JP6271977B2 - Carbon material manufacturing method - Google Patents

Carbon material manufacturing method Download PDF

Info

Publication number
JP6271977B2
JP6271977B2 JP2013250296A JP2013250296A JP6271977B2 JP 6271977 B2 JP6271977 B2 JP 6271977B2 JP 2013250296 A JP2013250296 A JP 2013250296A JP 2013250296 A JP2013250296 A JP 2013250296A JP 6271977 B2 JP6271977 B2 JP 6271977B2
Authority
JP
Japan
Prior art keywords
integer
formula
organic polymer
carbon
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013250296A
Other languages
Japanese (ja)
Other versions
JP2015108198A (en
Inventor
周平 吉田
周平 吉田
鈴木 慶宜
慶宜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2013250296A priority Critical patent/JP6271977B2/en
Publication of JP2015108198A publication Critical patent/JP2015108198A/en
Application granted granted Critical
Publication of JP6271977B2 publication Critical patent/JP6271977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は炭素材料の製造方法に関するものである。   The present invention relates to a method for producing a carbon material.

炭素材料は、軽量であるとともに、化学的・熱的安定性に優れ、且つ熱伝導性及び電気伝導性が良好であるという特性を有しているため、二次電池や燃料電池などのガス拡散層を含む電極材料や、吸着材、摩擦材、断熱材、充填材、構造材料などさまざまな分野で広く使用されている。   Carbon materials are lightweight, have excellent chemical and thermal stability, and have good thermal and electrical conductivity, so gas diffusion in secondary batteries and fuel cells, etc. It is widely used in various fields such as electrode materials including layers, adsorbents, friction materials, heat insulating materials, fillers, and structural materials.

このような炭素材料として炭素粒子、黒鉛粒子、グラファイトフィルム、多孔質炭素材、炭素繊維、カーボン不織布、カーボンペーパー、カーボンナノ繊維、カーボンナノチューブ、フラーレン等が挙げられる。中でも炭素繊維は、比強度・比弾性率にも優れるため、熱硬化性及び熱可塑性樹脂の強化繊維として、航空機部材、鉄道車両部材、船舶部材、スポーツ用品用途などに利用され、さらに近年は自動車部材やCNGタンク、建造物の耐震補強など、一般産業用途への利用が増加している。   Examples of such carbon materials include carbon particles, graphite particles, graphite films, porous carbon materials, carbon fibers, carbon nonwoven fabrics, carbon paper, carbon nanofibers, carbon nanotubes, fullerenes and the like. Among them, carbon fiber is excellent in specific strength and specific elastic modulus, and is used as a thermosetting and thermoplastic resin reinforcing fiber for aircraft members, railway vehicle members, ship members, sports equipment, etc. Use for general industrial applications such as seismic reinforcement of members, CNG tanks and buildings is increasing.

一般的に炭素繊維は、ピッチ系繊維、アクリル系繊維、フェノール樹脂系繊維、レーヨン系繊維などの繊維を前駆体とし、これを必要に応じて不融化処理した後、不活性雰囲気下で高温処理し、炭素化する方法で製造されている。しかし、これらの前駆体繊維は、分子構造中に炭素及び水素以外の原子を含み、炭素化工程においてこれらの原子が単独もしくは炭素原子を伴って脱離するため、得られる炭素繊維の炭素化収率が低いという問題がある。加えて、一般に用いられる前駆体繊維自体も、ポリオレフィンやポリエステルといった大量生産される汎用繊維と比較して安価ではない。これらの要因が、炭素繊維製造コストの低減と一層の普及の妨げになるという問題がある。   Generally, carbon fiber is a fiber such as pitch fiber, acrylic fiber, phenol resin fiber, rayon fiber, etc., which is infusibilized as necessary and then treated at high temperature in an inert atmosphere. However, it is manufactured by a carbonizing method. However, these precursor fibers contain atoms other than carbon and hydrogen in the molecular structure, and these atoms are detached either alone or accompanied by carbon atoms in the carbonization process. There is a problem that the rate is low. In addition, commonly used precursor fibers themselves are not cheap compared to mass-produced general-purpose fibers such as polyolefins and polyesters. There is a problem that these factors hinder the reduction of the carbon fiber production cost and further spread.

これらの問題を解決するため、近年、炭素含有率が高く、安価なポリオレフィンを前駆体として用いた炭素繊維が提案されている。(例えば、非特許文献1参照)しかし、飽和系有機高分子であるポリオレフィンは、不融化および炭素化反応が起こりにくく、製造に時間がかかるため、製造コストが増加するという現状がある。   In order to solve these problems, in recent years, carbon fibers using a polyolefin having a high carbon content and a low price as a precursor have been proposed. (For example, refer nonpatent literature 1) However, the polyolefin which is a saturated organic polymer has the present condition that manufacturing cost increases since infusibilization and carbonization reaction hardly occur and manufacturing takes time.

DONG ZHANG著、「Journal of Thermoplastic Composite Materials」、1993年、第6巻、p.38DONG ZHANG, “Journal of Thermoplastic Composite Materials”, 1993, Volume 6, p. 38

本発明の目的は、炭素化収率が高く、不融化および炭素化されやすい前駆体を用いた炭素材料の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a carbon material using a precursor that has a high carbonization yield and is easily infusible and carbonized.

本発明の炭素材料の製造方法は、主鎖中にπ結合を有する有機高分子を炭素化する炭素材料の製造方法である The method for producing a carbon material of the present invention is a method for producing a carbon material for carbonizing an organic polymer having a π bond in the main chain .

また、本発明の炭素材料の製造方法は、主鎖中にπ結合を有する有機高分子を、不融化処理後炭素化することが好ましい。本発明においては、主鎖中にπ結合を有する有機高分子が、繊維状であることが好ましい。
本発明の炭素材料は、上記の炭素材料の製造方法により得られた炭素材料である。
In the method for producing a carbon material of the present invention, it is preferable that an organic polymer having a π bond in the main chain is carbonized after infusibilizing treatment. In the present invention, the organic polymer having a π bond in the main chain is preferably fibrous.
The carbon material of the present invention is a carbon material obtained by the above carbon material production method.

本発明の炭素材料の製造方法は、架橋構造の形成が速く、不融化および炭素化が容易に進行する前駆体を用いているため、炭素化収率が高く、製造コストを抑え効率的に炭素材料を製造することができる。   The method for producing a carbon material according to the present invention uses a precursor in which a cross-linked structure is quickly formed and infusibilization and carbonization easily proceed. Therefore, the carbonization yield is high, and carbon is efficiently reduced while suppressing production costs. The material can be manufactured.

本発明の炭素材料の製造方法は、主鎖中にπ結合を有する有機高分子を炭素化する炭素材料の製造方法である。主鎖中にπ結合を有する有機高分子を前駆体として用いることで、不融化または炭素化に際し、分子鎖間の架橋反応が起こりやすくなり、効率よく炭素材料を製造することができる。   The method for producing a carbon material of the present invention is a method for producing a carbon material for carbonizing an organic polymer having a π bond in the main chain. By using an organic polymer having a π bond in the main chain as a precursor, a cross-linking reaction between molecular chains is likely to occur during infusibilization or carbonization, and a carbon material can be produced efficiently.

本発明で用いる有機高分子としては、13C-NMRで求められるπ結合由来のピーク積分強度(Aπ)と単結合由来のピーク積分強度(As)の比(Aπ/As)が、0.001〜1000である有機高分子が好ましい。Aπ/Asが0.001以上であると、分子鎖間の架橋反応がより起こりやすくなる。 The organic polymer used in the present invention has a ratio (A π / A s ) of the peak integrated intensity (A π ) derived from π bond and the peak integrated intensity (A s ) derived from single bond determined by 13 C-NMR. , 0.001-1000 organic polymers are preferred. When A π / A s is 0.001 or more, a cross-linking reaction between molecular chains is more likely to occur.

本発明で用いる有機高分子としては、主鎖中にπ結合を1つ以上有する有機高分子であれば、制限はないが、好ましくは主鎖中にπ結合を有する有機高分子は、主鎖中に、π結合として二重結合、三重結合、及び共役結合のいずれか1つ又は2つ以上を組み合わせて有する有機高分子であることが好ましい。本発明において、共役結合は、共役系を成す共有結合であれば制限はなく、共役二重結合でも共役三重結合でもよい。
主鎖中に二重結合を有する有機高分子としては、下記式(1)で表される構造を有する有機高分子であることがより好ましい。
The organic polymer used in the present invention is not limited as long as it is an organic polymer having one or more π bonds in the main chain, but preferably the organic polymer having π bonds in the main chain is a main chain. Among them, an organic polymer having a combination of one or more of a double bond, a triple bond, and a conjugated bond as a π bond is preferable. In the present invention, the conjugated bond is not limited as long as it is a covalent bond forming a conjugated system, and may be a conjugated double bond or a conjugated triple bond.
The organic polymer having a double bond in the main chain is more preferably an organic polymer having a structure represented by the following formula (1).

Figure 0006271977
[式(1)中、nは1以上の整数、-R-については後述する。]
Figure 0006271977
[In Formula (1), n is an integer greater than or equal to 1, and -R- will be described later. ]

主鎖中に三重結合を有する有機高分子としては、下記式(2)で表される構造を有する有機高分子であることがより好ましい。   The organic polymer having a triple bond in the main chain is more preferably an organic polymer having a structure represented by the following formula (2).

Figure 0006271977
[式(2)中、nは1以上の整数、-R-については後述する。]
Figure 0006271977
[In Formula (2), n is an integer greater than or equal to 1, and -R- will be described later. ]

主鎖中に共役結合を有する有機高分子としては、例えば主鎖中にポリエン構造や芳香族基を有する有機高分子が挙げられる。本発明において、主鎖中に共役結合を有する有機高分子は、共役系の中に炭素原子以外のヘテロ原子を含んでいても良い。主鎖中に共役結合を有する有機高分子としては、下記式(3)で表される構造を有する有機高分子であることがより好ましい。   Examples of the organic polymer having a conjugated bond in the main chain include organic polymers having a polyene structure or an aromatic group in the main chain. In the present invention, the organic polymer having a conjugated bond in the main chain may contain a hetero atom other than a carbon atom in the conjugated system. The organic polymer having a conjugated bond in the main chain is more preferably an organic polymer having a structure represented by the following formula (3).

Figure 0006271977
[式(3)中、nは1以上の整数、-R-については後述する。]
Figure 0006271977
[In Formula (3), n is an integer greater than or equal to 1, and -R- will be described later. ]

本発明において式(1)〜(3)中の-R-は炭素を1〜50個含む骨格構造を有していることが好ましく、炭素原子、水素原子に加え、酸素、硫黄、ケイ素、窒素、リン、ホウ素、フッ素、塩素、ヨウ素原子などのヘテロ原子を含んでいることも好ましい。-R-は炭素原子を50質量%以上有する構造であることが好ましい。また、-R-は、環式もしくは非環式の骨格構造を有していることが好ましく、側鎖に炭素及び水素以外の原子を含む官能基を有していること、側鎖に飽和もしくは不飽和の環状基または芳香族基を有していることも好ましい。   In the present invention, -R- in formulas (1) to (3) preferably has a skeletal structure containing 1 to 50 carbon atoms, and in addition to carbon atoms and hydrogen atoms, oxygen, sulfur, silicon, nitrogen It is also preferable that it contains a hetero atom such as phosphorus, boron, fluorine, chlorine or iodine atom. -R- preferably has a structure having 50% by mass or more of carbon atoms. Further, -R- preferably has a cyclic or acyclic skeleton structure, has a functional group containing atoms other than carbon and hydrogen in the side chain, is saturated in the side chain, or It is also preferable to have an unsaturated cyclic group or aromatic group.

また、式(1)〜(3)のいずれかに示される構造を有する有機高分子は、単重合体に限定されず、式(1)〜(3)で表される繰り返し構造を有する共重合体であっても良い。   Moreover, the organic polymer having the structure represented by any one of the formulas (1) to (3) is not limited to a single polymer, and is a copolymer having a repeating structure represented by the formulas (1) to (3). It may be a coalescence.

-R-が非環式の骨格構造を有する場合、その骨格構造は直鎖状でも分岐状でも良いが、-R-が非環式分岐状構造を有していることが、不融化反応の反応性が優れるため好ましい。また、-R-は飽和基でも不飽和基でも良いが、不飽和であることが、不融化反応の反応性が優れるため好ましい。   When -R- has an acyclic skeleton structure, the skeleton structure may be linear or branched, but -R- may have an acyclic branched structure, It is preferable because of its excellent reactivity. In addition, —R— may be a saturated group or an unsaturated group, but is preferably unsaturated because the reactivity of the infusibilization reaction is excellent.

-R-が、非環式の骨格構造を有する有機高分子としては、例えば、下記式(4)、(5)に示される有機高分子が挙げられる。Rが、環式の骨格構造を有する有機高分子としては、例えば、下記式(6)〜(12)に示される有機高分子が挙げられる。-R-が、側鎖に飽和もしくは不飽和の環状基または芳香族基を有する有機高分子としては、例えば、下記式(13)〜(26)に示される構造を有する有機高分子が挙げられる。-R-が、側鎖に炭素及び水素以外の原子を含む官能基を有する有機高分子としては、例えば、下記式(17)〜(26)に示される構造を有する有機高分子や、下記式(5)〜(26)に示される構造を有する有機高分子であって、R1〜R5のいずれかが-Xである有機高分子が挙げられる。 Examples of the organic polymer in which —R— has an acyclic skeleton structure include organic polymers represented by the following formulas (4) and (5). Examples of the organic polymer in which R has a cyclic skeleton structure include organic polymers represented by the following formulas (6) to (12). Examples of the organic polymer in which —R— has a saturated or unsaturated cyclic group or aromatic group in the side chain include organic polymers having structures represented by the following formulas (13) to (26): . Examples of the organic polymer having a functional group containing atoms other than carbon and hydrogen in the side chain as —R— include, for example, organic polymers having a structure represented by the following formulas (17) to (26), Organic polymers having the structures shown in (5) to (26), wherein any of R 1 to R 5 is —X.

本発明で用いる有機高分子としては、式(1)〜(3)中の-R-が下記式(4)〜(26)で表される構造もしくはその異性体である有機高分子であることがより好ましい。   The organic polymer used in the present invention is an organic polymer in which -R- in the formulas (1) to (3) is a structure represented by the following formulas (4) to (26) or an isomer thereof. Is more preferable.

Figure 0006271977
[式(4)中、nは1以上10以下の整数、mは1以上10以下の整数(ただし、n≧m)を表す。]
Figure 0006271977
[In Formula (4), n represents an integer of 1 to 10, and m represents an integer of 1 to 10 (where n ≧ m). ]

Figure 0006271977
[式(5)中、nは1以上10以下の整数、mは1以上10以下の整数(ただし、n≧m)、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。]
Figure 0006271977
[In the formula (5), n is an integer of 1 to 10, m is an integer of 1 to 10 (where n ≧ m), and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(6)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (6), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(7)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (7), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(8)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (8), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(9)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In Formula (9), l is 0 or an integer of 1 or more and 10 or less, R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(10)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (10), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(11)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (11), l is 0 or an integer of 1 to 10, and R 1 to R 4 are independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(12)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (12), l is 0 or an integer of 1 to 10, R 1 to R 4 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(13)中、lは0又は1以上10以下の整数、R1〜R5はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (13), l is 0 or an integer of 1 to 10, and R 1 to R 5 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(14)中、lは0又は1以上10以下の整数、R1〜R5はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (14), l is 0 or an integer of 1 to 10, and R 1 to R 5 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(15)中、lは0又は1以上10以下の整数、R1〜R5はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (15), l is 0 or an integer of 1 to 10, and R 1 to R 5 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(16)中、lは0又は1以上10以下の整数、R1〜R5はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (16), l is 0 or an integer of 1 to 10, R 1 to R 5 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(17)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (17), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(18)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (18), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(19)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (19), l is 0 or an integer of 1 to 10, R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(20)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (20), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(21)中、lは0又は1以上10以下の整数、R1〜R5はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (21), l is 0 or an integer of 1 to 10 and R 1 to R 5 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(22)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (22), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(23)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (23), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(24)中、lは0又は1以上10以下の整数、R1〜R3はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (24), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(25)中、lは0又は1以上10以下の整数、R1、R2はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (25), l is 0 or an integer of 1 to 10, R 1 and R 2 are each independently -H, -C n H (2n + 1) , -C m H (2m-1) , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

Figure 0006271977
Figure 0006271977

[式(26)中、lは0又は1以上10以下の整数、R1〜R4はそれぞれ独立に、-H、-CnH(2n+1)、-CmH(2m-1)、-CmH(2m-3)、-X。nは1以上10以下の整数、mは2以上10以下の整数、-Xはヘテロ原子を含む官能基を表す。-Xについては後述する。] [In the formula (26), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1). , -C m H (2m-3) , -X. n is an integer of 1 to 10, m is an integer of 2 to 10, and -X represents a functional group containing a hetero atom. -X will be described later. ]

本発明において、式(5)〜(26)中の-Xは、ヘテロ原子を含む官能基であり、好ましくは、ニトリル基、アミド基、ニトロ基、イミド基、アミノ基、イミノ基、アゾ基、水酸基、エステル基、カルボニル基、エーテル基、ヒドロキシエステル基、スルホン基、チオエステル基、チオエーテル基、硫酸エステル基、リン酸エステル基である。
これらの有機高分子の中でも下記式(27)に表される構造を有する有機高分子を用いることが、更に好ましい。
In the present invention, -X in the formulas (5) to (26) is a functional group containing a hetero atom, preferably a nitrile group, an amide group, a nitro group, an imide group, an amino group, an imino group, or an azo group. Hydroxyl group, ester group, carbonyl group, ether group, hydroxy ester group, sulfone group, thioester group, thioether group, sulfate ester group, and phosphate ester group.
Among these organic polymers, it is more preferable to use an organic polymer having a structure represented by the following formula (27).

Figure 0006271977
[式(27)中、nは1以上の整数。]
Figure 0006271977
[In the formula (27), n is an integer of 1 or more. ]

本発明において有機高分子の炭素含有量は、50〜99質量%であることが好ましく、70〜98質量%であることがより好ましい。また、本発明において有機高分子は、主鎖にヘテロ原子を含まないことが好ましい。   In the present invention, the carbon content of the organic polymer is preferably 50 to 99% by mass, and more preferably 70 to 98% by mass. In the present invention, the organic polymer preferably contains no hetero atom in the main chain.

本発明で用いる有機高分子は、サイズ排除クロマトグラフィー(SEC)により測定される重量平均分子量(Mw)が1,000〜10,000,000の有機高分子であることが好ましい。 The organic polymer used in the present invention is preferably an organic polymer having a weight average molecular weight (M w ) of 1,000 to 10,000,000 as measured by size exclusion chromatography (SEC).

本発明で用いる有機高分子の形態は、目的の炭素材料の形態に応じて適宜選択されればよく、例えば、繊維状、粒子状、シート状、その他の立体あるいは平面形状であっても良い。なかでも、繊維状であることが好ましい。有機高分子の形態を繊維状とすることで、繊維状の炭素材料である炭素繊維を得ることができる。炭素繊維とすることで、繊維軸方向に高い強度と弾性率が発現するため、熱可塑性、または熱硬化性樹脂と組み合わせることで、高い性能を有する複合材料を得ることができる。有機高分子の形態を繊維状とする方法としては、特に制限はなく、公知の紡糸方法を用いることができ、例えば、溶融紡糸、溶液紡糸などの方法で有機高分子の形態を繊維状とすることができる。中でも溶融紡糸が好ましい。   The form of the organic polymer used in the present invention may be appropriately selected according to the form of the target carbon material, and may be, for example, fibrous, particulate, sheet-like, other three-dimensional or planar shape. Especially, it is preferable that it is fibrous form. By making the organic polymer into a fibrous form, carbon fibers that are fibrous carbon materials can be obtained. By using carbon fiber, high strength and elastic modulus are exhibited in the fiber axis direction. Therefore, a composite material having high performance can be obtained by combining with a thermoplastic or thermosetting resin. There are no particular limitations on the method of making the organic polymer into a fibrous form, and any known spinning method can be used. For example, the form of the organic polymer is made into a fibrous form by a method such as melt spinning or solution spinning. be able to. Of these, melt spinning is preferred.

有機高分子の形態が繊維状である場合、単繊維であっても、複数の単繊維からなる束状の繊維であってもよい。束状の繊維とする場合には、1束中の単繊維本数は使用目的によって適宜決められるが、生産性の観点から、10〜100,000本/束が好ましく、100〜80,000本/束がより好ましく、200〜60,000本/束が更に好ましい。単繊維が100,000本/束以下であれば、繊維束の内部までより均一に不融化および炭素化処理を行うことができる。   When the form of the organic polymer is fibrous, it may be a single fiber or a bundle of fibers composed of a plurality of single fibers. In the case of a bundle of fibers, the number of single fibers in one bundle is appropriately determined depending on the purpose of use, but from the viewpoint of productivity, 10 to 100,000 / bundle is preferable, and 100 to 80,000 / More preferably, the bundle is 200 to 60,000 / bundle. If the number of single fibers is 100,000 or less, the infusibilization and carbonization treatment can be performed more uniformly up to the inside of the fiber bundle.

また、各単繊維の繊度は、0.00001〜100dtexが好ましく、0.01〜100dtexがより好ましい。また、単繊維の直径は、1nm〜100μmが好ましく、10nm〜50μmがより好ましい。繊度が0.00001dtex以上あると、製糸工程における紡糸性が向上し操業性が向上し、吐出孔数当たりの生産性が向上する。また、繊度が100dtex以下であると、得られる炭素繊維の束を形成している単繊維の内外構造差を減少させることができ、得られる炭素繊維の物性が向上する。また、単繊維の断面形状は、特に制限はなく、円、楕円、まゆ型などの円形状、三角、四角などの多角形状、中空形状、芯鞘形状、場合によっては不定形であってもよい。好ましくは、円形状、中空形状、芯鞘形状である。   Moreover, 0.00001-100dtex is preferable and the fineness of each single fiber has more preferable 0.01-100dtex. The diameter of the single fiber is preferably 1 nm to 100 μm, and more preferably 10 nm to 50 μm. When the fineness is 0.00001 dtex or more, the spinnability in the spinning process is improved, the operability is improved, and the productivity per number of ejection holes is improved. Moreover, when the fineness is 100 dtex or less, the difference between the inner and outer structures of the single fibers forming the obtained bundle of carbon fibers can be reduced, and the physical properties of the obtained carbon fibers are improved. In addition, the cross-sectional shape of the single fiber is not particularly limited, and may be a circular shape such as a circle, an ellipse, or an eyebrows shape, a polygonal shape such as a triangle or a square, a hollow shape, a core-sheath shape, or an indefinite shape depending on circumstances. . A circular shape, a hollow shape, and a core-sheath shape are preferable.

本発明の炭素材料の製造方法は、上記の有機高分子を炭素化することを特徴とする。
炭素化処理の方法は、特に制限はなく、例えば多段炉、ロータリーキルン炉、流動層炉等の炭素化炉を用いて、非酸化性ガス雰囲気下で炭素化する方法を用いることができる。
非酸化性ガスとしては、酸素分子を実質的に含まないガス、たとえば窒素、ヘリウム、アルゴン、水素、一酸化炭素等が挙げられる。
The method for producing a carbon material of the present invention is characterized by carbonizing the above organic polymer.
The carbonization treatment method is not particularly limited, and for example, a carbonization method using a carbonization furnace such as a multistage furnace, a rotary kiln furnace, a fluidized bed furnace, or the like in a non-oxidizing gas atmosphere can be used.
Examples of the non-oxidizing gas include a gas substantially free of oxygen molecules, such as nitrogen, helium, argon, hydrogen, and carbon monoxide.

炭素化の温度条件は、500〜4,000℃が好ましく、700〜3,000℃がより好ましく、900〜2,000℃がさらに好ましい。炭素化の温度が好ましい下限値以上であれば、高い導電性や機械強度を有する炭素材料が得られやすい。好ましい上限値以下であれば、エネルギー消費が抑えられやすい。   The temperature condition for carbonization is preferably 500 to 4,000 ° C, more preferably 700 to 3,000 ° C, and still more preferably 900 to 2,000 ° C. If the carbonization temperature is at least the preferred lower limit, a carbon material having high conductivity and mechanical strength can be easily obtained. If it is less than or equal to the preferred upper limit, energy consumption is likely to be suppressed.

本発明の炭素材料の製造方法においては、上記の有機高分子を不融化処理した後、炭素化処理することが好ましい。不融化処理を行うことで、より高い収率で炭素材料を得ることができる。   In the method for producing a carbon material of the present invention, it is preferable to subject the organic polymer to an infusibilization treatment and then a carbonization treatment. By performing the infusibilization treatment, a carbon material can be obtained with a higher yield.

不融化処理の方法は、特に制限はなく、例えば酸化性ガス中もしくは酸性溶液中で加熱する方法、紫外線や電子線などのエネルギー線を照射する方法などが挙げられる。   The method of infusibilization treatment is not particularly limited, and examples thereof include a method of heating in an oxidizing gas or an acidic solution, a method of irradiating energy rays such as ultraviolet rays and electron beams.

不融化処理で用いる酸化性ガスとしては、空気、過熱水蒸気、二酸化窒素、一酸化二窒素、酸素、オゾン、一酸化炭素、二酸化炭素、三酸化硫黄などが挙げられる。不融化処理で用いる酸化性溶液としては、硫酸、クロロスルホン酸、含AlBr3ベンゼン、超臨界二酸化炭素、過酸化水素水などが挙げられる。 Examples of the oxidizing gas used in the infusibilization treatment include air, superheated steam, nitrogen dioxide, dinitrogen monoxide, oxygen, ozone, carbon monoxide, carbon dioxide, and sulfur trioxide. Examples of the oxidizing solution used in the infusibilization treatment include sulfuric acid, chlorosulfonic acid, AlBr 3 benzene, supercritical carbon dioxide, and hydrogen peroxide.

有機高分子として、二重結合を含む有機高分子または水酸基を含む有機高分子を用いる場合、ヨウ素蒸気を接触させることで不融化処理を行うこともできる。
不融化処理の処理温度は50〜400℃であることが好ましく、60〜300℃であることがより好ましい。
これらの不融化処理は単独で行っても良いし、組み合わせて行っても良い。
When an organic polymer containing a double bond or an organic polymer containing a hydroxyl group is used as the organic polymer, the infusibilization treatment can be performed by bringing iodine vapor into contact therewith.
The infusible treatment temperature is preferably 50 to 400 ° C, and more preferably 60 to 300 ° C.
These infusibilization treatments may be performed alone or in combination.

本発明においては、不融化処理後の有機高分子を窒素雰囲気中、昇温速度10℃/分で800℃まで加熱した際の重量保持率が20〜90%となるまで、有機高分子を不融化処理することが好ましく、30〜80%となるまで不融化処理することが更に好ましい。質量保持率が20%以上、特に30%以上の場合、より高い収率で炭素材料を得ることができる。   In the present invention, the organic polymer after the infusibilization treatment is undissolved until the weight retention becomes 20 to 90% when heated to 800 ° C. in a nitrogen atmosphere at a heating rate of 10 ° C./min. It is preferable to perform a fusion treatment, and it is more preferable to perform an infusibilization treatment until it becomes 30 to 80%. When the mass retention is 20% or more, particularly 30% or more, the carbon material can be obtained with a higher yield.

本発明で得られた炭素材料を熱硬化性または熱可塑性の樹脂などと組み合わせて複合材料として使用する場合は、炭素材料に対して、表面処理を行うことも好ましい。表面処理を行うことで、樹脂などとの接着性を向上させることができる。表面処理の方法は特に限定されないが、処理効率の観点から、表面処理電解液中で表面酸化処理を施す電解表面処理が好ましい。   When the carbon material obtained in the present invention is used as a composite material in combination with a thermosetting or thermoplastic resin or the like, it is also preferable to perform a surface treatment on the carbon material. By performing the surface treatment, adhesion with a resin or the like can be improved. Although the method of surface treatment is not specifically limited, From the viewpoint of treatment efficiency, electrolytic surface treatment in which surface oxidation treatment is performed in a surface treatment electrolytic solution is preferable.

また、サイジング処理を行うことも、熱硬化性または熱可塑性の樹脂などとの接着性向上の観点から好ましい。用いるサイジング剤としては、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。   Moreover, it is also preferable to perform a sizing process from a viewpoint of an adhesive improvement with a thermosetting or thermoplastic resin. As the sizing agent to be used, a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the kind of the matrix resin used in the composite material.

本発明の炭素材料は、上記の炭素材料の製造方法により得られる炭素材料である。本発明の炭素材料は、二次電池や燃料電池のガス拡散層などの電極材料、吸着材、摩擦材、断熱材、充填材などに使用することができる。また、熱硬化性及び熱可塑性樹脂などと組み合わせ、航空機部材、鉄道車両部材、船舶部材、スポーツ用品、自動車部材やCNGタンク、建造物の耐震補強などに使用することができる。   The carbon material of the present invention is a carbon material obtained by the carbon material production method described above. The carbon material of the present invention can be used for electrode materials such as gas diffusion layers of secondary batteries and fuel cells, adsorbents, friction materials, heat insulating materials, fillers, and the like. Further, it can be used in combination with thermosetting and thermoplastic resins, etc. for aircraft members, railway vehicle members, ship members, sports equipment, automobile members, CNG tanks, earthquake-proof reinforcement of buildings, and the like.

[実施例1]
上記式(27)に表される構造を有する単重合体からなる有機高分子(炭素含有量90質量%)を溶融紡糸により繊維状に賦形し、前駆体繊維を得た。得られた前駆体繊維を酸化性ガスである二酸化窒素と窒素ガスの混合気体中、80℃で不融化処理を行い、不融化繊維を得た。酸化性ガスと窒素ガスの混合比は1:50であった。次いで、得られた不融化繊維を、不活性ガス雰囲気下、最高温度1,600℃の炭素化炉において炭素化処理を行い、炭素材料(炭素繊維)を得た。
[Example 1]
An organic polymer (carbon content 90% by mass) made of a homopolymer having the structure represented by the above formula (27) was shaped into a fiber by melt spinning to obtain a precursor fiber. The obtained precursor fiber was subjected to infusibilization treatment at 80 ° C. in a mixed gas of nitrogen dioxide and nitrogen gas, which is an oxidizing gas, to obtain an infusible fiber. The mixing ratio of oxidizing gas and nitrogen gas was 1:50. Subsequently, the obtained infusible fiber was carbonized in an inert gas atmosphere in a carbonization furnace having a maximum temperature of 1,600 ° C. to obtain a carbon material (carbon fiber).

Claims (4)

主鎖中にπ結合を有する有機高分子を炭素化する炭素材料の製造方法であり、主鎖中にπ結合を有する有機高分子が、下記式(1)で表される構造を有する有機高分子であり、式(1)中の−R−が、環式の骨格構造を有する下記式(6)〜(12)に示される有機高分子であることを特徴とする炭素材料の製造方法。
Figure 0006271977
[式(1)中、nは1以上の整数。]
Figure 0006271977
[式(6)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(7)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(8)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(9)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(10)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(11)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
Figure 0006271977
[式(12)中、lは0又は1以上10以下の整数、R〜Rはそれぞれ独立に、−H、−C(2n+1)、−C(2m−1)、−C(2m−3)。nは1以上10以下の整数、mは2以上10以下の整数。]
A method for producing a carbon material for carbonizing an organic polymer having a π bond in the main chain, wherein the organic polymer having a π bond in the main chain has a structure represented by the following formula (1): A method for producing a carbon material, which is a molecule, wherein —R— in formula (1) is an organic polymer represented by the following formulas (6) to (12) having a cyclic skeleton structure.
Figure 0006271977
[In Formula (1), n is an integer greater than or equal to 1. ]
Figure 0006271977
[In Formula (6), l is 0 or an integer of 1-10 , R 1 to R 3 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , — C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In Formula (7), l is 0 or an integer of 1-10 , R 1 to R 3 are each independently -H, -C n H (2n + 1) , -C m H (2m-1) ,- C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In Formula (8), l is 0 or an integer of 1 to 10, and R 1 to R 3 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , — C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In Formula (9), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , — C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In Formula (10), l is 0 or an integer of 1-10 , R 1 to R 4 are each independently -H, -C n H (2n + 1) , -C m H (2m-1) ,- C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In Formula (11), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , — C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
Figure 0006271977
[In the formula (12), l is 0 or an integer of 1 to 10, and R 1 to R 4 are each independently —H, —C n H (2n + 1) , —C m H (2m−1) , — C m H (2m-3) . n is an integer from 1 to 10, and m is an integer from 2 to 10. ]
主鎖中にπ結合を有する有機高分子が、下記式(27)に表される構造を有する有機高分子である請求項1に記載の炭素材料の製造方法。
Figure 0006271977
[式(27)中、nは1以上の整数。]
The method for producing a carbon material according to claim 1, wherein the organic polymer having a π bond in the main chain is an organic polymer having a structure represented by the following formula (27).
Figure 0006271977
[In the formula (27), n is an integer of 1 or more. ]
主鎖中にπ結合を有する有機高分子を、不融化処理した後、炭素化処理する請求項1または2に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 1 or 2, wherein an organic polymer having a π bond in the main chain is subjected to infusibilization treatment and then carbonization treatment. 主鎖中にπ結合を有する有機高分子が、繊維状である請求項1〜3のいずれか1項に記載の炭素材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 3, wherein the organic polymer having a π bond in the main chain is fibrous.
JP2013250296A 2013-12-03 2013-12-03 Carbon material manufacturing method Active JP6271977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250296A JP6271977B2 (en) 2013-12-03 2013-12-03 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250296A JP6271977B2 (en) 2013-12-03 2013-12-03 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2015108198A JP2015108198A (en) 2015-06-11
JP6271977B2 true JP6271977B2 (en) 2018-01-31

Family

ID=53438748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250296A Active JP6271977B2 (en) 2013-12-03 2013-12-03 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP6271977B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401798A1 (en) * 1973-01-22 1974-07-25 Hercules Inc PROCESS FOR MANUFACTURING THERMALLY STABLE FEEDS AND PROCESS PRODUCED FEEDS
DK1603414T3 (en) * 2003-03-07 2017-06-12 Univ Virginia Commonwealth ELECTRO-TREATED PHENOL MATERIALS AND PROCEDURES.

Also Published As

Publication number Publication date
JP2015108198A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
Chen et al. Carbon-based fibers for advanced electrochemical energy storage devices
Zhou et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties
Agyemang et al. Electrospun carbon nanofiber-carbon nanotubes composites coated with polyaniline with improved electrochemical properties for supercapacitors
Inagaki et al. Carbon nanofibers prepared via electrospinning
Tebyetekerwa et al. Unveiling polyindole: freestanding As-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors
Tran et al. Post-treatments for multifunctional property enhancement of carbon nanotube fibers from the floating catalyst method
Zhao et al. Coal based activated carbon nanofibers prepared by electrospinning
US10344404B2 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
Zhang et al. Correlation between atomic structure and electrochemical performance of anodes made from electrospun carbon nanofiber films
Chen et al. Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning
Guo et al. Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity
Meng et al. Carbon nanotube fibers for electrochemical applications: effect of enhanced interfaces by an acid treatment
KR101374234B1 (en) method for manufacturing continuous carbon nanotube fibers reinforced with carbon precursor
Hu et al. Strategies in precursors and post treatments to strengthen carbon nanofibers
Liu et al. PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors
KR100564774B1 (en) Nano-composite fiber its preparation and use
KR100623881B1 (en) Preparation method of polyacrylonitrilePAN/polyimidePI composite nano-fibers by electrospinning, and carbon fibers, activated carbon fibers therefrom
Xu et al. High strength electrospun single copolyacrylonitrile (coPAN) nanofibers with improved molecular orientation by drawing
Guan et al. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor
Kim et al. Hybrid polyaniline/liquid crystalline CNT fiber composite for ultimate flexible supercapacitors
Hu et al. Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors
Wang Carbon fibers and their thermal transporting properties
Sui et al. Desirable electrical and mechanical properties of continuous hybrid nano-scale carbon fibers containing highly aligned multi-walled carbon nanotubes
Liu et al. Fabrication and characterization of carbon nanofibers with a multiple tubular porous structure via electrospinning
Lee et al. A review of high-performance carbon nanotube-based carbon fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6271977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350