JP6270583B2 - Engine exhaust treatment equipment - Google Patents

Engine exhaust treatment equipment Download PDF

Info

Publication number
JP6270583B2
JP6270583B2 JP2014067584A JP2014067584A JP6270583B2 JP 6270583 B2 JP6270583 B2 JP 6270583B2 JP 2014067584 A JP2014067584 A JP 2014067584A JP 2014067584 A JP2014067584 A JP 2014067584A JP 6270583 B2 JP6270583 B2 JP 6270583B2
Authority
JP
Japan
Prior art keywords
gas
combustion catalyst
combustion
catalyst
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067584A
Other languages
Japanese (ja)
Other versions
JP2015190369A (en
Inventor
新井 克明
克明 新井
一成 辻野
一成 辻野
崇之 大西
崇之 大西
智也 秋朝
智也 秋朝
穂積 石田
穂積 石田
秀隆 森永
秀隆 森永
隆太郎 小村
隆太郎 小村
能和 竹本
能和 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2014067584A priority Critical patent/JP6270583B2/en
Publication of JP2015190369A publication Critical patent/JP2015190369A/en
Application granted granted Critical
Publication of JP6270583B2 publication Critical patent/JP6270583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、エンジンの排気処理装置に関し、詳しくは、燃焼触媒の暖機を確実に行うことができるエンジンの排気処理装置に関する。   The present invention relates to an engine exhaust treatment apparatus, and more particularly to an engine exhaust treatment apparatus capable of reliably warming up a combustion catalyst.

従来、エンジンの排気処理装置として、可燃性ガス生成器と燃焼触媒と排気処理部と制御装置を備え、制御装置の制御により可燃性ガス生成器で燃焼触媒燃焼用ガスが生成され、この燃焼触媒燃焼用ガスがエンジン排気経路を通過する排気に混入されて、燃焼触媒で触媒燃焼され、この触媒燃焼で昇温された排気が排気処理部に供給されるように構成されたものがある(例えば、特許文献1参照)。   Conventionally, as an exhaust treatment device for an engine, a combustible gas generator, a combustion catalyst, an exhaust treatment unit, and a control device are provided, and a combustion catalyst combustion gas is generated by the combustible gas generator under the control of the control device. Combustion gas is mixed into the exhaust gas passing through the engine exhaust path, catalytically combusted with a combustion catalyst, and exhaust gas whose temperature has been raised by this catalytic combustion is supplied to the exhaust processing unit (for example, , See Patent Document 1).

この種の排気処理装置によれば、排気温度が低い場合でも、可燃性ガスの触媒燃焼で排気を昇温させ、排気処理部での排気処理を促進できる利点がある。   According to this type of exhaust treatment device, even when the exhaust temperature is low, there is an advantage that the exhaust treatment can be promoted in the exhaust treatment unit by raising the temperature of the exhaust by catalytic combustion of the combustible gas.

しかし、この種の排気処理装置では、燃焼触媒の暖気が不十分である場合には、燃焼触媒が活性化せず、触媒燃焼が起こらない。   However, in this type of exhaust treatment device, when the combustion catalyst is not warm enough, the combustion catalyst is not activated and catalytic combustion does not occur.

特開2012−188972号公報(図2参照)JP 2012-188972 A (see FIG. 2)

《問題点》 排気処理部での排気処理の促進が不十分になることがある。
この種の排気処理装置では、燃焼触媒の暖機が不十分である場合には、燃焼触媒が活性化せず、触媒燃焼が起こらず、排気処理部での排気処理の促進が不十分になることがある。
<< Problem >> The exhaust treatment in the exhaust treatment unit may not be sufficiently promoted.
In this type of exhaust treatment device, if the combustion catalyst is not sufficiently warmed up, the combustion catalyst is not activated, catalytic combustion does not occur, and the exhaust treatment in the exhaust treatment unit is not sufficiently promoted. Sometimes.

本発明の課題は、燃焼触媒の暖機を確実に行うことができるエンジンの排気処理装置を提供することにある。   An object of the present invention is to provide an engine exhaust treatment device capable of reliably warming up a combustion catalyst.

請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、可燃性ガス生成器(1)と燃焼触媒(2)とDPF(3)と制御装置(4)を備え、
図1、図2に例示するように、DPF(3)の再生処理では、制御装置(4)の制御により可燃性ガス生成器(1) で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)がDPF(3)に供給されるように構成された、エンジンの排気処理装置において、
図1,図2に例示するように、DPF(3)の再生処理では、燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成され、
燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成され、
図1,図2に例示するように、燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成され、
図1〜図3に例示するように、燃焼触媒(2)の上流側の排気圧に基づいて燃焼触媒(2)とDPF(3)のPM堆積総量推定値を推定するPM堆積量推定装置(12)を備え、PM堆積総量推定値がDPF(3)か燃焼触媒(2)のいずれかの再生を必要とする再生必要値に至った場合、前回行われたDPF(3)か燃焼触媒(2)のいずれかの再生終了から今回の再生必要値に至るインターバルが所定時間未満である場合には、燃焼触媒(2)の再生要求条件が成立し、燃焼触媒(2)の再生処理がなされ、燃焼触媒(2)の再生要求条件が成立しない場合には、DPF(3)の再生処理がなされ、
燃焼触媒(2)の再生処理では、制御装置(4)により可燃性ガス生成器(1)でのガス生成触媒(10)の触媒反応で空燃混合気(16)から燃焼触媒再生用ガス(13)が生成(S13)され、この燃焼触媒再生用ガス(13)がエンジン排気経路(6)を通過する排気(7)に混入されて、着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されている、ことを特徴とするエンジンの排気処理装置。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1, a combustible gas generator (1), a combustion catalyst (2), a DPF (3), and a control device (4) are provided.
As illustrated in FIGS. 1 and 2, in the regeneration process of the DPF (3), the combustible gas generator (1) is set to obtain a predetermined target reaction temperature under the control of the control device (4) . Combustion catalyst combustion gas (5) is generated (S10) from the air-fuel mixture (16) of the mixture ratio by the catalytic reaction of the gas generation catalyst (10) , and this combustion catalyst combustion gas (5) is generated in the engine exhaust path. The exhaust gas (7) passing through (6) is mixed into the exhaust gas (7) and is catalytically combusted by the combustion catalyst (2), and the exhaust gas (7) heated by this catalytic combustion is supplied to the DPF (3). In an engine exhaust treatment device,
As illustrated in FIGS. 1 and 2, in the regeneration process of the DPF (3), the combustible gas generator (1) is generated by the control device (4) before the combustion catalyst combustion gas (5) is generated (S10). ) , The combustion catalyst warming gas (8) is generated by the catalytic reaction of the gas generating catalyst (10) from the air-fuel mixture (16) having a mixture ratio set so as to obtain a predetermined target reaction temperature (S6). The combustion catalyst warm-up gas (8) is mixed into the exhaust (7) passing through the engine exhaust path (6) and ignited by the ignition device (9) upstream of the combustion catalyst (2). Combustion catalyst (2) is warmed up by the heated exhaust (7),
When the warm-up end condition of the combustion catalyst (2) is satisfied, the combustion catalyst combustion gas (5) is generated (S10).
As illustrated in FIGS. 1 and 2, when the combustion catalyst warming gas (8) is generated (S6), the combustible gas is generated more than when the combustion catalyst combustion gas (5) is generated (S10). By setting the target reaction temperature of the gas generating catalyst (10) of the generator (1) to be higher, the ignitability of the combustion catalyst warming gas (8) is higher than that of the combustion catalyst combustion gas (5). Configured,
As illustrated in FIG. 1 to FIG. 3, a PM accumulation amount estimation device that estimates an estimated PM accumulation amount of the combustion catalyst (2) and the DPF (3) based on the exhaust pressure upstream of the combustion catalyst (2) ( 12), and when the PM accumulated amount estimation value reaches the regeneration necessary value that requires regeneration of either the DPF (3) or the combustion catalyst (2), the DPF (3) or combustion catalyst ( When the interval from the end of regeneration in any of 2) to the current regeneration required value is less than a predetermined time, the regeneration requirement condition for the combustion catalyst (2) is satisfied, and the regeneration process for the combustion catalyst (2) is performed. When the regeneration requirement condition for the combustion catalyst (2) is not satisfied, the regeneration process for the DPF (3) is performed,
In the regeneration process of the combustion catalyst (2), the controller (4) causes the combustion catalyst regeneration gas (16) from the air-fuel mixture (16) by the catalytic reaction of the gas generation catalyst (10) in the combustible gas generator (1). 13) is generated (S13), and this combustion catalyst regeneration gas (13) is mixed into the exhaust (7) passing through the engine exhaust path (6), ignited by the ignition device (9), and then increased by flame combustion. An exhaust treatment apparatus for an engine, characterized in that the PM deposited on the combustion catalyst (2) is incinerated and removed by the heated exhaust gas (7) to regenerate the combustion catalyst (2).

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 燃焼触媒の暖機を確実に行うことができる。
燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されているので、燃焼触媒暖気用ガス(8)の着火の失敗が抑制され、燃焼触媒(2)の暖機を確実に行うことができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<Effect> It is possible to reliably warm up the combustion catalyst.
Since the ignitability of the combustion catalyst warming gas (8) is higher than that of the combustion catalyst combustion gas (5), the ignition failure of the combustion catalyst warming gas (8) is suppressed, and the combustion catalyst The warm-up of (2) can be performed reliably.

《効果》 燃焼触媒にPMが堆積しても、燃焼触媒の機能を回復させることができる。
図1,図2に例示するように、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されているので、燃焼触媒(2)にPMが堆積しても、燃焼触媒(2)の機能を回復させることができる。
<< Effect >> Even if PM accumulates on the combustion catalyst, the function of the combustion catalyst can be recovered.
As illustrated in FIGS. 1 and 2, the PM accumulated on the combustion catalyst (2) is incinerated and removed by the exhaust gas (7) heated by flame combustion, and the combustion catalyst (2) is regenerated. Therefore, even if PM accumulates on the combustion catalyst (2), the function of the combustion catalyst (2) can be recovered.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 燃焼触媒の機能の回復を確実に行うことができる。
図1,図2に例示するように、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されているので、再着火用ガス(15)の着火の失敗が抑制され、燃焼触媒(2)の再生処理により燃焼触媒(2)の機能の回復を確実に行うことができる。
(請求項3に係る発明)
請求項3に係る発明は、請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 燃焼触媒の暖機を確実に行うことができる。
図1,図2に例示するように、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されているので、燃焼触媒暖気用ガス(8)の着火の失敗が抑制され、燃焼触媒(2)の暖機を確実に行うことができる。
(Invention of Claim 2 )
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1 .
<Effect> The function of the combustion catalyst can be reliably recovered.
As illustrated in FIGS. 1 and 2, since the ignitability of the reignition gas (15) is higher than that of the combustion catalyst regeneration gas (13), the reignition gas (15) The failure of ignition is suppressed, and the function of the combustion catalyst (2) can be reliably restored by the regeneration process of the combustion catalyst (2).
(Invention of Claim 3)
The invention according to claim 3 has the following effect in addition to the effect of the invention according to claim 1 or claim 2.
<Effect> It is possible to reliably warm up the combustion catalyst.
As illustrated in FIGS. 1 and 2, since the ignition device (9) is preheated before the combustion catalyst warm-up gas (8) is generated (S6), the combustion catalyst warm-up is performed. Failure of ignition of the working gas (8) is suppressed, and the combustion catalyst (2) can be warmed up reliably.

本発明の実施形態に係るエンジンの排気処理装置の模式図である。It is a mimetic diagram of an engine exhaust treatment device concerning an embodiment of the present invention. 図1の排気処理装置による処理のフローチャートである。It is a flowchart of the process by the exhaust processing apparatus of FIG. 図1の排気処理装置によるDPF再生と燃焼触媒再生のタイムチャートである。2 is a time chart of DPF regeneration and combustion catalyst regeneration by the exhaust treatment device of FIG. 1.

図1〜図3は本発明の実施形態に係るエンジンの排気処理装置を説明する図であり、この実施形態では、ディーゼルエンジンの排気処理装置について説明する。   1 to 3 are diagrams for explaining an exhaust treatment device for an engine according to an embodiment of the present invention. In this embodiment, an exhaust treatment device for a diesel engine will be explained.

この排気処理装置の概要は、次の通りである。
図1に示すように、排気処理装置は、可燃性ガス生成器(1)と燃焼触媒(2)とDPF(3)と制御装置(4)を備えている。
図1,図2に示すように、DPF(3)の再生処理では、制御装置(4)の制御により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)がDPF(3)に供給されるように構成されている。
The outline of this exhaust treatment apparatus is as follows.
As shown in FIG. 1, the exhaust treatment device includes a combustible gas generator (1), a combustion catalyst (2), a DPF (3), and a control device (4).
As shown in FIGS. 1 and 2, in the regeneration process of the DPF (3), the mixture set to obtain a predetermined target reaction temperature in the combustible gas generator (1) under the control of the control device (4). The combustion catalyst combustion gas (5) is generated (S10 ) from the air / fuel mixture (16) having a specific ratio by the catalytic reaction of the gas generation catalyst (10) , and this combustion catalyst combustion gas (5) is generated in the engine exhaust path ( 6) mixed with the exhaust gas (7) passing through, and catalytically combusted by the combustion catalyst (2), and the exhaust gas (7) heated by this catalytic combustion is supplied to the DPF (3). Yes.

図1に示すように、可燃性ガス生成器(1)は、ガス生成触媒(10)の触媒反応により空燃混合気(16)から燃焼触媒燃焼用ガス(5)等の可燃性ガスを生成するものである。
可燃性ガス生成器(1)内にはガス生成触媒(10)が収容され、その上部には空燃混合室(25)が設けられている。ガス生成触媒(10)の上部中央部には下向きに凹設された混合気入口(21)が設けられている。空燃混合室(25)には、液体燃料(17)と空気(18)とが供給され、これらが混合され、空燃混合気(16)となり、混合気入口(21)からガス生成触媒(10)に供給される。混合気入口(21)には、ガス生成開始用触媒(22)が収容され、これにヒータ(11)が差し込まれている。ガス生成触媒(10)にはその温度センサ(26)が差し込まれている。
ガス生成触媒(10)は、鉄クロム線を織ったもので、鉄クロム線にはロジウム触媒成分が担持されている。ガス生成開始用触媒(22)は、アルミナ繊維のマットで、表面にロジウム触媒成分が担持されている。ガス生成開始用触媒(22)は、ガス生成触媒(10)に比べ、液体燃料(17)の保持性が高い。
液体燃料(17)には軽油が用いられている。
As shown in FIG. 1, a combustible gas generator (1) generates a combustible gas such as a combustion catalyst combustion gas (5) from an air-fuel mixture (16) by a catalytic reaction of a gas generating catalyst (10). To do.
A gas generating catalyst (10) is accommodated in the combustible gas generator (1), and an air / fuel mixing chamber (25) is provided on the upper part thereof. An air-fuel mixture inlet (21) is provided in the upper central portion of the gas generating catalyst (10) so as to be recessed downward. The air / fuel mixing chamber (25) is supplied with liquid fuel (17) and air (18) and mixed to form an air / fuel mixture (16). 10). A gas generation start catalyst (22) is accommodated in the gas mixture inlet (21), and a heater (11) is inserted therein. The temperature sensor (26) is inserted in the gas generation catalyst (10).
The gas generating catalyst (10) is a woven iron chrome wire, and the rhodium catalyst component is supported on the iron chrome wire. The gas generation start catalyst (22) is an alumina fiber mat, on the surface of which a rhodium catalyst component is supported. The gas generation start catalyst (22) has higher retention of the liquid fuel (17) than the gas generation catalyst (10).
Light oil is used for the liquid fuel (17).

燃焼触媒(2)は、DOCである。DOCはディーゼル酸化触媒の略称である。
DPFはディーゼル・パティキュレート・フィルタの略称であり、排気(7)中のPMを捕捉する。
制御装置(4)は、エンジンECUであり、マイコンである。ECUは、電子制御ユニットの略称である。
The combustion catalyst (2) is DOC. DOC is an abbreviation for diesel oxidation catalyst.
DPF is an abbreviation for diesel particulate filter, and traps PM in the exhaust (7).
The control device (4) is an engine ECU and is a microcomputer. ECU is an abbreviation for electronic control unit.

排気処理装置の特徴は、次の通りである。
図1,図2に示すように、DPF(3)の再生処理では、燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1) で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成されている。
燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成されている。
着火装置(9)は、グロープラグである。
燃焼触媒燃焼用ガス(5)の他、後述する燃焼触媒暖気用ガス(8)、燃焼触媒再生用ガス(13)、再着火用ガス(15)には、着火装置(9)の上流側で、二次空気(27)が混入される。
The features of the exhaust treatment device are as follows.
As shown in FIGS. 1 and 2, in the regeneration process of the DPF (3), the combustible gas generator (1) is generated by the controller (4) before the combustion catalyst combustion gas (5) is generated (S10). Thus, the combustion catalyst warming gas (8) is generated (S6) by the catalytic reaction of the gas generating catalyst (10) from the air-fuel mixture (16) having a mixture ratio set so as to obtain a predetermined target reaction temperature. The combustion catalyst warm-up gas (8) is mixed into the exhaust (7) passing through the engine exhaust path (6), ignited by the ignition device (9) upstream of the combustion catalyst (2), and rises by flame combustion. The combustion catalyst (2) is configured to be warmed up by the heated exhaust gas (7).
When the warm-up termination condition for the combustion catalyst (2) is satisfied, the combustion catalyst combustion gas (5) is generated (S10).
The ignition device (9) is a glow plug.
In addition to the combustion catalyst combustion gas (5), the combustion catalyst warming gas (8), the combustion catalyst regeneration gas (13), and the reignition gas (15), which will be described later, are provided upstream of the ignition device (9). Secondary air (27) is mixed.

燃焼触媒(2)の暖機終了条件が成立する場合は、次の通りである。
図1,図2に示すように、燃焼触媒(2)暖機終了条件の成立が、第1条件と第2条件のいずれかが成立した場合とされ、第1条件は、燃焼触媒(2)の入口温度(T0)が燃焼触媒(2)の活性化必要温度(t0)以上で、かつ、燃焼触媒(2)の出口温度(T1)が燃焼触媒(2)の入口温度(T0)を超える燃焼触媒(2)の活性化確認温度(t1)以上となっている場合とされ、第2条件は、エンジン回転数が低いほど高く設定された燃焼触媒(2)の暖機確認温度(t1´)を燃焼触媒(2)の出口温度(T1)が所定時間継続して超えている場合とされている。
このため、燃焼触媒(2)の入口温度(T0)と出口温度(T1)により、燃焼触媒(2)の活性化を直接に確認できる第1条件と、エンジン回転数に応じた燃焼触媒(2)の出口温度(T1)により、燃焼触媒(2)の活性化温度の確保が保障される第2条件により、燃焼触媒(2)の活性化が図られ、暖機燃焼触媒(2)の暖機を確実に行うことができる。
When the warm-up termination condition of the combustion catalyst (2) is satisfied, the following is performed.
As shown in FIGS. 1 and 2, the establishment of the combustion catalyst (2) warm-up termination condition is defined as a case where either the first condition or the second condition is satisfied, and the first condition is the combustion catalyst (2). The inlet temperature (T0) of the combustion catalyst is equal to or higher than the activation required temperature (t0) of the combustion catalyst (2), and the outlet temperature (T1) of the combustion catalyst (2) exceeds the inlet temperature (T0) of the combustion catalyst (2) It is assumed that the temperature is higher than the activation confirmation temperature (t1) of the combustion catalyst (2), and the second condition is that the warm-up confirmation temperature (t1 ′) of the combustion catalyst (2) set higher as the engine speed is lower. ) When the outlet temperature (T1) of the combustion catalyst (2) continuously exceeds a predetermined time.
For this reason, the first condition in which the activation of the combustion catalyst (2) can be directly confirmed by the inlet temperature (T0) and the outlet temperature (T1) of the combustion catalyst (2), and the combustion catalyst (2 ) Exit temperature (T1), the second condition that ensures the activation temperature of the combustion catalyst (2) is ensured, the combustion catalyst (2) is activated, and the warm-up combustion catalyst (2) is warmed up. The machine can be performed reliably.

図1に示すように、燃焼触媒(2)の入口温度(T0)は、燃焼触媒(2)の入口の排気温度センサ(19)により検出される。燃焼触媒(2)の出口温度(T1)は、燃焼触媒(2)の出口の排気温度センサ(20)により検出される。活性化必要温度(t0)は燃焼触媒(2)が活性化して燃焼触媒燃焼用ガス(5)を触媒燃焼させることができる下限温度である。活性化確認温度(t1)は、燃焼触媒(2)が活性化した場合の出口の下限温度で、燃焼触媒(2)の入口温度(T1)に活性化上昇温度(α)を加算した温度である。活性化上昇温度(α)は、燃焼触媒(2)の活性化時に、燃焼触媒暖機用ガス(8)の触媒燃焼で見込まれる排気の上昇温度である。
暖機確認温度(t1´)は、触媒燃焼(2)の入口温度 (T0)に拘わらず、燃焼触媒(2)が活性化した場合の燃焼触媒(2)出口の下限温度で、エンジン回転数が低いほど高くなるように設定されている。エンジン回転数が低くなると、単位時間当たりの燃料噴射量が減少し、排気(7)の温度が低くなり、燃焼触媒(2)に蓄積された熱が奪われるため、暖機確認温度(t1´)を高く設定し、熱の収奪があっても、燃焼触媒(2)の温度を活性化温度に維持できるよう保障するためである。エンジン回転数に応じた暖機確認温度(t1´)は、実験により求められ、マップ化されている。暖機確認温度(t1´)は、活性化必要温度(t0)よりも高い温度に設定されている。
As shown in FIG. 1, the inlet temperature (T0) of the combustion catalyst (2) is detected by an exhaust temperature sensor (19) at the inlet of the combustion catalyst (2). The outlet temperature (T1) of the combustion catalyst (2) is detected by an exhaust temperature sensor (20) at the outlet of the combustion catalyst (2). The activation required temperature (t0) is a lower limit temperature at which the combustion catalyst (2) is activated and the combustion catalyst combustion gas (5) can be catalytically combusted. The activation confirmation temperature (t1) is the lower limit temperature at the outlet when the combustion catalyst (2) is activated, and is the temperature obtained by adding the activation rising temperature (α) to the inlet temperature (T1) of the combustion catalyst (2). is there. The activation increase temperature (α) is the exhaust increase temperature expected in the catalytic combustion of the combustion catalyst warm-up gas (8) when the combustion catalyst (2) is activated.
The warm-up confirmation temperature (t1 ') is the lower limit temperature at the outlet of the combustion catalyst (2) when the combustion catalyst (2) is activated regardless of the inlet temperature (T0 ) of catalytic combustion (2), and the engine speed It is set to be higher as the value is lower. When the engine speed decreases, the fuel injection amount per unit time decreases, the temperature of the exhaust (7) decreases, and the heat accumulated in the combustion catalyst (2) is taken away, so the warm-up confirmation temperature (t1 ' ) Is set high to ensure that the temperature of the combustion catalyst (2) can be maintained at the activation temperature even if heat is taken away. The warm-up confirmation temperature (t1 ′) according to the engine speed is obtained by experiment and mapped. The warm-up confirmation temperature (t1 ′) is set to a temperature higher than the activation required temperature (t0).

図1,図2に示すように、燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されている。
可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されると、可燃性ガスが熱分解により低分子化し、着火性が高まる。
ガス生成触媒(10)の反応温度を高くするには、空燃混合気(16)の混合比を空気リッチにすればよい。
As shown in FIGS. 1 and 2, when the combustion catalyst warming gas (8) is generated (S6), combustible gas is generated more than when the combustion catalyst combustion gas (5) is generated (S10). The ignitability of the combustion catalyst warming gas (8) is higher than that of the combustion catalyst combustion gas (5) by setting the target reaction temperature of the gas generating catalyst (10) of the vessel (1) high. Has been.
When the target reaction temperature of the gas generating catalyst (10) of the combustible gas generator (1) is set high, the combustible gas is reduced in molecular weight by thermal decomposition, and the ignitability is increased.
In order to increase the reaction temperature of the gas generating catalyst (10), the mixture ratio of the air-fuel mixture (16) may be made rich in air.

図1,図2に示すように、可燃性ガス生成器(1)がヒータ(11)を備え、ガス生成触媒(10)で燃焼触媒暖機用ガス(8)が生成(S6)される前に、制御装置(4)によりヒータ(11)の発熱でガス生成触媒(10)が暖機されるように構成されている。
図2に示すように、ヒータ(11)への通電が開始(S2)されてから所定時間経過後に、ヒータ(11)への通電が終了(S4)されるのに対し、その終了(S4)前に、制御装置(4)により着火装置(9)への通電が開始(S3)されることにより、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されている。
As shown in FIGS. 1 and 2, the combustible gas generator (1) includes a heater (11), and before the combustion catalyst warm-up gas (8) is generated (S6) by the gas generation catalyst (10). In addition, the gas generating catalyst (10) is warmed up by the heat generated by the heater (11) by the control device (4).
As shown in FIG. 2, the energization of the heater (11) is terminated (S4) after a predetermined time has elapsed after the energization of the heater (11) is started (S2). Before the combustion catalyst warm-up gas (8) is generated (S6) by energizing the ignition device (9) by the control device (4) before (S6), the ignition device (9 ) Is preheated.

図1に示すように、燃焼触媒(2)のPM堆積量推定装置(12)を備えている。
図1、図2に示すように、燃焼触媒(2)のPM堆積量推定値に基づく所定の燃焼触媒再生要求条件が満たされた場合には、燃焼触媒(2)の再生処理がなされ、この燃焼触媒(2)の再生処理では、制御装置(4)により可燃性ガス生成器(1) で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒再生用ガス(13)が生成(S13)され、この燃焼触媒再生用ガス(13)がエンジン排気経路(6)を通過する排気(7)に混入されて、着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されている。
As shown in FIG. 1, a PM accumulation amount estimation device (12) for the combustion catalyst (2) is provided.
As shown in FIGS. 1 and 2, when a predetermined combustion catalyst regeneration requirement condition based on the estimated PM accumulation amount of the combustion catalyst (2) is satisfied, the regeneration process of the combustion catalyst (2) is performed. In the regeneration process of the combustion catalyst (2), the control device (4) uses the combustible gas generator (1) to generate gas from the air / fuel mixture (16) having a mixture ratio set so as to obtain a predetermined target reaction temperature. A combustion catalyst regeneration gas (13) is produced (S13) by the catalytic reaction of the produced catalyst (10) , and this combustion catalyst regeneration gas (13) is mixed into the exhaust (7) passing through the engine exhaust path (6). The PM deposited on the combustion catalyst (2) is burned and removed by the exhaust (7) ignited by the ignition device (9) and heated by flame combustion so that the combustion catalyst (2) is regenerated. It is configured.

図1に示すように、着火装置(9)の着火状態検出装置(14)を備えている。
図1,図2に示すように、燃焼触媒再生用ガス(13)が着火されていないことが着火状態検出装置(14)で検出された場合には、制御装置(4)により可燃性ガス生成器(1)で再着火用ガス(15)が生成(S17)され、燃焼触媒再着火用ガス(15)が生成される場合は、燃焼触媒再生用ガス(13)が生成(S13)される場合よりも、可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されている。
可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されると、可燃性ガスが熱分解により低分子化し、着火性が高まる。
ガス生成触媒(10)の反応温度を高くするには、空燃混合気(16)の混合比を空気リッチにすればよい。
As shown in FIG. 1, the ignition state detection device (14) of the ignition device (9) is provided.
As shown in FIGS. 1 and 2, when the ignition state detection device (14) detects that the combustion catalyst regeneration gas (13) is not ignited, the control device (4) generates flammable gas. When the reignition gas (15) is generated (S17) in the vessel (1) and the combustion catalyst reignition gas (15) is generated, the combustion catalyst regeneration gas (13) is generated (S13). The target reaction temperature of the gas generating catalyst (10) of the combustible gas generator (1) is set to be higher than the case, so that the ignitability of the reignition gas (15) is improved by the combustion catalyst regeneration gas (13). It is configured to be higher than that.
When the target reaction temperature of the gas generating catalyst (10) of the combustible gas generator (1) is set high, the combustible gas is reduced in molecular weight by thermal decomposition, and the ignitability is increased.
In order to increase the reaction temperature of the gas generating catalyst (10), the mixture ratio of the air-fuel mixture (16) may be made rich in air.

この排気処理装置の処理の流れは、次の通りである。
ステップ(S1)では、再生要求条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S2)に移行する。判定が否定された場合には、ステップ(S1)の判定を繰り返す。
再生要求条件の成立は、図3に示すように、PM堆積総量推定値が再生必要値に至った場合とされている。この再生要求条件の成立時には、再生要求の対象がDPFか燃焼触媒(2)かは判別されず、この判別は、後のステップ(S9)で行われる。
PM堆積総量推定値は、燃焼触媒(2)の上流側の排気圧に基づいてPM堆積量推定装置(12)が推定する。排気圧は、排気圧センサ(23)で検出する。PM堆積量推定装置(12)は、制御装置(4)の演算処理部である。
ステップ(S2)では、ガス生成触媒(10)のヒータ(11)への通電が開始され、ステップ(S3)に移行する。
ステップ(S3)では、着火装置(9)の通電が開始され、ステップ(S4)に移行する。
ステップ(S4)では、ステップ(S2)での通電の開始から所定時間の経過したことに基づいて、ガス生成触媒(10)のヒータ(11)への通電が終了され、ステップ(S5)に移行する。
ステップ(S5)では、ガス生成触媒温度(T3)がガス生成必要温度(t3)以上か否かが判定され、判定が肯定された場合には、暖気終了として、ステップ(S6)に移行する。判定が否定された場合には、ステップ(S2)に戻る。
なお、ステップ(S3)で着火装置(9)の通電が開始された後、燃焼触媒暖機用ガス(8)の着火が着火状態検出装置(14)で検出された場合には、着火装置(9)の通電は終了してもよく、着火装置(9)の発熱がなくなっても、燃焼触媒暖機用ガス(8)の火炎燃焼は継続し、後述するステップ(S10)で生成される着火性の低い燃焼触媒燃焼用ガス(5)に接触すると、燃焼火炎は吹き消される。
The processing flow of this exhaust treatment device is as follows.
In step (S1), it is determined whether or not the reproduction request condition is satisfied. If the determination is affirmative, the process proceeds to step (S2). If the determination is negative, the determination in step (S1) is repeated.
As shown in FIG. 3, the regeneration requirement condition is satisfied when the estimated PM accumulated amount reaches a regeneration required value. When this regeneration request condition is satisfied, it is not determined whether the regeneration request is for the DPF or the combustion catalyst (2), and this determination is performed in a later step (S9).
The PM deposition amount estimation value is estimated by the PM deposition amount estimation device (12) based on the exhaust pressure upstream of the combustion catalyst (2). The exhaust pressure is detected by an exhaust pressure sensor (23). The PM accumulation amount estimation device (12) is an arithmetic processing unit of the control device (4).
In step (S2), energization of the heater (11) of the gas generating catalyst (10) is started, and the process proceeds to step (S3).
In step (S3), energization of the ignition device (9) is started, and the process proceeds to step (S4).
In step (S4), the energization of the gas generation catalyst (10) to the heater (11) is terminated based on the elapse of a predetermined time from the start of energization in step (S2), and the process proceeds to step (S5). To do.
In step (S5), it is determined whether or not the gas generation catalyst temperature (T3) is equal to or higher than the gas generation required temperature (t3). If the determination is affirmative, the warm-up ends and the process proceeds to step (S6). If the determination is negative, the process returns to step (S2).
If the ignition of the combustion catalyst warm-up gas (8) is detected by the ignition state detection device (14) after energization of the ignition device (9) is started in step (S3), the ignition device ( The energization of 9) may be terminated, and even if the ignition device (9) no longer generates heat, the flame combustion of the combustion catalyst warm-up gas (8) continues, and the ignition generated in step (S10) described later. The combustion flame is blown out when it comes in contact with the combustion catalyst combustion gas (5) having low properties.

ステップ(S6)では、燃焼触媒暖機用ガス(8)が生成され、ステップ(S7)に移行する。
ステップ(S7)では、燃焼触媒(2)の暖機終了条件の第1条件、すなわち燃焼触媒(2)の入口温度(T0)が活性化必要温度(t0)以上で、かつ、燃焼触媒(2)の出口温度(T1)が活性化確認温度(t1)以上となっている否かが判定され、判定が肯定された場合には、ステップ(S9)に移行する。
ステップ(S7)での判定が否定された場合には、ステップ(S8)に移行し、燃焼触媒(2)の暖機終了条件の第2条件、すなわち燃焼触媒(2)の出口温度(T1)が暖機確認温度(t1´)を所定時間継続して超えたているか否かが判定され、判定が肯定された場合には、ステップ(S9)に移行する。判定が否定された場合には、ステップ(S6)に戻る。
In step (S6), combustion catalyst warm-up gas (8) is generated, and the process proceeds to step (S7).
In step (S7), the first condition of the warm-up termination condition of the combustion catalyst (2), that is, the inlet temperature (T0) of the combustion catalyst (2) is equal to or higher than the activation required temperature (t0), and the combustion catalyst (2 ) Outlet temperature (T1) is determined to be equal to or higher than the activation confirmation temperature (t1). If the determination is affirmative, the process proceeds to step (S9).
If the determination in step (S7) is negative, the process proceeds to step (S8) and the second condition of the warm-up termination condition of the combustion catalyst (2), that is, the outlet temperature (T1) of the combustion catalyst (2). Is determined to continue to exceed the warm-up confirmation temperature (t1 ′) for a predetermined time. If the determination is affirmative, the process proceeds to step (S9). If the determination is negative, the process returns to step (S6).

ステップ(S9)では、燃焼触媒(2)の再生要求条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S10)に移行し、排気処理装置(3)であるDPFの再生が開始される。判定が否定された場合には、ステップ(S13)に移行し、燃焼触媒(2)の再生が開始される。
図3に示すように、燃焼触媒(2)の再生要求条件は、前回の再生終了から今回の再生要求条件の成立までのインターバル(24)が所定時間未満である場合に成立する。
DPFに堆積するPMは、1回のDPF再生処理や1回の燃焼触媒再生処理でほぼ全量が除去されるが、燃焼触媒(2)に堆積したPMは複数回のDPF再生処理でも除去されず、次第に累積されるため、前記インターバル(24)が所定時間未満になる場合には、燃焼触媒(2)の再生に必要な所定量のPMが堆積していると推定することができるためである。
ステップ(S10)では、燃焼触媒燃焼用ガス(5)が生成され、ステップ(S11)に移行する。ステップ(S11)では、DPF再生終了条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S12)に移行する。
DPF再生終了条件は、DPF入口温度(燃焼触媒出口温度)が所定温度以上で所定時間経過した場合に成立する。
ステップ(S12)では、DPFの再生が終了し、処理が終了する。
DPFの再生の終了は、燃焼触媒燃焼用ガス(5)の生成を停止することにより行われる。
In step (S9), it is determined whether or not the regeneration requirement condition for the combustion catalyst (2) is satisfied. If the determination is affirmative, the process proceeds to step (S10), and the exhaust treatment device section (3). The regeneration of a certain DPF is started. When determination is denied, it transfers to step (S13) and regeneration of a combustion catalyst (2) is started.
As shown in FIG. 3, the regeneration requirement condition of the combustion catalyst (2) is established when the interval (24) from the end of the previous regeneration to the establishment of the current regeneration requirement condition is less than a predetermined time.
The PM deposited on the DPF is almost completely removed by one DPF regeneration process or one combustion catalyst regeneration process, but the PM deposited on the combustion catalyst (2) is not removed by multiple DPF regeneration processes. This is because, since it is gradually accumulated, when the interval (24) becomes less than a predetermined time, it can be estimated that a predetermined amount of PM necessary for regeneration of the combustion catalyst (2) is accumulated. .
In step (S10), combustion catalyst combustion gas (5) is generated, and the process proceeds to step (S11). In step (S11), it is determined whether the DPF regeneration end condition is satisfied. If the determination is affirmative, the process proceeds to step (S12).
The DPF regeneration end condition is satisfied when the DPF inlet temperature (combustion catalyst outlet temperature) is equal to or higher than a predetermined temperature and a predetermined time has elapsed.
In step (S12), the regeneration of the DPF ends and the process ends.
The regeneration of the DPF is completed by stopping the generation of the combustion catalyst combustion gas (5).

ステップ(S13)では、燃焼触媒再生用ガス(13)が生成され、ステップ(S14)に移行する。
ステップ(S14)では、燃焼触媒再生用ガス(13)が着火状態か否かが判定され、判定が肯定された場合には、ステップ(S15)に移行する。ステップ(S14)での判定が否定された場合には、ステップ(S16)に移行する。
ステップ(S16)では、着火装置(9)の通電が再開され、ステップ(S17)に移行する。
ステップ(S17)では、再着火用ガス(15)が生成され、ステップ(S14)に戻る。
ステップ(S16)では、燃焼触媒(2)の再生終了条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S18)に移行する。
燃焼触媒(2)の再生終了条件は、燃焼触媒(2)の入口温度が所定温度以上で所定時間経過した場合に成立する。
ステップ(S18)では、燃焼触媒(2)の再生が終了され、処理が終了する。
燃焼触媒(2)の再生終了は、燃焼触媒再生用ガス(13)の生成を停止することにより行われる。
なお、ステップ(S16)で着火装置(9)の通電が再開された後、再着火用ガス(15)の着火が着火状態検出装置(14)で検出された場合には、着火装置(9)の通電は終了してもよく、着火装置(9)の発熱がなくなっても、再着火用ガス(15)の燃焼火炎は燃焼触媒再生用ガス(13)に引き継がれて火炎燃焼は継続する。
すなわち、この実施形態では、燃焼触媒(2)の上流側の排気圧に基づいて燃焼触媒(2)とDPF(3)のPM堆積総量推定値を推定するPM堆積量推定装置(12)を備え、PM堆積総量推定値がDPF(3)か燃焼触媒(2)のいずれかの再生を必要とする再生必要値に至った場合、前回行われたDPF(3)か燃焼触媒(2)のいずれかの再生終了から今回の再生必要値に至るまでのインターバルが所定時間未満である場合には、燃焼触媒(2)の再生要求条件が成立し、燃焼触媒(2)の再生処理がなされ、燃焼触媒(2)の再生要求条件が成立しない場合には、DPF(3)の再生処理がなされる。
In step (S13), combustion catalyst regeneration gas (13) is generated, and the process proceeds to step (S14).
In step (S14), it is determined whether or not the combustion catalyst regeneration gas (13) is in an ignition state. If the determination is affirmative, the process proceeds to step (S15). If the determination in step (S14) is negative, the process proceeds to step (S16).
In step (S16), energization of the ignition device (9) is resumed, and the process proceeds to step (S17).
In step (S17), the reignition gas (15) is generated, and the process returns to step (S14).
In step (S16), it is determined whether or not the regeneration end condition for the combustion catalyst (2) is satisfied. If the determination is affirmative, the process proceeds to step (S18).
The regeneration end condition of the combustion catalyst (2) is satisfied when the inlet temperature of the combustion catalyst (2) is equal to or higher than a predetermined temperature and a predetermined time has elapsed.
In step (S18), the regeneration of the combustion catalyst (2) is finished, and the process is finished.
The regeneration of the combustion catalyst (2) is completed by stopping the production of the combustion catalyst regeneration gas (13).
In addition, after the energization of the ignition device (9) is restarted in step (S16), when the ignition of the re-ignition gas (15) is detected by the ignition state detection device (14), the ignition device (9) However, even if the ignition device (9) no longer generates heat, the combustion flame of the reignition gas (15) is taken over by the combustion catalyst regeneration gas (13) and the flame combustion continues.
That is, in this embodiment, a PM accumulation amount estimation device (12) for estimating the PM accumulation total amount estimated values of the combustion catalyst (2) and the DPF (3) based on the exhaust pressure upstream of the combustion catalyst (2) is provided. When the estimated PM total amount reaches the regeneration required value that requires regeneration of either DPF (3) or combustion catalyst (2), either DPF (3) or combustion catalyst (2) performed last time When the interval from the end of the regeneration to the current regeneration required value is less than the predetermined time, the regeneration requirement condition of the combustion catalyst (2) is satisfied, the regeneration process of the combustion catalyst (2) is performed, and the combustion If the regeneration requirement condition for the catalyst (2) is not satisfied, the regeneration process for the DPF (3) is performed.

(1) 可燃性ガス生成器
(2) 燃焼触媒
(3) DPF
(4) 制御装置
(5) 燃焼触媒燃焼用ガス
(6) エンジン排気経路
(7) 排気
(8) 燃焼触媒暖気用ガス
(9) 着火装置
(10) ガス生成触媒
(11) ヒータ
(12) PM堆積量推定装置
(13) 燃焼触媒再生用ガス
(14) 着火状態検出装置
(15) 再着火用ガス
(S2) ヒータへの通電が開始
(S3) 着火装置への通電が開始
(S4) ヒータへの通電が終了
(S6) 燃焼触媒暖気用ガスが生成
(S10) 燃焼触媒燃焼用ガスが生成
(S13) 燃焼触媒再生用ガスが生成
(S18) 燃焼触媒再着火用ガスが生成
(1) Combustible gas generator
(2) Combustion catalyst
(3) DPF
(4) Control device
(5) Combustion catalyst combustion gas
(6) Engine exhaust path
(7) Exhaust
(8) Gas for combustion catalyst warm-up
(9) Ignition device
(10) Gas generating catalyst
(11) Heater
(12) PM accumulation amount estimation device
(13) Gas for regeneration of combustion catalyst
(14) Ignition state detection device
(15) Re-ignition gas
(S2) Energization of the heater starts
(S3) Energization of the ignition device starts
(S4) Energization of the heater ends
(S6) Combustion catalyst warm-up gas is generated
(S10) Combustion catalyst combustion gas is generated
(S13) Combustion catalyst regeneration gas is generated
(S18) Combustion catalyst re-ignition gas is generated

Claims (3)

可燃性ガス生成器(1)と燃焼触媒(2)とDPF(3)と制御装置(4)を備え、
DPF(3)の再生処理では、制御装置(4)の制御により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)がDPF(3)に供給されるように構成された、エンジンの排気処理装置において、
DPF(3)の再生処理では、燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成され、
燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成され、
燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成され、
燃焼触媒(2)の上流側の排気圧に基づいて燃焼触媒(2)とDPF(3)のPM堆積総量推定値を推定するPM堆積量推定装置(12)を備え、PM堆積総量推定値がDPF(3)か燃焼触媒(2)のいずれかの再生を必要とする再生必要値に至った場合、前回行われたDPF(3)か燃焼触媒(2)のいずれかの再生終了から今回の再生必要値に至るインターバルが所定時間未満である場合には、燃焼触媒(2)の再生要求条件が成立し、燃焼触媒(2)の再生処理がなされ、燃焼触媒(2)の再生要求条件が成立しない場合には、DPF(3)の再生処理がなされ、
燃焼触媒(2)の再生処理では、制御装置(4)により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、燃焼触媒再生用ガス(13)が生成(S13)され、この燃焼触媒再生用ガス(13)がエンジン排気経路(6)を通過する排気(7)に混入されて、着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されている、ことを特徴とするエンジンの排気処理装置。
Combustible gas generator (1), combustion catalyst (2), DPF (3), and controller (4)
In the regeneration process of the DPF (3), from the air-fuel mixture (16) having a mixture ratio set so as to obtain a predetermined target reaction temperature in the combustible gas generator (1) under the control of the control device (4). By the catalytic reaction of the gas generating catalyst (10), combustion catalyst combustion gas (5) is generated (S10), and this combustion catalyst combustion gas (5) is sent to the exhaust (7) passing through the engine exhaust path (6). In an exhaust treatment device for an engine configured to be mixed and catalytically combusted by a combustion catalyst (2), and an exhaust gas (7) heated by the catalytic combustion is supplied to a DPF (3),
In the regeneration process of the DPF (3) , a predetermined target reaction temperature is obtained by the combustible gas generator (1) by the controller (4) before the combustion catalyst combustion gas (5) is generated (S10). The combustion catalyst warming gas (8) is generated (S6) by the catalytic reaction of the gas generating catalyst (10) from the air / fuel mixture (16) having the mixture ratio set as described above , and this combustion catalyst warming gas (8 ) Is mixed into the exhaust (7) passing through the engine exhaust path (6), ignited by the ignition device (9) upstream of the combustion catalyst (2), and combusted by the exhaust (7) heated by flame combustion (2) is configured to be warmed up,
When the warm-up end condition of the combustion catalyst (2) is satisfied, the combustion catalyst combustion gas (5) is generated (S10).
When the combustion catalyst warming gas (8) is generated (S6), the gas generating catalyst (10) of the combustible gas generator (1) is produced more than when the combustion catalyst combustion gas (5) is generated (S10). ) Is set higher so that the ignitability of the combustion catalyst warming gas (8) is higher than that of the combustion catalyst combustion gas (5) ,
A PM accumulation amount estimation device (12) for estimating the PM accumulation amount estimation value of the combustion catalyst (2) and the DPF (3) based on the exhaust pressure upstream of the combustion catalyst (2) is provided, and the PM accumulation amount estimation value is When the regeneration required value that requires regeneration of either the DPF (3) or the combustion catalyst (2) is reached, this time from the end of regeneration of either the DPF (3) or the combustion catalyst (2) performed last time When the interval to reach the regeneration required value is less than the predetermined time, the regeneration requirement condition of the combustion catalyst (2) is established, the regeneration process of the combustion catalyst (2) is performed, and the regeneration requirement condition of the combustion catalyst (2) is If not established, DPF (3) regeneration processing is performed,
In the regeneration process of the combustion catalyst (2), the control device (4) uses the combustible gas generator (1) to generate gas from the air / fuel mixture (16) having a mixture ratio set to obtain a predetermined target reaction temperature. A combustion catalyst regeneration gas (13) is produced (S13) by the catalytic reaction of the produced catalyst (10) , and this combustion catalyst regeneration gas (13) is mixed into the exhaust (7) passing through the engine exhaust path (6). The PM deposited on the combustion catalyst (2) is burned and removed by the exhaust (7) ignited by the ignition device (9) and heated by flame combustion so that the combustion catalyst (2) is regenerated. An exhaust processing apparatus for an engine, characterized in that it is configured.
請求項1に記載されたエンジンの排気処理装置において、
着火装置(9)の着火状態検出装置(14)を備え、
燃焼触媒再生用ガス(13)が着火されていないことが着火状態検出装置(14)で検出された場合には、制御装置(4)により可燃性ガス生成器(1)で、所定の目標反応温度が得られるよう設定された混合比の空燃混合気(16)からガス生成触媒(10)の触媒反応によって、再着火用ガス(15)が生成(S17)され、再着火用ガス(15)が生成される場合は、燃焼触媒再生用ガス(13)が生成(S13)される場合よりも、可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されている、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to claim 1 ,
An ignition state detection device (14) of the ignition device (9),
When the ignition state detection device (14) detects that the combustion catalyst regeneration gas (13) is not ignited, the control device (4) uses the combustible gas generator (1) to perform a predetermined target reaction. A reignition gas (15) is generated (S17) from the air-fuel mixture (16) having a mixture ratio set to obtain a temperature by the catalytic reaction of the gas generation catalyst (10), and the reignition gas (15 ) Is generated, the target reaction temperature of the gas generating catalyst (10) of the combustible gas generator (1) is set higher than when the combustion catalyst regeneration gas (13) is generated (S13). Thus, the engine exhaust treatment apparatus is configured such that the ignitability of the reignition gas (15) is higher than that of the combustion catalyst regeneration gas (13).
請求項1または請求項2に記載されたエンジンの排気処理装置において、
可燃性ガス生成器(1)がヒータ(11)を備え、ガス生成触媒(10)で燃焼触媒暖機用ガス(8)が生成(S6)される前に、制御装置(4)によりヒータ(11)の発熱でガス生成触媒(10)が暖機されるように構成され、
ヒータ(11)への通電が開始(S2)されてから所定時間経過後に、ヒータ(11)への通電が終了(S4)されるのに対し、その終了(S4)前に、制御装置(4)により着火装置(9)への通電が開始(S3)されることにより、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されている、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to claim 1 or 2 ,
The combustible gas generator (1) includes a heater (11), and before the combustion catalyst warm-up gas (8) is generated (S6) by the gas generation catalyst (10), the heater ( 11) The gas generating catalyst (10) is warmed up by the heat generated in (11),
The energization of the heater (11) is terminated (S4) after a predetermined time has elapsed since the energization of the heater (11) is started (S2), but before the end (S4), the control device (4 ) Is started (S3) so that the ignition device (9) is preheated before the combustion catalyst warm-up gas (8) is generated (S6). An exhaust processing apparatus for an engine, characterized in that it is configured.
JP2014067584A 2014-03-28 2014-03-28 Engine exhaust treatment equipment Active JP6270583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067584A JP6270583B2 (en) 2014-03-28 2014-03-28 Engine exhaust treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067584A JP6270583B2 (en) 2014-03-28 2014-03-28 Engine exhaust treatment equipment

Publications (2)

Publication Number Publication Date
JP2015190369A JP2015190369A (en) 2015-11-02
JP6270583B2 true JP6270583B2 (en) 2018-01-31

Family

ID=54425082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067584A Active JP6270583B2 (en) 2014-03-28 2014-03-28 Engine exhaust treatment equipment

Country Status (1)

Country Link
JP (1) JP6270583B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120986A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP4320582B2 (en) * 2003-10-24 2009-08-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4569690B2 (en) * 2008-09-04 2010-10-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5750390B2 (en) * 2012-03-15 2015-07-22 株式会社クボタ Engine exhaust treatment equipment
JP6005413B2 (en) * 2012-06-18 2016-10-12 日野自動車株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JP2015190369A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6214479B2 (en) Engine exhaust treatment equipment
JP6664312B2 (en) Diesel engine exhaust treatment device
US8183501B2 (en) Method for controlling glow plug ignition in a preheater of a hydrocarbon reformer
KR20080085857A (en) Exhaust system for a motor vehicle and process for regenerating a particulate filter in an automotive exhaust system
KR101888219B1 (en) Engine exhaust treatment device
JP2006112401A (en) Catalyst temperature raising device
JP5750389B2 (en) Engine exhaust treatment equipment
JP5750390B2 (en) Engine exhaust treatment equipment
JP6175398B2 (en) Engine exhaust treatment equipment
JP6270583B2 (en) Engine exhaust treatment equipment
JP2008014235A (en) Heater control device for exhaust sensor
CN102575548B (en) Exhaust purification device of internal combustion engine
US8118908B2 (en) Electrically heated particulate matter filter with recessed inlet end plugs
JP2019120203A (en) burner
JP6326392B2 (en) Engine exhaust treatment equipment
JP5959464B2 (en) Engine exhaust treatment equipment
JP2014055522A (en) Exhaust gas treatment device of diesel engine, and combustible gas production catalyst
WO2006095146A1 (en) Process and apparatus for the regeneration of a particulate filter
AU2013207588B2 (en) System for controlling an after-treatment system (ats) temperature of a combustion engine
JP5959465B2 (en) Engine exhaust treatment equipment
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP2018084192A (en) Exhaust temperature increasing device
JP2019120459A (en) burner
KR102044560B1 (en) Exhaust treatment device of diesel engine
KR102088537B1 (en) Exhaust treatment apparatus for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150