JP6273482B2 - Thermal radiation material - Google Patents
Thermal radiation material Download PDFInfo
- Publication number
- JP6273482B2 JP6273482B2 JP2017046840A JP2017046840A JP6273482B2 JP 6273482 B2 JP6273482 B2 JP 6273482B2 JP 2017046840 A JP2017046840 A JP 2017046840A JP 2017046840 A JP2017046840 A JP 2017046840A JP 6273482 B2 JP6273482 B2 JP 6273482B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- radiation material
- temperature
- heat radiation
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 41
- 230000005855 radiation Effects 0.000 title claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 31
- 229910052742 iron Inorganic materials 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- WQHONKDTTOGZPR-UHFFFAOYSA-N [O-2].[O-2].[Mn+2].[Fe+2] Chemical compound [O-2].[O-2].[Mn+2].[Fe+2] WQHONKDTTOGZPR-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- 101000650578 Salmonella phage P22 Regulatory protein C3 Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 101001040920 Triticum aestivum Alpha-amylase inhibitor 0.28 Proteins 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Images
Landscapes
- Resistance Heating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、高温の炉の内壁面に塗布して、炉の温度を上昇させ、炉内の放射伝熱を増大する熱放射材に関する。
The present invention relates to a heat radiation material that is applied to the inner wall surface of a high-temperature furnace to increase the temperature of the furnace and increase the radiant heat transfer in the furnace.
熱放射材は、化学反応炉はじめ、加熱炉など高温となる各種設備の内部で放射伝熱の向上のために、炉内壁に塗布して、主に使用するものであるが、石油化学部門ではチューブの外表面に塗布し、輻射熱吸収によりチューブ内の媒体の昇温にも使われる。 Thermal radiation materials are mainly used by applying to the inner wall of the furnace in order to improve radiant heat transfer in various high-temperature facilities such as chemical reactors and heating furnaces. It is applied to the outer surface of the tube and used to raise the temperature of the medium in the tube by absorbing radiant heat.
従来、熱放射材としては、炭化ケイ素(SiC)、クロマイト(Cr2O2)及び酸化チタン(TiO2)を基材とするものが知られている。炭化ケイ素を基材とする熱放射材としては、例えば、H.R.CIII(株式会社日本熱放射材研究所の商品名)が販売されているが、炉内温度800℃程度までが適用領域である。また、クロマイトを基材とする熱放射材としては、例えば、H.R.C(同じく上記研究所の商品名)が販売されているが、炉内温度1、000℃以上まで適用できる。 Conventionally, as a heat radiation material, a material based on silicon carbide (SiC), chromite (Cr 2 O 2 ) and titanium oxide (TiO 2) is known. Examples of the heat radiation material based on silicon carbide include H.P. R. CIII (trade name of Japan Thermal Radiation Materials Laboratory Co., Ltd.) is sold, but the furnace temperature is about 800 ° C. Examples of the heat radiation material based on chromite include H.P. R. C (also a trade name of the above-mentioned laboratory) is sold, but it can be applied to a furnace temperature of 1,000 ° C. or higher.
さらに、酸化チタン(TiO2)を基材とする熱放射材としては、例えば、H.R.CII(同じく上記研究所の商品名)が販売されているが、基材の酸化チタン(TiO2)は、H2、またはCO2雰囲気の炉内で、高温で加熱されると、還元酸化チタン(Ti2O3、Ti3O5、・・・TinO2n-1)に変化し、近赤外線をよく吸収し、高放射性であって、加熱炉の内壁表面に還元酸化チタンの塗膜を焼付け形成すると、炉内における放射伝熱は飛躍的に増大し、その適用領域は1,000℃以上となる。 Furthermore, examples of the heat radiation material based on titanium oxide (TiO 2 ) include H.P. R. CII (also the trade name of the above laboratory) is sold, but the titanium oxide (TiO 2) of the base material is reduced titanium oxide when heated at a high temperature in a furnace of H 2 or CO 2 atmosphere. (Ti 2 O 3, Ti 3 O 5, ··· Ti n O 2n-1) changes to, well absorbs near infrared, a high radiation, the coating film of reduced titanium oxide on the inner wall surface of the furnace When baked and formed, the radiant heat transfer in the furnace increases dramatically, and its application area becomes 1,000 ° C. or more.
これらの熱放射材のそれぞれの特徴を生かして、選択することが重要であるが、いずれの熱放射材も、鉄板に塗布しようとすると鉄板表面との親和性が悪く、剥離が生じるという問題がある。
一方、鉄板の表面に塗装可能で、かつ輻射率の高い赤外線輻射コーティング材としては、いくつか知られている。その一つは、有機系の材料を基材とした塗料が提案されている(特許文献1)が、輻射率は高々0.8以上であり、耐熱性は500℃とあまり高温には耐えられるものでなく、熱放射材としては限定的な使用しかできない。また耐熱性でみると、オキツモ(オキツモ株式会社商品名)が耐熱塗料として知られているが、耐熱は高々650℃以下であり、錆止め、美観用に使用されるに過ぎない。輻射率については、ハンガリー製のものに、0.9位のものが報告されているが、耐熱は350℃であり、熱放射材としては、これも適用範囲が限定的である。
It is important to select by making use of the characteristics of each of these heat radiating materials. However, any heat radiating material has a problem that when it is applied to the iron plate, the affinity with the iron plate surface is poor and peeling occurs. is there.
On the other hand, several infrared radiation coating materials that can be painted on the surface of an iron plate and have a high emissivity are known. For example, a coating material based on an organic material has been proposed (Patent Document 1), but the emissivity is 0.8 or more and the heat resistance is 500 ° C., which can endure a very high temperature. It is not a thing and can only be used as a heat radiation material. In terms of heat resistance, Okitsumo (trade name of Okitsumo Co., Ltd.) is known as a heat resistant paint, but the heat resistance is at most 650 ° C. and is only used for rust prevention and aesthetic purposes. Regarding the emissivity, a value of 0.9 is reported for a product made in Hungary, but the heat resistance is 350 ° C., and this also has a limited application range as a heat radiation material.
本発明が解決しようとする課題は、鉄板表面に塗装可能な熱放射材であって、輻射率が0.9以上と高く、かつ700℃から1,500℃の高温に耐えることができ、コスト的にも十分低く提供することにある。
The problem to be solved by the present invention is a heat radiation material that can be coated on the surface of an iron plate, has a high emissivity of 0.9 or more, can withstand high temperatures from 700 ° C. to 1,500 ° C., and has a low cost. It is to provide low enough.
本発明は、係る問題に鑑みなされたものであって、鉄マンガン酸化物とシリカの混合した組成物を基材とし、希釈剤として水を加えたことを特徴とする鉄板表面に塗装可能な熱放射材である。 The present invention has been made in view of such problems, and is a heat that can be applied to the surface of an iron plate, characterized in that it is based on a composition in which ferromanganese oxide and silica are mixed and water is added as a diluent. Radiant material.
反応炉、加熱炉や熱交換器では、反応や加熱を効率良く行って経済性を上げるために、バーナーなどの熱源からのエネルギー投入量を抑えて、炉の温度をできるだけ高くすることが望まれている。 In reaction furnaces, heating furnaces, and heat exchangers, it is desirable to keep the furnace temperature as high as possible by reducing the amount of energy input from a heat source such as a burner in order to efficiently perform the reaction and heating and increase the economy. ing.
炉の内壁を熱放射材で覆うと、輻射率が高い材質の方が、より多くの熱を吸収するので、炉壁の温度が上がり、内壁からの放射伝熱量が増大して、内部の構造物や被加熱材の温度を上げることができる。このとき、熱放射材自身も高熱にさらされるので、耐熱性も同時に求められる。 If the inner wall of the furnace is covered with a heat radiating material, the material with higher emissivity absorbs more heat, so the temperature of the furnace wall rises and the amount of radiant heat transfer from the inner wall increases. The temperature of an object or a material to be heated can be raised. At this time, since the heat radiation material itself is also exposed to high heat, heat resistance is also required.
炉の温度がより高温になる結果、被加熱物の温度をより短時間で上昇させることができるので、エネルギーの投入量と時間が短くなり、トータルの消費エネルギーは減少する。また、このとき、排気の温度が著しく下がり、無駄に廃棄されるエネルギーが減少するので、高効率であり、省エネルギーを実現できる。 As a result of the furnace temperature becoming higher, the temperature of the object to be heated can be increased in a shorter time, so that the amount of energy input and time are shortened, and the total energy consumption is reduced. Further, at this time, the temperature of the exhaust gas is remarkably lowered, and energy that is wasted is reduced, so that high efficiency and energy saving can be realized.
また、炉内での使用以外では、例えば、太陽熱発電に使われる集光管の外部表面に塗布することが考えられる。この例では、太陽光を集光して鉄管に照射し、管内の媒体の温度をあげ、この媒体の熱で水蒸気を発生して発電タービンを回して発電するのである。したがって、エネルギー源である太陽光を高い吸収率で吸収することが望まれる。 In addition to use in a furnace, for example, it may be applied to the outer surface of a condenser used for solar thermal power generation. In this example, sunlight is collected and irradiated onto the iron pipe, the temperature of the medium in the pipe is raised, water vapor is generated by the heat of this medium, and the power generation turbine is rotated to generate power. Therefore, it is desired to absorb sunlight as an energy source with a high absorption rate.
物質に光を照射すると一部は反射され、一部は吸収される。したがって、
反射率+吸収率=1 式1
が成立する。一方吸収された光は、熱エネルギーに変換され、物質を温める働きをするが、物資は、その絶対温度Tの4乗に比例する電磁波を輻射する。定常状態では、吸収エネルギーと輻射エネルギーは等しいので、
吸収率=輻射率 式2
従って、式1と式2より
反射率+輻射率=1 式3
が成立する。
When a substance is irradiated with light, part of it is reflected and part of it is absorbed. Therefore,
Reflectance + Absorptance = 1
Is established. On the other hand, the absorbed light is converted into heat energy to warm the substance, but the material radiates electromagnetic waves proportional to the fourth power of the absolute temperature T. In steady state, absorbed energy and radiant energy are equal,
Absorption rate =
Therefore, from
Reflectivity + emissivity = 1
Is established.
要は、輻射率の高い物質は、それだけ光の吸収率も高いことを意味する。
従って、輻射率の高い熱放射材を集光管の外部表面に塗ると、太陽光を高い吸収率で吸収し、その結果、集光管の表面に塗られた熱放射材がその分高温になり、鉄管が高温になった熱放射材より、熱伝導により熱をうけて高温になり、その結果、鉄管内を流れる媒体も、高温となった鉄管より熱伝導により熱を受けて、高温になる。管内に流れる媒体を高温に加熱できればできるほど発電効率を上げることができることになるので、鉄管表面に塗られる熱放射材は、当然、耐熱性が同時に求められる。
In short, a substance with a high emissivity means that the absorption rate of light is high.
Therefore, if a heat radiation material with a high emissivity is applied to the outer surface of the condenser tube, it absorbs sunlight with a high absorption rate. As a result, the heat radiation from the heat radiating material where the iron pipe becomes hot is heated to a high temperature due to heat conduction. Become. Since the power generation efficiency can be increased as the medium flowing in the pipe can be heated to a higher temperature, the heat radiation material applied to the surface of the iron pipe is naturally required to have heat resistance at the same time.
これらの炉の内壁や集光管の外部表面などに、本発明の鉄板表面に塗装可能な熱輻射材を用いれば、簡易に、低コストで、より高温が得られて、無駄になるエネルギーを少なくできて、経済性を上げられる。
本発明の熱輻射材の材料は、鉄、マンガン、シリコンの酸化物であり、いずれも容易に入手できて、資源としての量も多く、コストも安い。
If the heat radiation material that can be painted on the surface of the iron plate of the present invention is used on the inner wall of these furnaces, the outer surface of the condenser tube, etc., energy that is wasted can be easily obtained at a lower cost and at a higher temperature. It can be reduced and the economy can be improved.
The material of the heat radiation material of the present invention is an oxide of iron, manganese, and silicon, all of which are easily available, have a large amount as a resource, and are low in cost.
輻射率が高く、摂氏700から1、500℃の高温に耐えることができ、かつ鉄板表面に塗装可能な熱放射材を安価に提供できる。
A heat radiation material that has a high emissivity, can withstand high temperatures of 700 to 1,500 ° C., and can be painted on the surface of an iron plate can be provided at low cost.
本発明の熱放射材は、主成分として、鉄マンガン酸化物と、シリカと、無機結合材とを含み、水を希釈剤とした塗料である。 The heat radiation material of the present invention is a paint containing iron manganese oxide, silica, and an inorganic binder as main components and water as a diluent.
まず、鉄マンガン酸化物の粉末と、シリカの粉末を主原料とし、さらに少量の炭化ケイ素、酸化鉄、酸化アルミニウム等を混合して、中間混合物を作成する。該中間混合物の成分を、蛍光X線分析装置(リガク社製、ZSX100e)を用いて、ブリケット法による蛍光X線分析を行った。具体的には、プレス機を用いて黒色顔料と該中間混合物を円盤状サンプルに成型し、該円盤状サンプルを蛍光X線分析装置のホルダーにセットし、蛍光X線強度を測定した。FP定量法にて定量値を求め、あらかじめ測定しておいた黒色顔料のIg loss値を用いて補正し、各元素の含有量を求めた。 First, an iron / manganese oxide powder and silica powder are used as main raw materials, and a small amount of silicon carbide, iron oxide, aluminum oxide, etc. are mixed to prepare an intermediate mixture. The components of the intermediate mixture were subjected to fluorescent X-ray analysis by a briquette method using a fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX100e). Specifically, the black pigment and the intermediate mixture were molded into a disk-like sample using a press machine, the disk-like sample was set in a holder of a fluorescent X-ray analyzer, and the fluorescent X-ray intensity was measured. The quantitative value was determined by the FP quantitative method, corrected using the Ig loss value of the black pigment measured in advance, and the content of each element was determined.
その結果、該中間混合物は、鉄マンガン酸化物(FeMn)2O3 24.8〜25.3%、炭化ケイ素SiC 7.9〜8.4%、酸化鉄Fe2O3 9.5〜10.1%、酸化アルミニウムAl2O3 2.3〜2.5%、酸化カルシウムCaO 1.7〜1.9%、酸化カリウムK2O 0.7〜0.9%、酸化マンガンMnO2 0.3〜0.5%、シリカSiO2 16.3〜16.8%であった。 As a result, the intermediate mixture was ferromanganese oxide (FeMn) 2 O 3 24.8 to 25.3%, silicon carbide SiC 7.9 to 8.4%, iron oxide Fe 2 O 3 9.5 to 10 0.1%, aluminum oxide Al 2 O 3 2.3-2.5%, calcium oxide CaO 1.7-1.9%, potassium oxide K 2 O 0.7-0.9%, manganese oxide MnO 2 0 It was 0.3 to 0.5% and silica SiO 2 was 16.3 to 16.8%.
該中間混合物の上記主成分に加えて、通常の耐熱塗装材と同様に、副成分として無機接着材を加える。 In addition to the above main component of the intermediate mixture, an inorganic adhesive is added as a subcomponent in the same manner as a normal heat resistant coating material.
さらに希釈剤としては水を用い、固形分65重量%に対して、残量は水となるように稀釈する。 Further, water is used as a diluent, and the remaining amount is diluted with water to a solid content of 65% by weight.
またさらに、上記の主成分と副成分に加えて、可塑剤、増粘剤等の通常塗装材に用いられる添加剤を必要に応じて適宜添加してもよい。 Furthermore, in addition to the main component and subcomponents described above, additives usually used in coating materials such as plasticizers and thickeners may be added as necessary.
以上の説明による熱放射材を鉄板としてのステンレスの板に塗装して、厚み30〜40μmの塗膜とし、塗膜の乾燥後に、摂氏710度以上で焼付けを行い、試験材を作成した。この試験材の耐熱試験を行なったところ、連続加熱試験及び間歇運転試験(昇温1、350℃〜下温700℃の繰り返し試験)を15回行った結果、塗膜の亀裂や剥離などの変化は無かった。 The heat radiation material according to the above description was coated on a stainless steel plate as an iron plate to form a coating film having a thickness of 30 to 40 μm. After the coating film was dried, baking was performed at 710 ° C. or more to prepare a test material. When this test material was subjected to a heat resistance test, a continuous heating test and an intermittent operation test (repetition test at a temperature rise of 1,350 ° C. to a lower temperature of 700 ° C.) were performed 15 times. There was no.
また、この試験材の輻射率を、神奈川県産業技術センターにおいて測定した結果を図1に示す。図1より、摂氏710度で、1.50〜14.00μmの波長において、平均して輻射率0.89と高い輻射率が得られた。当センターでは710℃しか測定できず、弊社の輻射計(米国製カンタムロジック社型式1310)では1、250℃で0.92の値を示している。
Moreover, the result of having measured the radiation rate of this test material in the Kanagawa Industrial Technology Center is shown in FIG. As shown in FIG. 1, a high emissivity of 0.89 was obtained on average at a wavelength of 710 degrees Celsius and a wavelength of 1.50 to 14.00 μm. This center can only measure 710 ° C, and our radiometer (Quantum Logic Corporation Model 1310) shows a value of 0.92 at 1,250 ° C.
各種プラントにおいては、効率あるいは収率を高めるために、高温で運転する反応炉などの装置がある。また、太陽熱発電装置では、高温溶融塩を使った、効率の高い方式が開発されている。本発明の鉄板に塗装可能な熱放射材を上記装置に使用することで、同じエネルギーで、より高温での運転が可能であり、効率の改善が図れる。 In various plants, there are devices such as a reactor operating at a high temperature in order to increase efficiency or yield. In solar thermal power generation devices, a highly efficient method using high-temperature molten salt has been developed. By using the heat radiating material that can be painted on the iron plate of the present invention in the above apparatus, it is possible to operate at a higher temperature with the same energy and to improve the efficiency.
Claims (2)
さらに少なくとも、炭化ケイ素、酸化鉄、酸化アルミニウムを混合した組成物を基材とし、
溶剤として水を加えたことを特徴とする鉄板表面に塗装可能な熱放射材。 Mainly made of iron manganese oxide powder and silica powder,
Furthermore, based on a composition in which at least silicon carbide, iron oxide, and aluminum oxide are mixed,
A heat radiation material that can be painted on the surface of an iron plate, characterized by adding water as a solvent.
鉄マンガン酸化物とシリカの重量比が略3対2であることを特徴とする熱放射材。 The heat radiation material according to claim 1,
A heat radiation material characterized in that the weight ratio of iron manganese oxide to silica is approximately 3 to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017046840A JP6273482B2 (en) | 2017-03-11 | 2017-03-11 | Thermal radiation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017046840A JP6273482B2 (en) | 2017-03-11 | 2017-03-11 | Thermal radiation material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013054466A Division JP6151938B2 (en) | 2013-03-17 | 2013-03-17 | Thermal radiation material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017133107A JP2017133107A (en) | 2017-08-03 |
JP6273482B2 true JP6273482B2 (en) | 2018-02-07 |
Family
ID=59502163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017046840A Active JP6273482B2 (en) | 2017-03-11 | 2017-03-11 | Thermal radiation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6273482B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1038113B (en) * | 1975-05-13 | 1979-11-20 | Montedison Spa | PROCEDURE FOR THE PREPARATION OF BLACK AND BROWN THERMOSTABLE PIGMENTS |
JPS6375073A (en) * | 1986-09-17 | 1988-04-05 | Yoshio Ichikawa | Coating method |
-
2017
- 2017-03-11 JP JP2017046840A patent/JP6273482B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017133107A (en) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schunk et al. | Kinetics of the thermal dissociation of ZnO exposed to concentrated solar irradiation using a solar‐driven thermogravimeter in the 1800–2100 K range | |
Khamlich et al. | Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers | |
CN102786820B (en) | Infrared radiation coating suitable for metal matrix and preparation method | |
CN102219495B (en) | Infrared radiation coating and use method thereof | |
CN106084906A (en) | A kind of industrial furnace energy-saving coating system | |
CN104311013B (en) | A kind of SmTaO4the preparation method of ceramic powder material | |
Plaza et al. | A case study of the feasibility of using solar concentrating technologies for manufacturing ceramics | |
CN106587965A (en) | Low-temperature sintering high-heat conduction ceramic paint suitable for metal base material and preparation method and application thereof | |
Chen et al. | High temperature properties of AlN coatings deposited by chemical vapor deposition for solar central receivers | |
CN202182628U (en) | Energy-saving furnace | |
CN109416200A (en) | The metal-ceramic coatings of Tube Sheet of Heat Exchanger and preparation method thereof for central solar receiver | |
CN101973768A (en) | Thermal-radiating material and fire-resisting material using same | |
JP6273482B2 (en) | Thermal radiation material | |
CN104098936B (en) | A kind of preparation method of high emission infrared energy-conserving radiation coating | |
US12077476B2 (en) | High emissivity coating composition and substrate coated therewith | |
JP6151938B2 (en) | Thermal radiation material | |
CN113979717B (en) | Infrared radiation material, infrared radiation coating material and application thereof | |
Song et al. | Preparation of infrared high radiation coatings from modified spinel NiFe2O4 and its energy saving applications | |
CN107586472A (en) | HTEE series special infrared radiation coating for high temperature kiln | |
Tian et al. | Oxidation Resistance of Al PO 4 Bonded Ceramic Coating Formed on Titanium Alloy for High‐Temperature Applications | |
Agrafiotis et al. | A particle receiver-driven thermochemical cycle employing elemental sulphur for solar thermochemical energy storage: Investigation of particles as concentrated sunlight harvesting media and sulphur trioxide splitting catalysts | |
CN102230737B (en) | Energy-saving cone | |
Wang et al. | Photothermal performance of three chromia-forming refractory alloys for high-temperature solar absorber applications | |
Cheng et al. | Infrared radiation coatings fabricated by plasma spray | |
CN113604079B (en) | Thermochemical protective coating material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6273482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |