JP6269204B2 - Gold complexes, membranes and compounds - Google Patents

Gold complexes, membranes and compounds Download PDF

Info

Publication number
JP6269204B2
JP6269204B2 JP2014053079A JP2014053079A JP6269204B2 JP 6269204 B2 JP6269204 B2 JP 6269204B2 JP 2014053079 A JP2014053079 A JP 2014053079A JP 2014053079 A JP2014053079 A JP 2014053079A JP 6269204 B2 JP6269204 B2 JP 6269204B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
complex
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014053079A
Other languages
Japanese (ja)
Other versions
JP2015174846A (en
Inventor
小林 憲史
憲史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2014053079A priority Critical patent/JP6269204B2/en
Publication of JP2015174846A publication Critical patent/JP2015174846A/en
Application granted granted Critical
Publication of JP6269204B2 publication Critical patent/JP6269204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金錯体、膜及び化合物に関する。   The present invention relates to gold complexes, membranes and compounds.

金錯体は結晶状態で高い発光量子効率を示すことが知られているため、有機エレクトロルミネッセンス素子(以下、有機EL素子という)等に用いる発光材料として着目されている。(特許文献1、非特許文献1)。   Since gold complexes are known to exhibit high emission quantum efficiency in the crystalline state, they are attracting attention as light-emitting materials used for organic electroluminescence elements (hereinafter referred to as organic EL elements). (Patent Document 1, Non-Patent Document 1).

特開2005−332747JP-A-2005-332747 Chem. Eur. J. 2010, 16, 12114-12126.Chem. Eur. J. 2010, 16, 12114-12126.

有機EL素子に用いる発光材料としては、膜状態でも高い発光量子効率を示す性質が求められる。   The light emitting material used for the organic EL element is required to have a property showing high light emission quantum efficiency even in a film state.

しかし、公知の金錯体は、結晶状態では高い発光量子効率を示すものの、膜状態、溶液状態と、錯体の結晶性が崩れるにつれて、発光量子効率が低下する傾向があった。   However, although known gold complexes exhibit high emission quantum efficiency in the crystalline state, the emission quantum efficiency tends to decrease as the crystallinity of the complex and the film state and solution state collapse.

そこで、本発明は、膜状態で発光量子効率が高い金錯体を提供することを目的とする。   Accordingly, an object of the present invention is to provide a gold complex having high emission quantum efficiency in a film state.

本発明は第一に、下記式(1)で表される金錯体を提供する。

Figure 0006269204
(式(1)中、R及びRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基である。Rは置換されていてもよい炭素原子数1〜30の基であり、置換基としてCOO構造を1つ有する。R、4つあるR及び2つあるRは、それぞれ任意に連結して、それぞれが結合したリン原子とともに環構造を形成してもよい。)

本発明は第二に、前記金錯体を含む膜を提供する。

本発明は第三に、下記式(4)で表される化合物を提供する。
Figure 0006269204
(式(4)中、2つのRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基であり、かつRは−O−又は−S−を有する。) The present invention first provides a gold complex represented by the following formula (1).
Figure 0006269204
(In Formula (1), R 1 and R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 3 is an optionally substituted carbon atom having 1 to 30 carbon atoms. R 5 is an optionally substituted group having 1 to 30 carbon atoms and has one COO - structure as a substituent, R 5 , four R 1 and two R 2 may be arbitrarily connected to each other to form a ring structure together with the phosphorus atom to which each is bonded.

Secondly, the present invention provides a film containing the gold complex.

Thirdly, the present invention provides a compound represented by the following formula (4).
Figure 0006269204
(In the formula (4), two R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 4 is an optionally substituted 2 having 1 to 30 carbon atoms. And R 4 has —O— or —S—.)

本発明の金錯体は、膜状態で発光量子効率が高い。更に、本発明の好ましい形態では、溶液状態の発光量子効率も高く、よって状態変化に強いため、膜状態で安定に高い発光量子効率を維持することが可能である。   The gold complex of the present invention has high emission quantum efficiency in a film state. Furthermore, in the preferred embodiment of the present invention, the emission quantum efficiency in the solution state is high, and therefore, it is strong against the state change, so that the high emission quantum efficiency can be stably maintained in the film state.

以下、本発明を説明する。
本明細書において、「置換されていてもよい」とは、個々に記述がない場合において、「置換されていてもよい」基を構成する水素原子の一部又は全部が、ハロゲン原子、炭素原子数1〜30のヒドロカルビル基、炭素原子数1〜30のヒドロカルビルオキシ基、炭素原子数1〜30のヒドロカルビルメルカプト基、OM基、COOM基、SOM基(ここでMは、H、Li、Na,K、Rb、又はCsである。)等で置換されていてもよいことを意味する。これらの中でも、ハロゲン原子、炭素原子数1〜18のヒドロカルビル基、炭素原子数1〜18のヒドロカルビルオキシ基で置換されていることが好ましく、ハロゲン原子、炭素原子数1〜12のヒドロカルビル基、炭素原子数1〜12のヒドロカルビルオキシ基で置換されていることがより好ましく、炭素原子数1〜8のヒドロカルビル基で置換されていることが特に好ましく、とりわけ好ましくはメチル基、エチル基、プロピル基、ブチル基である。
本明細書において、Meはメチル基、Buはブチル基を表す。
また、本明細書において、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ペンタデシル基、オクタデシル基、ドコシル基と記載されている場合、これらは直鎖状でも分岐構造をとっていても良いが、好ましくは直鎖状である。
また、本明細書において、「置換されていてもよい」基における炭素原子数は、当該基の炭素原子数を表し、この炭素原子数には当該基を構成する水素原子と置換する基の炭素原子数は含まない。
The present invention will be described below.
In the present specification, “optionally substituted” means that, in the case where there is no individual description, a part or all of the hydrogen atoms constituting the “optionally substituted” group are a halogen atom or a carbon atom. A hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, a hydrocarbyl mercapto group having 1 to 30 carbon atoms, an OM group, a COOM group, and a SO 3 M group (where M is H, Li, It is Na, K, Rb, or Cs.) And the like. Among these, it is preferably substituted with a halogen atom, a hydrocarbyl group having 1 to 18 carbon atoms, a hydrocarbyloxy group having 1 to 18 carbon atoms, a halogen atom, a hydrocarbyl group having 1 to 12 carbon atoms, carbon It is more preferably substituted with a hydrocarbyloxy group having 1 to 12 atoms, particularly preferably substituted with a hydrocarbyl group having 1 to 8 carbon atoms, and particularly preferably a methyl group, an ethyl group, a propyl group, It is a butyl group.
In the present specification, Me represents a methyl group and Bu represents a butyl group.
In the present specification, it is described as propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, pentadecyl group, octadecyl group, docosyl group. In these cases, these may be linear or have a branched structure, but are preferably linear.
Further, in this specification, the number of carbon atoms in the “optionally substituted” group represents the number of carbon atoms of the group, and the number of carbon atoms in this group is the number of carbon atoms of the group that replaces the hydrogen atom that constitutes the group. Does not include the number of atoms.

本発明の金錯体は、下記式(1)で表される。

Figure 0006269204
(式(1)中、R及びRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基である。Rは置換されていてもよい炭素原子数1〜30の基であり、置換基としてCOO構造を1つ有する。R、4つあるR及び2つあるRは、それぞれ任意に連結して、それぞれが結合したリン原子とともに環構造を形成してもよい。) The gold complex of the present invention is represented by the following formula (1).
Figure 0006269204
(In Formula (1), R 1 and R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 3 is an optionally substituted carbon atom having 1 to 30 carbon atoms. R 5 is an optionally substituted group having 1 to 30 carbon atoms and has one COO - structure as a substituent, R 5 , four R 1 and two R 2 may be arbitrarily connected to each other to form a ring structure together with the phosphorus atom to which each is bonded.

上記複数あるRはそれぞれ独立に、置換されていてもよい炭素原子数1〜30のヒドロカルビル基である。Rは別のR、RあるいはRと任意に連結してもよい。Rが別のR、RあるいはRと任意に連結しない場合のヒドロカルビル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ペンタデシル基、オクタデシル基、ドコシル基等の炭素原子数1〜30のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、アダマンチル基等の炭素原子数3〜30の環状飽和ヒドロカルビル基;エテニル基、プロペニル基、2−ブテニル基等の炭素原子数2〜30のアルケニル基;フェニル基、1−ナフチル基、2−ナフチル基、4−フェニルフェニル基等の炭素原子数6〜30のアリール基;フェニルメチル基、2−フェニルエチル基等の炭素原子数7〜30のアラルキル基が挙げられる。
好ましくは炭素原子数1〜30のアルキル基、炭素原子数6〜30のアリール基であり、より好ましくは炭素原子数6〜12のアリール基であり、更に好ましくはフェニル基である。
The plurality of R 1 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted. R 1 may optionally be linked to another R 1 , R 2 or R 5 . Examples of hydrocarbyl groups when R 1 is not optionally linked to another R 1 , R 2 or R 5 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, An alkyl group having 1 to 30 carbon atoms such as a pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, pentadecyl group, octadecyl group, docosyl group; cyclopropyl group, cyclobutyl group A cyclic saturated hydrocarbyl group having 3 to 30 carbon atoms such as cyclopentyl group, cyclohexyl group and adamantyl group; an alkenyl group having 2 to 30 carbon atoms such as ethenyl group, propenyl group and 2-butenyl group; phenyl group; Aryl groups having 6 to 30 carbon atoms such as 1-naphthyl group, 2-naphthyl group, 4-phenylphenyl group; Rumechiru group, an aralkyl group having 7 to 30 carbon atoms, such as 2-phenylethyl group.
Preferably they are a C1-C30 alkyl group and a C6-C30 aryl group, More preferably, it is a C6-C12 aryl group, More preferably, it is a phenyl group.

は置換されていてもよく、無置換であるよりも置換されていることが好ましい。置換基の数は1〜3個が好ましく、1〜2個がより好ましい。前記Rがフェニル基である場合、置換基の場所は、金錯体の発光強度が向上するため、少なくとも1つはR−P結合に対してオルト部位であることが好ましい。 R 1 may be substituted and is preferably substituted rather than unsubstituted. The number of substituents is preferably 1 to 3, and more preferably 1 to 2. When R 1 is a phenyl group, it is preferable that at least one of the substituents is an ortho site with respect to the R 1 -P bond because the emission intensity of the gold complex is improved.

上記複数あるRはそれぞれ独立に、置換されていてもよい炭素原子数1〜30のヒドロカルビル基である。Rは別のR、RあるいはRと任意に連結してもよい。Rが別のR、RあるいはRと任意に連結しない場合のRとしてのヒドロカルビル基の例及び好ましい例としては、上記Rが別のR、RあるいはRと任意に連結しない場合のヒドロカルビル基の例及び好ましい例と同じである。 The plurality of R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted. R 2 may optionally be linked to another R 2 , R 1 or R 5 . Examples and preferred examples of the hydrocarbyl group as R 2 when R 2 is not optionally linked to another R 2, R 1 or R 5 is R 1 above is another R 1, R 2 or R 5 and optionally The same as the examples and preferred examples of the hydrocarbyl group when not linked to

は置換されていてもよく、Rがフェニル基である場合、R−P結合のオルト部位に置換基を有することが好ましい。 R 2 may be substituted, and when R 2 is a phenyl group, it preferably has a substituent at the ortho site of the R 2 —P bond.

上記Rは置換されていてもよい炭素原子数1〜30の2価の基である。Rの例としては、置換されていてもよい炭素原子数1〜30のアルカンジイル基;炭素原子数2〜30のアルケンジイル基;置換されていてもよい主鎖炭素原子数2〜30のアルキンジイル基;置換されていてもよい炭素原子数4〜30のシクロアルカンジイル基;置換されていてもよい炭素原子数6〜30のアレーンジイル基の2価のヒドロカルビル基;置換されていてもよい2価のヒドロカルビル基と−O−又は−S−とを組み合わせてできる2価の基;置換されていてもよい下記式r1〜r12のいずれかで表される基が挙げられる。

Figure 0006269204
(式中、Yは、−(CH−、−O−、−S−、−N(R50)−、−C(R512−、−Si(R512−、−O(CH−、又は、−O(CHO−で表される2価の基である。YはYと独立に、−(CH−、−O−、−S−、−N(R50)−、−C(R512−、又は、−Si(R512−で表される2価の基である。nは1〜3の整数である。R50とR51はそれぞれ独立に置換されていてもよいヒドロカルビル基である。) R 3 is an optionally substituted divalent group having 1 to 30 carbon atoms. Examples of R 3 include an optionally substituted alkanediyl group having 1 to 30 carbon atoms; an alkenediyl group having 2 to 30 carbon atoms; and an optionally substituted alkynediyl group having 2 to 30 main chain carbon atoms. Group: an optionally substituted cycloalkanediyl group having 4 to 30 carbon atoms; an optionally substituted divalent hydrocarbyl group of an arenediyl group having 6 to 30 carbon atoms; an optionally substituted divalent group A divalent group formed by combining the hydrocarbyl group of —O— or —S—; and a group represented by any one of the following formulas r1 to r12 which may be substituted.
Figure 0006269204
Wherein Y 1 is — (CH 2 ) n —, —O—, —S— , —N (R 50 ) —, —C (R 51 ) 2 —, —Si (R 51 ) 2 —, A divalent group represented by —O (CH 2 ) n — or —O (CH 2 ) n O—, Y 2 independently of Y 1 , — (CH 2 ) n —, —O A divalent group represented by —, —S—, —N (R 50 ) —, —C (R 51 ) 2 —, or —Si (R 51 ) 2 —, where n is 1 to 3. R 50 and R 51 are each independently an optionally substituted hydrocarbyl group.)

上記R50、R51で表されるヒドロカルビル基の例としては、メチル基、ブチル基、オクチル基等の炭素原子数1〜10のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基等の炭素原子数6〜10のアリール基が挙げられる。上記R50として好ましくは炭素原子数6〜10のアリール基であり、より好ましくはフェニル基である。上記R51として好ましくは炭素原子数1〜10のアルキル基であり、より好ましくは炭素原子数1〜8の直鎖状アルキル基である。 Examples of the hydrocarbyl group represented by R 50 and R 51 include alkyl groups having 1 to 10 carbon atoms such as a methyl group, a butyl group and an octyl group; a phenyl group, a 1-naphthyl group and a 2-naphthyl group. And an aryl group having 6 to 10 carbon atoms. R 50 is preferably an aryl group having 6 to 10 carbon atoms, and more preferably a phenyl group. R 51 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably a linear alkyl group having 1 to 8 carbon atoms.

上記Yとして好ましくは−O−、−S−であり、より好ましくは−O−である。 Y 1 is preferably —O— or —S—, and more preferably —O—.

上記Yとして好ましくは−C(R512−、−Si(R512−であり、より好ましくは−C(R512−である。 Y 2 is preferably —C (R 51 ) 2 — or —Si (R 51 ) 2 —, more preferably —C (R 51 ) 2 —.

上記r1〜r12は、より具体的には下記式r1'〜r12'で表される。

Figure 0006269204
(式中、Yは、−(CH−、−O−、−S−、−N(R50)−、−C(R512−、又は、−Si(R512−、で表される2価の基である。n、R50、R51は前述のそれらと同じである。) More specifically, the above r1 to r12 are represented by the following formulas r1 ′ to r12 ′.
Figure 0006269204
(In the formula, Y 3 represents — (CH 2 ) n —, —O—, —S—, —N (R 50 ) —, —C (R 51 ) 2 —, or —Si (R 51 ) 2. -, A divalent group represented by-, n, R 50 and R 51 are the same as those described above.)

上記Yとして好ましくは−C(R512−及び−Si(R512−である。 Y 3 is preferably —C (R 51 ) 2 — or —Si (R 51 ) 2 —.

として好ましくは、前記式r1〜r12のいずれかで表される基であり、より好ましくは前記式r1'〜r12'のいずれかで表される基であり、更に好ましくは前記式r1'、r5'、r10'、r12'で表される基であり、特に好ましくはr1'、r5'で表される基である。 R 3 is preferably a group represented by any one of the above formulas r1 to r12, more preferably a group represented by any of the above formulas r1 ′ to r12 ′, and even more preferably the above formula r1 ′. , R5 ′, r10 ′ and r12 ′, particularly preferably groups represented by r1 ′ and r5 ′.

としてとりわけ好ましくは、前記式r1'で表される基である。 R 3 is particularly preferably a group represented by the formula r1 ′.

前記Rは、別のRと連結してもよい。連結する場合、好ましくは、前記式(1)中における部分構造であるR―P―Rにおいて、該部分構造中の2つのRが連結する。R―P―Rにおける2つのRが連結する場合、該R―P―Rで示される好ましい構造は、置換されていてもよい下記式b1〜b3が挙げられる。これらのうち、b1、b2が好ましく、b1がより好ましい。

Figure 0006269204
R 1 may be linked to another R 1 . When connecting, preferably, in R 1 -P-R 1 is a partial structure in the formula (1), two R 1 in partial structure is connected. If R 1 -P-R 2 both R 1 in 1 is linked, preferably the structure represented by the R 1 -P-R 1 is exemplified by an formula b1~b3 be substituted. Of these, b1 and b2 are preferable, and b1 is more preferable.
Figure 0006269204

前記Rは、もう片方のRと連結してもよい。連結する場合、好ましくは、前記式(1)中における部分構造であるR―P―Rにおいて、該部分構造中の2つのRが連結する。R―P―Rにおける2つのRが連結する場合、該R―P―Rで示される好ましい構造は、置換されていてもよい上記式b1〜b3が挙げられる。これらのうち、b1、b2が好ましく、b1がより好ましい。 R 2 may be connected to the other R 2 . When connecting, preferably, in R 2 -P-R 2 is a partial structure in the formula (1), two R 2 in partial structure is connected. When two R 2 in R 2 -P-R 2 are linked, preferably the structure represented by the R 2 -P-R 2 is exemplified by an above formula b1~b3 be substituted. Of these, b1 and b2 are preferable, and b1 is more preferable.

前記Rは、別のRと連結してもよいが、連結していないことが好ましく、前記Rは、別のRと連結してもよいが、連結していないことが好ましく、前記RはRと連結してもよいが、連結していないことが好ましい。 Wherein R 1 may be linked to another R 1, but preferably not linked, wherein R 2 may be linked to another R 2, but preferably not linked, R 5 may be linked to R 2 but is preferably not linked.

前記Rは、RあるいはRと連結してもよい。前記式(1)において、1つのRと1つのRとが連結した場合の構造例を下記式(5)に挙げる。

Figure 0006269204
式(5)中、R、R、及びRの定義、具体例及び好ましい例は前記式(1)におけるそれらと同じである。Rは置換されていてもよい炭素原子数1〜30の2価の基である。Rの具体例及び好ましい例は前述のRにおけるそれらと同じである。 R 1 may be linked to R 2 or R 5 . In the formula (1), a structural example in the case where one R 1 and one R 2 are linked is shown in the following formula (5).
Figure 0006269204
In formula (5), the definitions, specific examples and preferred examples of R 1 , R 2 and R 3 are the same as those in formula (1). R 6 is an optionally substituted divalent group having 1 to 30 carbon atoms. Specific examples and preferred examples of R 6 are the same as those in R 3 described above.

前記RはCOOの構造を1つ有する。Rは好ましくは−R−COOの構造で表され、すなわち、前記式(1)におけるP(R(R)で表される配位子は、下記式(2)で表される構造が好ましい。

Figure 0006269204
(式(2)中、2つのRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基であり、かつRは−O−又は−S−を有する。) R 5 has one COO structure. R 5 is preferably represented by the structure —R 4 —COO , that is, the ligand represented by P (R 2 ) 2 (R 5 ) in the formula (1) is represented by the following formula (2). The structure represented is preferred.
Figure 0006269204
(In the formula (2), two R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 4 is an optionally substituted 2 having 1 to 30 carbon atoms. And R 4 has —O— or —S—.)

式(2)中のCOOは、錯体の中心金属イオンであるAuに結合していてもしていなくてもよく、結合していない場合は、上記式(1)で示される金錯体は平面3配位構造をとることが好ましい。 COO in the formula (2) may or may not be bonded to Au + which is the central metal ion of the complex. If not bonded, the gold complex represented by the above formula (1) is planar. A three-coordinate structure is preferable.

前記Rの構造例としては、前記Rにおける構造例のうち、−O−又は−S−を有する構造が挙げられる。金錯体の励起状態が安定化するので、Rの好ましい構造例は、下記式(3)で表される。

Figure 0006269204
(式(3)中、ArとArはそれぞれ独立に、置換されていてもよい炭素原子数6〜30のアリーレン基である。ArとArは結合して、それらが結合したXとともに環構造を形成してもよい。XはO又はSである。) Examples of the structure of R 4 include structures having —O— or —S— among the structure examples of R 3 . Since the excited state of the gold complex is stabilized, a preferred structural example of R 4 is represented by the following formula (3).
Figure 0006269204
(In Formula (3), Ar 1 and Ar 2 are each independently an arylene group having 6 to 30 carbon atoms which may be substituted. Ar 1 and Ar 2 are bonded to each other and X bonded to each other) And may form a ring structure together with X being O or S.)

前記XはOであることが好ましい。   X is preferably O.

前記ArとArが結合して環構造を形成する場合の構造例は、前記r7'、r11'、r12'で示される構造が挙げられる。ArとArが結合して環構造を形成しない場合、ArとArとしては、フェニレン基、1−ナフチレン基、2−ナフチレン基、ビフェニレン基等が挙げられ、好ましくはフェニレン基である。 Examples of the structure in the case where Ar 1 and Ar 2 are bonded to form a ring structure include the structures represented by r7 ′, r11 ′, and r12 ′. In the case where Ar 1 and Ar 2 are not bonded to form a ring structure, examples of Ar 1 and Ar 2 include a phenylene group, a 1-naphthylene group, a 2-naphthylene group, and a biphenylene group, and a phenylene group is preferable. .

前記式(1)におけるP(R(R)で表される配位子の具体例を下記c1〜c12に挙げる。

Figure 0006269204
Specific examples of the ligand represented by P (R 2 ) 2 (R 5 ) in the formula (1) are listed in the following c1 to c12.
Figure 0006269204

c1〜c12のうち、好ましくはc1〜c9であり、より好ましくはc1〜c6である。   Of c1 to c12, c1 to c9 are preferable, and c1 to c6 are more preferable.

前記式(1)における(RP−R−P(Rで表される配位子の具体例を下記d1〜d18に挙げる。

Figure 0006269204
Specific examples of ligands represented by the formula in (1) (R 1) 2 P-R 3 -P (R 1) 2 below D1~d18.
Figure 0006269204

d1〜d18のうち、好ましくはd1〜d11であり、より好ましくはd1〜d10である。   Among d1 to d18, d1 to d11 are preferable, and d1 to d10 are more preferable.

本発明の金錯体の具体例を表1および2に示す。
<表1>

Figure 0006269204
Specific examples of the gold complex of the present invention are shown in Tables 1 and 2.
<Table 1>
Figure 0006269204

<表2>

Figure 0006269204
<Table 2>
Figure 0006269204

表1および2に示される錯体のうち、錯体番号1〜20で示される錯体が好ましい。   Of the complexes shown in Tables 1 and 2, complexes represented by complex numbers 1 to 20 are preferred.

本発明の金錯体は、3価のホスフィン部位を配位原子として有する配位子が金(I)に結合した構造の金錯体を合成する定法によって製造できる。より具体的には、例えば、溶媒(例えば、ジクロロメタンやアセトニトリルなど)に金塩(例えば、テトラ−n−ブチルアンモニウムジブロモアウラートやテトラ−n−ブチルアンモニウムジクロロアウラートなど)を溶解させ、ここに、該金塩と同じ当量数の1種類目の配位子(例えば、上述のd1〜d10のいずれか)と、該金塩と同じ当量数の2種類目の配位子(例えば、後述するe1〜e6のいずれか)とを混合し、該2種類目の配位子と同じ当量数の塩基性試薬(例えば、カリウムエトキシド、カリウムメトキシド、水酸化カリウム、又はこれらの溶液など)を加え、室温あるいは加熱状態(例えば、60℃)で撹拌する(時間は、1分〜12時間程度)といった常法に従って製造できる。   The gold complex of the present invention can be produced by a conventional method of synthesizing a gold complex having a structure in which a ligand having a trivalent phosphine moiety as a coordination atom is bonded to gold (I). More specifically, for example, a gold salt (eg, tetra-n-butylammonium dibromoaurate or tetra-n-butylammonium dichloroaurate) is dissolved in a solvent (eg, dichloromethane, acetonitrile, etc.). The first type of ligand having the same number of equivalents as the gold salt (for example, any one of d1 to d10 described above) and the second type of ligand having the same number of equivalents as the gold salt (for example, described later) e1 to e6) and the same number of basic reagents as the second ligand (for example, potassium ethoxide, potassium methoxide, potassium hydroxide, or a solution thereof). In addition, it can be produced according to a conventional method of stirring at room temperature or in a heated state (for example, 60 ° C.) (time is about 1 minute to 12 hours).

本発明の金錯体は、例えば、反応の触媒や助触媒として使用することや、発光材料として使用することができ、発光材料の中でも特に発光素子用材料として使用することができる。   The gold complex of the present invention can be used, for example, as a reaction catalyst or a cocatalyst, or as a light emitting material, and can be used as a light emitting element material among light emitting materials.

本発明はまた、上記式(1)で表される金錯体を含む膜を提供する。   The present invention also provides a film containing the gold complex represented by the above formula (1).

本発明の膜は、例えば、前記金錯体と他の成分とを任意の割合で基板上に蒸着する工程を含む方法、又は、前記金錯体と他の成分とを任意の割合で溶媒中に懸濁又は溶解させ、塗布する工程を含む方法によって製造することができる。好ましくは前記金錯体と他の成分とを任意の割合で溶媒中に懸濁又は溶解させ、塗布する工程を含む方法によって製造される。   The film of the present invention is, for example, a method comprising a step of vapor-depositing the gold complex and other components on a substrate in an arbitrary ratio, or the gold complex and other components are suspended in a solvent at an arbitrary ratio. It can be produced by a method including a step of applying turbidity or dissolution. Preferably, the gold complex and the other components are produced by a method including a step of suspending or dissolving the gold complex and other components in a solvent in an arbitrary ratio and applying.

本発明の膜は例えば、発光素子用材料として用いることができる。   The film of the present invention can be used, for example, as a light emitting element material.

本発明の金錯体を含む膜を発光素子用材料として用いる場合、発光素子中に使用する。該発光素子は、通常、陽極と陰極からなる一対の電極と、該電極間に設けられた発光層を有する一層又は複数層からなる薄膜層とが挟持されている発光素子であり、該薄膜層の少なくとも1層が、本発明の金錯体を含有する。   When using the film | membrane containing the gold complex of this invention as a light emitting element material, it uses in a light emitting element. The light-emitting element is usually a light-emitting element in which a pair of electrodes composed of an anode and a cathode and a single-layer or multi-layer thin film layer having a light-emitting layer provided between the electrodes are sandwiched between the thin-film layers. At least one layer of contains the gold complex of the present invention.

該発光素子において、本発明の金錯体を含む薄膜層中の該金錯体の含有量は、該薄膜層全体の重量に対し、通常0.01〜100重量%であり、好ましくは0.1〜99重量%であり、より好ましくは1〜90重量%であり、更に好ましくは3〜80重量%であり、特に好ましくは5〜30重量%である。   In the light emitting device, the content of the gold complex in the thin film layer containing the gold complex of the present invention is usually 0.01 to 100% by weight, preferably 0.1 to 100% by weight based on the weight of the entire thin film layer. It is 99 weight%, More preferably, it is 1-90 weight%, More preferably, it is 3-80 weight%, Especially preferably, it is 5-30 weight%.

該発光素子としては、例えば、単層型の発光素子(陽極/発光層/陰極)が挙げられ、この発光層が本発明の金錯体を含有する。また、多層型の発光素子の層構成としては、
(a)陽極/正孔注入層/(正孔輸送層)/発光層/陰極
(b)陽極/発光層/電子注入層/(電子輸送層)/陰極
(c)陽極/正孔注入層/(正孔輸送層)/発光層/電子注入層/(電子輸送層)/陰極
(d)陽極/発光層/(電子輸送層)/電子注入層/陰極
(e)陽極/正孔注入層/(正孔輸送層)/発光層/(電子輸送層)/電子注入層/陰極
等が挙げられる。
Examples of the light emitting device include a single layer type light emitting device (anode / light emitting layer / cathode), and this light emitting layer contains the gold complex of the present invention. In addition, as a layer configuration of the multilayer light emitting element,
(A) anode / hole injection layer / (hole transport layer) / light emitting layer / cathode (b) anode / light emitting layer / electron injection layer / (electron transport layer) / cathode (c) anode / hole injection layer / (Hole transport layer) / light emitting layer / electron injection layer / (electron transport layer) / cathode (d) anode / light emitting layer / (electron transport layer) / electron injection layer / cathode (e) anode / hole injection layer / (Hole transport layer) / light emitting layer / (electron transport layer) / electron injection layer / cathode.

前記(a)〜(e)において、(正孔輸送層)、(電子輸送層)は、その位置にこれらの層がそれぞれ存在していてもしなくてもよい任意の層であることを表す。   In the above (a) to (e), (hole transport layer) and (electron transport layer) represent an arbitrary layer in which these layers may or may not exist respectively.

陽極は、正孔注入層、正孔輸送層、発光層等に正孔を供給するものであり、4.5eV以上の仕事関数を有することが好ましい。陽極の材料には、金属、合金、金属酸化物、電気伝導性化合物及びこれらの組み合わせを用いることができるが、具体的には、酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物や、金、銀、クロム、ニッケル等の金属や、これらの導電性金属酸化物と金属との混合物及び積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン類、ポリチオフェン類〔ポリ(3,4)エチレンジオキシチオフェン等〕、ポリピロール等の有機導電性材料及びこれらとITOとの組み合わせを用いることができる。   The anode supplies holes to a hole injection layer, a hole transport layer, a light emitting layer, and the like, and preferably has a work function of 4.5 eV or more. As the material of the anode, metals, alloys, metal oxides, electrically conductive compounds and combinations thereof can be used. Specifically, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), etc. Conductive metal oxides, metals such as gold, silver, chromium and nickel, mixtures and laminates of these conductive metal oxides and metals, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline , Polythiophenes [poly (3,4) ethylenedioxythiophene, etc.], organic conductive materials such as polypyrrole, and combinations thereof with ITO can be used.

陰極は、電子注入層、電子輸送層、発光層等に電子を供給するものである。陰極の材料には、金属、合金、金属ハロゲン化物、金属酸化物、電気伝導性化合物及びこれらの組み合わせを用いることができるが、具体的には、アルカリ金属(Li、Na、K等)及びそのフッ化物並びに酸化物、アルカリ土類金属(Mg、Ca、Ba、Cs等)及びそのフッ化物並びに酸化物、金、銀、鉛、アルミニウム、合金及び混合金属類〔ナトリウム−カリウム合金、ナトリウム−カリウム混合金属、リチウム−アルミニウム合金、リチウム−アルミニウム混合金属、マグネシウム−銀合金、マグネシウム−銀混合金属等〕、希土類金属〔インジウム、イッテルビウム等〕を用いることができる。   The cathode supplies electrons to an electron injection layer, an electron transport layer, a light emitting layer, and the like. As the cathode material, metals, alloys, metal halides, metal oxides, electrically conductive compounds and combinations thereof can be used. Specifically, alkali metals (Li, Na, K, etc.) and their Fluorides and oxides, alkaline earth metals (Mg, Ca, Ba, Cs, etc.) and their fluorides and oxides, gold, silver, lead, aluminum, alloys and mixed metals [sodium-potassium alloys, sodium-potassium Mixed metals, lithium-aluminum alloys, lithium-aluminum mixed metals, magnesium-silver alloys, magnesium-silver mixed metals, etc.], rare earth metals [indium, ytterbium, etc.] can be used.

正孔注入層及び正孔輸送層は、陽極から正孔を注入する機能、正孔を輸送する機能、又は陰極から注入された電子を障壁する機能を有する。これらの層に用いられる材料としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン誘導体、スチリルアミン誘導体、芳香族ジメチリジン誘導体、ポルフィリン誘導体、ポリシラン誘導体、ポリ(N−ビニルカルバゾール)誘導体、有機シラン誘導体、及びこれらの残基を含む重合体;アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマーが挙げられる。前記正孔注入層及び前記正孔輸送層は、これらの1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole injection layer and the hole transport layer have a function of injecting holes from the anode, a function of transporting holes, or a function of blocking electrons injected from the cathode. Materials used for these layers include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives. , Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine derivatives, styrylamine derivatives, aromatic dimethylidine derivatives, porphyrin derivatives, polysilane derivatives, poly (N-vinylcarbazole) derivatives, organic Silane derivatives and polymers containing these residues; aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene That. The hole injection layer and the hole transport layer may have a single layer structure composed of one or more of these, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .

電子注入層及び電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、又は陽極から注入された正孔を障壁する機能を有する。これらの層に用いられる材料としては、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンやペリレン等の芳香環のテトラカルボン酸無水物、フタロシアニン誘導体、金属錯体(例えば、8−キノリノール誘導体の金属錯体、メタルフタロシアニンを配位子とする金属錯体、ベンゾオキサゾールを配位子とする金属錯体、ベンゾチアゾールを配位子とする金属錯体)、有機シラン誘導体等が挙げられる。電子注入層及び前記電子輸送層は、これらの1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The electron injection layer and the electron transport layer have a function of injecting electrons from the cathode, a function of transporting electrons, or a function of blocking holes injected from the anode. Materials used for these layers include triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, full Olenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, metal complexes (for example, metal complexes of 8-quinolinol derivatives, metal complexes having metal phthalocyanine as a ligand) , Metal complexes having benzoxazole as a ligand, metal complexes having benzothiazole as a ligand), organosilane derivatives, and the like. The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of them, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

電子注入層及び電子輸送層の材料として、絶縁体又は半導体の無機化合物も使用できる。電子注入層及び電子輸送層が絶縁体又は半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選ばれる少なくとも一種の金属化合物が挙げられ、CaO、BaO、SrO、BeO、BaS及びCaSeが好ましい。また、電子注入層及び電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnからなる群から選ばれる少なくとも一種の元素の酸化物、窒化物、酸化窒化物等が挙げられる。   As the material for the electron injection layer and the electron transport layer, an insulator or a semiconductor inorganic compound can also be used. If the electron injection layer and the electron transport layer are made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved. Examples of such an insulator include at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides, such as CaO, BaO, SrO, BeO, BaS and CaSe are preferred. The semiconductor constituting the electron injection layer and the electron transport layer is selected from the group consisting of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn. And oxides, nitrides, oxynitrides of at least one element.

また、該発光素子において、陰極と陰極に接する薄膜との界面領域に還元性ドーパントが添加されていてもよい。前記還元性ドーパントとしては、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン化物、アルカリ金属錯体、アルカリ土類金属錯体及び希土類金属錯体が挙げられる。   In the light-emitting element, a reducing dopant may be added to the interface region between the cathode and the thin film in contact with the cathode. Examples of the reducing dopant include alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxidation. Or rare earth metal halides, alkali metal complexes, alkaline earth metal complexes, and rare earth metal complexes.

発光層は、電界印加時に陽極、正孔注入層又は正孔輸送層より正孔を注入することができ、陰極、電子注入層又は電子輸送層より電子を注入することができる機能、注入した電荷(電子と正孔)を電界の力で移動させる機能、電子と正孔の再結合の場を提供し、これを発光につなげる機能のいずれかを有する。発光層に含有される本発明の金錯体をゲスト材料とするホスト材料を、発光層に含有させてもよく、発光層中に本発明の金錯体とは別の発光材料(イリジウム錯体など)を含有させてもよい。ホスト材料としては、例えば、フルオレン骨格を有する化合物、カルバゾール骨格を有する化合物、ジアリールアミン骨格を有する化合物、ピリジン骨格を有する化合物、ピラジン骨格を有する化合物、トリアジン骨格を有する化合物及びアリールシラン骨格を有する化合物が挙げられる。ホスト材料のT1準位は、ゲスト材料のT1準位より大きいことが好ましい。ホスト材料は低分子化合物であっても、高分子化合物であってもよい。ホスト材料は更に電解質を含有してもよく、該電解質は、例えば、支持塩(トリフルオロメタンスルホン酸リチウム、過塩素酸リチウム、過塩素酸テトラブチルアンモニウム、ヘキサフルオロリン酸カリウム、テトラフルオロホウ酸テトラ−n−ブチルアンモニウム等)を含有してもよい溶媒(プロピレンカーボネート、アセトニトリル、2−メチルテトラヒドロフラン、1,3−ジオキソフラン、ニトロベンゼン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、グリセリン、プロピルアルコール、水等)、又は該溶媒で膨潤したゲル状の高分子(ポリエチレンオキシド、ポリアクリルニトリル、フッ化ビニリデンと六フッ化プロピレンの共重合体等)であってもよい。発光層は、ホスト材料と本発明の金錯体とを混合して塗布するか、又は共蒸着することにより形成することができる。   The light-emitting layer can inject holes from the anode, hole injection layer or hole transport layer when an electric field is applied, and can inject electrons from the cathode, electron injection layer or electron transport layer, injected charge It has either a function of moving (electrons and holes) by the force of an electric field, or a function of providing a field for recombination of electrons and holes and connecting this to light emission. A host material having the gold complex of the present invention contained in the light emitting layer as a guest material may be contained in the light emitting layer, and a light emitting material (such as an iridium complex) other than the gold complex of the present invention is contained in the light emitting layer. You may make it contain. Examples of the host material include a compound having a fluorene skeleton, a compound having a carbazole skeleton, a compound having a diarylamine skeleton, a compound having a pyridine skeleton, a compound having a pyrazine skeleton, a compound having a triazine skeleton, and a compound having an arylsilane skeleton Is mentioned. The T1 level of the host material is preferably larger than the T1 level of the guest material. The host material may be a low molecular compound or a high molecular compound. The host material may further contain an electrolyte, such as a supporting salt (lithium trifluoromethanesulfonate, lithium perchlorate, tetrabutylammonium perchlorate, potassium hexafluorophosphate, tetrafluoroborate tetra -N-butylammonium or the like may contain a solvent (propylene carbonate, acetonitrile, 2-methyltetrahydrofuran, 1,3-dioxofuran, nitrobenzene, N, N-dimethylformamide, dimethyl sulfoxide, glycerin, propyl alcohol, water, etc. Or a gel-like polymer (polyethylene oxide, polyacrylonitrile, a copolymer of vinylidene fluoride and propylene hexafluoride, etc.) swollen with the solvent. The light emitting layer can be formed by mixing the host material and the gold complex of the present invention, or by co-evaporation.

該発光素子において、各層の形成方法としては、真空蒸着法〔抵抗加熱蒸着法、電子ビーム法等〕、スパッタリング法、LB法、分子積層法、塗布法〔キャスティング法、スピンコート法、バーコート法、ブレードコート法、ロールコート法、グラビア印刷法、スクリーン印刷法、インクジェット法等〕が挙げられるが、製造プロセスを簡略化できる点で、塗布法が好ましい。前記塗布法では、本発明の金錯体、前記ポリマー又は前記組成物を溶媒と混合して塗布液を調製し、該塗布液を所望の層(又は電極)上に、塗布・乾燥させることによって形成することができる。塗布液中にはホスト材料及び/又はバインダーとして樹脂を含有させてもよい。この樹脂は溶媒に溶解状態とすることも、分散状態とすることもできる。   In the light emitting element, each layer is formed by a vacuum deposition method (resistance heating deposition method, electron beam method, etc.), sputtering method, LB method, molecular lamination method, coating method (casting method, spin coating method, bar coating method). A blade coating method, a roll coating method, a gravure printing method, a screen printing method, an ink jet method, etc.], but a coating method is preferable in that the manufacturing process can be simplified. In the coating method, the gold complex of the present invention, the polymer or the composition is mixed with a solvent to prepare a coating solution, and the coating solution is applied and dried on a desired layer (or electrode). can do. The coating solution may contain a resin as a host material and / or a binder. This resin can be dissolved in a solvent or dispersed.

樹脂としては、ポリビニルカルバゾール等の非共役系高分子、ポリオレフィン系高分子等の共役系高分子を使用することができるが、具体的には、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂が挙げられる。樹脂の溶液は、更に、酸化防止剤、粘度調整剤等を含有してもよい。前記溶液に用いられる溶媒としては、薄膜の成分を均一に溶解するもの又は安定な分散液を与える溶媒が好ましく、例えば、アルコール類〔メタノール、エタノール、イソプロピルアルコール等〕、ケトン類〔アセトン、メチルエチルケトン等〕、塩素化炭化水素類〔クロロホルム、1,2−ジクロロエタン等〕、芳香族炭化水素類〔トルエン、キシレン、メシチレン等〕、脂肪族炭化水素類〔ノルマルヘキサン、シクロヘキサン等〕、アミド類〔ジメチルホルムアミド等〕、スルホキシド類〔ジメチルスルホキシド等〕、それらの混合物が挙げられる。   As the resin, non-conjugated polymers such as polyvinyl carbazole and conjugated polymers such as polyolefin polymers can be used. Specifically, polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, Butyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, Examples include alkyd resins, epoxy resins, and silicon resins. The resin solution may further contain an antioxidant, a viscosity modifier and the like. The solvent used in the solution is preferably a solvent that uniformly dissolves the components of the thin film or a solvent that gives a stable dispersion. For example, alcohols (methanol, ethanol, isopropyl alcohol, etc.), ketones (acetone, methyl ethyl ketone, etc.) ], Chlorinated hydrocarbons [chloroform, 1,2-dichloroethane, etc.], aromatic hydrocarbons [toluene, xylene, mesitylene, etc.], aliphatic hydrocarbons [normal hexane, cyclohexane, etc.], amides [dimethylformamide] Etc.], sulfoxides [dimethyl sulfoxide, etc.], and mixtures thereof.

インクジェット法においては、例えば、ノズルからの蒸発を押さえるために高沸点の溶媒〔アニソール、ビシクロヘキシルベンゼン等〕を用いることができる。また、溶液の粘度は、25℃において、1〜100mPa・sが好ましい。   In the ink jet method, for example, a solvent having a high boiling point (such as anisole or bicyclohexylbenzene) can be used to suppress evaporation from the nozzle. The viscosity of the solution is preferably 1 to 100 mPa · s at 25 ° C.

該発光素子の各層の膜厚は、0.1nm〜200μmが好ましく、0.5nm〜100μmがより好ましく、1nm〜5μmがより好ましい。   The thickness of each layer of the light emitting element is preferably from 0.1 nm to 200 μm, more preferably from 0.5 nm to 100 μm, and more preferably from 1 nm to 5 μm.

該発光素子は、例えば、照明用光源、サイン用光源、バックライト用光源、ディスプレイ装置、プリンターヘッドに用いることができる。ディスプレイ装置としては、公知の駆動技術、駆動回路等を用い、セグメント型、ドットマトリクス型等の構成とすることができる。   The light-emitting element can be used for, for example, an illumination light source, a sign light source, a backlight light source, a display device, and a printer head. The display device can be configured in a segment type, a dot matrix type, or the like using a known driving technique, driving circuit, or the like.

本発明はまた、下記式(4)で表される化合物を提供する。

Figure 0006269204
(式(4)中、2つのRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基であり、かつRは−O−又は−S−を有する。) The present invention also provides a compound represented by the following formula (4).
Figure 0006269204
(In the formula (4), two R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 4 is an optionally substituted 2 having 1 to 30 carbon atoms. And R 4 has —O— or —S—.)

式(4)におけるRとRの定義及、具体例、及び好ましい構造は、前記式(2)におけるRとRのそれらと同じである。 The definitions, specific examples, and preferred structures of R 2 and R 4 in formula (4) are the same as those of R 2 and R 4 in formula (2).

式(4)の化合物は、カルボン酸の部位がカルボキシラート状態となって、前記式(2)で表される構造をとり、任意のカチオンと対になっていてもよい。   The compound of the formula (4) may be paired with an arbitrary cation having a structure represented by the formula (2) in which the carboxylic acid moiety is in a carboxylate state.

式(4)で表される化合物の具体例を下記e1〜e12に挙げる。

Figure 0006269204
Specific examples of the compound represented by the formula (4) are listed in e1 to e12 below.
Figure 0006269204

e1〜e12のうち、好ましくはe1〜e9であり、より好ましくはe1〜e6である。   Among e1 to e12, e1 to e9 are preferable, and e1 to e6 are more preferable.

本発明の化合物は、一般に知られている反応を組み合わせることで合成することができ、特に限定されるものではないが、例えば、下記反応式(5)に示す方法により製造することができる。

Figure 0006269204
(反応式(5)において、R及びRは、前述のそれらと同じである。X’は臭素又はヨウ素である。Rは、炭素原子数1〜18のヒドロカルビル基である。) The compound of the present invention can be synthesized by combining generally known reactions, and is not particularly limited, but can be produced, for example, by the method shown in the following reaction formula (5).

Figure 0006269204
(In the reaction formula (5), R 2 and R 4 are the same as those described above. X ′ is bromine or iodine. R 7 is a hydrocarbyl group having 1 to 18 carbon atoms.)

反応式(5)において、Rは炭素原子数1〜18のヒドロカルビル基であり、好ましくは炭素原子数1〜6のアルキル基であり、更に好ましくはメチル基である。 In the reaction formula (5), R 7 is a hydrocarbyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, and more preferably a methyl group.

反応式(5)において、X’を有する化合物に対してアルキルリチウム試薬(例えば、n―ブリルリチウムのヘキサン溶液)又はマグネシウムを加え、反応系中でR部位にカルボアニオンを発生させたのち、RO−C(=O)−ORを反応させることで、エステル構造(COOR)を有する化合物が得られる。該エステル部位は、通常の脱エステル化反応に用いられる試薬(例えば、フッ素アニオンを有する試薬や、水酸化カリウム水溶液など)を反応させることによって、カルボン酸(COOH)を有する化合物を得ることができる。 In reaction formula (5), an alkyllithium reagent (for example, hexane solution of n-brryllithium) or magnesium is added to the compound having X ′, and a carbanion is generated at the R 4 site in the reaction system. A compound having an ester structure (COOR 7 ) is obtained by reacting R 4 O—C (═O) —OR 4 . The ester moiety can be obtained by reacting a reagent (for example, a reagent having a fluorine anion or an aqueous potassium hydroxide solution) used in a normal deesterification reaction to obtain a compound having a carboxylic acid (COOH). .

本発明の化合物はまた、例えば下記反応式(6)に示す方法によって好適に製造することができる。

Figure 0006269204
(反応式(6)において、R、R及びX’は、前述のそれらと同じである) The compound of the present invention can also be suitably produced, for example, by the method shown in the following reaction formula (6).
Figure 0006269204
(In the reaction formula (6), R 2 , R 4 and X ′ are the same as those described above.)

反応式(6)におけるX’を有する化合物に対してアルキルリチウム試薬(例えば、n―ブリルリチウムのヘキサン溶液)又はマグネシウムを加え、反応系中でR部位にカルボアニオンを発生させたのち、COを反応させることで、カルボン酸体を得ることができる。反応式(6)及び前述の反応式(5)の一段階目の反応では、マグネシウムを用いるよりもアルキルリチウム試薬を用いることが好ましく、アルキルリチウム試薬の活性化試薬(例えば、N,N,N',N'-テトラメチルエチレンジアミン)を添加してもよい。 After adding an alkyllithium reagent (for example, hexane solution of n-bryllithium) or magnesium to the compound having X ′ in the reaction formula (6) to generate a carbanion at the R 4 site in the reaction system, CO By reacting 2 , the carboxylic acid form can be obtained. In the first stage reaction of the reaction formula (6) and the above-described reaction formula (5), it is preferable to use an alkyl lithium reagent rather than magnesium, and an alkyl lithium reagent activation reagent (for example, N, N, N ', N'-tetramethylethylenediamine) may be added.

本発明の化合物の、より具体的な製造方法の例を以下に示す。   The example of the more concrete manufacturing method of the compound of this invention is shown below.

アルゴン雰囲気下、上述のe1〜e12のいずれかで表される化合物からCOOH部位を臭素に置き換えた構造の化合物およそ3mmolの溶液(溶媒はトルエンやN,N−ジメチルホルムアミドなど)およそ15〜30mLに、−78°Cでn−BuLiおよそ3mmolをヘキサン溶液の状態で滴下する。その後、同温にて炭酸ガスをバブリングし、バブリングを続けながら徐々に室温まで昇温することで合成することができる。   Under an argon atmosphere, about 15 to 30 mL of a solution of about 3 mmol of a compound having a structure in which the COOH moiety is replaced with bromine from the compound represented by any of the above e1 to e12 (the solvent is toluene, N, N-dimethylformamide, etc.) , Approximately 3 mmol of n-BuLi is added dropwise in a hexane solution at -78 ° C. Then, carbon dioxide gas is bubbled at the same temperature, and it can synthesize | combine by heating up gradually to room temperature, continuing bubbling.

本発明の化合物は、例えば、反応の触媒や助触媒として使用することや、金属に配位させて発光錯体を得るために使用することができる。該反応としては、パラジウム、ニッケル、亜鉛、銅、マンガン、バナジウム、ロジウム、チタン、タングステン、クロム、ルテニウム、スズといった金属を触媒又は助触媒として使用する反応が挙げられる。該反応としては、例えば、鈴木反応、根岸反応、Heck反応、Stille反応、薗頭反応、Buchwald-Hartwig反応などが挙げられる。本発明の化合物は、発光素子用材料に用いる配位子として使用することが好ましい。   The compound of the present invention can be used, for example, as a reaction catalyst or cocatalyst, or to obtain a light-emitting complex by coordination with a metal. Examples of the reaction include reactions using metals such as palladium, nickel, zinc, copper, manganese, vanadium, rhodium, titanium, tungsten, chromium, ruthenium, and tin as catalysts or promoters. Examples of the reaction include Suzuki reaction, Negishi reaction, Heck reaction, Stille reaction, Sonogashira reaction, Buchwald-Hartwig reaction and the like. It is preferable to use the compound of this invention as a ligand used for the light emitting element material.

次に、実施例を示して本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the present invention will be described with reference to examples. However, the present invention is not limited to these examples.

以下、NMR測定にはVarian社製300MHzNMRスペクトロメータ−を、DART−MS測定には日本電子製のThe AccuTOF TLC(JMS−T100TD)を、元素分析には自動分析法を用いた。膜の厚さは、高精度微細形状測定機(株式会社小坂研究所、SURFCORDER ET3000)を用いて測定した。   Hereinafter, Varian 300 MHz NMR spectrometer was used for NMR measurement, The AccuTOF TLC (JMS-T100TD) manufactured by JEOL was used for DART-MS measurement, and automatic analysis was used for elemental analysis. The thickness of the film was measured using a high-precision fine shape measuring instrument (Kosaka Laboratory, SURFCORDER ET3000).

実施例1(e1の合成)

Figure 0006269204
Example 1 (synthesis of e1)
Figure 0006269204

f1で示す化合物をEur.J.Org.Chem.4483−4486(2007)に記載の方法で合成した。   The compound represented by f1 was prepared according to Eur. J. et al. Org. Chem. It was synthesized by the method described in 4483-4486 (2007).

アルゴン雰囲気下、f1 (4.00 g, 9.23 mmol)のトルエン60 mL溶液に、N,N,N',N'-テトラメチルエチレンジアミン(1.67 mL, 11.1 mmol)を加え、−78°Cでn-BuLiのヘキサン溶液(1.64 mol/L, 5.63 mL, n-BuLiとして9.23 mmol)を30分間かけて滴下後、同温にて10分間攪拌した。同温にて炭酸ガスを1時間バブリングし、バブリングを続けながら5時間かけて徐々に室温まで昇温した。反応溶液に水を加え、減圧して濃縮した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒ヘキサン:クロロホルム=50:50)によって精製し、減圧乾燥してe1を1.12 g (収率31%)得た。   Under an argon atmosphere, N, N, N ′, N′-tetramethylethylenediamine (1.67 mL, 11.1 mmol) was added to a 60 mL toluene solution of f1 (4.00 g, 9.23 mmol), and n-BuLi at −78 ° C. A hexane solution (1.64 mol / L, 5.63 mL, 9.23 mmol as n-BuLi) was added dropwise over 30 minutes, followed by stirring at the same temperature for 10 minutes. Carbon dioxide was bubbled for 1 hour at the same temperature, and the temperature was gradually raised to room temperature over 5 hours while continuing bubbling. Water was added to the reaction solution, and the mixture was concentrated under reduced pressure. Thereafter, the product was purified by silica gel column chromatography (developing solvent hexane: chloroform = 50: 50) and dried under reduced pressure to obtain 1.12 g (yield 31%) of e1.

e1のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=6.65(d,J=7.9Hz,1H),6.95−7.04(m,2H),7.13(dt,J=7.5,1.0Hz,1H),7.21(t,J=7.7Hz,1H),7.27−7.43(m,12H),8.12(dt,J=7.9,2.0Hz,1H).
31P NMR(121MHz,CDCl3) δ(ppm)=−16.3(s).
The NMR data of e1 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 6.65 (d, J = 7.9 Hz, 1H), 6.95-7.04 (m, 2H), 7.13 (dt, J = 7.5, 1.0 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H), 7.27-7.43 (m, 12H), 8.12 (dt, J = 7.9) , 2.0 Hz, 1H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = − 16.3 (s).

e1のDART−MS測定の結果を下記に示す。
DART−MS(M/Z):found;399.11.calcd;399.11(M+H)
The result of DART-MS measurement of e1 is shown below.
DART-MS (M / Z): found; 399.11. calcd; 399.11 (M + H) + .

合成例1(f3の合成)

Figure 0006269204
Synthesis Example 1 (synthesis of f3)
Figure 0006269204

f2で示す化合物をEur.J.Org.Chem.4483−4486(2007)に記載の方法で合成した。   The compound represented by f2 was prepared according to Eur. J. et al. Org. Chem. It was synthesized by the method described in 4483-4486 (2007).

f2(2.50 g, 6.67 mmol)の脱水ジエチルエーテル(88 mL)溶液を-78℃に冷却し、n-BuLiのヘキサン溶液(1.65 M, 4.04 mL, n-BuLiとして6.67 mmol)を加え、同温にて90分間攪拌した。同温にて、ジ(o-トリル)クロロホスフィン(1.66 g, 6.67 mmol)の脱水ジエチルエーテル(10 mL)溶液を10分間かけて滴下した。撹拌しながら5時間かけて室温に昇温した。反応溶液にトルエン60 mL、水20 mLを加え、抽出操作により有機層を分離した。集めた有機層を飽和食塩水で洗浄した後、硫酸ナトリウムを用いて乾燥し、ろ過した後、ろ液を濃縮した。得られた淡黄色の固体をシリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:クロロホルム=85:15)により精製し、減圧乾燥してf3を1.41 g(収率46%収率)得た。   A solution of f2 (2.50 g, 6.67 mmol) in dehydrated diethyl ether (88 mL) was cooled to −78 ° C., and a hexane solution of n-BuLi (1.65 M, 4.04 mL, 6.67 mmol as n-BuLi) was added. For 90 minutes. At the same temperature, a solution of di (o-tolyl) chlorophosphine (1.66 g, 6.67 mmol) in dehydrated diethyl ether (10 mL) was added dropwise over 10 minutes. The temperature was raised to room temperature over 5 hours with stirring. Toluene 60 mL and water 20 mL were added to the reaction solution, and the organic layer was separated by extraction. The collected organic layer was washed with saturated brine, dried over sodium sulfate, filtered, and the filtrate was concentrated. The obtained pale yellow solid was purified by silica gel column chromatography (developing solvent: hexane: chloroform = 85: 15) and dried under reduced pressure to obtain 1.41 g of f3 (yield: 46%).

f3のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=2.40(s,6H),6.71−7.28(m,15H),7.54(dd,J=7.9,1.4Hz,1H).
31P NMR(121MHz,CDCl3) δ(ppm)=−31.2(s).
The NMR data of f3 is shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 2.40 (s, 6H), 6.71-7.28 (m, 15H), 7.54 (dd, J = 7.9, 1. 4 Hz, 1 H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) =-31.2 (s).

実施例2(e2の合成)

Figure 0006269204
Example 2 (synthesis of e2)
Figure 0006269204

アルゴン雰囲気下、f3(1.42 g, 3.07 mmol)のトルエン25 mL溶液に、N,N,N',N'-テトラメチルエチレンジアミン(0.55 mL, 0.43 mmol)を加え、−78°Cでn-BuLiヘキサン溶液(1.64 mol/L, 2.23 mL, BuLiとして3.66 mmol)を10分間かけて滴下し、同温にて10分間攪拌した。その後、同温にて炭酸ガスを1時間バブリングし、バブリングを続けながら5時間かけて徐々に室温まで昇温した。反応溶液に水を加え、クロロホルムを加えて抽出し、集めた有機層を濃縮した。その後、クロロホルム−メタノールにより熱再結晶を行い、析出した固体をろ過により分取し、e2を167 mgを得た。さらに、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:クロロホルム=80:20)によって精製し、減圧乾燥してe3を467 mg得た(合計収率49%)。   Under an argon atmosphere, N, N, N ′, N′-tetramethylethylenediamine (0.55 mL, 0.43 mmol) was added to a toluene solution of f3 (1.42 g, 3.07 mmol) in 25 mL, and n-BuLi at −78 ° C. A hexane solution (1.64 mol / L, 2.23 mL, 3.66 mmol as BuLi) was added dropwise over 10 minutes, and the mixture was stirred at the same temperature for 10 minutes. Thereafter, carbon dioxide gas was bubbled for 1 hour at the same temperature, and the temperature was gradually raised to room temperature over 5 hours while continuing bubbling. Water was added to the reaction solution, chloroform was added for extraction, and the collected organic layer was concentrated. Then, it thermally recrystallized with chloroform-methanol, the depositing solid was fractionated by filtration, and 167 mg of e2 was obtained. Further, the filtrate was concentrated, and the residue was purified by silica gel column chromatography (developing solvent: hexane: chloroform = 80: 20) and dried under reduced pressure to obtain 467 mg of e3 (total yield 49%).

e2のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=2.33(s,6H),6.68(d,J=8.0Hz,1H),6.81(s,2H),6.92(s,1H),7.09−7.43(m,11H),8.11(d,J=7.2Hz,1H).
31P NMR(121MHz,CDCl3) δ(ppm)=−32.8(s).
The NMR data of e2 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 2.33 (s, 6H), 6.68 (d, J = 8.0 Hz, 1H), 6.81 (s, 2H), 6.92 (S, 1H), 7.09-7.43 (m, 11H), 8.11 (d, J = 7.2 Hz, 1H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = − 32.8 (s).

e2のDART−MS測定の結果を下記に示す。
DART−MS(M/Z):found;427.13.calcd;427.15(M+H)
The result of DART-MS measurement of e2 is shown below.
DART-MS (M / Z): found; 427.13. calcd; 427.15 (M + H) + .

Figure 0006269204
d1で示す化合物をOrganometallics,23,6077−6079(2004)に記載の方法で合成した。
Figure 0006269204
The compound represented by d1 was synthesized by the method described in Organometallics, 23, 6077-6079 (2004).

合成例2(d2の合成)

Figure 0006269204
Synthesis Example 2 (Synthesis of d2)
Figure 0006269204

削状マグネシウム (0.710 g, 29.4 mmol)と塩化リチウム (1.27 g, 30.0 mmol)を入れた容器を、減圧下でヒートガンを用いて加熱乾燥しながらアルゴン置換した。容器を室温に戻し、THFを15 ml加えた後、40 ℃を保ちながら1-ブロモ-4-メトキシ-2-メチルベンゼン (5.53 g, 27.5 mmol)のTHF (15 ml)溶液を1時間かけて滴下した。更に1時間撹拌しながら室温として、MgBr体を調製した。
MgBr体とは別の反応容器に1,2-ビス(ジクロロホスフィノ)ベンゼン (1.02 g, 3.64 mmol)のTHF (30 ml)溶液を調製し、−78 ℃にて、上述のMgBr体を45分間かけて滴下した。その後、攪拌しながら90分間かけて室温に戻した。反応溶液に水とクロロホルムを加え、抽出操作により有機層を水と飽和食塩水で洗い、硫酸ナトリウムを用いて乾燥した。ろ過により硫酸ナトリウムを取り除いた後、減圧下で濃縮した。その後、クロロホルム−メタノールにより熱再結晶を行い、析出した固体をろ過により分取し、減圧乾燥してd2を1.41 g(収率62%)得た。
A container containing ground magnesium (0.710 g, 29.4 mmol) and lithium chloride (1.27 g, 30.0 mmol) was purged with argon while being heated and dried using a heat gun under reduced pressure. Return the container to room temperature, add 15 ml of THF, and maintain a solution of 1-bromo-4-methoxy-2-methylbenzene (5.53 g, 27.5 mmol) in THF (15 ml) over 1 hour while maintaining 40 ° C. It was dripped. Further, the MgBr body was prepared at room temperature while stirring for 1 hour.
Prepare a solution of 1,2-bis (dichlorophosphino) benzene (1.02 g, 3.64 mmol) in THF (30 ml) in a reaction vessel separate from the MgBr, and add the above-mentioned MgBr to 45 at −78 ° C. Added dropwise over a period of minutes. Then, it returned to room temperature over 90 minutes, stirring. Water and chloroform were added to the reaction solution, and the organic layer was washed with water and saturated brine by extraction, and dried using sodium sulfate. After removing sodium sulfate by filtration, the mixture was concentrated under reduced pressure. Thereafter, recrystallization was performed with chloroform-methanol, and the precipitated solid was collected by filtration and dried under reduced pressure to obtain 1.41 g (yield 62%) of d2.

d2のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=7.21−7.17(m、2H),6.96−6.91(m、2H),6.69−6.68(m、4H),6.64−6.60(m、4H),6.54−6.50(m、4H),3.75(s、12H),2.22ppm(s、12H).
31P NMR(121MHz,CDCl3) δ(ppm)=−30.9ppm(s).
The NMR data of d2 is shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 7.21-7.17 (m, 2H), 6.96-6.91 (m, 2H), 6.69-6.68 (m, 4H), 6.64-6.60 (m, 4H), 6.54-6.50 (m, 4H), 3.75 (s, 12H), 2.22 ppm (s, 12H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = − 30.9 ppm (s).

実施例3(錯体1の合成)
テトラ−n−ブチルアンモニウムジブロモアウレート (150 mg, 0.251 mmol)をジクロロメタン6 mLに溶かし、d1 (126 mg, 0.251 mmol)とe1 (99.8 mg, 0.398 mmol) を加え、均一の反応用液にカリウムメトキシド (26.4 mg, 0.377 mmol) のメタノール2.6 mL溶液を加え、40 °C で10分間撹拌した。反応溶液をろ過し、ろ液を濃縮し、この溶液にメタノール−水の混合液に浸して生じた沈殿をろ過し、ろ過物をクロロホルム1 mLに溶解し、ジエチルエーテルを徐々に拡散させて再結晶を行った。析出した淡黄色の結晶をろ過し、減圧乾燥して錯体1を164 mg得た。
Example 3 (Synthesis of Complex 1)
Tetra-n-butylammonium dibromoaurate (150 mg, 0.251 mmol) is dissolved in 6 mL of dichloromethane, d1 (126 mg, 0.251 mmol) and e1 (99.8 mg, 0.398 mmol) are added, and potassium is added to the homogeneous reaction solution. Methanol (26.4 mg, 0.377 mmol) in methanol (2.6 mL) was added, and the mixture was stirred at 40 ° C. for 10 min. The reaction solution is filtered, the filtrate is concentrated, the precipitate formed by immersing the solution in a methanol-water mixture is filtered, the filtrate is dissolved in 1 mL of chloroform, and diethyl ether is gradually diffused to re-apply. Crystallization was performed. The precipitated pale yellow crystals were filtered and dried under reduced pressure to obtain 164 mg of Complex 1.

錯体1のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=7.75(dd,J=7.7,1.6Hz,1H),7.61−6.57(m,36H),5.84(br,1H)、2.30(br,6H)、1.83(s,6H).
31P NMR(121MHz,CDCl3) δ(ppm)=38.2(t,J=150Hz),30.7−29.0ppm(m).
The NMR data of Complex 1 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 7.75 (dd, J = 7.7, 1.6 Hz, 1H), 7.61-6.57 (m, 36H), 5.84 ( br, 1H), 2.30 (br, 6H), 1.83 (s, 6H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = 38.2 (t, J = 150 Hz), 30.7-29.0 ppm (m).

得られた錯体の元素分析測定の結果を下記に示す。
Anal Calcd for C5950Au・CHCl・2HO(%):C,57.54;H,4.43;N,0.00.Found:C,57.74;H,4.17;N,<0.3.
The results of elemental analysis measurement of the obtained complex are shown below.
Anal Calcd for C 59 H 50 O 3 P 3 Au · CHCl 3 · 2H 2 O (%): C, 57.54; H, 4.43; N, 0.00. Found: C, 57.74; H, 4.17; N, <0.3.

得られた錯体1の構造を下記に示す。

Figure 0006269204
The structure of the obtained complex 1 is shown below.
Figure 0006269204

実施例4(錯体2の合成)
テトラ−n−ブチルアンモニウムジブロモアウレート (201 mg, 0.335 mmol)とd2 (209 mg, 0.335 mmol)とe1 (133 mg, 0.335 mmol)をジクロロメタン5 mLに溶かし、均一の反応用液にカリウムメトキシド (47.0 mg, 0.670 mmol) のメタノール3.0 mL溶液を加え、40 ℃ で45分間撹拌した。反応溶液をろ過し、ろ液を1 mLになるまで濃縮し、ジエチルエーテルの蒸気を徐々に拡散させて再結晶を行った。出てきた固体をろ過し、少量のメタノールで洗い、減圧乾燥して錯体2を189 mg得た。
Example 4 (Synthesis of Complex 2)
Tetra-n-butylammonium dibromoaurate (201 mg, 0.335 mmol), d2 (209 mg, 0.335 mmol) and e1 (133 mg, 0.335 mmol) are dissolved in 5 mL of dichloromethane, and potassium methoxide is added to the homogeneous reaction solution. (47.0 mg, 0.670 mmol) in methanol (3.0 mL) was added, and the mixture was stirred at 40 ° C. for 45 minutes. The reaction solution was filtered, the filtrate was concentrated to 1 mL, and recrystallization was performed by gradually diffusing the vapor of diethyl ether. The resulting solid was filtered, washed with a small amount of methanol, and dried under reduced pressure to obtain 189 mg of Complex 2.

錯体2のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=7.76(dd,J=7.6,1.5Hz,1H),7.60−6.20(m,32H),5.83(br,1H),3.85(s,6H),3.63(s,6H),2.26(s,6H),1.77(s,6H).
31P NMR(121MHz,CDCl3) δ(ppm)=37.7(t,J=153Hz),30.1−27.8ppm(m).
The NMR data of Complex 2 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 7.76 (dd, J = 7.6, 1.5 Hz, 1H), 7.60-6.20 (m, 32H), 5.83 ( br, 1H), 3.85 (s, 6H), 3.63 (s, 6H), 2.26 (s, 6H), 1.77 (s, 6H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = 37.7 (t, J = 153 Hz), 30.1-27.8 ppm (m).

得られた錯体の元素分析測定の結果を下記に示す。
Anal Calcd for C6358Au・CHCl・2CHOH(%):C,58.52;H,4.84;N,0.00.Found:C,58.85;H,4.82;N,<0.3.
The results of elemental analysis measurement of the obtained complex are shown below.
Anal Calcd for C 63 H 58 O 7 P 3 Au · CH 2 Cl 2 · 2CH 3 OH (%): C, 58.52; H, 4.84; N, 0.00. Found: C, 58.85; H, 4.82; N, <0.3.

得られた錯体2の構造を下記に示す。

Figure 0006269204
The structure of the obtained complex 2 is shown below.
Figure 0006269204

実施例5(錯体3の合成)
テトラ−n−ブチルアンモニウムジブロモアウレート (121 mg, 0.202 mmol)とd2(126.0 mg, 0.202 mmol)とe2(86.6 mg, 0.202 mmol)をジクロロメタン(5 g)に溶かし、さらに、カリウムメトキシド(21.3 mg, 0.304 mmol )のメタノール2 mL溶液を滴下し、40℃で15分間攪拌した。反応溶液をろ過し、ろ液にメタノールと水を加えて、析出した固体をろ過で分取した。ろ過物をクロロホルム−メタノールで再結晶を行い、減圧乾燥して錯体12を183 mg得た。
Example 5 (Synthesis of Complex 3)
Tetra-n-butylammonium dibromoaurate (121 mg, 0.202 mmol), d2 (126.0 mg, 0.202 mmol) and e2 (86.6 mg, 0.202 mmol) were dissolved in dichloromethane (5 g), and potassium methoxide (21.3 mg, 0.304 mmol) in methanol (2 mL) was added dropwise, and the mixture was stirred at 40 ° C. for 15 minutes. The reaction solution was filtered, methanol and water were added to the filtrate, and the precipitated solid was collected by filtration. The filtrate was recrystallized from chloroform-methanol and dried under reduced pressure to obtain 183 mg of complex 12.

錯体3のNMRデータを下記に示す。
1H NMR(300MHz,CDCl3) δ(ppm)=7.72−6.39(m,34H),3.83−3.47(m,12H),2.32−2.201(m,18H).
31P NMR(121MHz,CDCl3) δ(ppm)=35.3−33.2(m),30.1−24.5ppm(m).
The NMR data of Complex 3 are shown below.
1 H NMR (300 MHz, CDCl 3 ) δ (ppm) = 7.72-6.39 (m, 34H), 3.83-3.47 (m, 12H), 2.32-2-201 (m, 18H).
31 P NMR (121 MHz, CDCl 3 ) δ (ppm) = 35.3-33.2 (m), 30.1-24.5 ppm (m).

得られた錯体の元素分析測定の結果を下記に示す。
Anal Calcd for C6562Au・4HO(%):C,59.27;H,5.36;N,0.00.Found:C,59.61;H,5.31;N,<0.3.
The results of elemental analysis measurement of the obtained complex are shown below.
Anal Calcd for C 65 H 62 O 7 P 3 Au · 4H 2 O (%): C, 59.27; H, 5.36; N, 0.00. Found: C, 59.61; H, 5.31; N, <0.3.

得られた錯体3の構造を下記に示す。

Figure 0006269204
The structure of the obtained complex 3 is shown below.
Figure 0006269204

比較例1(比較例錯体1の合成)
下記に示す[Au(PPh264PPh22]Cl(比較例錯体1)を、特許文献1に記載されている製造例1の方法に従って合成した。

Figure 0006269204
Comparative Example 1 (Synthesis of Comparative Example Complex 1)
[Au (PPh 2 C 6 H 4 PPh 2 ) 2 ] Cl (Comparative Example Complex 1) shown below was synthesized according to the method of Production Example 1 described in Patent Document 1.
Figure 0006269204

[発光量子効率]
発光量子効率の測定には、量子効率測定装置(住友重機械メカトロニクス社製)を用いた。機器構成は以下の通りである。光源はKimmon社製クラス3BのHe−Cd式CWレーザーを用いた。出射部にOFR社製のNDフィルターFDU0.5を挿入し、光ファイバーで積分球へ導いた。住友重機械メカトロニクス社製のオプテル部の積分球、ポリクロメーター、及び、CCDマルチチャンネル検出器を介し、KEYTHLEY社製の型式2400ソースメーターを連結して、パソコンでデータを取り込んだ。
[Luminescent quantum efficiency]
A quantum efficiency measurement device (manufactured by Sumitomo Heavy Industries Mechatronics) was used for the measurement of the light emission quantum efficiency. The equipment configuration is as follows. The light source used was a Class 3B He-Cd CW laser manufactured by Kimmon. An ND filter FDU0.5 manufactured by OFR was inserted into the emission part and led to an integrating sphere with an optical fiber. A model 2400 source meter manufactured by KEYTHLEY was connected via an integrating sphere, polychromator, and CCD multichannel detector manufactured by Sumitomo Heavy Industries Mechatronics, and data was captured by a personal computer.

発光量子効率の測定は以下の通りで行った。室温窒素雰囲気下、積分球内に前記条件で調製した膜を配置し、レーザー励起光を325nmとし、CW光で、積分時間を300ms、励起光積分範囲を315〜335nm、PL波長積分範囲を390〜800nmとした。そして、住友重機械メカトロニクス社製の測定・解析ソフトの手順に従って、発光量子効率を算出した。   The light emission quantum efficiency was measured as follows. The film prepared under the above conditions is placed in an integrating sphere in a nitrogen atmosphere at room temperature, the laser excitation light is 325 nm, the CW light is 300 ms, the integration time is 315 to 335 nm, the PL wavelength integration range is 390 ˜800 nm. The light emission quantum efficiency was calculated according to the procedure of measurement / analysis software manufactured by Sumitomo Heavy Industries Mechatronics.

実施例6(発光膜の調整、評価)
錯体1を1重量%、PMMA6.2重量%を含有するクロロホルム溶液を調製し、口径0.2μmのフィルターでろ過して、溶液約150mgを1cm×2cm角の石英基板上に載せた。これを、スピンコーター(有限会社押鐘製、SC−150)を用いて1000rpmで15秒間、1500rpmで60秒間スピンコートして膜を得た。錯体1から調製した膜における発光量子効率を測定した。結果を表3に示す。
Example 6 (Adjustment and evaluation of light-emitting film)
A chloroform solution containing 1% by weight of Complex 1 and 6.2% by weight of PMMA was prepared and filtered through a filter having a diameter of 0.2 μm, and about 150 mg of the solution was placed on a 1 cm × 2 cm square quartz substrate. This was spin-coated at 1000 rpm for 15 seconds and 1500 rpm for 60 seconds using a spin coater (manufactured by Oshibell Co., Ltd., SC-150) to obtain a film. The luminescence quantum efficiency in the film prepared from complex 1 was measured. The results are shown in Table 3.

実施例7(発光膜の調整、評価)
実施例6における錯体1を錯体2にかえた以外は、実施例1と同様に、発光膜を調製し、発光量子効率を測定した。結果を表3に示す。
Example 7 (Adjustment and evaluation of light-emitting film)
A luminescent film was prepared and the luminescence quantum efficiency was measured in the same manner as in Example 1 except that the complex 1 in Example 6 was changed to the complex 2. The results are shown in Table 3.

実施例8(発光膜の調整、評価)
実施例6における錯体1を錯体3にかえた以外は、実施例1と同様に、発光膜を調製し、発光量子効率を測定した。結果を表3に示す。
Example 8 (Adjustment and evaluation of light-emitting film)
A light emitting film was prepared and the light emission quantum efficiency was measured in the same manner as in Example 1 except that the complex 1 in Example 6 was changed to the complex 3. The results are shown in Table 3.

比較例2(発光膜の調整、評価)
実施例6における錯体1を比較例錯体1にかえた以外は、実施例1と同様に、発光膜を調製し、発光量子効率を測定した。結果を表3に示す。
Comparative Example 2 (Adjustment and evaluation of light emitting film)
A luminescent film was prepared and the luminescence quantum efficiency was measured in the same manner as in Example 1 except that the complex 1 in Example 6 was changed to the comparative example complex 1. The results are shown in Table 3.

<表3>

Figure 0006269204
<Table 3>
Figure 0006269204

これらの結果から、本発明の金錯体は膜状態で発光量子効率が高いことが分かる。   From these results, it can be seen that the gold complex of the present invention has high emission quantum efficiency in the film state.

実施例9(溶液の調整、評価)
1cm角の四面石英セル中にて、錯体1をジクロロメタン4mL中に0.3mgの濃度で溶解させ、アルゴンでバブリングを行い封止した検体における発光量子効率を測定した。結果を表4に示す。
Example 9 (solution preparation and evaluation)
In a 1 cm square tetrahedral quartz cell, complex 1 was dissolved in 4 mL of dichloromethane at a concentration of 0.3 mg, and bubbled with argon to measure the emission quantum efficiency of the sealed sample. The results are shown in Table 4.

実施例10(溶液の調整、評価)
実施例9における錯体1を錯体2にかえた以外は、実施例9と同様に、溶液を調製し、発光量子効率を測定した。結果を表4に示す。
Example 10 (solution preparation and evaluation)
A solution was prepared and the emission quantum efficiency was measured in the same manner as in Example 9, except that Complex 1 in Example 9 was changed to Complex 2. The results are shown in Table 4.

実施例11(溶液の調整、評価)
実施例9における錯体1を錯体3にかえた以外は、実施例9と同様に、溶液を調製し、発光量子効率を測定した。結果を表4に示す。
Example 11 (Solution preparation and evaluation)
A solution was prepared and the emission quantum efficiency was measured in the same manner as in Example 9, except that Complex 1 in Example 9 was changed to Complex 3. The results are shown in Table 4.

比較例3(溶液の調整、評価)
実施例9における錯体1を比較例錯体1にかえた以外は、実施例9と同様に、溶液を調製し、発光量子効率を測定した。結果を表4に示す。
Comparative Example 3 (solution adjustment and evaluation)
A solution was prepared and the luminescence quantum efficiency was measured in the same manner as in Example 9, except that the complex 1 in Example 9 was changed to the comparative example complex 1. The results are shown in Table 4.

<表4>

Figure 0006269204
<Table 4>
Figure 0006269204

これらの結果から、本発明の金錯体の好ましい形態では、溶液状態の発光量子効率も高いことが分かる。すなわち、好ましい形態における本発明の金錯体は状態変化に強いため、膜状態で安定に高い発光量子効率を維持することが可能である。   From these results, it can be seen that in the preferred form of the gold complex of the present invention, the emission quantum efficiency in the solution state is also high. That is, since the gold complex of the present invention in a preferred form is resistant to state changes, it is possible to stably maintain high emission quantum efficiency in a film state.

[励起状態の安定性]
励起状態の安定性は、錯体1〜3で調製した膜における、レーザー光照射180秒時点での発光量子効率を、レーザー光照射直後の発光量子効率で除して、この値を100%から差し引くことで減少率として求めた。
[Excited state stability]
The stability of the excited state is obtained by dividing the emission quantum efficiency at the point of 180 seconds of laser light irradiation by the light emission quantum efficiency immediately after laser light irradiation in the film prepared with Complexes 1 to 3, and subtracting this value from 100%. It was calculated as a decrease rate.

その結果、錯体1〜3から調製した膜における発光量子効率の減少率はそれぞれ、9%、25%、15%であった。   As a result, the decrease rates of the luminescence quantum efficiency in the films prepared from the complexes 1 to 3 were 9%, 25%, and 15%, respectively.

[発光素子]
本発明の金錯体は上述の発光特性を備えているので発光素子用の材料として使用することができる。素子構造としては、例えば以下の構造を作成できる。ITO膜が付着したガラス基板上に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の懸濁液をスピンコートにより成膜し、ホットプレート上で200℃、10分間乾燥させる。この上に、特開2012−109545に記載されている正孔輸送性高分子材料の0.7重量%キシレン溶液をスピンコート法により成膜し、ホットプレート上で180℃、60分間加熱し、塗膜を不溶化させて、正孔輸送層が形成された基板を得る。この上に、CDBP及び/又はTPOTPに対して本発明の金錯体を15wt%含有する混合物を、クロロホルム:1,2−ジクロロエタン=2:1重量%の溶液に溶かし、溶液中の溶質を0.9重量%とした溶液をスピンコート法により成膜し、ホットプレート上で100℃、10分間乾燥させる。この上に、フッ化リチウムを2nm、最後にアルミニウムを100nm蒸着して、発光素子を作製できる。
[Light emitting element]
Since the gold complex of the present invention has the above-described light emitting characteristics, it can be used as a material for a light emitting element. As an element structure, for example, the following structure can be created. A suspension of poly (ethylenedioxythiophene) / polystyrene sulfonic acid is formed on a glass substrate with an ITO film attached thereto by spin coating, and dried on a hot plate at 200 ° C. for 10 minutes. On top of this, a 0.7 wt% xylene solution of a hole transporting polymer material described in JP2012-109545A was formed by spin coating, heated on a hot plate at 180 ° C. for 60 minutes, The coating film is insolubilized to obtain a substrate on which a hole transport layer is formed. On top of this, a mixture containing 15 wt% of the gold complex of the present invention with respect to CDBP and / or TPOTP is dissolved in a solution of chloroform: 1,2-dichloroethane = 2: 1 wt%, and the solute in the solution is reduced to 0. A solution of 9% by weight is formed into a film by spin coating, and dried on a hot plate at 100 ° C. for 10 minutes. On this, 2 nm of lithium fluoride and finally 100 nm of aluminum are vapor-deposited, whereby a light-emitting element can be manufactured.

なお、錯体3を用いた場合、上述の発光膜の調製方法において、PMMAの代わりにCDBPとしたときのスピンコート膜の発光量子効率は39%であった。また、PMMAの代わりにTPOTPとしたときのスピンコート膜の発光量子効率は70%であった。   When Complex 3 was used, the emission quantum efficiency of the spin coat film was 39% when CDBP was used instead of PMMA in the above-described method for preparing a light-emitting film. Further, the emission quantum efficiency of the spin coat film when TPOTP was used instead of PMMA was 70%.

CDBP及びTPOTPは、Luminescence Technology Corp.より購入した。構造を下記に示す。

Figure 0006269204

CDBP

Figure 0006269204

TPOTP
CDBP and TPOTP are available from Luminescence Technology Corp. We purchased more. The structure is shown below.
Figure 0006269204

CDBP

Figure 0006269204

TPOTP

これらの結果から、本発明の発光素子用材料を用いて、発光効率の高い発光素子を作成できることが分かる。   From these results, it can be seen that a light-emitting element with high luminous efficiency can be produced using the light-emitting element material of the present invention.

Claims (7)

下記式(1)で表される金錯体。
Figure 0006269204
(式(1)中、R及びRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、Rは置換されていてもよい炭素原子数1〜30の2価の基である。Rは置換されていてもよい炭素原子数1〜30の基であり、置換基としてCOO構造を1つ有する。R、4つあるR及び2つあるRは、それぞれ任意に連結して、それらが結合したリン原子とともに環構造を形成してもよい。)
A gold complex represented by the following formula (1).
Figure 0006269204
(In Formula (1), R 1 and R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms which may be substituted, and R 3 is an optionally substituted carbon atom having 1 to 30 carbon atoms. R 5 is an optionally substituted group having 1 to 30 carbon atoms and has one COO - structure as a substituent, R 5 , four R 1 and two R 2 may be optionally connected to form a ring structure together with the phosphorus atom to which they are bonded.
上記式(1)におけるP(R(R)で表される配位子が、下記式(2)で表されることを特徴とする、請求項1に記載の金錯体。
Figure 0006269204
(式(2)中、Rは、前記と同じ意味を表す。Rは置換されていてもよい炭素原子数1〜30の2価の基であり、かつRは−O−又は−S−を有する。)
The gold complex according to claim 1, wherein the ligand represented by P (R 2 ) 2 (R 5 ) in the above formula (1) is represented by the following formula (2).
Figure 0006269204
(In Formula (2), R 2 represents the same meaning as described above. R 4 is an optionally substituted divalent group having 1 to 30 carbon atoms, and R 4 is —O— or —. S-)
上記式(2)におけるRが下記式(3)で表されることを特徴とする、請求項1または2に記載の金錯体。
Figure 0006269204
(式(3)中、ArとArはそれぞれ独立に、置換されていてもよい炭素原子数6〜12のアリーレン基である。Xは、O又はSである。ArとArは結合して環構造を形成してもよい。)
The gold complex according to claim 1 or 2, wherein R 4 in the formula (2) is represented by the following formula (3).
Figure 0006269204
(In the formula (3), Ar 1 and Ar 2 are each independently an optionally substituted arylene group having 6 to 12 carbon atoms. X is O or S. Ar 1 and Ar 2 are It may combine to form a ring structure.)
上記式(1)におけるRが置換されていてもよい1,2−フェニレン基であることを特徴とする、請求項1〜3のいずれかの項に記載の金錯体。 The gold complex according to any one of claims 1 to 3, wherein R 3 in the formula (1) is an optionally substituted 1,2-phenylene group. 上記式(1)におけるRのうち少なくとも1つが、R−P結合のオルト部位に置換基を有するフェニル基であることを特徴とする、請求項1〜4のいずれかの項に記載の金錯体。 5. The method according to claim 1 , wherein at least one of R 1 in the formula (1) is a phenyl group having a substituent at the ortho site of the R 1 -P bond. Gold complex. 請求項1〜5のいずれかの項に記載の金錯体を含む膜   The film | membrane containing the gold complex in any one of Claims 1-5 下記式(4)で表される化合物。
Figure 0006269204
(式(4)中、2つのRはそれぞれ独立に置換されていてもよい炭素原子数1〜30のヒドロカルビル基であり、R下記式(3)で表される基である。)
Figure 0006269204
(式(3)中、Ar とAr はそれぞれ独立に、置換されていてもよい炭素原子数6〜30のアリーレン基である。Ar とAr は結合して、それらが結合したXとともに環構造を形成してもよい。XはO又はSである。)
A compound represented by the following formula (4).
Figure 0006269204
(In formula (4), two R 2 are each independently a hydrocarbyl group having 1 to 30 carbon atoms, and R 4 is a group represented by the following formula (3) .)
Figure 0006269204
(In Formula (3), Ar 1 and Ar 2 are each independently an arylene group having 6 to 30 carbon atoms which may be substituted. Ar 1 and Ar 2 are bonded to each other and X bonded to each other) And may form a ring structure together with X being O or S.)
JP2014053079A 2014-03-17 2014-03-17 Gold complexes, membranes and compounds Expired - Fee Related JP6269204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053079A JP6269204B2 (en) 2014-03-17 2014-03-17 Gold complexes, membranes and compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053079A JP6269204B2 (en) 2014-03-17 2014-03-17 Gold complexes, membranes and compounds

Publications (2)

Publication Number Publication Date
JP2015174846A JP2015174846A (en) 2015-10-05
JP6269204B2 true JP6269204B2 (en) 2018-01-31

Family

ID=54254344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053079A Expired - Fee Related JP6269204B2 (en) 2014-03-17 2014-03-17 Gold complexes, membranes and compounds

Country Status (1)

Country Link
JP (1) JP6269204B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332747A (en) * 2004-05-21 2005-12-02 Canon Inc Light emitting device
JP2008074905A (en) * 2006-09-19 2008-04-03 Idemitsu Kosan Co Ltd Organic electroluminescent element
CN102532528B (en) * 2012-02-10 2014-03-19 四川大学 Method for preparing semi-aromatic polyamide

Also Published As

Publication number Publication date
JP2015174846A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5281270B2 (en) Iridium complex compound, organic electroluminescence device using the same, and use thereof
KR20140010359A (en) Copper(i) complexes for optoelecronic devices
KR20090018937A (en) Electroluminescent bis-cyclometalled iridium compounds and devices made with such compounds
JP5695314B2 (en) Luminescent silver complex
WO2007058104A1 (en) Metal complex compounds and organic electroluminescent devices made by using the same
WO2019049225A1 (en) Light emitting element
WO2005105746A1 (en) Organometallic complex, luminous solid, organic el element and organic el display
JP4961540B2 (en) COMPOUND, COMPOSITION FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE
JP5841783B2 (en) New fluorene compounds
JP6269204B2 (en) Gold complexes, membranes and compounds
JP5797078B2 (en) Phosphorescent light emitting device
JP5905326B2 (en) Method for modifying polymer compound and method for producing film containing modified polymer compound
JP5733663B2 (en) Complex
JP5949091B2 (en) LIGHT EMITTING ELEMENT, SILVER COMPLEX AND ELEMENT INK CONTAINING THE SILVER COMPLEX
JP5521316B2 (en) Polynuclear complex
JP5266735B2 (en) Polynuclear complex
JP5670835B2 (en) Silver complex
JP5823784B2 (en) New fluorene compounds
JP5782290B2 (en) Compound and membrane containing the compound
JP5670834B2 (en) Silver complex
JP5577117B2 (en) Pyridine compounds
GB2582252A (en) Metal complexes with charge-compensating ligands
WO2009087064A1 (en) Electroluminescent ionic host-guest dendritic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees