタマーと共に用いるアプタマーのリガンドとしては、低分子化合物、ペプチド、タンパク質、核酸、薬剤などが挙げられるが、細胞増殖因子や細胞接着因子であることが好ましい。   Examples of aptamer ligands used together with thrombin and fibrinogen binding aptamers include low molecular weight compounds, peptides, proteins, nucleic acids, drugs, and the like, but cell growth factors and cell adhesion factors are preferred.

細胞増殖因子としては、血管内皮増殖因子、線維芽細胞増殖因子、血小板由来増殖因子、インスリン由来増殖因子、形質転換増殖因子、肝細胞増殖因子、骨形成タンパク質、神経増殖因子、上皮増殖因子などが例示される。   Cell growth factors include vascular endothelial growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-derived growth factor, transforming growth factor, hepatocyte growth factor, bone morphogenetic protein, nerve growth factor, epidermal growth factor, etc. Illustrated.

細胞接着因子としては、以下のようなものが例示される。
足場成分(細胞外マトリックス)
コラーゲン(collagen)
フィブロネクチン(fibronection)
ラミニン(laminin)
エラスチン(elastin)
プロテオグリカン(proteoglycan)
エンタクチン(entactin)
ビトロネクチン(vitronectin)
フィブリノゲン(fibrinogen)
テネイシン(tenascin)
オステオポンチン
ナイドジェン(nidogen)
トロンボスポンジン
ヒアルロン酸(hyaluronic acid)
接着成分
インテグリン
カドヘリン
セレクチン
クローディン
オクルディン
免疫グロブリンファミリー(ICAM, MCAM, VCAM, CD4,8など)
Examples of the cell adhesion factor include the following.
Scaffolding component (extracellular matrix)
Collagen
Fibronectin
Laminin
Elastin
Proteoglycan
Entactin
Vitronectin
Fibrinogen
Tenascin
Osteopontin nidogen
Thrombospondin hyaluronic acid
Adhesive component Integrin cadherin selectin claudin occludin immunoglobulin family (ICAM, MCAM, VCAM, CD4, 8 etc.)

リガンド結合配列としては、あるリガンドに対し、結合することが知られている公知の配列でもよいし、SELEX法などによって選択した配列でもよい。   The ligand binding sequence may be a known sequence that is known to bind to a certain ligand, or a sequence selected by the SELEX method or the like.

<細胞培養方法>
本発明のポリヌクレオチドはトロンビンやフィブリン、フィブリノゲンの結合配列を有することで、培地に加えて細胞を培養した時に、フィブリンゲルを細胞近傍に形成させることができる。これにより、細胞が足場や接着面を形成しやすくなり、細胞どうしの接着が促進され、細胞が三次元的に集合し、培養される。
<Cell culture method>
Since the polynucleotide of the present invention has a binding sequence of thrombin, fibrin, or fibrinogen, a fibrin gel can be formed in the vicinity of the cell when the cell is cultured in addition to the medium. As a result, the cells can easily form a scaffold or an adhesion surface, the adhesion between the cells is promoted, and the cells are assembled and cultured three-dimensionally.

細胞の種類は特に制限されないが、線維芽細胞、肝細胞、上皮細胞、膵臓β細胞、脂肪細胞、神経細胞、骨芽細胞、血管内皮細胞などが挙げられる。
用いる培地などの培養条件は細胞の種類に応じて適宜選択することができるが、培地としては、最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、イスコフ改変ダ
ルベッコ培地(IMDM)、Ham's F-12培地などが例示される。
The cell type is not particularly limited, and examples thereof include fibroblasts, hepatocytes, epithelial cells, pancreatic β cells, adipocytes, nerve cells, osteoblasts, vascular endothelial cells and the like.
The culture conditions such as the medium to be used can be appropriately selected according to the cell type, but as the medium, the minimum essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), Iskov's modified Dulbecco medium (IMDM), Ham's F -12 medium and the like.

培地に添加する本発明のポリヌクレオチドの濃度は好ましくは120nMである。
培地には、トロンビンやフィブリノゲンを同時に添加することが好ましい。
トロンビンは120nMの濃度で添加することが好ましい。
フィブリノゲンは600nMの濃度で添加することが好ましい。
この場合、本発明のポリヌクレオチドとトロンビン、もしくは本発明のポリヌクレオチドとトロンビン及びフィブリノゲンを同時に添加してもよいが、本発明のポリヌクレオチドで前処理しておくことが好ましい。
The concentration of the polynucleotide of the present invention added to the medium is preferably 120 nM.
It is preferable to add thrombin and fibrinogen simultaneously to the medium.
Thrombin is preferably added at a concentration of 120 nM.
Fibrinogen is preferably added at a concentration of 600 nM.
In this case, the polynucleotide of the present invention and thrombin, or the polynucleotide of the present invention and thrombin and fibrinogen may be added simultaneously, but pretreatment with the polynucleotide of the present invention is preferred.

なお、本発明のポリヌクレオチドとトロンビン、もしくは本発明のポリヌクレオチドとトロンビン及びフィブリノゲンを用いることで 形成されたフィブリンゲルは組織接着用
途や膜形成用途などの医薬用途に使用することもできる。
なお、本発明のポリヌクレオチドとトロンビン、もしくは本発明のポリヌクレオチドとトロンビン及びフィブリノゲンを用いることによって得られるフィブリンゲルも本発明の範囲に含まれる。当該フィブリンゲルには、トロンビン結合性アプタマーを用いて任意に機能基を導入できることから、目的に応じた機能基を導入して医薬用途に使用することもできる。例えば、細胞の組織形成を阻害する機能基を導入し、抗がん剤として使用することができる。
The fibrin gel formed by using the polynucleotide of the present invention and thrombin, or the polynucleotide of the present invention and thrombin and fibrinogen can also be used for pharmaceutical applications such as tissue adhesion and membrane formation.
In addition, the fibrin gel obtained by using the polynucleotide of the present invention and thrombin, or the polynucleotide of the present invention and thrombin and fibrinogen is also included in the scope of the present invention. Since a functional group can be arbitrarily introduced into the fibrin gel using a thrombin-binding aptamer, a functional group according to the purpose can be introduced for use in medicine. For example, a functional group that inhibits cell tissue formation can be introduced and used as an anticancer agent.

また、本発明では、トロンビンと、トロンビン結合物質の複合体がフィブリンゲルに取り込まれることが初めて見出された。よって、トロンビン結合物質とトロンビン、もしくはトロンビン結合物質とトロンビン及びフィブリノゲンを内包する、フィブリンゲルも本発明の範囲に含まれる。トロンビン結合物質は本発明のポリヌクレオチドを含むトロンビン結合アプタマーには限られず、抗トロンビン抗体やトロンビン結合糖鎖などでもよい。さらにこれらのトロンビン結合物質に上記のような機能基が導入されていてもよい。このような、トロンビン結合物質とトロンビン、もしくはトロンビン結合物質とトロンビン及びフィブリノゲンを内包する、フィブリンゲルは、組織接着用途や膜形成用途などの医薬用途に使用することもできる。また、トロンビン結合物質に細胞の組織形成を阻害する機能基を導入し、抗がん剤として使用することもできる。   Further, in the present invention, it has been found for the first time that a complex of thrombin and a thrombin binding substance is incorporated into a fibrin gel. Therefore, a fibrin gel containing a thrombin binding substance and thrombin or a thrombin binding substance and thrombin and fibrinogen is also included in the scope of the present invention. The thrombin binding substance is not limited to the thrombin binding aptamer containing the polynucleotide of the present invention, and may be an antithrombin antibody or a thrombin binding sugar chain. Furthermore, the above functional groups may be introduced into these thrombin binding substances. Such a fibrin gel containing a thrombin-binding substance and thrombin or a thrombin-binding substance and thrombin and fibrinogen can also be used for pharmaceutical applications such as tissue adhesion and membrane formation. In addition, a functional group that inhibits cell tissue formation can be introduced into a thrombin-binding substance and used as an anticancer agent.

以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but can be appropriately changed without departing from the gist of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.

チミジン誘導体T2の合成
真空乾燥させた1,12-diaminododecane (2.153 g, 10.7 mmol, F.W. 200.36)をDry-DMF (100 mL)に懸濁させ、DIPEA (1.8 mL, 10.3 mmol, F.W. 129.55, d=0.742 g/mL)を加え
た。(E)-5-(2-carboxyvinyl)-2'-deoxyuridine (300 mg, 335 μmol, F.W. 298.25)、PyBOP (631 mg, 1.21 mmol, F.W. 520.39)、HOBt・H2O (210 mg, 1.37 mmol, F.W. 153.44)
をDry-DMF (3 mL)に溶かしDIPEA (3.5 mL, 20. 0 mmol)を加えたものを滴下し、室温で1
時間攪拌した。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-MeOH (5 mL)に溶かし、TEA (450 μL, 3.24 mmol, F.W. 101.19, d=0.728 g/mL)、TFA Ethyl Ester (3.6 mL, 30.2 mmol, F.W. 142.08, d=1.190 g/mL)を加え、室温で2時
間攪拌した。反応終了後、反応液を減圧留去し、CHCl3(10 mL)で3回共沸させ真空乾燥さ
せた。真空乾燥させた残渣をDry-DMF (5 mL)に溶かし、imidazole (699 mg, 10.3 mmol, F.W. 68.08)、TBDMS-Cl(759 mg, 504 μmol, F.W. 150.72)をDry-DMF (2 mL)に溶かした
ものを加え、室温で5時間攪拌した。反応終了後、反応液を減圧留去し、残渣をAcOEt:Et2O=1:1混合液に溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後
、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 100%CH2Cl2→3% MeOH/CH2Cl2) ,(Silica gel 60, 40-50 μm, 30%→50% AcOEt /hexane)によって精製し化合物T2を得た。

収量:400 mg 収率:49%

1H NMR (400 MHz, CDCl3) δ 7.85 (1H, s) 7.08-7.19 (2H, m) 6.27 (1H, dd) 4.39 (1H, m) 3.98 (1H, m) 3.89 (2H, m) 3.28-3.37 (4H, m) 2.32 (1H, m) 1.99 (1H, m) 1.48-1.58 (4H, m) 1.24-1.28 (17H, m) 0.87-0.90 (18H, m) 0.06-0.13 (12H, m); ESI-MS (positive ion mode) m/z, found=805.1, calculated for [(M+H)+]=805.5
Synthesis of thymidine derivative T2.
Vacuum-dried 1,12-diaminododecane (2.153 g, 10.7 mmol, FW 200.36) was suspended in Dry-DMF (100 mL) and DIPEA (1.8 mL, 10.3 mmol, FW 129.55, d = 0.742 g / mL) Was added. (E) -5- (2-carboxyvinyl) -2'-deoxyuridine (300 mg, 335 μmol, FW 298.25), PyBOP (631 mg, 1.21 mmol, FW 520.39), HOBt ・ H 2 O (210 mg, 1.37 mmol , FW 153.44)
Is dissolved in Dry-DMF (3 mL) and DIPEA (3.5 mL, 20. 0 mmol) is added dropwise.
Stir for hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-MeOH (5 mL), TEA (450 μL, 3.24 mmol, FW 101.19, d = 0.728 g / mL), TFA Ethyl Ester (3.6 mL, 30.2 mmol, FW 142.08, d = 1.190 g / mL) was added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure, azeotroped with CHCl 3 (10 mL) three times, and vacuum-dried. The vacuum-dried residue was dissolved in Dry-DMF (5 mL), and imidazole (699 mg, 10.3 mmol, FW 68.08) and TBDMS-Cl (759 mg, 504 μmol, FW 150.72) were added to Dry-DMF (2 mL). The dissolved one was added and stirred at room temperature for 5 hours. After completion of the reaction, the reaction solution was evaporated under reduced pressure, and the residue was dissolved in a mixture of AcOEt: Et 2 O = 1: 1, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. Silica gel column chromatography (Silica gel 60, 63-210 μm, 100% CH 2 Cl 2 → 3% MeOH / CH 2 Cl 2 ), (Silica gel 60, 40-50 μm, 30% → 50% AcOEt / Hexane)) gave compound T2.

Yield: 400 mg Yield: 49%

1 H NMR (400 MHz, CDCl 3 ) δ 7.85 (1H, s) 7.08-7.19 (2H, m) 6.27 (1H, dd) 4.39 (1H, m) 3.98 (1H, m) 3.89 (2H, m) 3.28 -3.37 (4H, m) 2.32 (1H, m) 1.99 (1H, m) 1.48-1.58 (4H, m) 1.24-1.28 (17H, m) 0.87-0.90 (18H, m) 0.06-0.13 (12H, m ); ESI-MS (positive ion mode) m / z, found = 805.1, calculated for [(M + H) + ] = 805.5

チミジン誘導体T3の合成
真空乾燥させた化合物T2 (387 mg, 481 μmol, F.W. 805.13)をNH3/MeOH溶液に溶かし
、28%NH3水溶液を加え、室温で攪拌した。反応が進行しなくなったら反応液を減圧留去し、再度NH3/MeOH溶液と28%NH3水溶液を加えた。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-DMF (2 mL)に溶かし、mPEG acid(329 mg, 559 μmol,F.W.588.7)、HBTU (289 mg, 762 μmol, F.W. 379.25)、HOBt・H2O (114 mg, 762 μmol,
F.W. 153.44)のDry-DMF溶液 (3 mL)にDIPEA (200 μL, 1.15 mmol, F.W. 129.55, d=0.742 g/mL)を加えたものを滴下し、室温で1時間攪拌した。反応終了後、反応液を減圧留去し、残渣をethyl acetateに溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 2%→3% MeOH/CHCl3)によって精製し化合物T3を得た。

収量:473 mg 収率:74%

1H NMR (400 MHz, CDCl3) δ 7.86 (1H, s) 7.10-7.27 (2H, m) 6.29 (1H, dd) 4.41 (1H, m) 4.00 (1H, m) 3.80 (2H, m) 3.73 (2H, t) 3.64-3.66 (46H, m) 3.38 (3H, s) 3.34(2H, m) 3.22 (2H, m) 2.47 (2H, t) 2.35 (1H, m) 2.01 (1H, m) 1.45-1.56 (4H, m) 1.24-1.29 (18H, m) 0.90-0.93 (18H, m) 0.09-0.16 (18H, m); ESI-MS (positive ion mode) m/z, found=1301.2, calculated for [(M+Na)+]=1301.8
Synthesis of thymidine derivative T3
Compound T2 (387 mg, 481 μmol, FW 805.13) dried in vacuum was dissolved in NH 3 / MeOH solution, 28% NH 3 aqueous solution was added, and the mixture was stirred at room temperature. When the reaction did not proceed, the reaction solution was distilled off under reduced pressure, and NH 3 / MeOH solution and 28% NH 3 aqueous solution were added again. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-DMF (2 mL), mPEG acid (329 mg, 559 μmol, FW588.7), HBTU (289 mg, 762 μmol, FW 379.25), HOBt ・ H 2 O (114 mg , 762 μmol,
A solution obtained by adding DIPEA (200 μL, 1.15 mmol, FW 129.55, d = 0.742 g / mL) to a Dry-DMF solution (3 mL) of FW 153.44) was added dropwise and stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 2% → 3% MeOH / CHCl 3 ) to obtain compound T3.

Yield: 473 mg Yield: 74%

1 H NMR (400 MHz, CDCl 3 ) δ 7.86 (1H, s) 7.10-7.27 (2H, m) 6.29 (1H, dd) 4.41 (1H, m) 4.00 (1H, m) 3.80 (2H, m) 3.73 (2H, t) 3.64-3.66 (46H, m) 3.38 (3H, s) 3.34 (2H, m) 3.22 (2H, m) 2.47 (2H, t) 2.35 (1H, m) 2.01 (1H, m) 1.45 -1.56 (4H, m) 1.24-1.29 (18H, m) 0.90-0.93 (18H, m) 0.09-0.16 (18H, m); ESI-MS (positive ion mode) m / z, found = 1301.2, calculated for [(M + Na) + ] = 1301.8

チミジン誘導体T4の合成
真空乾燥させた化合物T3 (436 mg, 341 μmol, F.W. 1279.79)をMeOH (3 mL)に溶かし
、TREAT-HF (1.11 mL, 6.80 mmol, F.W. 161.21, d=0.989 g/mL)を加え、室温で2時間攪拌した。反応終了後、反応液を減圧留去し、残渣をAcOEtに溶かし、飽和重曹水と飽和食
塩水で洗浄した。有機相と水相に目的物が存在したため、有機相をMgSO4で乾燥後、吸引
濾過し、濾液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210mesh, 2%→3% MeOH/CHCl3)によって精製し化合物3を得た。水相をシリカゲルカラムク
ロマトグラフィー(Wakosil 40C18, 30-50 μm, 10%→90% MeOH/H2O)によって精製し化合
物T4を得た。

収量:251 mg 収率:66%

1H NMR (400 MHz, CD3OD) δ 8.38 (1H, s) 7.04-7.23 (2H, m) 6.28 (1H, t) 4.43 (1H,m) 3.81 (2H, m) 3.81 (2H, m) 3.72 (2H, t) 3.59-3.63 (45H, m) 3.36 (3H, s) 3.25 (2H, t) 3.17 (2H, t) 2.43 (2H, t) 2.23-2.36 (2H, m) 1.48-1.55 (4H, m) 1.31 (17H,m); ESI-MS (positive ion mode) m/z, found=1073.9, calculated for [(M+Na)+]=1073.6
Synthesis of thymidine derivative T4
Compound T3 (436 mg, 341 μmol, FW 1279.79), which had been vacuum-dried, was dissolved in MeOH (3 mL), and TREAT-HF (1.11 mL, 6.80 mmol, FW 161.21, d = 0.989 g / mL) was added at room temperature. Stir for 2 hours. After completion of the reaction, the reaction solution was evaporated under reduced pressure, the residue was dissolved in AcOEt, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. Since the target product was present in the organic and aqueous phases, the organic phase was dried over MgSO 4 and filtered with suction, and the filtrate was distilled off under reduced pressure, followed by silica gel column chromatography (Silica gel 60, 63-210mesh, 2% → 3% Purification by MeOH / CHCl 3 ) gave compound 3 . The aqueous phase was purified by silica gel column chromatography (Wakosil 40C18, 30-50 μm, 10% → 90% MeOH / H 2 O) to give compound T4.

Yield: 251 mg Yield: 66%

1 H NMR (400 MHz, CD 3 OD) δ 8.38 (1H, s) 7.04-7.23 (2H, m) 6.28 (1H, t) 4.43 (1H, m) 3.81 (2H, m) 3.81 (2H, m) 3.72 (2H, t) 3.59-3.63 (45H, m) 3.36 (3H, s) 3.25 (2H, t) 3.17 (2H, t) 2.43 (2H, t) 2.23-2.36 (2H, m) 1.48-1.55 ( 4H, m) 1.31 (17H, m); ESI-MS (positive ion mode) m / z, found = 1073.9, calculated for [(M + Na) + ] = 1073.6

チミジン誘導体T5の合成
真空乾燥させた化合物T4 (100 mg、95.1 μmol、F.W. 1051.26)を、Dry-DMF (5 mL)で2回共沸し、Dry-MeCN (10 mL)で3回共沸し、N,N,N´,N´-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, F.W. 214.31)を加え、一晩真空乾燥させた。これをDry-Trimethyl phosphate (1 mL)に溶かし、氷冷下で30分攪拌した。氷冷下でPhosphoryl chloride(13 μL, 143 μmol, F.W. 153.33, d = 1.645 g/mL)を加え、45分撹拌した。その後、氷冷下でDry-Tributhyl amine (91 μL, 381 μmol, F.W. 185.35, d = 0.775 g/mL)、0.5 M Diphosphoric acid in DMF (1.20 mL, 600 μmol, F.W. 177.98)を加え、室温で1時間
撹拌した。氷浴下で5分攪拌後、TEAB bufferを加え反応をクエンチさせた。反応液を減圧留去し濃縮後、蒸留水とEt2Oで分液した。水相を減圧留去し濃縮後、陰イオン交換カラムクロマトグラフィー、中圧カラムクロマトグラフィーで精製し、化合物T5を得た。

収量:18 mg 収率:15%

ESI-MS (negative ion mode) m/z, found=1288.4, calculated for [(M-H)-]=1289.5
Synthesis of thymidine derivative T5
Vacuum-dried compound T4 (100 mg, 95.1 μmol, FW 1051.26) was azeotroped twice with Dry-DMF (5 mL), azeotroped three times with Dry-MeCN (10 mL), N, N, N ′, N′-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, FW 214.31) was added and vacuum-dried overnight. This was dissolved in Dry-Trimethyl phosphate (1 mL) and stirred for 30 minutes under ice cooling. Phosphoryl chloride (13 μL, 143 μmol, FW 153.33, d = 1.645 g / mL) was added under ice cooling, and the mixture was stirred for 45 minutes. Then add Dry-Tributhyl amine (91 μL, 381 μmol, FW 185.35, d = 0.775 g / mL) and 0.5 M Diphosphoric acid in DMF (1.20 mL, 600 μmol, FW 177.98) under ice-cooling. Stir for hours. After stirring for 5 minutes in an ice bath, TEAB buffer was added to quench the reaction. The reaction solution was distilled off under reduced pressure and concentrated, followed by separation with distilled water and Et 2 O. The aqueous phase was distilled off under reduced pressure and concentrated, and then purified by anion exchange column chromatography and medium pressure column chromatography to obtain compound T5.

Yield: 18 mg Yield: 15%

ESI-MS (negative ion mode) m / z, found = 1288.4, calculated for [(MH) - ] = 1289.5

アデノシン誘導体A2の合成
真空乾燥させた1,12-diaminododecane (3.556 g, 17.7 mmol, F.W. 200.36)をDry-DMF (80 mL)に懸濁させ、DIPEA (2.6 mL, 14.9 mmol, F.W. 129.55, d=0.742 g/mL)を加えた。化合物A1(473 mg, 1.48 mmol, F.W. 320.30)、PyBOP (922 mg, 1.77 mmol, F.W. 520.39)、HOBt・H2O (297 mg, 1.94 mmol, F.W. 153.44)をDry-DMF (26 mL)に溶かしDIPEA (5.3 mL, 30.4 mmol)を加えたものを滴下し、室温で1.5時間攪拌した。反応終了後、反応液
を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-MeOH (8 mL)に溶かし、TEA (876 μL, 6.30 mmol, F.W. 101.19, d=0.728 g/mL)、TFA Ethyl Ester (5.3 mL, 44.3 mmol, F.W. 142.08, d=1.190 g/mL)を加え、室温で2時間攪拌した。反応終了後、反応液を
減圧留去し、CHCl3(10 mL)で3回共沸させ真空乾燥させた。真空乾燥させた残渣をDry-DMF(5 mL)に溶かし、imidazole (1.020 g, 15.0 mmol, F.W. 68.08)、TBDMS-Cl(1.128 g, 7.48 mmol, F.W. 150.72)をDry-DMF (5 mL)に溶かしたものを加え、室温で3時間攪拌した。反応終了後、反応液を減圧留去し、残渣をAcOEt:Et2O=1:1混合液に溶かし、飽和重曹
水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した
。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μL, 0.5→5% MeOH /CH2Cl2) , (Silica gel 60, 40-50 μL, 30%→50% AcOEt /hexane)によって精製し化合物A2および化合物A2-1を得た。
Synthesis of adenosine derivative A2
Vacuum-dried 1,12-diaminododecane (3.556 g, 17.7 mmol, FW 200.36) was suspended in Dry-DMF (80 mL) and DIPEA (2.6 mL, 14.9 mmol, FW 129.55, d = 0.742 g / mL) Was added. Compound A1 (473 mg, 1.48 mmol, FW 320.30), PyBOP (922 mg, 1.77 mmol, FW 520.39), HOBt ・ H 2 O (297 mg, 1.94 mmol, FW 153.44) were dissolved in Dry-DMF (26 mL). What added DIPEA (5.3 mL, 30.4 mmol) was dripped, and it stirred at room temperature for 1.5 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-MeOH (8 mL), TEA (876 μL, 6.30 mmol, FW 101.19, d = 0.728 g / mL), TFA Ethyl Ester (5.3 mL, 44.3 mmol, FW 142.08, d = 1.190 g / mL) was added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure, azeotroped with CHCl 3 (10 mL) three times, and vacuum-dried. The vacuum-dried residue was dissolved in Dry-DMF (5 mL), and imidazole (1.020 g, 15.0 mmol, FW 68.08) and TBDMS-Cl (1.128 g, 7.48 mmol, FW 150.72) were added to Dry-DMF (5 mL). The dissolved one was added and stirred at room temperature for 3 hours. After completion of the reaction, the reaction solution was evaporated under reduced pressure, and the residue was dissolved in a mixture of AcOEt: Et 2 O = 1: 1, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μL, 0.5 → 5% MeOH / CH 2 Cl 2 ), (Silica gel 60, 40-50 μL, 30% → 50% AcOEt / hexane). Compound A2 and compound A2-1 were obtained.

化合物A2
収量:288 mg 収率:24%

1H NMR (400 MHz, CDCl3) δ 8.29 (1H, s) 7.76 (1H, d) 7.47 (1H, s) 6.65 (1H, t) 6.14 (1H, d) 4.53 (1H, m) 3.96 (1H, m) 3.77 (2H, m) 3.30-3.36 (4H, m) 2.30-2.43 (2H, m) 1.50-1.55 (4H, m) 1.24-1.28 (19H, m) 0.87-0.91 (18H, m) 0.05-0.09 (12H, m); ESI-MS (positive ion mode) m/z, found=827.7, calculated for [(M+H)+]=827.5
Compound A2
Yield: 288 mg Yield: 24%

1 H NMR (400 MHz, CDCl 3 ) δ 8.29 (1H, s) 7.76 (1H, d) 7.47 (1H, s) 6.65 (1H, t) 6.14 (1H, d) 4.53 (1H, m) 3.96 (1H , m) 3.77 (2H, m) 3.30-3.36 (4H, m) 2.30-2.43 (2H, m) 1.50-1.55 (4H, m) 1.24-1.28 (19H, m) 0.87-0.91 (18H, m) 0.05 -0.09 (12H, m); ESI-MS (positive ion mode) m / z, found = 827.7, calculated for [(M + H) + ] = 827.5

化合物A2-1
収量:176 mg 収率:17%

1H NMR (400 MHz, CDCl3) δ 8.32 (1H, s) 7.77 (1H, d) 7.51 (1H, s) 6.71 (1H, t) 6.18 (1H, d) 4.62 (1H, m) 4.04 (1H, m) 3.86 (2H, m) 3.34-3.42 (4H, m) 2.44-2.60 (2H, m) 1.54-1.60 (4H, m) 1.27-1.33 (16H, m) 0.92-0.94 (9H, m) 0.10-0.12 (12H, m); ESI-MS (positive ion mode) m/z, found=713.1, calculated for [(M+H)+]=713.4
Compound A2-1
Yield: 176 mg Yield: 17%

1 H NMR (400 MHz, CDCl 3 ) δ 8.32 (1H, s) 7.77 (1H, d) 7.51 (1H, s) 6.71 (1H, t) 6.18 (1H, d) 4.62 (1H, m) 4.04 (1H , m) 3.86 (2H, m) 3.34-3.42 (4H, m) 2.44-2.60 (2H, m) 1.54-1.60 (4H, m) 1.27-1.33 (16H, m) 0.92-0.94 (9H, m) 0.10 -0.12 (12H, m); ESI-MS (positive ion mode) m / z, found = 713.1, calculated for [(M + H) + ] = 713.4

アデノシン誘導体A3の合成
真空乾燥させた化合物A2 (280 mg, 338 μmol, F.W. 827.18)をNH3/MeOH溶液に溶かし
、28%NH3水溶液を加え、室温で攪拌した。反応が進行しなくなったら反応液を減圧留去し、再度NH3/MeOH溶液と28%NH3水溶液を加えた。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-DMF (1 mL)に溶かし、mPEG acid (269 mg, 457 μmol, F.W.588.7)、HBTU (210 mg, 554 μmol, F.W. 379.25)、HOBt・H2O (87 mg, 567 μmol, F.W. 153.44)のDry-DMF溶液 (1 mL)にDIPEA (128 μL, 733 μmol, F.W. 129.55, d=0.742 g/mL)を加えたものを滴下し、室温で1時間攪拌した。反応終了後、反応液を減圧留
去し、残渣をethyl acetateに溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 2-3% MeOH/CHCl3)によって精製し化合物A3を得た。

収量:375 mg 収率:79%

1H NMR (400 MHz, CDCl3) δ 8.31 (1H, s) 7.76 (1H, d) 7.52 (1H, s) 6.68 (1H, t) 6.24 (1H, d) 4.56 (1H, m) 3.99 (1H, m) 3.80 (2H, m) 3.73 (2H, t) 3.64-3.66 (45H, m) 3.38 (3H, s) 3.34-3.41 (2H, m) 3.18-3.25 (2H, m) 2.49 (2H, t) 2.33-2.43 (2H, m) 1.47-1.60 (4H, m) 1.27-1.33 (17H, m) 0.91-0.94 (19H, m) 0.09-0.11 (12H, m); ESI-MS (positive ion mode) m/z, found=1301.3, calculated for [(M+Na)+]=1301.8
Synthesis of adenosine derivative A3
Compound A2 (280 mg, 338 μmol, FW 827.18) that had been vacuum-dried was dissolved in NH 3 / MeOH solution, 28% NH 3 aqueous solution was added, and the mixture was stirred at room temperature. When the reaction did not proceed, the reaction solution was distilled off under reduced pressure, and NH 3 / MeOH solution and 28% NH 3 aqueous solution were added again. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-DMF (1 mL), mPEG acid (269 mg, 457 μmol, FW588.7), HBTU (210 mg, 554 μmol, FW 379.25), HOBt · H 2 O (87 mg , 567 μmol, FW 153.44) -Dry-DMF solution (1 mL) with DIPEA (128 μL, 733 μmol, FW 129.55, d = 0.742 g / mL) added dropwise, and stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 2-3% MeOH / CHCl 3 ) to obtain compound A3.

Yield: 375 mg Yield: 79%

1 H NMR (400 MHz, CDCl 3 ) δ 8.31 (1H, s) 7.76 (1H, d) 7.52 (1H, s) 6.68 (1H, t) 6.24 (1H, d) 4.56 (1H, m) 3.99 (1H , m) 3.80 (2H, m) 3.73 (2H, t) 3.64-3.66 (45H, m) 3.38 (3H, s) 3.34-3.41 (2H, m) 3.18-3.25 (2H, m) 2.49 (2H, t 2.33-2.43 (2H, m) 1.47-1.60 (4H, m) 1.27-1.33 (17H, m) 0.91-0.94 (19H, m) 0.09-0.11 (12H, m); ESI-MS (positive ion mode) m / z, found = 1301.3, calculated for [(M + Na) + ] = 1301.8

アデノシン誘導体A3-1の合成
真空乾燥させた化合物A2-1 (161 mg, 226 μmol, F.W. 712.92)をNH3/MeOH溶液に溶か
し、28%NH3水溶液を加え、室温で攪拌した。反応が進行しなくなったら反応液を減圧留去し、再度NH3/MeOH溶液と28%NH3水溶液を加えた。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-DMF (1 mL)に溶かし、mPEG acid (162 mg, 375 μmol, F.W.588.7)、HBTU (148 mg, 369 μmol, F.W. 379.25)、HOBt・H2O (59 mg, 385 μmol, F.W. 153.44)のDry-DMF溶液 (1 mL)にDIPEA (88 μL, 504 μmol, F.W. 129.55, d=
0.742 g/mL)を加えたものを滴下し、室温で1時間攪拌した。反応終了後、反応液を減圧留去し、残渣をethyl acetateに溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 2-4% MeOH/CHCl3)によって精製し化合物A3-1を得た。

収量:160 mg 収率:54%

1H NMR (400 MHz, CDCl3) δ 8.30 (1H, s) 7.76 (1H, d) 7.53 (1H, s) 6.70 (1H, t) 6.25 (1H, d) 4.62 (1H, m) 4.02 (1H, m) 3.86 (2H, m) 3.73 (2H, t) 3.60-3.66 (44H, m) 3.38 (3H, s) 3.34-3.45 (2H, m) 3.18-3.25 (2H, m) 2.47 (2H, t) 2.45-2.56 (2H, m) 1.49-1.61 (4H, m) 1.27-1.32 (16H, m) 0.92-0.93 (9H, m) 0.11 (6H, m); ESI-MS (positive ion mode) m/z, found=1187.2, calculated for [(M+Na)+]=1187.7
Synthesis of adenosine derivative A3-1
Compound A2-1 (161 mg, 226 μmol, FW 712.92) that had been vacuum-dried was dissolved in NH 3 / MeOH solution, 28% NH 3 aqueous solution was added, and the mixture was stirred at room temperature. When the reaction did not proceed, the reaction solution was distilled off under reduced pressure, and NH 3 / MeOH solution and 28% NH 3 aqueous solution were added again. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-DMF (1 mL), mPEG acid (162 mg, 375 μmol, FW588.7), HBTU (148 mg, 369 μmol, FW 379.25), HOBt ・ H 2 O (59 mg , 385 μmol, FW 153.44) in Dry-DMF solution (1 mL) and DIPEA (88 μL, 504 μmol, FW 129.55, d =
0.742 g / mL) was added dropwise, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 2-4% MeOH / CHCl 3 ) to obtain compound A3-1.

Yield: 160 mg Yield: 54%

1 H NMR (400 MHz, CDCl 3 ) δ 8.30 (1H, s) 7.76 (1H, d) 7.53 (1H, s) 6.70 (1H, t) 6.25 (1H, d) 4.62 (1H, m) 4.02 (1H , m) 3.86 (2H, m) 3.73 (2H, t) 3.60-3.66 (44H, m) 3.38 (3H, s) 3.34-3.45 (2H, m) 3.18-3.25 (2H, m) 2.47 (2H, t ) 2.45-2.56 (2H, m) 1.49-1.61 (4H, m) 1.27-1.32 (16H, m) 0.92-0.93 (9H, m) 0.11 (6H, m); ESI-MS (positive ion mode) m / z, found = 1187.2, calculated for [(M + Na) + ] = 1187.7

アデノシン誘導体A4の合成
真空乾燥させた化合物A3 (375 mg, 288 μmol, F.W. 1301.84)をDry-DMF (1 mL)に溶かし、1 M Tetra-n-butylammonium fluoride (870 μL, 870 μmol, F.W. 261.45)を加え、室温で1時間攪拌した。反応終了後、反応液を減圧留去した。同様に、真空乾燥させた化
合物A3-1 (135 mg, 134 μmol, F.W. 1301.84)をDry-DMF (1 mL)に溶かし、1 M Tetra-n-butylammonium fluoride inTHF (410 μL, 410 μmol, F.W. 261.45)を加え、室温で1時
間攪拌した。反応終了後、反応液を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 3-5% MeOH/CHCl3), (Wakosil 40C18, 30-50 μm, 100%H2O→70% MeOH/H2O)によって精製し化合物A4を得た。

収量:423 mg 収率:93%

1H NMR (400 MHz, CD3OD) δ 8.25 (1H, s) 7.74 (1H, d) 7.42 (1H, s) 6.33 (1H, d) 6.32 (1H, t) 4.76 (1H, m) 4.15 (1H, m) 3.81-3.96 (2H, m) 3.72 (2H, t) 3.63-3.66 (43H, m) 3.38 (3H, s) 3.20-3.29 (6H, m) 2.61 (3H, m) 2.46 (2H, t) 2.30-2.35 (1H, m) 1.55-1.67 (4H, m) 1.26-1.29 (15H, m); ESI-MS (positive ion mode) m/z, found=
1073.9, calculated for [(M+Na)+]=1073.6
Synthesis of adenosine derivative A4
Compound A3 (375 mg, 288 μmol, FW 1301.84) that has been vacuum-dried is dissolved in Dry-DMF (1 mL), and 1 M Tetra-n-butylammonium fluoride (870 μL, 870 μmol, FW 261.45) is added at room temperature. Stir for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure. Similarly, Compound A3-1 (135 mg, 134 μmol, FW 1301.84) dried in vacuum was dissolved in Dry-DMF (1 mL) and 1 M Tetra-n-butylammonium fluoride inTHF (410 μL, 410 μmol, FW 261.45). ) Was added and stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 3-5% MeOH / CHCl 3 ), (Wakosil 40C18, 30-50 μm, 100% H 2 O → 70% MeOH / H 2 O). Purification gave compound A4.

Yield: 423 mg Yield: 93%

1 H NMR (400 MHz, CD 3 OD) δ 8.25 (1H, s) 7.74 (1H, d) 7.42 (1H, s) 6.33 (1H, d) 6.32 (1H, t) 4.76 (1H, m) 4.15 ( 1H, m) 3.81-3.96 (2H, m) 3.72 (2H, t) 3.63-3.66 (43H, m) 3.38 (3H, s) 3.20-3.29 (6H, m) 2.61 (3H, m) 2.46 (2H, t) 2.30-2.35 (1H, m) 1.55-1.67 (4H, m) 1.26-1.29 (15H, m); ESI-MS (positive ion mode) m / z, found =
1073.9, calculated for [(M + Na) + ] = 1073.6

アデノシン誘導体A5の合成
真空乾燥させた化合物A4 (106 mg、98.8 μmol、F.W. 1073.32)を、Dry-DMF (3 mL)で3回共沸し、Dry-MeCN (3 mL)で2回共沸し、N,N,N´,N´-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, F.W. 214.31)を加え、一晩真空乾燥させた。これをTrimethyl phosphate (1 mL)に溶かし、氷冷下で30分攪拌した。氷冷下でPhosphoryl chloride (14 μL, 150 μmol, F.W. 153.33, d = 1.645 g/mL)を加え、45分撹拌した。その後、氷冷下でDry-Tributhyl amine (95 μL, 402 μmol, F.W. 185.35, d = 0.775 g/mL)、0.5 M Diphosphoric acid in DMF (1.24 mL, 620 μmol, F.W. 177.98)を加え、室温で1時間撹拌
した。氷浴下で5分攪拌後、TEAB bufferを加え反応をクエンチさせた。反応液を減圧留去し濃縮後、蒸留水とEt2Oで分液した。水相を減圧留去し濃縮後、陰イオン交換カラムクロマトグラフィー、中圧カラムクロマトグラフィーで精製し、化合物A5を得た。

収量:19 mg 収率:14%

ESI-MS (negative ion mode) m/z, found=1311.4, calculated for [(M-H)-]=1311.6
Synthesis of adenosine derivative A5
Vacuum-dried Compound A4 (106 mg, 98.8 μmol, FW 1073.32) was azeotroped 3 times with Dry-DMF (3 mL), azeotroped 2 times with Dry-MeCN (3 mL), N, N, N ′, N′-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, FW 214.31) was added and vacuum-dried overnight. This was dissolved in Trimethyl phosphate (1 mL) and stirred for 30 minutes under ice cooling. Phosphoryl chloride (14 μL, 150 μmol, FW 153.33, d = 1.645 g / mL) was added under ice cooling, and the mixture was stirred for 45 minutes. Then add Dry-Tributhyl amine (95 μL, 402 μmol, FW 185.35, d = 0.775 g / mL) and 0.5 M Diphosphoric acid in DMF (1.24 mL, 620 μmol, FW 177.98) under ice-cooling. Stir for hours. After stirring for 5 minutes in an ice bath, TEAB buffer was added to quench the reaction. The reaction solution was distilled off under reduced pressure and concentrated, followed by separation with distilled water and Et 2 O. The aqueous phase was distilled off under reduced pressure and concentrated, and then purified by anion exchange column chromatography and medium pressure column chromatography to obtain compound A5.

Yield: 19 mg Yield: 14%

ESI-MS (negative ion mode) m / z, found = 1311.4, calculated for [(MH) - ] = 1311.6

シチジン誘導体C1の合成
真空乾燥させたチミジン誘導体T3 (360 mg, 281 μmol, F.W. 1279.79)をDry-pyridine(3 mL)で3回共沸させ、真空乾燥させた。Dry-CH2Cl2 (2 mL)に溶かし、氷浴下で10分攪拌した。TEA (250 μL, 1.80 mmol, F.W. 101.19, d=0.728 g/mL)を加え、氷浴下で5分攪
拌後、2,4,6-Triisopropylbenzenesulfonyl chloride (256 mg, 845 μmol, F.W. 302.86)とN,N-dimethyl-4-aminopyridine (16 mg, 131 μmol, F.W. 122.17)をDry-CH2Cl2 (1mL)に溶かしたものを加え、10 ℃で20時間攪拌した。ここにNH3/MeOH溶液 (5 mL)を加え、10 ℃で1時間攪拌した。反応液を減圧留去し、CH2Cl2に溶かし水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去し、シリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 3%→10% MeOH/CHCl3)によって精製し化合物C1を得た。

収量:282 mg 収率:78%

1H NMR (400 MHz, CDCl3) δ 8.00 (1H, s) 7.32 (1H, d) 6.29 (1H, dd) 6.25 (1H, t) 4.37 (1H, m) 4.01 (1H, m) 3.81 (2H, m) 3.72 (2H, t) 3.63-3.66 (50H, m) 3.38 (3H,s) 3.19-3.30 (4H, m) 2.50 (1H, m) 2.46 (2H, t) 2.00 (1H, m) 1.45-1.50 (4H, m) 1.25-1.28 (19H, m) 0.89-0.90 (19H, m) 0.08-0.11 (13H, m); ESI-MS (positive ion mode) m/z, found=1301.0, calculated for [(M+Na)+]=1300.8
Synthesis of cytidine derivative C1
The vacuum-dried thymidine derivative T3 (360 mg, 281 μmol, FW 1279.79) was azeotroped three times with Dry-pyridine (3 mL) and vacuum-dried. It was dissolved in Dry-CH 2 Cl 2 (2 mL) and stirred for 10 minutes in an ice bath. Add TEA (250 μL, 1.80 mmol, FW 101.19, d = 0.728 g / mL), stir in an ice bath for 5 minutes, then add 2,4,6-Triisopropylbenzenesulfonyl chloride (256 mg, 845 μmol, FW 302.86) and N N-dimethyl-4-aminopyridine (16 mg, 131 μmol, FW 122.17) dissolved in Dry-CH 2 Cl 2 (1 mL) was added and stirred at 10 ° C. for 20 hours. NH 3 / MeOH solution (5 mL) was added thereto, and the mixture was stirred at 10 ° C. for 1 hr. The reaction solution was distilled off under reduced pressure, dissolved in CH 2 Cl 2 and washed with water. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure, and purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 3% → 10% MeOH / CHCl 3 ) to obtain compound C1. Obtained.

Yield: 282 mg Yield: 78%

1 H NMR (400 MHz, CDCl 3 ) δ 8.00 (1H, s) 7.32 (1H, d) 6.29 (1H, dd) 6.25 (1H, t) 4.37 (1H, m) 4.01 (1H, m) 3.81 (2H , m) 3.72 (2H, t) 3.63-3.66 (50H, m) 3.38 (3H, s) 3.19-3.30 (4H, m) 2.50 (1H, m) 2.46 (2H, t) 2.00 (1H, m) 1.45 -1.50 (4H, m) 1.25-1.28 (19H, m) 0.89-0.90 (19H, m) 0.08-0.11 (13H, m); ESI-MS (positive ion mode) m / z, found = 1301.0, calculated for [(M + Na) + ] = 1300.8

シチジン誘導体C2の合成
真空乾燥させた化合物C1 (215 mg, 168 μmol, F.W. 1278.80)をMeOH (1 mL)に溶かし
、TREAT-HF (822 μL, 4.89 mmol, F.W. 161.21, d=0.989 g/mL)を加え、室温で2時間攪拌した。反応終了後、反応液を減圧留去し、シリカゲルカラムクロマトグラフィー(Wakosil 40C18, 30-50 μm, 10%→90% MeOH/H2O)によって精製し化合物C2を得た。

収量:172 mg 収率:98%

1H NMR (400 MHz, CD3OD) δ 8.77 (1H, s) 7.37 (1H, d) 7.09 (1H, s) 6.41 (1H, d) 4.42 (1H, m) 4.00 (1H, m) 3.86 (2H, m) 3.72 (2H, t) 3.60-3.63 (45H, m) 3.36 (3H, s) 3.15-3.31 (4H, m) 2.46 (1H, m) 2.43 (2H, t) 2.27 (1H, m) 1.48-1.57 (4H, m) 1.31-1.34 (17H, m); ESI-MS (positive ion mode) m/z, found=1050.9, calculated for [(M+H)+]=1050.5
Synthesis of cytidine derivative C2
Compound C1 (215 mg, 168 μmol, FW 1278.80) dried in vacuo was dissolved in MeOH (1 mL), and TREAT-HF (822 μL, 4.89 mmol, FW 161.21, d = 0.989 g / mL) was added at room temperature. Stir for 2 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure and purified by silica gel column chromatography (Wakosil 40C18, 30-50 μm, 10% → 90% MeOH / H 2 O) to obtain Compound C2.

Yield: 172 mg Yield: 98%

1 H NMR (400 MHz, CD 3 OD) δ 8.77 (1H, s) 7.37 (1H, d) 7.09 (1H, s) 6.41 (1H, d) 4.42 (1H, m) 4.00 (1H, m) 3.86 ( 2H, m) 3.72 (2H, t) 3.60-3.63 (45H, m) 3.36 (3H, s) 3.15-3.31 (4H, m) 2.46 (1H, m) 2.43 (2H, t) 2.27 (1H, m) 1.48-1.57 (4H, m) 1.31-1.34 (17H, m); ESI-MS (positive ion mode) m / z, found = 1050.9, calculated for [(M + H) + ] = 1050.5

シチジン誘導体C3の合成
真空乾燥させた化合物C2 (69 mg、65.7 μmol、F.W. 1050.28)を、Dry-DMF (3 mL)で4
回共沸し、Dry-MeCN (5 mL)で3回共沸し、N,N,N´,N´-Tetramethyl-1,8-naphthalenediamine (21 mg, 98.0 μmol, F.W. 214.31)を加え、一晩真空乾燥させた。これをTrimethylphosphate (1 mL)に溶かし、氷冷下で30分攪拌した。氷冷下でPhosphoryl chloride (12.2 μL, 131 μmol, F.W. 153.33, d = 1.645 g/mL)を加え、45分撹拌した。その後、氷冷下でDry-Tributhyl amine (65 μL, 272 μmol, F.W. 185.35, d = 0.775 g/mL)、0.5 M Diphosphoric acid in DMF (840μL, 420 μmol, F.W. 177.98)を加え、室温で1時間撹拌した。氷浴下で5分攪拌後、TEAB bufferを加え反応をクエンチさせた。反応液を減圧留去し濃縮後、蒸留水とEt2Oで分液した。水相を減圧留去し濃縮後、陰イオン交換カラムクロマトグラフィー、中圧カラムクロマトグラフィー、HPLCで精製し、化合物C3を得た。

収量:1.1 mg 収率:1.4%

ESI-MS (negative ion mode) m/z, found=1287.3, calculated for [(M-H)-]=1288.5
Synthesis of cytidine derivative C3
Vacuum-dried Compound C2 (69 mg, 65.7 μmol, FW 1050.28) was added 4 times with Dry-DMF (3 mL).
Azeotropically, azeotrope three times with Dry-MeCN (5 mL), add N, N, N´, N´-Tetramethyl-1,8-naphthalenediamine (21 mg, 98.0 μmol, FW 214.31), add 1 Vacuum dried overnight. This was dissolved in Trimethylphosphate (1 mL) and stirred for 30 minutes under ice cooling. Phosphoryl chloride (12.2 μL, 131 μmol, FW 153.33, d = 1.645 g / mL) was added under ice cooling, and the mixture was stirred for 45 minutes. Then add Dry-Tributhyl amine (65 μL, 272 μmol, FW 185.35, d = 0.775 g / mL) and 0.5 M Diphosphoric acid in DMF (840 μL, 420 μmol, FW 177.98) under ice-cooling for 1 hour at room temperature. Stir. After stirring for 5 minutes in an ice bath, TEAB buffer was added to quench the reaction. The reaction solution was distilled off under reduced pressure and concentrated, followed by separation with distilled water and Et 2 O. The aqueous phase was evaporated under reduced pressure and concentrated, and then purified by anion exchange column chromatography, medium pressure column chromatography, and HPLC to obtain compound C3.

Yield: 1.1 mg Yield: 1.4%

ESI-MS (negative ion mode) m / z, found = 1287.3, calculated for [(MH) - ] = 1288.5

グアノシン誘導体G2の合成
真空乾燥させた6-chloro-7-deazaguanine (2.436 g, 14.5 mmol, F.W. 168.58)をDry-pyridine (40 mL)に溶かし、氷浴下で10分攪拌。isobutyryl chloride (1.85 mL, 17.7 mmol, d=1.107 g/mL)を加え、氷浴下で20分攪拌した。反応終了後、反応液を減圧留去し、残渣をEt2Oに懸濁させ、吸引濾過し、濾物を冷80%MeOH/ Et2O、冷MeOH、冷Et2Oで洗浄し
化合物G2を得た。同様の反応を再度行なった。

収量:1.958 g 収率:56%
総収量:2.648 総収率:53%

1H NMR (400 MHz, CDCl3) δ 7.38 (1H, m) 6.56 (1H, m) 1.31 (1H, d); ESI-MS (positive ion mode) m/z, found=239.2, calculated for [(M+Na)+]=239.1
Synthesis of guanosine derivative G2
Vacuum-dried 6-chloro-7-deazaguanine (2.436 g, 14.5 mmol, FW 168.58) was dissolved in Dry-pyridine (40 mL) and stirred for 10 minutes in an ice bath. isobutyryl chloride (1.85 mL, 17.7 mmol, d = 1.107 g / mL) was added, and the mixture was stirred for 20 minutes in an ice bath. After completion of the reaction, the reaction solution was distilled off under reduced pressure, the residue was suspended in Et 2 O, suction filtered, and the filtrate was washed with cold 80% MeOH / Et 2 O, cold MeOH, cold Et 2 O and compound G2 Got. A similar reaction was performed again.

Yield: 1.958 g Yield: 56%
Total yield: 2.648 Total yield: 53%

1 H NMR (400 MHz, CDCl 3 ) δ 7.38 (1H, m) 6.56 (1H, m) 1.31 (1H, d); ESI-MS (positive ion mode) m / z, found = 239.2, calculated for [( M + Na) + ] = 239.1

グアノシン誘導体G3の合成
真空乾燥させた化合物G2 (1.088 g, 3.52 mmol, F.W. 238.67)をDry-DMF (20 mL)に溶
かし、 N-iodosuccinimide (1.131 g, 5.03 mmol, F.W. 224.98)をDry-DMF (4 mL)に溶かして加え、室温で1時間攪拌した。反応終了後、反応液を減圧留去し、残渣を水と少量のMeOHを加え懸濁させ、吸引濾過し、濾物を冷MeOHで洗浄し化合物G3を得た。同様の反応を
再度行なった。

収量:1.367 g 収率:82%
総収量:3.345 g 総収率:87%

1H NMR (400 MHz, CDCl3) δ 7.52 (1H, s) 2.78 (1H, m) 1.20 (1H, d); ESI-MS (positive ion mode) m/z, found=364.9, calculated for [(M+H)+]=364.9
Synthesis of guanosine derivative G3
Compound G2 (1.088 g, 3.52 mmol, FW 238.67) after vacuum drying was dissolved in Dry-DMF (20 mL), and N-iodosuccinimide (1.131 g, 5.03 mmol, FW 224.98) was dissolved in Dry-DMF (4 mL). And stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was evaporated under reduced pressure, the residue was suspended by adding water and a small amount of MeOH, filtered by suction, and the residue was washed with cold MeOH to obtain Compound G3. A similar reaction was performed again.

Yield: 1.367 g Yield: 82%
Total yield: 3.345 g Total yield: 87%

1 H NMR (400 MHz, CDCl 3 ) δ 7.52 (1H, s) 2.78 (1H, m) 1.20 (1H, d); ESI-MS (positive ion mode) m / z, found = 364.9, calculated for [( M + H) + ] = 364.9

グアノシン誘導体G4の合成
真空乾燥させた化合物G3 (1.333 g, 3.66 mmol, F.W. 364.57)とNaH (222 mg, 5.55 mmol, F.W. 24.00)を真空乾燥後、Dry-MeCN (80 mL)に懸濁させ、1-alpha-chloro-3,5-ditoluoyl-2-deoxy-D-ribose(1.992 g, 5.12 mmol, F.W. 388.84)をDry-DMF (10 mL)に懸濁させ加え、室温で1時間攪拌した。反応終了後、反応液を吸引濾過し、濾物を冷水で洗浄し
化合物G4を得た。同様の反応を再度行なった。

収量:2.127 g 収率:81%
総収量:5.504 g 総収率:82%

1H NMR (400 MHz, CDCl3) δ 7.95 (5H, m) 7.42 (1H, s) 7.27 (4H, m) 6.69 (1H, t) 5.76 (1H, m) 4.72 (2H, m) 4.60 (1H, m) 2.92 (1H, m) 2.73-2.90 (2H, m) 2.45 (3H,s)
2.43 (3H, s) 1.29 (6H, d); ESI-MS (positive ion mode) m/z, found=717.0, calculated for [(M+H)+]=717.1
Synthesis of guanosine derivative G4
Vacuum-dried compound G3 (1.333 g, 3.66 mmol, FW 364.57) and NaH (222 mg, 5.55 mmol, FW 24.00) were vacuum-dried, suspended in Dry-MeCN (80 mL), and 1-alpha-chloro -3,5-ditoluoyl-2-deoxy-D-ribose (1.992 g, 5.12 mmol, FW 388.84) was suspended in Dry-DMF (10 mL) and stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was filtered with suction, and the residue was washed with cold water to obtain compound G4. A similar reaction was performed again.

Yield: 2.127 g Yield: 81%
Total yield: 5.504 g Total yield: 82%

1 H NMR (400 MHz, CDCl 3 ) δ 7.95 (5H, m) 7.42 (1H, s) 7.27 (4H, m) 6.69 (1H, t) 5.76 (1H, m) 4.72 (2H, m) 4.60 (1H , m) 2.92 (1H, m) 2.73-2.90 (2H, m) 2.45 (3H, s)
2.43 (3H, s) 1.29 (6H, d); ESI-MS (positive ion mode) m / z, found = 717.0, calculated for [(M + H) + ] = 717.1

グアノシン誘導体G5の合成
真空乾燥させた化合物G4 (2.215 g, 3.69 mmol, F.W. 716.95)とCuI (238 mg, 1.25 mmol, F.W. 190.45)に、Methyl acrylate (117 ml, 1.30 mol, F.W. 86.09)と脱気Dry-DMF (44 mL)の混合液を加え懸濁させ、Pd(PPh3)4 (1.431 g, 1.24 mmol, F.W. 1155.56)、TEA(1.75 mL, 12.6 mmol, F.W. 101.19, d=0.728 g/mL)を加え、70 ℃で5時間還流した。反応終了後、残渣をCH2Cl2に溶かし飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4
乾燥後、吸引濾過し、濾液を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 100% CH2Cl2→20% AcOEt /CH2Cl2)によって精製し、残渣をMeOHに懸濁させ吸引濾過し、濾物として化合物G5を得た。同様の反応を再度行なった。

収量:1.503 g 収率:72%
総収量:3.536 g 総収率:68%

1H NMR (400 MHz, CDCl3) δ 8.08 (1H, d) 7.92-8.00 (5H, m) 7.62 (1H, s) 6.73 (1H,t) 5.97 (1H, d) 5.80 (1H, m) 4.85 (1H, m) 4.61-4.68 (2H, m) 3.81 (3H, s) 2.97 (1H, m) 2.80-2.91 (2H, m) 2.46 (3H, s) 2.43 (3H, s) 1.30 (3H, s) 1.28 (3H, s); ESI
-MS (positive ion mode) m/z, found=675.2, calculated for [(M+H)+]=675.2
Synthesis of guanosine derivative G5
Vacuum-dried compound G4 (2.215 g, 3.69 mmol, FW 716.95) and CuI (238 mg, 1.25 mmol, FW 190.45), Methyl acrylate (117 ml, 1.30 mol, FW 86.09) and degassed Dry-DMF (44 The mixture was suspended, and Pd (PPh 3 ) 4 (1.431 g, 1.24 mmol, FW 1155.56), TEA (1.75 mL, 12.6 mmol, FW 101.19, d = 0.728 g / mL) was added, and 70 Reflux at 5 ° C. for 5 hours. After completion of the reaction, the residue was dissolved in CH 2 Cl 2 and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase is dried over MgSO 4 and suction filtered, the filtrate is distilled off under reduced pressure, and the residue is subjected to silica gel column chromatography (Silica gel 60, 63-210 μm, 100% CH 2 Cl 2 → 20% AcOEt / CH 2 Cl 2 ), the residue was suspended in MeOH and suction filtered to give compound G5 as a filtrate. A similar reaction was performed again.

Yield: 1.503 g Yield: 72%
Total yield: 3.536 g Total yield: 68%

1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (1H, d) 7.92-8.00 (5H, m) 7.62 (1H, s) 6.73 (1H, t) 5.97 (1H, d) 5.80 (1H, m) 4.85 (1H, m) 4.61-4.68 (2H, m) 3.81 (3H, s) 2.97 (1H, m) 2.80-2.91 (2H, m) 2.46 (3H, s) 2.43 (3H, s) 1.30 (3H, s ) 1.28 (3H, s); ESI
-MS (positive ion mode) m / z, found = 675.2, calculated for [(M + H) + ] = 675.2

グアノシン誘導体G6の合成
真空乾燥させた化合物G5(1.503 g, 2.22 mmol, F.W. 675.13)を1N NaOH (30 mL)、1,4-dioxaneに懸濁させ終夜攪拌した。反応終了後、反応液をHClで中和し、減圧留去した。残渣を1N NaOH (30 mL)、MeOH (10 mL)に懸濁させ、7時間攪拌させた。反応終了後、反応液をHClで中和し、減圧留去し、MeOHに懸濁させ吸引濾過し、濾液を減圧留去した。残渣を
シリカゲルカラムクロマトグラフィー(Wakosil 40C18, 30-50 μm, 100%水→70% MeOH/水)によって精製し化合物G6を得た。同様の反応を再度行なった。

総収量:1.371 g 総収率:81%

1H NMR (400 MHz, CDCl3) δ 7.55 (1H, d) 7.39 (1H, s) 6.63 (1H, d) 6.39 (1H, t) 4.50 (1H, m) 4.06 (3H, s) 3.97 (1H, m) 3.75 (2H, m) 2.63 (1H, m) 2.26 (1H, m); ESI-MS (positive ion mode) m/z, found=351.3, calculated for [(M+H)+]=351.1
Synthesis of guanosine derivative G6
Compound G5 (1.503 g, 2.22 mmol, FW 675.13) dried in vacuo was suspended in 1N NaOH (30 mL) and 1,4-dioxane and stirred overnight. After completion of the reaction, the reaction solution was neutralized with HCl and evaporated under reduced pressure. The residue was suspended in 1N NaOH (30 mL), MeOH (10 mL) and allowed to stir for 7 hours. After completion of the reaction, the reaction solution was neutralized with HCl, evaporated under reduced pressure, suspended in MeOH and suction filtered, and the filtrate was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (Wakosil 40C18, 30-50 μm, 100% water → 70% MeOH / water) to give compound G6. A similar reaction was performed again.

Total yield: 1.371 g Total yield: 81%

1 H NMR (400 MHz, CDCl 3 ) δ 7.55 (1H, d) 7.39 (1H, s) 6.63 (1H, d) 6.39 (1H, t) 4.50 (1H, m) 4.06 (3H, s) 3.97 (1H , m) 3.75 (2H, m) 2.63 (1H, m) 2.26 (1H, m); ESI-MS (positive ion mode) m / z, found = 351.3, calculated for [(M + H) + ] = 351.1

グアノシン誘導体G7の合成
真空乾燥させた化合物G6 (856 mg, 2.44 mmol, F.W. 350.33)をDry-MeCN (50 mL)に懸
濁させ、NaI (808 mg, 5.39 mmol, F.W. 149.89)をDry-MeCN (10 mL)に溶かして加えたのち、Trimethylsilyl chloride (680 μL, 5.38 mmol, F.W. 108.64)を加え、室温で1時間攪拌した。90 ℃のオイルバスで終夜還流させた。反応終了後、反応液を減圧留去し、残
渣を水に懸濁させ、吸引濾過し、濾物をMeOHで洗浄した。濾液はシリカゲルカラムクロマトグラフィー(Wakosil 40C18, 30-50 μm, 100%水→70% MeOH/水)によって精製し化合物G7を得た。同様の反応を再度行なった。

総収量:800 mg 総収率:69%

1H NMR (400 MHz, CDCl3) δ 7.67 (1H, d) 7.42 (1H, s) 7.11 (1H, d) 6.40 (1H, t) 4
.48 (1H, m) 3.94 (1H, m) 3.74 (1H, m) 2.49 (1H, m) 2.28 (1H, m); ESI-MS (positive ion mode) m/z, found=337.3, calculated for [(M+H)+]=337.1
Synthesis of guanosine derivative G7
Compound G6 (856 mg, 2.44 mmol, FW 350.33) dried in vacuo was suspended in Dry-MeCN (50 mL), and NaI (808 mg, 5.39 mmol, FW 149.89) was dissolved in Dry-MeCN (10 mL). After that, Trimethylsilyl chloride (680 μL, 5.38 mmol, FW 108.64) was added, and the mixture was stirred at room temperature for 1 hour. The mixture was refluxed in an oil bath at 90 ° C. overnight. After completion of the reaction, the reaction solution was distilled off under reduced pressure, the residue was suspended in water, suction filtered, and the residue was washed with MeOH. The filtrate was purified by silica gel column chromatography (Wakosil 40C18, 30-50 μm, 100% water → 70% MeOH / water) to obtain compound G7. A similar reaction was performed again.

Total yield: 800 mg Total yield: 69%

1 H NMR (400 MHz, CDCl 3 ) δ 7.67 (1H, d) 7.42 (1H, s) 7.11 (1H, d) 6.40 (1H, t) 4
.48 (1H, m) 3.94 (1H, m) 3.74 (1H, m) 2.49 (1H, m) 2.28 (1H, m); ESI-MS (positive ion mode) m / z, found = 337.3, calculated for [(M + H) + ] = 337.1

グアノシン誘導体G8の合成
真空乾燥させた1,12-diaminododecane (953 mg, 4.76 mmol, F.W. 200.36)をDry-DMF (20 mL)に懸濁させ、DIPEA (0.8 mL, 4.58 mmol, F.W. 129.55, d=0.742 g/mL)を加えた
。化合物G7 (160 mg, 476 μmol, F.W. 336.30)、PyBOP (631 mg, 1.21 mmol, F.W. 520.39)、HOBt・H2O (210 mg, 1.37 mmol, F.W. 153.44)をDry-DMF (10 mL)に溶かしDIPEA (1.7 mL, 9.74 mmol)を加えたものを滴下し、室温で1時間攪拌した。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-MeOH (2.5 mL)に溶かし、TEA (200 μL, 1.44 mmol, F.W. 101.19, d=0.728 g/mL)、TFA Ethyl Ester (1.70 mL, 14.2 mmol, F.W. 142.08, d=1.190 g/mL)を加え、室温で2時間攪拌した。反応終了後、反応液を減圧留去し、CHCl3 (10 mL)で3回共沸させ真空乾燥させた。真空乾燥させた残渣をDry-DMF (2 mL)に溶かし、imidazole (330 mg, 4.85 mmol, F.W. 68.08)、TBDMS-Cl(360 mg, 2.89 μmol, F.W. 150.72)をDry-DMF (2 mL)に溶かしたものを加え、室温で2時間攪拌した
。反応の進行が止まったため、imidazole (664 mg, 9.75 mmol)、TBDMS-Cl(717 mg, 4.76μmol)をDry-DMF (2 mL)に溶かしたものを加え、室温で4時間攪拌した。反応終了後、反
応液を減圧留去し、残渣をAcOEt:Et2O=1:1混合液に溶かし、飽和重曹水と飽和食塩水
で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカ
ゲルカラムクロマトグラフィー(Silica gel 60, 40-50 μm, 50%→60% AcOEt /hexane)によって精製し化合物G8を得た。

収量:213 mg 収率:53%

1H NMR (400 MHz, CDCl3) δ 7.52 (1H, d) 7.18 (1H, d) 7.10 (1H, s) 6.42 (1H, t) 4.51 (1H, m) 3.94 (1H, m) 3.75 (2H, m) 3.24-3.37 (4H, m) 2.28-2.33 (2H, m) 1.47-1.58 (4H, m) 1.22-1.27 (18H, m) 0.92-0.90 (18H, m) 0.09-0.11 (12H, m); ESI-MS (positive ion mode) m/z, found=843.5, calculated for [(M+H)+]=843.5
Synthesis of guanosine derivative G8
Vacuum-dried 1,12-diaminododecane (953 mg, 4.76 mmol, FW 200.36) was suspended in Dry-DMF (20 mL) and DIPEA (0.8 mL, 4.58 mmol, FW 129.55, d = 0.742 g / mL) Was added. Compound G7 (160 mg, 476 μmol, FW 336.30), PyBOP (631 mg, 1.21 mmol, FW 520.39), HOBt ・ H 2 O (210 mg, 1.37 mmol, FW 153.44) dissolved in Dry-DMF (10 mL) What added DIPEA (1.7 mL, 9.74 mmol) was dripped, and it stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-MeOH (2.5 mL), TEA (200 μL, 1.44 mmol, FW 101.19, d = 0.728 g / mL), TFA Ethyl Ester (1.70 mL, 14.2 mmol, FW 142.08, d = 1.190 g / mL) was added, and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure, azeotroped with CHCl 3 (10 mL) three times, and vacuum-dried. The vacuum-dried residue was dissolved in Dry-DMF (2 mL), and imidazole (330 mg, 4.85 mmol, FW 68.08) and TBDMS-Cl (360 mg, 2.89 μmol, FW 150.72) were added to Dry-DMF (2 mL). The dissolved one was added and stirred at room temperature for 2 hours. Since the progress of the reaction stopped, imidazole (664 mg, 9.75 mmol) and TBDMS-Cl (717 mg, 4.76 μmol) dissolved in Dry-DMF (2 mL) were added, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the reaction solution was evaporated under reduced pressure, and the residue was dissolved in a mixture of AcOEt: Et 2 O = 1: 1, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 40-50 μm, 50% → 60% AcOEt / hexane) to obtain compound G8.

Yield: 213 mg Yield: 53%

1 H NMR (400 MHz, CDCl 3 ) δ 7.52 (1H, d) 7.18 (1H, d) 7.10 (1H, s) 6.42 (1H, t) 4.51 (1H, m) 3.94 (1H, m) 3.75 (2H , m) 3.24-3.37 (4H, m) 2.28-2.33 (2H, m) 1.47-1.58 (4H, m) 1.22-1.27 (18H, m) 0.92-0.90 (18H, m) 0.09-0.11 (12H, m ); ESI-MS (positive ion mode) m / z, found = 843.5, calculated for [(M + H) + ] = 843.5

グアノシン誘導体G9の合成
真空乾燥させた化合物G8 (213 mg, 481 μmol, F.W. 805.13)をNH3/MeOH溶液に溶かし
、28%NH3水溶液を加え、室温で攪拌した。反応が進行しなくなったら反応液を減圧留去し、再度NH3/MeOH溶液と28%NH3水溶液を加えた。反応終了後、反応液を減圧留去し真空乾燥させた。真空乾燥させた残渣をDry-DMF (1 mL)に溶かし、mPEG acid(176 mg, 299 μmol,F.W. 588.7)、HBTU (146 mg, 385 μmol, F.W. 379.25)、HOBt・H2O (58 mg, 378 μmol,
F.W. 153.44)をDry-DMFに溶かしDIPEA (88 μL, 504 μmol, F.W. 129.55, d=0.742 g/mL)を加えたものを滴下し、室温で1時間攪拌した。反応終了後、反応液を減圧留去し、
残渣をAcOEtに溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4で乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 3%→6% MeOH/CHCl3)によって精製し化合物G9を得た。

収量: 171 mg 収率:51%

1H NMR (400 MHz, CDCl3) δ 7.48 (2H, d) 7.04 (1H, s) 6.44 (1H, t) 4.52 (1H, m) 3.91 (1H, m) 3.69-3.76 (4H, m) 3.64-3.66 (49H, m) 3.39 (3H, s) 3.36 (2H, m) 3.23 (2H, m) 2.48 (2H, t) 2.20-2.34 (2H, m) 1.44-1.56 (6H, m) 1.26 (19H, m) 0.90-0.95(20H, m) 0.09-0.11 (12H, m); ESI-MS (positive ion mode) m/z, found=1317.9, calculated for [(M+H)+]=1317.8
Synthesis of guanosine derivative G9
Compound G8 (213 mg, 481 μmol, FW 805.13), which had been vacuum-dried, was dissolved in NH 3 / MeOH solution, 28% NH 3 aqueous solution was added, and the mixture was stirred at room temperature. When the reaction did not proceed, the reaction solution was distilled off under reduced pressure, and NH 3 / MeOH solution and 28% NH 3 aqueous solution were added again. After completion of the reaction, the reaction solution was distilled off under reduced pressure and dried in vacuum. The vacuum-dried residue was dissolved in Dry-DMF (1 mL), mPEG acid (176 mg, 299 μmol, FW 588.7), HBTU (146 mg, 385 μmol, FW 379.25), HOBt ・ H 2 O (58 mg, 378 μmol,
FW 153.44) was dissolved in Dry-DMF and DIPEA (88 μL, 504 μmol, FW 129.55, d = 0.742 g / mL) was added dropwise, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was distilled off under reduced pressure,
The residue was dissolved in AcOEt and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 3% → 6% MeOH / CHCl 3 ) to obtain compound G9.

Yield: 171 mg Yield: 51%

1 H NMR (400 MHz, CDCl 3 ) δ 7.48 (2H, d) 7.04 (1H, s) 6.44 (1H, t) 4.52 (1H, m) 3.91 (1H, m) 3.69-3.76 (4H, m) 3.64 -3.66 (49H, m) 3.39 (3H, s) 3.36 (2H, m) 3.23 (2H, m) 2.48 (2H, t) 2.20-2.34 (2H, m) 1.44-1.56 (6H, m) 1.26 (19H , m) 0.90-0.95 (20H, m) 0.09-0.11 (12H, m); ESI-MS (positive ion mode) m / z, found = 1317.9, calculated for [(M + H) + ] = 1317.8

グアノシン誘導体G10の合成
真空乾燥させた化合物G9 (124 mg, 94.1 μmol, F.W. 1317.84)をDry-pyridineに溶か
し、氷浴下で10分攪拌した。Trimethylsilyl chloride (94 μL, 744 μmol, F.W. 108.64, d=0.856 g/mL)を加え氷浴下で30分攪拌後、isobutyryl chloride (60 μL, 573 μmol, F.W. 106.55, d=1.107 g/mL)を加え室温で1時間攪拌した。反応終了後、反応液を減
圧留去し、残渣をAcOEtに溶かし、飽和重曹水と飽和食塩水で洗浄した。有機相をMgSO4
乾燥後、吸引濾過し、濾液を減圧留去した。これをシリカゲルカラムクロマトグラフィー(Silica gel 60, 63-210 μm, 1%→5% MeOH/CHCl3)によって精製し化合物G10を得た。

収量:58 mg 収率:44%

1H NMR (400 MHz, CDCl3) δ 7.63 (1H, d) 7.49 (1H, s) 7.24 (1H, d) 6.42 (1H, m) 4.55 (1H, m) 4.19 (1H, m) 3.95 (1H, m) 3.78-3.83 (2H, m) 3.73 (4H, t) 3.39 (3H, s) 3.64-3.66 (62H, m) 3.35 (3H, m) 3.21 (3H, m) 2.59-2.75 (2H, m) 2.47 (3H, m) 2.23-2.36 (3H, m) 1.45-1.56 (4H, m) 1.26-1.31 (18H, m) 0.93 (21H, m) 0.09-0.12 (14H, m); ESI-MS (positive ion mode) m/z, found=1409.5, calculated for [(M+Na)+]=1409.9
Synthesis of guanosine derivative G10
Compound G9 (124 mg, 94.1 μmol, FW 1317.84), which had been vacuum-dried, was dissolved in Dry-pyridine and stirred for 10 minutes in an ice bath. Add Trimethylsilyl chloride (94 μL, 744 μmol, FW 108.64, d = 0.856 g / mL) and stir in an ice bath for 30 minutes, then add isobutyryl chloride (60 μL, 573 μmol, FW 106.55, d = 1.107 g / mL). The mixture was further stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was evaporated under reduced pressure, the residue was dissolved in AcOEt, and washed with saturated aqueous sodium hydrogen carbonate and saturated brine. The organic phase was dried over MgSO 4 and suction filtered, and the filtrate was distilled off under reduced pressure. This was purified by silica gel column chromatography (Silica gel 60, 63-210 μm, 1% → 5% MeOH / CHCl 3 ) to obtain compound G10.

Yield: 58 mg Yield: 44%

1 H NMR (400 MHz, CDCl 3 ) δ 7.63 (1H, d) 7.49 (1H, s) 7.24 (1H, d) 6.42 (1H, m) 4.55 (1H, m) 4.19 (1H, m) 3.95 (1H , m) 3.78-3.83 (2H, m) 3.73 (4H, t) 3.39 (3H, s) 3.64-3.66 (62H, m) 3.35 (3H, m) 3.21 (3H, m) 2.59-2.75 (2H, m ) 2.47 (3H, m) 2.23-2.36 (3H, m) 1.45-1.56 (4H, m) 1.26-1.31 (18H, m) 0.93 (21H, m) 0.09-0.12 (14H, m); ESI-MS ( positive ion mode) m / z, found = 1409.5, calculated for [(M + Na) + ] = 1409.9

グアノシン誘導体G12-1の合成
真空乾燥させた化合物G11-1 (106 mg、98.8 μmol、F.W. 1073.32)を、Dry-DMF (3 mL)で3回共沸し、Dry-MeCN (3 mL)で2回共沸し、N,N,N´,N´-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, F.W. 214.31)を加え、一晩真空乾燥させた。これをTrimethyl phosphate (1 mL)に溶かし、氷冷下で30分攪拌した。氷冷下でPhosphoryl chloride (14 μL, 150 μmol, F.W. 153.33, d = 1.645 g/mL)を加え、45分撹拌した。その後、氷
冷下でDry-Tributhyl amine (95 μL, 402 μmol, F.W. 185.35, d = 0.775 g/mL)、0.5 M Diphosphoric acid in DMF (1.24 mL, 620 μmol, F.W. 177.98)を加え、室温で1時間
撹拌した。氷浴下で5分攪拌後、TEAB bufferを加え反応をクエンチさせた。反応液を減圧留去し濃縮後、蒸留水とEt2Oで分液した。水相を減圧留去し濃縮後、陰イオン交換カラムクロマトグラフィー、中圧カラムクロマトグラフィーで精製し、化合物G12-1を得た。

収量:8 mg 収率:18%

ESI-MS (negative ion mode) m/z, found=1327.6, calculated for [(M+H)+]=1327.6
Synthesis of guanosine derivative G12-1
Compound G11-1 (106 mg, 98.8 μmol, FW 1073.32) dried in vacuo was azeotroped 3 times with Dry-DMF (3 mL), azeotroped 2 times with Dry-MeCN (3 mL), N, N, N ′, N′-Tetramethyl-1,8-naphthalenediamine (32 mg, 149 μmol, FW 214.31) was added and vacuum dried overnight. This was dissolved in Trimethyl phosphate (1 mL) and stirred for 30 minutes under ice cooling. Phosphoryl chloride (14 μL, 150 μmol, FW 153.33, d = 1.645 g / mL) was added under ice cooling, and the mixture was stirred for 45 minutes. Then add Dry-Tributhyl amine (95 μL, 402 μmol, FW 185.35, d = 0.775 g / mL) and 0.5 M Diphosphoric acid in DMF (1.24 mL, 620 μmol, FW 177.98) under ice-cooling. Stir for hours. After stirring for 5 minutes in an ice bath, TEAB buffer was added to quench the reaction. The reaction solution was distilled off under reduced pressure and concentrated, followed by separation with distilled water and Et 2 O. The aqueous phase was distilled off under reduced pressure and concentrated, and then purified by anion exchange column chromatography and medium pressure column chromatography to obtain compound G12-1.

Yield: 8 mg Yield: 18%

ESI-MS (negative ion mode) m / z, found = 1327.6, calculated for [(M + H) + ] = 1327.6

<修飾ヌクレオチド誘導体を用いたポリヌクレオチドの合成>
1. 修飾アデノシン誘導体A5の導入 Primer Extension
反応液を以下のように調製した。これを94℃で0.5分間熱変性、1.2℃/分の降温速度で25℃まで下げてアニーリングを行った。その後、酵素を加え74℃でプライマー伸長反応を
行った(0.5分、5分)。伸長反応の確認は20%変性ポリアクリルアミドゲル電気泳動(TBE Buffer、200V、45℃、140分)によって行った。結果を図1に示す。

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3' 配列番号1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAATAAGCC-5' 配列番号2

<Synthesis of polynucleotides using modified nucleotide derivatives>
1. Introduction of modified adenosine derivative A5 Primer Extension
The reaction solution was prepared as follows. This was heat-denatured at 94 ° C. for 0.5 minutes, and annealed at a temperature decrease rate of 1.2 ° C./min. Thereafter, an enzyme was added and a primer extension reaction was performed at 74 ° C. (0.5 minutes, 5 minutes). The elongation reaction was confirmed by 20% denaturing polyacrylamide gel electrophoresis (TBE Buffer, 200 V, 45 ° C., 140 minutes). The results are shown in FIG.

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3 'SEQ ID NO: 1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAATAAGCC-5 'SEQ ID NO: 2

2.修飾チミジン誘導体T5の導入 Primer Extension
反応液を以下のように調製した。これを94℃で0.5分間熱変性、1.2℃/分の降温速度で25℃まで下げてアニーリングを行った。その後、酵素を加え74℃でプライマー伸長反応を
行った(0.5分、5分)。伸長反応の確認は20%変性ポリアクリルアミドゲル電気泳動(TB
E Buffer、200V、45℃、140分)によって行った。結果を図2に示す。

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3' 配列番号1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAAATAGCC-5' 配列番号3
2. Introduction of modified thymidine derivative T5 Primer Extension
The reaction solution was prepared as follows. This was heat-denatured at 94 ° C. for 0.5 minutes, and annealed at a temperature decrease rate of 1.2 ° C./min. Thereafter, an enzyme was added and a primer extension reaction was performed at 74 ° C. (0.5 minutes, 5 minutes). The extension reaction was confirmed by 20% denaturing polyacrylamide gel electrophoresis (TB
E Buffer, 200 V, 45 ° C., 140 minutes). The results are shown in FIG.

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3 'SEQ ID NO: 1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAAATAGCC-5 'SEQ ID NO: 3

3.修飾シチジン誘導体C3の導入 Primer Extension
反応液を以下のように調製した。これを94℃で0.5分間熱変性、1.2℃/分の降温速度で25℃まで下げてアニーリングを行った。その後、酵素を加え74℃でプライマー伸長反応を
行った(0.5分、5分)。伸長反応の確認は20%変性ポリアクリルアミドゲル電気泳動(TBE Buffer、200V、45℃、140分)によって行った。結果を図3に示す。

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3' 配列番号1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAAGAAGCC-5' 配列番号4
3. Introduction of modified cytidine derivative C3 Primer Extension
The reaction solution was prepared as follows. This was heat-denatured at 94 ° C. for 0.5 minutes, and annealed at a temperature decrease rate of 1.2 ° C./min. Thereafter, an enzyme was added and a primer extension reaction was performed at 74 ° C. (0.5 minutes, 5 minutes). The elongation reaction was confirmed by 20% denaturing polyacrylamide gel electrophoresis (TBE Buffer, 200 V, 45 ° C., 140 minutes). The results are shown in FIG.

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3 'SEQ ID NO: 1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAAGAAGCC-5 'SEQ ID NO: 4

4.修飾グアノシン誘導体G12-1の導入 Primer Extension
反応液を以下のように調製した。これを94℃で0.5分間熱変性、1.2℃/分の降温速度で25℃まで下げてアニーリングを行った。その後、酵素を加え74℃でプライマー伸長反応を
行った(0.5分、5分)。伸長反応の確認は20%変性ポリアクリルアミドゲル電気泳動(TBE Buffer、200V、45℃、140分)によって行った。結果を図4に示す。

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3' 配列番号1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAACAAGCC-5' 配列番号5
4. Introduction of modified guanosine derivative G12-1 Primer Extension
The reaction solution was prepared as follows. This was heat-denatured at 94 ° C. for 0.5 minutes, and annealed at a temperature decrease rate of 1.2 ° C./min. Thereafter, an enzyme was added and a primer extension reaction was performed at 74 ° C. (0.5 minutes, 5 minutes). The elongation reaction was confirmed by 20% denaturing polyacrylamide gel electrophoresis (TBE Buffer, 200 V, 45 ° C., 140 minutes). The results are shown in FIG.

Primer 5'-GGATTAGCGAACAGGCCATACCTTT-3 'SEQ ID NO: 1
Template 3'-CCTAATCGCTTGTCCGGTATGGAAACAAGCC-5 'SEQ ID NO: 5

5.修飾ヌクレオシド三リン酸の導入 One Primer PCR 一種類の修飾基質
天然の基質の代わりに修飾基質を用いて、One primer PCRを以下の条件で行なった。
反応の確認は10%変性ポリアクリルアミドゲル電気泳動(TBE Buffer、200V、45℃、45分)によって行った。結果を図5に示す。
5. Introduction of Modified Nucleoside Triphosphate One Primer PCR One kind of modified substrate One primer PCR was performed under the following conditions using a modified substrate instead of a natural substrate.
The reaction was confirmed by 10% denaturing polyacrylamide gel electrophoresis (TBE Buffer, 200 V, 45 ° C., 45 minutes). The results are shown in FIG.

6.修飾ヌクレオシド三リン酸の導入 One Primer PCR 二種類の修飾基質
天然の基質の代わりに修飾基質を用いて、One primer PCRを以下の条件で行なった。
反応の確認は10%変性ポリアクリルアミドゲル電気泳動(TBE Buffer、200V、45℃、45分)によって行った。結果を図6に示す。

6. Introduction of modified nucleoside triphosphates One Primer PCR Two types of modified substrates One primer PCR was performed under the following conditions using modified substrates instead of natural substrates.
The reaction was confirmed by 10% denaturing polyacrylamide gel electrophoresis (TBE Buffer, 200 V, 45 ° C., 45 minutes). The results are shown in FIG.

7. PCRによる修飾DNAの合成
PCRを以下の条件で行なった。A5、T5、C3、G12-1の混合液と天然のdNTPsを、比を変え
て混合し、基質として用いた。修飾基質の割合が15%および20%の反応液には最終濃度が5%になるようにMeCNを添加した。
反応の確認は1%アガロースゲル電気泳動(TBE Buffer、100V、室温、45分)を行い、EtBr染色により確認した。結果を図7に示す。
7. Synthesis of modified DNA by PCR
PCR was performed under the following conditions. A mixture of A5, T5, C3, and G12-1 and natural dNTPs were mixed at different ratios and used as a substrate. MeCN was added so that the final concentration would be 5% in the reaction solutions containing 15% and 20% of the modified substrate.
The reaction was confirmed by 1% agarose gel electrophoresis (TBE Buffer, 100 V, room temperature, 45 minutes) and confirmed by EtBr staining. The results are shown in FIG.

Template NK104#T1N
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCCCACACCCGCTCTTTGGTTCT-3' 配列番号6
primer領域
Primer FE#P2F
5'-AGAACCAAAGAGCGGGTGTG-3' 配列番号7

修飾体三種導入における連続配列
ATC導入
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCCCACACCCGCTCTTTGGTTCT-3' 配列番号6

ATG導入
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCCCACACCCGCTCTTTGGTTCT-3' 配列番号6

ACG導入
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCCCACACCCGCTCTTTGGTTCT-3' 配列番号6

TCG導入
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCCCACACCCGCTCTTTGGTTCT-3' 配列番号6
Template NK104 # T1N
5'-GAGCGGCAGTTTGATGGAAGTTATCCGTCAAACGTTACGGGTCCTCAAATCGGTCCCATAACGTTACGGGATCCAGTTTCGAATACCC CACACCCGCTCTTTGGTTCT -3 'SEQ ID NO: 6
primer region
Primer FE # P2F
5'-AGAACCAAAGAGCGGGTGTG-3 'SEQ ID NO: 7

Consecutive sequence in the introduction of three modified species
ATC introduction
5'- GAG C GG C AGTTTGATGGAAGTTAT CC GT C AAA C GTTA C GGGT CC T C AAAT C GGT CCC ATAA C GTTA C GGGAT CC AGTTT C GAATA CCC CACACCCGCTCTTTGGTTCT -3 'SEQ ID NO: 6

ATG introduced
5'-G A G C GG CA G TTT G AT GG AA G TTATCC G TCAAAC G TTAC GGG TCCTCAAATC GG TCCCATAAC G TTAC GGG ATCCA G TTTC G AATACCCCACACCCGCTCTTTGGTTCT -3 'SEQ ID NO: 6

ACG introduction
5'- G A GCGGC A GTTTG A TGG AA GTT A TCCGTC AAA CGTT A CGGGTCCTC AAA TCGGTCCC A T AA CGTT A CGGG A TCC A GTTTCG AA T A CCCCACACCCGCTCTTTGGTTCT -3 'SEQ ID NO: 6

TCG introduction
5'- GAGCGGCAG TTT GA T GGAAG TT A T CCG T CAAACG TT ACGGG T CC T CAAA T CGG T CCCA T AACG TT ACGGGA T CCAG TTT CGAA T ACCCCACACCCGCTCTTTGGTTCT -3 'SEQ ID NO: 6

8.PCRによる修飾DNAの合成 15%修飾DNA 5%MeCN添加
PCRを以下の条件で行なった。A5、T5、C3、G12-1の混合液と天然のdNTPsを、15:85の比
で混合し、基質として用いた。最終濃度が5%になるようにMeCNを添加した。
反応の確認は1%アガロースゲル電気泳動(TBE Buffer、100V、室温、45分)を行い、488nnレーザー照射(FAM等検出モード)と512nnレーザー照射(EtBr等検出モード)により確認した。結果を図8に示す。
8. Synthesis of modified DNA by PCR Addition of 15% modified DNA and 5% MeCN
PCR was performed under the following conditions. A mixture of A5, T5, C3, and G12-1 and natural dNTPs were mixed at a ratio of 15:85 and used as a substrate. MeCN was added to a final concentration of 5%.
The reaction was confirmed by 1% agarose gel electrophoresis (TBE Buffer, 100 V, room temperature, 45 minutes), and confirmed by 488 nn laser irradiation (FAM detection mode) and 512 nn laser irradiation (EtBr detection mode). The results are shown in FIG.

9.PCRによる修飾DNAの合成 20%修飾DNA 5%MeCN添加
PCRを以下の条件で行なった。A5、T5、C3、G12-1の混合液と天然のdNTPsを、20:80の比で混合し、基質として用いた。最終濃度が5%になるようにMeCNを添加した。
反応の確認は1%アガロースゲル電気泳動(TBE Buffer、100V、室温、45分)を行い、外
部レーザー(FAM)とEtBr染色により確認した。結果を図9に示す。
9. Synthesis of modified DNA by PCR Addition of 20% modified DNA and 5% MeCN
PCR was performed under the following conditions. A mixture of A5, T5, C3, and G12-1 and natural dNTPs were mixed at a ratio of 20:80 and used as a substrate. MeCN was added to a final concentration of 5%.
The reaction was confirmed by 1% agarose gel electrophoresis (TBE Buffer, 100 V, room temperature, 45 minutes) and confirmed by external laser (FAM) and EtBr staining. The results are shown in FIG.

<細胞培養実験>
導入を検討したアプタマー
・TBA:AGT CCG TGG TAG GGC AGG TTG GGG TGA CT:配列番号8
・TBA#Tm4(TBAに修飾T(T5) 4個入り)
AGT CCG TGG TAG GGC AGG TTG GGG TGA CT t t t t:配列番号9
tは修飾T(DP3)を示す。
TBA:Thrombin-binding aptamer(トロンビン結合アプタマー)
<Cell culture experiment>
Aptamers examined for introduction: TBA: AGT CCG TGG TAG GGC AGG TTG GGG TGA CT: SEQ ID NO: 8
・ TBA # Tm4 (4 TBA modified T (T5))
AGT CCG TGG TAG GGC AGG TTG GGG TGA CT tttt: SEQ ID NO: 9
t represents modification T (DP3).
TBA: Thrombin-binding aptamer

導入検討に用いた細胞
・HEPG2(どのウェルも1つあたり7.5×104cell)
Cells and HEPG2 used for introduction study (7.5 x 10 4 cells per well)

<protocol>
新田ゼラチン製cellmatrix 0.3mg/ml 塩酸溶液を150μLずつチャンバーセル(1cm×1cm)に入れた。1時間室温で放置して溶液を取り出した。1晩自然乾燥した。ディッシュに培養した細胞を取り出すために培地を抜き取り、PBS1mM EDTA溶液で洗浄後、トリプシン溶液
で細胞を取り出した。そこに培地4mLを加えて全量5mLとして全量を遠沈管にうつし、1krpm.1minで遠心分離した。上澄みを捨てて、さらに5mLの培地を加えて懸濁させて1krpm.1minで遠心分離した。これをもう一度繰り返した。その後7.5×104cell/450μlの細胞溶液
を調製した。コラーゲン処理したチャンバーに450μLの細胞液を中心によらないように流し入れた。24時間培養した。37℃,95%Air,5%CO2.培地を400μL抜き取ったあと、培地を360μLいれ40μL(DNA・Thr20μL(DNA2.7μM、Th2.7μM) ,FIB20μL(13.5μM))の試薬(PBS
溶液)を添加した。そのまま48時間培養した。48時間後、細胞を解離処理しチャンバーか
ら剥がし、顕微鏡で観察した。
<protocol>
150 μL each of Nitta Gelatin cellmatrix 0.3 mg / ml hydrochloric acid solution was placed in a chamber cell (1 cm × 1 cm). The solution was taken out at room temperature for 1 hour. Air dried overnight. In order to take out the cells cultured in the dish, the medium was taken out, washed with a PBS 1 mM EDTA solution, and then taken out with a trypsin solution. Thereto was added 4 mL of medium to make a total volume of 5 mL, and the whole volume was transferred to a centrifuge tube and centrifuged at 1 krpm. 1 min. The supernatant was discarded, and a further 5 mL of medium was added for suspension, followed by centrifugation at 1 krpm. 1 min. This was repeated once more. Thereafter, 7.5 × 10 4 cells / 450 μl of a cell solution was prepared. 450 μL of the cell solution was poured into the collagen-treated chamber without depending on the center. Cultured for 24 hours. 37 ° C, 95% Air, 5% CO 2 After removing 400 μL of the medium, add 360 μL of the medium to 40 μL (DNA / Thr20 μL (DNA2.7 μM, Th2.7 μM), FIB20 μL (13.5 μM)) reagent (PBS
Solution) was added. The culture was continued for 48 hours. After 48 hours, the cells were dissociated, detached from the chamber, and observed with a microscope.

なお、培地等の培養条件は以下の通り。
培地:Wako D-MEM 低グルコース、(L-グルタミン、フェノールレッド含有)
抗生物質、ウシ血清入り
培養条件37℃,95%Air,5%CO2
PBS:11.8mM リン酸,157mM NaCl,4.5mM KCl
DNA・Th溶液はDNAを5.4μMでアニーリング後5.4μMのTh溶液を1:1 で加えて(共にPBS溶液)37℃でインキュベートした。
The culture conditions such as the medium are as follows.
Medium: Wako D-MEM low glucose (containing L-glutamine and phenol red)
Culture conditions with antibiotics and bovine serum 37 ° C, 95% Air, 5% CO 2
PBS: 11.8 mM phosphoric acid, 157 mM NaCl, 4.5 mM KCl
The DNA / Th solution was annealed at 37 ° C. after annealing the DNA at 5.4 μM and then adding a 5.4 μM Th solution 1: 1 (both in PBS).

結果を図10および図11に示す。
アプタマーとしてはTBAよりも、本発明の修飾ヌクレオチドを導入したTBA#Tm4が効果的であった。アプタマーにTBA#Tm4を用い、トロンビンとフィブリノゲンを加えた時に、解離
処理後も細胞同士が特に強固に接着した塊が観察された(図11(D))。
The results are shown in FIG. 10 and FIG.
As an aptamer, TBA # Tm4 into which the modified nucleotide of the present invention was introduced was more effective than TBA. When TBA # Tm4 was used as an aptamer and thrombin and fibrinogen were added, a lump in which cells were particularly firmly adhered to each other was observed even after the dissociation treatment (FIG. 11 (D)).

<細胞培養実験:試薬濃度の検討>
導入検討したアプタマー
・TBA#Tm4(TBAに修飾T(T5) 4個入り)
導入検討に用いた細胞
・HeLa (どのウェルも1つあたり10×104cell)
<Cell culture experiment: Examination of reagent concentration>
Aptamer TBA # Tm4 (4 T-modified T (T5))
Cells and HeLa used for introduction study (10 x 10 4 cells per well)

<protocol>
新田ゼラチン製cellmatrix 0.3mg/ml 塩酸溶液を150μLずつチャンバーセル(1cm×1cm)に入れた。1時間室温で放置して溶液を取り出した。1晩自然乾燥した。
ディッシュに培養した細胞を取り出すために培地を抜き取り、PBS 1mM・EDTA溶液で洗浄
、除去、続いてトリプシン溶液1mLで細胞をはがし取り出した。そこに培地4mLを加えて全量5mLとして遠沈管にうつし、1krpm.1minで遠心分離した。上澄みを捨てて、さらに5mL
の培地を加えて懸濁させて1krpm.1minで遠心分離した。これをもう一度繰り返した。その後2.2×105cell/ml(10×104cell/450μl)の細胞溶液を調製した。コラーゲン処理したチ
ャンバーに450μLの細胞懸濁液を中心によらないように流し入れた。24時間培養した(37℃,95%Air,5%CO2)。その後培地を300μL抜き取ったあと、培地を225μLいれ75μL(DNA
・Thr30μL , Fibronectin (FN)25μL,FIB20μL)の試薬(PBS溶液)を添加した。そのまま72時間培養した。72時間後の各培養液の様子を撮影した。
<protocol>
150 μL each of Nitta Gelatin cellmatrix 0.3 mg / ml hydrochloric acid solution was placed in a chamber cell (1 cm × 1 cm). The solution was taken out at room temperature for 1 hour. Air dried overnight.
In order to take out the cells cultured in the dish, the medium was taken out, washed and removed with a PBS 1 mM · EDTA solution, and then the cells were peeled off with 1 mL of a trypsin solution. 4 mL of the medium was added thereto to make a total volume of 5 mL, which was transferred to a centrifuge tube, and centrifuged at 1 krpm. 1 min. Discard the supernatant and add another 5mL
The medium was added and suspended, and centrifuged at 1 krpm. 1 min. This was repeated once more. Thereafter, a cell solution of 2.2 × 10 5 cells / ml (10 × 10 4 cells / 450 μl) was prepared. 450 μL of the cell suspension was poured into the collagen-treated chamber without depending on the center. The cells were cultured for 24 hours (37 ° C., 95% Air, 5% CO 2 ). After removing 300 μL of the medium, add 225 μL of the medium to 75 μL (DNA
-Reagents (PBS solution) of Thr 30 μL, Fibronectin (FN) 25 μL, FIB 20 μL) were added. The culture was continued for 72 hours. The state of each culture solution after 72 hours was photographed.

なお、培地等の培養条件は以下の通り。
培地:Wako D-MEM 低グルコース、(L-グルタミン、フェノールレッド含有)
抗生物質、ウシ血清入り
培養条件37℃,95%Air,5%CO2
PBS:11.8mM リン酸,157mM NaCl,4.5mM KCl
DNA・Th溶液はDNAを18μMでアニーリング後、18μMまたは3.6μMの濃度で18μMまたは3.6μMのTh溶液を1:1 (容量比)で混合しインキュベート37℃30minを行った。
The culture conditions such as the medium are as follows.
Medium: Wako D-MEM low glucose (containing L-glutamine and phenol red)
Culture conditions with antibiotics and bovine serum 37 ° C, 95% Air, 5% CO 2
PBS: 11.8 mM phosphoric acid, 157 mM NaCl, 4.5 mM KCl
The DNA / Th solution was annealed at 18 μM, mixed with 18 μM or 3.6 μM Th solution at a concentration of 18 μM or 3.6 μM 1: 1 (volume ratio), and incubated at 37 ° C. for 30 min.

結果を図12〜15に示す。
m4(120nM)+Th(120nM)+FIB(600nM)(FN120nM)が最も良い結果をもたらした(図12(D)
)。尚、FNの添加による効果は小さかった。
The results are shown in FIGS.
m4 (120nM) + Th (120nM) + FIB (600nM) (FN120nM) gave the best results (FIG. 12D)
). In addition, the effect by addition of FN was small.

<基質分解反応の阻害活性測定(阻害剤:TBA, TBA-m4)>
1.ヒトトロンビン溶液の調製
ヒトトロンビン(Thrombin, Human Plasma, High Activity: Calbiochem)を蒸留水に溶かし、3時間静置した。その後、Buffer A(PO4 3-(11.8mM), Na+(157mM), K+(4.5mM), Cl-(約140mM); pH 7.4)にヒトトロンビン(40nM)を含む溶液を調製し、室温下で3時間静置した。その後、アプタマーとの混合液の調製に用いた。
<Measurement of inhibitory activity of substrate degradation reaction (inhibitor: TBA, TBA-m4)>
1. Preparation of human thrombin solution Human thrombin (Thrombin, Human Plasma, High Activity: Calbiochem) was dissolved in distilled water and allowed to stand for 3 hours. After that, prepare a solution containing human thrombin (40 nM) in Buffer A (PO 4 3- (11.8 mM), Na + (157 mM), K + (4.5 mM), Cl (about 140 mM); pH 7.4) The mixture was allowed to stand at room temperature for 3 hours. Then, it used for preparation of the liquid mixture with an aptamer.

2.アプタマー溶液の調製
阻害剤となるアプタマー(TBAもしくはTBA-m4)溶液(2μM)3.5μLに10×Buffer A 3.5μLと蒸留水28μLを加えてアプタマー溶液(200nM)を調製した。続いて、アプタマー溶液(200nM)35μLをアニーリングした(アニーリングは、熱変性を94℃で0.5分間行った後、0.5℃/分の速さで降温して25℃とした)。
2. Preparation of Aptamer Solution An aptamer solution (200 nM) was prepared by adding 3.5 μL of 10 × Buffer A and 28 μL of distilled water to 3.5 μL of an aptamer (TBA or TBA-m4) solution (2 μM) serving as an inhibitor. Subsequently, 35 μL of aptamer solution (200 nM) was annealed (annealing was performed by heat denaturation at 94 ° C. for 0.5 minutes, and then cooled to 25 ° C. at a rate of 0.5 ° C./min).

3.アプタマー・ヒトトロンビン混合液の調製
アプタマー溶液(200nM)31μLとヒトトロンビン溶液(40nM)31μLとを混合し、37℃で30minインキュベーションした。
3. Preparation of aptamer / human thrombin mixed solution 31 μL of aptamer solution (200 nM) and 31 μL of human thrombin solution (40 nM) were mixed and incubated at 37 ° C. for 30 min.

4.基質溶液の調製
基質(SPECTROZYME TH:Sekisui Diagnostics,LLC)水溶液(5mM)40μLに10×Buffer A 20μLと蒸留水140μLを加えて基質溶液(1mM)を調製した。調製した基質溶液は温めて37℃とした。
4). Preparation of Substrate Solution A substrate solution (1 mM) was prepared by adding 20 μL of 10 × Buffer A and 140 μL of distilled water to 40 μL of a substrate (SPECTROZYME TH: Sekisui Diagnostics, LLC) aqueous solution (5 mM). The prepared substrate solution was warmed to 37 ° C.

セルは予め温めて37℃とした。基質溶液60μLとアプタマー・ヒトトロンビン混合液60
μLをセルの中で混合した。アプタマーとヒトトロンビン、基質の最終濃度は、それぞれ50nMおよび10nM、0.5mMである。
The cell was pre-warmed to 37 ° C. 60 μL of substrate solution and aptamer / human thrombin mixture 60
μL was mixed in the cell. The final concentrations of aptamer, human thrombin, and substrate are 50 nM, 10 nM, and 0.5 mM, respectively.

紫外可視吸光光度計を用いて、反応温度37℃でモニター波長405nmにおける吸収の経時
変化2秒おきに記録し2000秒間追跡した。結果を図16に示す。
図16において、コントロール溶液は阻害剤を含まない反応液である。
p-nitroanilideのε405=9650M-1を用いて反応初速度を算出した。
反応初速度:v0
Control : 52.8nM・s-1
TBA-m4 : 12.8nM・s-1
TBA : 7.86nM・s-1
以上から、ヒトトロンビンに対し5当量の阻害剤存在下でも、プロテアーゼ活性は残っ
ていることが示された。
Using a UV-Vis spectrophotometer, the time course of absorption at a reaction temperature of 37 ° C. at a monitor wavelength of 405 nm was recorded every 2 seconds and followed for 2000 seconds. The results are shown in FIG.
In FIG. 16, the control solution is a reaction solution containing no inhibitor.
The initial reaction rate was calculated using ε 405 = 9650M −1 of p-nitroanilide.
Initial reaction speed: v 0
Control: 52.8nM ・ s -1
TBA-m4: 12.8nM ・ s -1
TBA: 7.86nM ・ s -1
From the above, it was shown that the protease activity remained even in the presence of 5 equivalents of inhibitor for human thrombin.

<蛍光偏光法によるフィブリンゲルへのアプタマーの取り込み測定>
a) サンプル溶液の調製
1.ヒトトロンビン溶液の調製
ヒトトロンビンを蒸留水に溶かし3時間静置した。その後、Buffer Aにヒトトロンビン(480nM)を含む溶液を調製し、室温下で3時間放置した。その後、アプタマーとの混合液の
調製に用いた。
<Measurement of aptamer incorporation into fibrin gel by fluorescence polarization method>
a) Preparation of sample solution Preparation of human thrombin solution Human thrombin was dissolved in distilled water and allowed to stand for 3 hours. Thereafter, a solution containing human thrombin (480 nM) in Buffer A was prepared and allowed to stand at room temperature for 3 hours. Then, it used for preparation of the liquid mixture with an aptamer.

2.DNA(TBA, TBA-m4, WS, WS-m4)溶液の調製
Buffer Aに溶解させたDNA溶液(480nM)を調製した。DNA溶液(480nM)をアニーリングした(アニーリングは、熱変性を94℃で0.5分間行った後、0.5℃/分の速さで降温して25℃とした)。
TBA :5’-FAM-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3’(配列番号8)
TBA-m4:5’-FAM-AGT CCG TGG TAG GGC AGG TTG GGG TGA CTt ttt-3’(配列番号9)
WS :5’-FAM-TTT TTT TTT TAG GGC AGG TTG GGG TGA CT-3’(配列番号10)
WS-m4 :5’-FAM-TTT TTT TTT TAG GGC AGG TTG GGG TGA CTt ttt-3’(配列番号11)t=修飾T
2. Preparation of DNA (TBA, TBA-m4, WS, WS-m4) solution
A DNA solution (480 nM) dissolved in Buffer A was prepared. The DNA solution (480 nM) was annealed (the annealing was performed by heat denaturation at 94 ° C. for 0.5 minutes, and then the temperature was lowered at a rate of 0.5 ° C./min to 25 ° C.).
TBA: 5′-FAM-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3 ′ (SEQ ID NO: 8)
TBA-m4: 5'-FAM-AGT CCG TGG TAG GGC AGG TTG GGG TGA CTt ttt-3 '(SEQ ID NO: 9)
WS: 5'-FAM-TTT TTT TTT TAG GGC AGG TTG GGG TGA CT-3 '(SEQ ID NO: 10)
WS-m4: 5′-FAM-TTT TTT TTT TAG GGC AGG TTG GGG TGA CTt ttt-3 ′ (SEQ ID NO: 11) t = modified T

3.DNA・ヒトトロンビン混合液の調製
DNA溶液(480nM) 20μLとヒトトロンビン溶液(480nM)20μLとを混合し、37℃で30分間インキュベーションした。
3. Preparation of DNA / human thrombin mixture
20 μL of DNA solution (480 nM) and 20 μL of human thrombin solution (480 nM) were mixed and incubated at 37 ° C. for 30 minutes.

4.Fluorescein 溶液の調製
Buffer Aに溶解させたFluorescein (480 nM)を調製した。
4). Preparation of Fluorescein solution
Fluorescein (480 nM) dissolved in Buffer A was prepared.

5.Fluorescein・ヒトトロンビン混合液の調製
Fluorescein溶液(480nM) 20μLとヒトトロンビン溶液(480nM)20μLとを混合し、37℃で30分間インキュベーションした。
5. Preparation of Fluorescein / human thrombin mixture
20 μL of Fluorescein solution (480 nM) and 20 μL of human thrombin solution (480 nM) were mixed and incubated at 37 ° C. for 30 minutes.

6.蛍光標識化ヒトトロンビン(FL-Thrombin)溶液の調製
FL-Thrombinは、キット(Fluorescein Labeling Kit-NH2; Dojindo)でヒトトロンビンを蛍光標識化することで調製した。Buffer AにFL-Thrombin (240nM)を含む溶液40μLを調製し、37℃で30分間インキュベーションした。
6). Preparation of fluorescently labeled human thrombin (FL-Thrombin) solution
FL-Thrombin was prepared by fluorescently labeling human thrombin with a kit (Fluorescein Labeling Kit-NH2; Dojindo). 40 μL of a solution containing FL-Thrombin (240 nM) in Buffer A was prepared and incubated at 37 ° C. for 30 minutes.

7.フィブリノゲン溶液の調製
フィブリノゲン(Fibrinogen, Human Plasma:Calbiochem)はBuffer Aに溶解し3時間
転倒混和させた。その後、室温下で6時間静置した。続いて、Buffer Aで希釈し12μM, 6
μM, 3μM, 2.0μM, 1.2μM, 0.6μMのフィブリノゲン溶液をそれぞれ調製した。
7). Preparation of fibrinogen solution Fibrinogen (Human Plasma: Calbiochem) was dissolved in Buffer A and mixed by inverting for 3 hours. Then, it left still at room temperature for 6 hours. Subsequently, dilute with Buffer A and add 12 μM, 6
μM, 3 μM, 2.0 μM, 1.2 μM and 0.6 μM fibrinogen solutions were prepared, respectively.

b) フィブリンゲル形成反応および蛍光偏光の測定
DNA・ヒトトロンビン混合液(各240nM) 35μLと濃度の異なるフィブリノゲン溶液(12μM, 6μM, 3μM, 2.0μM, 1.2μM, 0.6μM, 0μM) 35μLとをそれぞれ混合し、25℃で30分
反応させた。
同様に、Fluorescein・ヒトトロンビン混合液およびFL-Thrombin溶液もフィブリノゲン溶液とそれぞれ混合し、25℃で30分反応させた。
最終濃度はそれぞれDNA(120nM), ヒトトロンビン(120nM), Fluorescein(120nM), FL-Thrombin(120nM), フィブリノゲン(6μM, 3μM, 2.0μM, 1.2μM, 0.6μM, 0.3μM, 0μM)
である。
b) Measurement of fibrin gel formation reaction and fluorescence polarization
35 μL of DNA / human thrombin mixed solution (240 nM each) and 35 μL of fibrinogen solution (12 μM, 6 μM, 3 μM, 2.0 μM, 1.2 μM, 0.6 μM, 0 μM) with different concentrations were mixed and reacted at 25 ° C. for 30 minutes .
Similarly, Fluorescein / human thrombin mixed solution and FL-Thrombin solution were also mixed with fibrinogen solution and reacted at 25 ° C. for 30 minutes.
Final concentrations are DNA (120nM), human thrombin (120nM), Fluorescein (120nM), FL-Thrombin (120nM), fibrinogen (6μM, 3μM, 2.0μM, 1.2μM, 0.6μM, 0.3μM, 0μM)
It is.

反応終了後、励起波長490nmとしモニター波長520nmで反応液の蛍光偏光を5分間測定し
、その平均値をプロットした。ただし、FL-Thrombinを用いた測定では、励起波長497nm、モニター波長522nmとした。結果を図17に示す。
反応液にヒトトロンビンがないときは蛍光偏光に大きな変化はないが、ヒトトロンビンが存在しフィブリンゲルが形成される条件下では、TBAもしくはTBA-m4があると蛍光偏光
が大きく上昇する(図17のA,B)。しかし、ヒトトロンビンに結合しないDNA(WS, WS-m4)
やFluoresceinでは、ヒトトロンビンが存在しようがしまいが蛍光偏光に大きな変化はな
い(図17のC,D,E)。また、FL-ThrombinはTBAが存在しようがしまいが、蛍光偏光が大き
く変化する(図17のF)。
以上から、ヒトトロンビンはフィブリンゲルに取り込まれ、また、ヒトトロンビンと複合体化するTBAおよびTBA-m4もフィブリンゲルに取り込まれることが示された。
After the reaction was completed, the fluorescence polarization of the reaction solution was measured for 5 minutes at an excitation wavelength of 490 nm and a monitor wavelength of 520 nm, and the average value was plotted. However, in the measurement using FL-Thrombin, the excitation wavelength was 497 nm and the monitor wavelength was 522 nm. The results are shown in FIG.
When there is no human thrombin in the reaction solution, there is no significant change in fluorescence polarization. However, under conditions where human thrombin is present and a fibrin gel is formed, the presence of TBA or TBA-m4 greatly increases the fluorescence polarization (FIG. 17). A, B). However, DNA that does not bind to human thrombin (WS, WS-m4)
In Fluorescein, human thrombin may exist, but there is no significant change in fluorescence polarization (C, D, E in FIG. 17). In addition, although FL-Thrombin seems to have TBA, the fluorescence polarization changes greatly (F in FIG. 17).
From the above, it was shown that human thrombin is incorporated into fibrin gel and that TBA and TBA-m4 complexed with human thrombin are also incorporated into fibrin gel.

<細胞培養実験>
[1]試薬の準備
a.試料溶液の調製
1.DNAのアニーリング
蒸留水に溶けている9.6μMのDNA30μLに2×BufferAを30μL加えて4.8μMのDNA BufferA溶液60μLを調製した。
4.8μMのDNA BufferA溶液を94℃で30秒のdenatureを行い、その後94℃から25℃まで0.5℃/分の早さでannealingした。
<Cell culture experiment>
[1] Preparation of reagents a. Preparation of sample solution DNA annealing 30 μL of 2 × Buffer A was added to 30 μL of 9.6 μM DNA dissolved in distilled water to prepare 60 μL of a 4.8 μM DNA Buffer A solution.
The 4.8 μM DNA Buffer A solution was denatured at 94 ° C. for 30 seconds, and then annealed from 94 ° C. to 25 ° C. at a rate of 0.5 ° C./min.

2.トロンビン溶液の調製
9.6μMのトロンビン溶液30μLに2×BufferA溶液を30μL加えて4.8μMトロンビン BufferA 溶液60μLを調製した。
2. Preparation of thrombin solution
30 μL of 2 × Buffer A solution was added to 30 μL of 9.6 μM thrombin solution to prepare 60 μL of 4.8 μM thrombin Buffer A solution.

3.DNA-トロンビン複合体溶液
4.8μMのDNA BufferA溶液60μLと4.8μMトロンビン BufferA 溶液60μLを混合し37℃で30分間インキュベートした。
3. DNA-thrombin complex solution
60 μL of 4.8 μM DNA Buffer A solution and 60 μL of 4.8 μM thrombin Buffer A solution were mixed and incubated at 37 ° C. for 30 minutes.

4.フィブリノゲン溶液の調製
フィブリノゲンをBufferAに溶解し3時間転倒混和させた。その後BufferAで希釈して6μM BufferA溶液を調製した。
4). Preparation of fibrinogen solution Fibrinogen was dissolved in Buffer A and mixed by inversion for 3 hours. Thereafter, it was diluted with Buffer A to prepare a 6 μM Buffer A solution.

b.トランズウェルを用いた培養
1.培地で置換したトランズウェル(トランズウェルクリアー(ポリエステル製メンブレ
ン) メンブレン直径6.5mm,培養面積0.33cm2,メンブレン孔サイズ0.4μm, Corning Life science)1枚当たりに3.3×104/100μL, 1.5×104/100μL, 0.6×104/100μLのHe-La細胞
をまいた。メンブレンに定着するように24時間CO2インキュベーターにいれて培養した。
b. Culture using Transwell 1. Transwell substituted with media (Transwell Clear (polyester membrane) Membrane diameter 6.5 mm, culture area 0.33 cm 2, the membrane pore size 0.4μm, Corning Life science) 3.3 × 10 4 / 100μL per sheet, 1.5 × 10 4/100 [mu] L, were seeded 0.6 × 10 4 / 100μL of the He-La cells. The cells were cultured in a CO 2 incubator for 24 hours so as to settle on the membrane.

2.定着を確認後、以下の表のように試薬をインサートとプレートに添加した。
2. After confirming fixation, reagents were added to the insert and plate as shown in the table below.

インサートの方には、培地を15μL抜き取り、2.4μM のDNA+Th複合体( [20倍溶液],Final120nM) 5μL, 6μMのフィブリノーゲン([10倍溶液],600nM) 10μLをいれた。最終濃度
は、溶液量が100μLでDNA+Th複合体が120nM,フィブリノーゲンが600nMとなる。
プレートの方には、培地を90μL抜き取り、2.4μM のDNA+Th複合体( [20倍溶液],Final120nM) 30μL、6μMのフィブリノーゲン([10倍溶液],600nM) 60μLをいれた。最終濃度は、溶液量が600μLでDNA+Th複合体が120nM,フィブリノーゲンが600nMとなる。
For the insert, 15 μL of the medium was extracted and 5 μL of 2.4 μM DNA + Th complex ([20-fold solution], Final 120 nM), 10 μL of 6 μM fibrinogen ([10-fold solution], 600 nM) was added. The final concentration is 100 μL, the DNA + Th complex is 120 nM, and the fibrinogen is 600 nM.
To the plate, 90 μL of the medium was extracted, and 2.4 μM of DNA + Th complex ([20 times solution], Final 120 nM) 30 μL, 6 μM fibrinogen ([10 times solution], 600 nM) 60 μL. The final concentration is 600 μL, DNA + Th complex is 120 nM, and fibrinogen is 600 nM.

3.試料添加後48時間CO2インキュベーターにいれて培養した。 3. Forty-eight hours after sample addition, the cells were placed in a CO 2 incubator and cultured.

4.位相差光学顕微鏡を用いて観察を行った。その結果を図18に示す。
図18(A)及び(B)は、それぞれコントロール及びフィブリノゲン添加の結果である。これらは、成長しきった細胞がはがれてしまっているため、写真内の細胞数は少なく、閑散としている。
(C)はフィブリノゲン及びDNA-トロンビン複合体を添加したものである。細胞同士は
ある程度密に集まっているが、次に示す(D)ほどの効果は見られなかった。
(D)はフィブリノゲン及びTBA-m4-トロンビン複合体を添加したものである。細胞同士が密に接着しており、他の3つと比べても効果が大きい。
4). Observation was performed using a phase-contrast optical microscope. The result is shown in FIG.
FIGS. 18A and 18B show the results of control and fibrinogen addition, respectively. Since these cells have peeled off, the number of cells in the photograph is small and they are quiet.
(C) shows the addition of fibrinogen and DNA-thrombin complex. The cells are gathered to a certain extent, but the effect as shown in (D) below was not seen.
(D) shows the addition of fibrinogen and TBA-m4-thrombin complex. The cells are closely adhered to each other, which is more effective than the other three.

本発明のヌクレオシド誘導体等は、細胞親和性に優れたポリヌクレオチド(核酸アプタマー)を製造するための原料として利用することができ、細胞培養試薬、核酸医薬、バイオマーカー検査薬、研究試薬等として応用することができる。   The nucleoside derivative of the present invention can be used as a raw material for producing a polynucleotide (nucleic acid aptamer) excellent in cell affinity, and can be applied as a cell culture reagent, nucleic acid drug, biomarker test drug, research reagent, etc. can do.

Claims (13)

下記式(I−1)〜(I−4)の何れかの式で表されるヌクレオシド誘導体又はその塩。
(式(I−1)〜(I−4)中、R1は水素原子(−H)、フッ素原子(−F)、ヒドロキシル基(−OH)、アミノ基(−NH2)、又はメルカプト基(−SH)を、R2はそれぞれ独立に水素原子(−H)又はヒドロキシル基の保護基を、R3はそれぞれ独立に水素原子(−H)又は炭素数1〜6の炭化水素基を、Aは−CONH−または−CHNHC
O−を、Yは分岐構造及び/又は不飽和結合を含んでいてもよい炭素数2〜12の2価の炭化水素基を、nは2〜20の整数を、pは1〜6の整数を、qは1〜20の整数を、rは1〜6の整数を表す。)
A nucleoside derivative represented by any one of the following formulas (I-1) to (I-4) or a salt thereof.
(In the formulas (I-1) to (I-4), R 1 is a hydrogen atom (—H), a fluorine atom (—F), a hydroxyl group (—OH), an amino group (—NH 2 ), or a mercapto group. (—SH), R 2 independently represents a hydrogen atom (—H) or a hydroxyl protecting group, R 3 independently represents a hydrogen atom (—H) or a hydrocarbon group having 1 to 6 carbon atoms, A represents —CONH— or —CH 2 NHC.
O-, Y is a divalent hydrocarbon group having 2 to 12 carbon atoms which may contain a branched structure and / or an unsaturated bond, n is an integer of 2 to 20, and p is an integer of 1 to 6 , Q represents an integer of 1 to 20, and r represents an integer of 1 to 6. )
請求項1に記載のヌクレオシド誘導体の5’−リン酸エステル、ホスホロチオエート体又はそれらの塩。   The 5'-phosphate ester, phosphorothioate form of the nucleoside derivative according to claim 1, or a salt thereof. 請求項2に記載の5’−リン酸エステル、ホスホロチオエート体もしくはそれらの塩、又はこれに標識物質を導入した標識ヌクレオチド誘導体を含む、ポリヌクレオチド合成用基質溶液。   A substrate solution for polynucleotide synthesis comprising the 5'-phosphate ester according to claim 2, a phosphorothioate compound or a salt thereof, or a labeled nucleotide derivative into which a labeling substance is introduced. 請求項3に記載のポリヌクレオチド合成用基質溶液を含む、ポリヌクレオチド合成用試薬。   A reagent for polynucleotide synthesis comprising the substrate solution for polynucleotide synthesis according to claim 3. 請求項2に記載の5’−リン酸エステル、ホスホロチオエート体もしくはそれらの塩、又はこれらに標識物質を導入した標識ヌクレオチド誘導体を合成用基質として用いることを特徴とする、ポリヌクレオチドの製造方法。   A method for producing a polynucleotide, wherein the 5'-phosphate ester, phosphorothioate compound or a salt thereof according to claim 2 or a labeled nucleotide derivative into which a labeling substance is introduced is used as a substrate for synthesis. 請求項2に記載のヌクレオシド誘導体の5’−リン酸エステル及び/又はそのホスホロチオエート体を構成単位として含むポリヌクレオチド。   A polynucleotide comprising, as a structural unit, a 5'-phosphate ester of the nucleoside derivative according to claim 2 and / or a phosphorothioate derivative thereof. リガンド結合配列を含む、請求項6に記載のポリヌクレオチド。   The polynucleotide of claim 6 comprising a ligand binding sequence. リガンド結合配列がトロンビンまたはフィブリン、フィブリノゲン結合配列である、請求項7に記載のポリヌクレオチド。   The polynucleotide according to claim 7, wherein the ligand binding sequence is thrombin, fibrin or fibrinogen binding sequence. 請求項7または8に記載のポリヌクレオチドとトロンビン、もしくはポリヌクレオチドとトロンビン及びフィブリノゲンを用いて細胞を培養することを特徴とする、細胞培養方法。   A cell culture method comprising culturing cells using the polynucleotide according to claim 7 or 8 and thrombin, or the polynucleotide, thrombin and fibrinogen. 請求項7または8に記載のポリヌクレオチドとトロンビン、もしくは該ポリヌクレオチドとトロンビン及びフィブリノゲンを含む、フィブリンゲル。   A fibrin gel comprising the polynucleotide according to claim 7 or 8 and thrombin, or the polynucleotide and thrombin and fibrinogen. 核酸アプタマーである、請求項6に記載のポリヌクレオチド。   The polynucleotide according to claim 6, which is a nucleic acid aptamer. 請求項6または11に記載のポリヌクレオチドを含む、ポリヌクレオチドライブラリー。   A polynucleotide library comprising the polynucleotide according to claim 6 or 11. 請求項12に記載のポリヌクレオチドライブラリーを用いて標的物質結合性ポリヌクレオチドを選択する工程を含む、核酸アプタマーの選択方法。   A method for selecting a nucleic acid aptamer, comprising a step of selecting a target substance-binding polynucleotide using the polynucleotide library according to claim 12.
JP2014085895A 2013-11-12 2014-04-17 Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide Active JP6274570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085895A JP6274570B2 (en) 2013-11-12 2014-04-17 Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013234473 2013-11-12
JP2013234473 2013-11-12
JP2014085895A JP6274570B2 (en) 2013-11-12 2014-04-17 Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017254708A Division JP6479154B2 (en) 2013-11-12 2017-12-28 Fibrin gel containing thrombin binding substance and thrombin

Publications (2)

Publication Number Publication Date
JP2015117228A JP2015117228A (en) 2015-06-25
JP6274570B2 true JP6274570B2 (en) 2018-02-07

Family

ID=53530290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014085895A Active JP6274570B2 (en) 2013-11-12 2014-04-17 Novel nucleoside derivative, polynucleotide containing the same, bottom-up three-dimensional cell culture method and nucleic acid aptamer selection method using the polynucleotide
JP2017254708A Active JP6479154B2 (en) 2013-11-12 2017-12-28 Fibrin gel containing thrombin binding substance and thrombin

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017254708A Active JP6479154B2 (en) 2013-11-12 2017-12-28 Fibrin gel containing thrombin binding substance and thrombin

Country Status (1)

Country Link
JP (2) JP6274570B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576063B2 (en) * 2000-02-22 2004-10-13 株式会社ホギメディカル Soluble wound healing hemostatic cellulose fiber containing coagulation protein and method for producing the same
US20100080791A1 (en) * 2008-09-26 2010-04-01 Rousseau Robert A Composition and Method For Treating Tissue Defects
EP2659269B1 (en) * 2010-12-23 2016-10-26 Roche Diagniostics GmbH Detection of a posttranslationally modified polypeptide by a bi-valent binding agent
US10344047B2 (en) * 2012-03-01 2019-07-09 Atdbio Ltd. Oligonucleotide ligation

Also Published As

Publication number Publication date
JP2015117228A (en) 2015-06-25
JP6479154B2 (en) 2019-03-06
JP2018058898A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP6867636B1 (en) Antisense nucleic acid
KR102335810B1 (en) Antisense nucleic acids
JP2021073183A (en) Modified double-stranded rna agents
Sahu et al. Synthesis of conformationally preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs)
CA2682161A1 (en) Compositions and methods for inhibiting expression of a gene from ebola virus
CN106795197A (en) Modified oligonucleotides and preparation method thereof
JP2021507709A (en) Chiral enriched double-strand RNA agent
JP6368318B2 (en) Nucleoside derivatives or salts thereof, 5&#39;-phosphate esters of nucleoside derivatives or salts thereof, 3&#39;-phosphoramidites of nucleoside derivatives or salts thereof, and polynucleotides
US5908845A (en) Polyether nucleic acids
JP5812478B2 (en) Anticancer drug-binding nucleic acid aptamer and use thereof
JPH09506770A (en) Antisense nucleic acid for preventing and treating diseases associated with the expression of c-erbB
WO2005014609A2 (en) Method of producing a highly stereoregular phosphorus atom-modified nucleotide analogue
WO2018156056A1 (en) Modified oligonucleotides activating rnase h
CN110760516A (en) Aptamer derivatives and aminated aptamer derivatives, their use and pharmaceutical conjugates
WO2022186350A1 (en) Acyclic threoninol nucleic acid
JP6704196B2 (en) Oligonucleotide
TW202227135A (en) Lipid conjugates for the delivery of therapeutic agents
US20120245341A1 (en) Aromatic compound, modification carrier that uses same and is used for synthesizing an oligonucleotide derivative, oligonucleotide derivative, and oligonucleotide construct
JP6479154B2 (en) Fibrin gel containing thrombin binding substance and thrombin
EP3423594B1 (en) Oligonucleotides and methods for preparing
JPH08208686A (en) Oligoribonucleotide with amide main chain
KR20140019435A (en) Process for preparing phosphate compound bearing isotope
JP7231147B2 (en) RNA introduction reagent and its use
TWI541249B (en) 5-position modified pyrimidines and their use
US20030208050A1 (en) Nucleoside derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6274570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250