JP6271452B2 - Rotating electrical machine system - Google Patents

Rotating electrical machine system Download PDF

Info

Publication number
JP6271452B2
JP6271452B2 JP2015022319A JP2015022319A JP6271452B2 JP 6271452 B2 JP6271452 B2 JP 6271452B2 JP 2015022319 A JP2015022319 A JP 2015022319A JP 2015022319 A JP2015022319 A JP 2015022319A JP 6271452 B2 JP6271452 B2 JP 6271452B2
Authority
JP
Japan
Prior art keywords
bearing
earth current
electrical machine
rotating electrical
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022319A
Other languages
Japanese (ja)
Other versions
JP2016146691A (en
Inventor
優一 小松
優一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2015022319A priority Critical patent/JP6271452B2/en
Publication of JP2016146691A publication Critical patent/JP2016146691A/en
Application granted granted Critical
Publication of JP6271452B2 publication Critical patent/JP6271452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明の実施形態は、回転軸の軸受部分におけるアース電流対策を施した回転電機システムに関する。   Embodiments of the present invention relate to a rotating electrical machine system in which ground current countermeasures are taken in a bearing portion of a rotating shaft.

回転電機の回転軸を支承する軸受にはすべり軸受が広く用いられている。このすべり軸受は、軸受メタルの内周と回転軸の外周との間に潤滑油を供給して油膜を形成し、この油膜により回転軸を回転自在に支承するものである。このような軸受については、軸受に供給する潤滑油の圧力を変化させることで軸受の特性を変化させ、回転軸に生じた振動を低下させることが提案されている(例えば、特許文献1参照)。   A slide bearing is widely used as a bearing for supporting a rotating shaft of a rotating electrical machine. In this slide bearing, an oil film is formed by supplying lubricating oil between the inner periphery of the bearing metal and the outer periphery of the rotating shaft, and the rotating shaft is rotatably supported by this oil film. With respect to such a bearing, it has been proposed to change the characteristics of the bearing by changing the pressure of the lubricating oil supplied to the bearing to reduce the vibration generated in the rotating shaft (for example, see Patent Document 1). .

ところで、PWMインバータで駆動する電動機などの回転電機では、中性点電位変動によりアース電流が発生する。すなわち、PWMインバータのスイッチングに伴い、電気的中性点の電位変動が生じることにより、電動機においては、固定子コイルと対アース間にアース電流が発生し、回転軸に軸電流として流れる。   By the way, in a rotating electrical machine such as an electric motor driven by a PWM inverter, a ground current is generated due to a neutral point potential fluctuation. That is, when the PWM inverter is switched, a potential fluctuation at an electrical neutral point occurs, and in the motor, a ground current is generated between the stator coil and the ground, and flows as an axial current on the rotating shaft.

通常、陸上に設置された回転電機は地中に接地するためアースがとりやすいが、船舶などで用いられる回転電機は、船体を介して海中に接地されるためアースがとり難く、軸電流が増大する傾向にある。軸電流が大きくなると、回転軸に連結された設備などへの影響が生じるので対策が必要となる。   Normally, rotating electrical machines installed on land are easy to ground because they are grounded in the ground, but rotating electrical machines used in ships and the like are grounded under the sea through the hull, making grounding difficult and increasing the shaft current. Tend to. If the shaft current increases, it will affect the equipment connected to the rotating shaft, so countermeasures are required.

この軸電流に対しては、これと逆位相の電流を回転軸に流して、軸電流を防止する装置が提案されている(例えば、特許文献2参照)。このほか、軸アースブラシを設けたり、軸受における軸絶縁を施すこと等により、軸電流に対処していた。   With respect to this axial current, there has been proposed a device for preventing an axial current by flowing a current in the opposite phase to the rotating shaft (see, for example, Patent Document 2). In addition, the shaft current has been dealt with by providing a shaft earth brush or by providing shaft insulation in the bearing.

このような軸電流の流れるルートは多岐に渡り、すべり軸受を用いた回転電機の場合では、固定子→フレーム→軸受ブラケット→軸受油膜→回転軸の経路で、軸受油膜を経由して回転軸に流れるルートが存在する。このルートで流れるアース電流が大きくなると、アース電流による軸受磨耗が進展し、軸受寿命の低下等に繋がる可能性がある。   There are a wide variety of routes through which such shaft current flows, and in the case of a rotating electrical machine using a slide bearing, the path of stator → frame → bearing bracket → bearing oil film → rotating shaft passes through the bearing oil film to the rotating shaft. There is a flowing route. If the earth current flowing through this route increases, bearing wear due to the earth current may progress, leading to a reduction in bearing life.

将来的なインバータのスイッチング周波数の上昇等を考慮すると、接地環境等により製品の計画段階で企図したアース電流による絶縁処理を超える対策が実運用上は発生するケースも想定される。   Considering the future increase in switching frequency of the inverter, there may be cases where measures exceeding the insulation treatment by the ground current, which was planned at the product planning stage, may occur in actual operation due to the grounding environment.

特開2000−120687号公報JP 2000-120687 A 特開昭60−96150号公報JP-A-60-96150

このように、軸受け部分に大きなアース電流が流れると、軸受の寿命に影響するのでその対策が望まれている。   As described above, when a large ground current flows through the bearing portion, the life of the bearing is affected.

ここで、軸受油膜も高周波回路においては、一種の静電容量とみなすことが可能であり、軸電流を測定することにより、軸受の油膜形成状態を相対的に把握することができる。   Here, the bearing oil film can also be regarded as a kind of electrostatic capacity in a high-frequency circuit, and the oil film formation state of the bearing can be relatively grasped by measuring the axial current.

本発明は、軸電流が変化する環境下で使用される回転電機の軸受において、自動的に油膜を調整することにより軸受に流れるアース電流を低減して、軸受の信頼性を向上させた回転電機システムを提供することを目的とする。   The present invention relates to a rotating electrical machine in which the reliability of the bearing is improved by reducing the ground current flowing in the bearing by automatically adjusting the oil film in the bearing of the rotating electrical machine used in an environment where the shaft current changes. The purpose is to provide a system.

本発明の実施の形態に係る回転電機システムは、円筒状に形成された固定子鉄心を有する固定子を内側に保持したフレームと、前記固定子鉄心の内周と一定の間隙を成す円柱状の回転子鉄心及びこの回転子鉄心の軸中心部に一体的に設けられた回転軸を有し、この回転軸の軸部が前記フレームの端面に設けられた軸受により回転可能に支承された回転子と、前記軸受の、前記回転軸を支承する部分に潤滑油を供給する油圧装置と、前記固定子から前記フレーム及び前記軸受を介して前記回転軸に流れるアース電流を計測するアース電流センサとを備え、前記油圧装置は、前記アース電流センサにより計測されたアース電流値を入力し、このアース電流値が予定の大きさを超えると前記軸受へ供給する潤滑油の圧力を増加させ、アース電流を抑制する調整機能を有することを特徴とする。   A rotating electrical machine system according to an embodiment of the present invention includes a frame having a stator having a stator core formed in a cylindrical shape, and a columnar shape that forms a fixed gap with the inner periphery of the stator core. A rotor having a rotor core and a rotary shaft integrally provided at the shaft center of the rotor core, the shaft of which is rotatably supported by a bearing provided on an end surface of the frame A hydraulic device that supplies lubricating oil to a portion of the bearing that supports the rotating shaft, and an earth current sensor that measures an earth current flowing from the stator to the rotating shaft through the frame and the bearing. The hydraulic device inputs an earth current value measured by the earth current sensor, and when the earth current value exceeds a predetermined magnitude, the pressure of the lubricating oil supplied to the bearing is increased, and the earth current is increased. Suppression And having an adjustment function of.

上記構成によれば、回転電機の軸受け部分を通して流れる電流の測定結果から軸受の油膜形成状態を判断し、軸受への供給油圧を調整して最適な油膜状態を保ち、この部分に流れるアース電流を低減することで軸受の信頼性を向上させることができる。   According to the above configuration, the oil film formation state of the bearing is determined from the measurement result of the current flowing through the bearing portion of the rotating electrical machine, the optimum oil film state is maintained by adjusting the hydraulic pressure supplied to the bearing, and the earth current flowing through this portion is reduced. By reducing it, the reliability of the bearing can be improved.

本発明の一実施形態に係る回転電機システムの全体構成図である。1 is an overall configuration diagram of a rotating electrical machine system according to an embodiment of the present invention. 本発明の一実施形態の対象となる回転電機の内部構成を示す1/4断面図である。It is a 1/4 sectional view showing the internal configuration of the rotating electrical machine that is the subject of one embodiment of the present invention. 本発明の一実施形態に用いる軸受の構成を示す1/4断面図である。It is 1/4 sectional drawing which shows the structure of the bearing used for one Embodiment of this invention.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

この実施の形態に係る回転電機システムは、アース電流を監視し、その値が大きい場合や時間的に増大している場合は、アース電流の抑制が必要と判断し、軸受油膜の厚さを高めるように軸受注油圧を上昇させ、油膜形成を最適な状態に調整してアース電流を抑制するものである。   The rotating electrical machine system according to this embodiment monitors the ground current, and when the value is large or increases with time, it is determined that the ground current needs to be suppressed, and the thickness of the bearing oil film is increased. As described above, the shaft order hydraulic pressure is increased, and the oil film formation is adjusted to an optimum state to suppress the ground current.

先ず、図1によりこの実施の形態に係る回転電機システムの全体構成を説明する。図1において、11は回転電機であり、例えば、PWMインバータ駆動の電動機などである。この回転電機11内には、後述するように回転子が設けられ、その回転軸12は、回転電機11のフレーム11aの両端面に設けられた軸受13により回転自在に支承されている。   First, the overall configuration of the rotating electrical machine system according to this embodiment will be described with reference to FIG. In FIG. 1, reference numeral 11 denotes a rotating electric machine, for example, a motor driven by a PWM inverter. As will be described later, a rotor is provided in the rotating electrical machine 11, and the rotating shaft 12 is rotatably supported by bearings 13 provided on both end faces of the frame 11 a of the rotating electrical machine 11.

この軸受13としてはすべり軸受が用いられており、油圧装置14から潤滑油が供給される。すなわち、油圧装置14は、潤滑油を圧送可能な送油ポンプ15及び電動弁16を有し、この電動弁16を介して軸受13へ配管接続されている。電動弁16は、弁の開度を調整可能であり、弁開度を調整することにより、軸受13の入口圧力、すなわち、軸受13へ供給する潤滑油の油圧を任意の値に調整することができる。   A sliding bearing is used as the bearing 13, and lubricating oil is supplied from the hydraulic device 14. In other words, the hydraulic device 14 includes an oil feed pump 15 and a motor-operated valve 16 that can pump the lubricating oil, and is connected to the bearing 13 via the motor-operated valve 16. The motor-operated valve 16 can adjust the opening of the valve, and by adjusting the valve opening, the inlet pressure of the bearing 13, that is, the hydraulic pressure of the lubricating oil supplied to the bearing 13 can be adjusted to an arbitrary value. it can.

また、この軸受13には振動センサ18及びアース電流センサ19が設けられている。振動センサ18は、軸受13に取り付ける構造とし、軸受13の振動を監視するものである。アース電流センサ19は、回転電機11のフレーム11aと軸受13との間に装備し、インバータ駆動により、フレーム11a及び軸受13を経由して回転軸に流れるアース電流を計測するものである。   The bearing 13 is provided with a vibration sensor 18 and a ground current sensor 19. The vibration sensor 18 is configured to be attached to the bearing 13 and monitors the vibration of the bearing 13. The earth current sensor 19 is provided between the frame 11a of the rotating electrical machine 11 and the bearing 13, and measures an earth current flowing through the rotating shaft via the frame 11a and the bearing 13 by driving an inverter.

本実施の形態では、油圧装置14は、アース電流センサ19が検出する電流を入力して監視する。そして、アース電流が大きい場合、油膜形成状態不足若しくはアース環境の悪化と判断し、電動弁16の開度を調整し、軸受13の入口圧力を増加させる。このことで、結果的に軸受油膜を厚くし、アース電流を抑制する作用を促す。   In the present embodiment, the hydraulic device 14 receives and monitors the current detected by the ground current sensor 19. When the earth current is large, it is determined that the oil film formation state is insufficient or the earth environment is deteriorated, the opening degree of the motor-operated valve 16 is adjusted, and the inlet pressure of the bearing 13 is increased. This eventually increases the thickness of the bearing oil film and promotes the action of suppressing the ground current.

回転電機11は、その上部断面図である図2で示すように、外被となるフレーム11aの内側に固定子22及び回転子23を設けている。固定子22は、円筒状に形成された固定子鉄心24及び固定子巻線25を有し、フレーム11aの内側に一体的に保持されている。回転子23は、円柱状の回転子鉄心27及び図1で示した回転軸12を有する。   As shown in FIG. 2 which is an upper cross-sectional view of the rotating electrical machine 11, a stator 22 and a rotor 23 are provided inside a frame 11a serving as a jacket. The stator 22 has a stator core 24 and a stator winding 25 formed in a cylindrical shape, and is integrally held inside the frame 11a. The rotor 23 has a columnar rotor core 27 and the rotating shaft 12 shown in FIG.

回転子鉄心27には、図示しないがロータバーなどが設けられており、円柱状の鉄心外周は、固定子鉄心24の内周と一定の間隙を成すように設置される。また、回転軸12は、回転子鉄心27の軸中心部に一体的に設けられ、その軸部は、前述のようにフレーム11aの端面に設けられた軸受13により回転可能に支承されている。なお、図2では軸受13を図示右側にのみ示しているが、図1で示したように、当然図示左側の軸部も軸受13(図示省略)により回転可能に支承されている。   Although not shown, the rotor core 27 is provided with a rotor bar or the like, and the outer periphery of the columnar iron core is installed so as to form a fixed gap with the inner periphery of the stator core 24. Moreover, the rotating shaft 12 is integrally provided in the axial center part of the rotor core 27, The shaft part is rotatably supported by the bearing 13 provided in the end surface of the flame | frame 11a as mentioned above. In FIG. 2, the bearing 13 is shown only on the right side of the drawing, but as shown in FIG. 1, the shaft portion on the left side of the drawing is naturally supported rotatably by the bearing 13 (not shown).

軸受13には、前述のようにすべり軸受が用いられている。このすべり軸受13は、図3で示すように軸受メタル31を有し、その内周は、回転軸12の外周と微小間隔を介して対向する。回転軸12の軸受メタル31と対向する外周部には、長さ方向に間隔を保って環状のシール材33,33が一体的に取り付けられている。これらシール材33,33は、軸受メタル31の内周に形成された環状の溝内に摺動可能に嵌め込まれている。   As described above, a slide bearing is used as the bearing 13. As shown in FIG. 3, the plain bearing 13 has a bearing metal 31, and the inner periphery thereof is opposed to the outer periphery of the rotating shaft 12 through a minute interval. On the outer peripheral portion of the rotating shaft 12 facing the bearing metal 31, annular seal members 33 and 33 are integrally attached with a distance in the length direction. The sealing materials 33 and 33 are slidably fitted in an annular groove formed on the inner periphery of the bearing metal 31.

このシール材33,33間には油膜34が形成され、この油膜34により回転軸12を回転自在に支承する。すなわち、図1で示した油圧装置14から供給される潤滑油は、上述したシール材33,33間に油膜34を形成する。   An oil film 34 is formed between the sealing materials 33 and 33, and the rotary shaft 12 is rotatably supported by the oil film 34. That is, the lubricating oil supplied from the hydraulic device 14 shown in FIG. 1 forms an oil film 34 between the sealing materials 33 and 33 described above.

上記構成において、回転電機(ここではPWMインバータ駆動の電動機とする)11は、その固定子22にPWMインバータを介して電源電圧が供給されることにより、このインバータの出力周波数に対応した回転速度で運転され、回転軸12に連結された図示しない機器などを駆動する。このとき、回転軸12を支承する軸受13には油圧装置14から、その送油ポンプ15により電動弁16を介して潤滑油が供給され、図3で示した軸受メタル31の内周と回転軸12の外周との間に油膜34を形成し、回転軸12を回転自在に支承する。   In the above configuration, the rotating electrical machine (herein, a motor driven by a PWM inverter) 11 is supplied at its rotational speed corresponding to the output frequency of the inverter by supplying power to the stator 22 via the PWM inverter. It drives and drives the apparatus etc. which are connected to the rotating shaft 12 (not shown). At this time, the lubricating oil is supplied from the hydraulic device 14 to the bearing 13 that supports the rotating shaft 12 through the motor-operated valve 16 by the oil feed pump 15, and the inner periphery of the bearing metal 31 and the rotating shaft shown in FIG. An oil film 34 is formed between the outer periphery of the rotary shaft 12 and the rotary shaft 12 is rotatably supported.

この運転状態において、前述のように、PWMインバータのスイッチングに伴い、電気的中性点の電位変動が生じ、固定子巻線25と対アース間にアース電流が発生し、回転軸12に軸電流として流れる。すなわち、固定子巻線25は、図示しないインバータ回路と接続されており、スイッチングの影響によるインバータ中性点電位変動により、固定子巻線25と対アース間にアース電流が発生し、回転軸12に軸電流として流れる。   In this operating state, as described above, with the switching of the PWM inverter, the potential fluctuation of the electrical neutral point occurs, an earth current is generated between the stator winding 25 and the ground, and the shaft current is applied to the rotating shaft 12. Flowing as. That is, the stator winding 25 is connected to an inverter circuit (not shown), and ground current is generated between the stator winding 25 and the ground due to the inverter neutral point potential fluctuation due to the influence of switching. Flows as an axial current.

この軸電流の流れるルートは多岐に渡るが、主として図2で示す2つのルートA,Bがある。このうちルートAは、固定子鉄心24→フレーム11a→軸受13(軸受油膜34)→回転軸12の経路で、軸受油膜34を経由して回転軸12に流れるルートである。   There are various routes through which this axial current flows, but there are mainly two routes A and B shown in FIG. Of these routes, route A is a route of the stator core 24 → the frame 11 a → the bearing 13 (bearing oil film 34) → the rotating shaft 12 and flows to the rotating shaft 12 via the bearing oil film 34.

図1で示したアース電流センサ19は、インバータ駆動によりフレーム11aを経由して軸受13に流れるアース電流、すなわち、上述したルートAを流れるアース電流を計測する。油圧装置14は、アース電流センサ19により計測されたアース電流値を入力し、このアース電流値が予定の大きさを超えると軸受13へ供給する潤滑油の圧力を増加させ、アース電流を抑制する。すなわち、アース電流センサ19が検出する電流を監視し、アース電流が大きい場合は、油膜34の形成状態不足、若しくはアース環境の悪化と判断し、電動弁16の開度を調整して、軸受13の入口圧力を増加させる。このことで、結果的に軸受油膜34を厚くする。油膜34が厚くなることは、この部分の静電容量が増加すると共に抵抗値も増加することになり、アース電流が抑制される。   The earth current sensor 19 shown in FIG. 1 measures the earth current flowing through the bearing 13 via the frame 11a by driving the inverter, that is, the earth current flowing through the route A described above. The hydraulic device 14 inputs the earth current value measured by the earth current sensor 19, and when the earth current value exceeds a predetermined magnitude, the pressure of the lubricating oil supplied to the bearing 13 is increased and the earth current is suppressed. . That is, the current detected by the earth current sensor 19 is monitored, and if the earth current is large, it is determined that the oil film 34 is not sufficiently formed or the earth environment is deteriorated, and the opening degree of the motor-operated valve 16 is adjusted to adjust the bearing 13. Increase the inlet pressure. As a result, the bearing oil film 34 is thickened. When the oil film 34 becomes thicker, the capacitance of this portion increases and the resistance value also increases, and the ground current is suppressed.

なお、軸受油膜34の厚さを高めることにより、回転振動が増えるなどの可能性もあるため、軸受振動監視を併用し、アース電流抑制と軸受振動の観点から最適な油膜へと自動調整する。すなわち、油圧装置14は、振動センサ18による同時監視も行い、油膜34の厚さ増加に伴う軸受振動を計測し、軸受振動とアース電流抑制が最適な弁開度に調整する。   Since there is a possibility that rotational vibration increases by increasing the thickness of the bearing oil film 34, bearing vibration monitoring is used together to automatically adjust the oil film to the optimum from the viewpoint of earth current suppression and bearing vibration. That is, the hydraulic device 14 also performs simultaneous monitoring by the vibration sensor 18, measures the bearing vibration accompanying the increase in the thickness of the oil film 34, and adjusts the bearing opening and ground current suppression to the optimum valve opening.

上記実施の形態では、回転電機としてPWMインバータ駆動の電動機を例示したが、本発明はこれに限定されず、何らかの要因でアース電流が生じる回転電機全般に適用できる。   In the above-described embodiment, a PWM inverter-driven electric motor is exemplified as the rotating electric machine, but the present invention is not limited to this, and can be applied to all rotating electric machines in which a ground current is generated for some reason.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…回転電機
11a…フレーム
12…回転軸
13…軸受
14…油圧装置
18…振動センサ
19…アース電流センサ
22…固定子
23…回転子
24…固定子鉄心
25…固定子巻線
27…回転子鉄心
31…軸受メタル
34…油膜
DESCRIPTION OF SYMBOLS 11 ... Rotating electrical machine 11a ... Frame 12 ... Rotating shaft 13 ... Bearing 14 ... Hydraulic device 18 ... Vibration sensor 19 ... Ground current sensor 22 ... Stator 23 ... Rotor 24 ... Stator core 25 ... Stator winding 27 ... Rotor Iron core 31 ... Bearing metal 34 ... Oil film

Claims (2)

円筒状に形成された固定子鉄心を有する固定子を内側に保持したフレームと、
前記固定子鉄心の内周と一定の間隙を成す円柱状の回転子鉄心及びこの回転子鉄心の軸中心部に一体的に設けられた回転軸を有し、この回転軸の軸部が前記フレームの端面に設けられた軸受により回転可能に支承された回転子と、
前記軸受の、前記回転軸を支承する部分に潤滑油を供給する油圧装置と、
前記固定子から前記フレーム及び前記軸受を介して前記回転軸に流れるアース電流を計測するアース電流センサとを備え、
前記油圧装置は、前記アース電流センサにより計測されたアース電流値を入力し、このアース電流値が予定の大きさを超えると前記軸受へ供給する潤滑油の圧力を増加させ、アース電流を抑制する調整機能を有する
ことを特徴とする回転電機システム。
A frame holding a stator having a stator core formed in a cylindrical shape inside;
A cylindrical rotor core that forms a fixed gap with the inner periphery of the stator core, and a rotary shaft that is integrally provided at the axial center of the rotor core, and the shaft portion of the rotary shaft is the frame. A rotor rotatably supported by a bearing provided on the end surface of
A hydraulic device that supplies lubricating oil to a portion of the bearing that supports the rotating shaft;
An earth current sensor for measuring an earth current flowing from the stator to the rotating shaft via the frame and the bearing;
The hydraulic device inputs an earth current value measured by the earth current sensor, and when the earth current value exceeds a predetermined magnitude, the pressure of the lubricating oil supplied to the bearing is increased and the earth current is suppressed. A rotating electrical machine system characterized by having an adjustment function.
前記油圧装置は、前記軸受へ供給する潤滑油の圧力を、その圧力上昇に伴う回転振動の増加が予定値以上とならない範囲で調整することを特徴とする請求項1に記載の回転電機システム。   2. The rotating electrical machine system according to claim 1, wherein the hydraulic device adjusts the pressure of lubricating oil supplied to the bearing within a range in which an increase in rotational vibration accompanying the increase in pressure does not exceed a predetermined value.
JP2015022319A 2015-02-06 2015-02-06 Rotating electrical machine system Active JP6271452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022319A JP6271452B2 (en) 2015-02-06 2015-02-06 Rotating electrical machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022319A JP6271452B2 (en) 2015-02-06 2015-02-06 Rotating electrical machine system

Publications (2)

Publication Number Publication Date
JP2016146691A JP2016146691A (en) 2016-08-12
JP6271452B2 true JP6271452B2 (en) 2018-01-31

Family

ID=56685652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022319A Active JP6271452B2 (en) 2015-02-06 2015-02-06 Rotating electrical machine system

Country Status (1)

Country Link
JP (1) JP6271452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162848B2 (en) 2017-12-20 2022-10-31 Shiodaライフサイエンス株式会社 Antioxidant or hair restorer manufacturing method, and antioxidant or hair restorer manufactured by said manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428737B2 (en) * 2016-09-29 2018-11-28 トヨタ自動車株式会社 Rotating electrical machine system
WO2023106006A1 (en) * 2021-12-09 2023-06-15 パナソニックIpマネジメント株式会社 Electric motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164554U (en) * 1979-04-03 1980-11-26
JPH1014159A (en) * 1996-06-20 1998-01-16 Matsushita Seiko Co Ltd Bearing protection device for blower
JP2000120687A (en) * 1998-10-07 2000-04-25 Ebara Corp Static pressure bearing device
JP2008045681A (en) * 2006-08-17 2008-02-28 Okuma Corp Bearing lubricating device
JP2012239368A (en) * 2011-04-27 2012-12-06 Panasonic Corp Motor and electric apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162848B2 (en) 2017-12-20 2022-10-31 Shiodaライフサイエンス株式会社 Antioxidant or hair restorer manufacturing method, and antioxidant or hair restorer manufactured by said manufacturing method

Also Published As

Publication number Publication date
JP2016146691A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
US9702364B2 (en) Permanent magnet motor pump
JP6271452B2 (en) Rotating electrical machine system
EP2733827B1 (en) Electrical motor
US9214848B2 (en) Driving apparatus
RU2613353C2 (en) Downhole generator of rotating magnetic field
US11421734B2 (en) Active radial magnetic bearing assembly with internal sensors
JP2016174443A (en) Rotary electric machine
US20180102700A1 (en) Rotary electrical machine having permanent magnet rotor
JP7135522B2 (en) Rotating electric machine
US10001170B2 (en) Rolling bearing
JP2015006072A (en) Rotary electric machine, rotation load combination device and air conditioner having rotation load combination device
CN111051716A (en) Device provided with bearing in bearing
US20160172931A1 (en) Alternator rotor to stator integrated hrdrodynamic bearing
US20180087516A1 (en) Turbomachine with active magnetic bearings
JP2015023750A (en) Electric motor
JP5560892B2 (en) Machine tool spindle equipment
JP2012130217A (en) Motor
JP6121980B2 (en) Rotating electric machine
JP5312521B2 (en) Electric motors and air conditioners
JP2017184451A (en) Induction motor and compressor
JP2016010271A (en) Power generation device
CA2997941C (en) Drive for a belt conveyor system, method for mounting a drive on a belt conveyor system, and belt conveyor system
JP2015023681A (en) Electric motor and electrical machine
JP2015023751A (en) Electric motor and electrical machine
JP2012182931A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6271452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250