JP6268513B2 - Method for producing crosslinked resin particles - Google Patents

Method for producing crosslinked resin particles Download PDF

Info

Publication number
JP6268513B2
JP6268513B2 JP2013195710A JP2013195710A JP6268513B2 JP 6268513 B2 JP6268513 B2 JP 6268513B2 JP 2013195710 A JP2013195710 A JP 2013195710A JP 2013195710 A JP2013195710 A JP 2013195710A JP 6268513 B2 JP6268513 B2 JP 6268513B2
Authority
JP
Japan
Prior art keywords
resin particles
crosslinked resin
allene
monomer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013195710A
Other languages
Japanese (ja)
Other versions
JP2014088546A (en
Inventor
育義 冨田
育義 冨田
晃 山内
晃 山内
山内 博史
博史 山内
大村 貴宏
貴宏 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokyo Institute of Technology NUC filed Critical Sekisui Chemical Co Ltd
Priority to JP2013195710A priority Critical patent/JP6268513B2/en
Publication of JP2014088546A publication Critical patent/JP2014088546A/en
Application granted granted Critical
Publication of JP6268513B2 publication Critical patent/JP6268513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、樹脂の分子量及び粒子径を均一に制御することができ、かつ、耐溶剤性や力学特性に優れる樹脂粒子を製造することが可能な架橋樹脂粒子の製造方法に関する。 The present invention relates to a method for producing crosslinked resin particles capable of uniformly controlling the molecular weight and particle size of a resin and capable of producing resin particles having excellent solvent resistance and mechanical properties.

有機樹脂粒子は、ポリマーが持つ特性である柔軟性・密着性・加工性を利用して電子写真用トナーや艶消し、着色剤その他で利用されている。
しかしながら、例えば、電子部品の接合材料等の分野においては、有機樹脂粒子では耐熱性が足りず、他の材料と混合時や、加熱工程で溶融変形してしまうという問題があった。また、耐溶剤性についても、無機微粒子に比べて劣るという欠点を有していた。
Organic resin particles are used in toners for electrophotography, matting, colorants and the like by utilizing flexibility, adhesion, and processability, which are characteristics of polymers.
However, for example, in the field of bonding materials for electronic parts, the organic resin particles have insufficient heat resistance, and there is a problem that they are melted and deformed when mixed with other materials or in a heating process. In addition, the solvent resistance is inferior to that of inorganic fine particles.

これに対して、無機材料と有機材料の優れた特性を同時に達成するため、両者の複合材料を用いることが行われているが、一般に無機材料と有機材料の相溶性は充分ではなかった。
また、有機モノマーを架橋させることで、耐熱性や耐溶剤性を向上させる方法が行われている。
例えば、特許文献1、特許文献2には、アクリルモノマーやスチレンモノマー等にラジカル重合触媒を添加して、水を主成分とする媒体中で重合させることで、架橋樹脂粒子を製造する、懸濁重合法(1)や、アクリルモノマーやスチレンモノマー等にラジカル重合触媒を添加して、モノマーは溶解するがポリマーは溶解しない媒体中で重合させることで、樹脂粒子を製造する、分散重合法(2)が記載されている。
しかしながら、該(1)の製造方法において形成される架橋樹脂粒子は、分子量や粒子径が均一では無いか、架橋が不均一となることで、充分な耐熱性や耐溶剤性が得られないという課題があった。また、該(2)製造方法において形成される架橋樹脂粒子は、粒子径は均一であるが、単純なラジカル重合であるために分子量は均一では無く、架橋性のモノマーを用いると、媒体中で粒子同士が合一して、所望の球状の微粒子を得ることができないという問題があった。
On the other hand, in order to achieve excellent properties of the inorganic material and the organic material at the same time, a composite material of both is used. However, the compatibility between the inorganic material and the organic material is generally not sufficient.
Moreover, the method of improving heat resistance and solvent resistance is performed by bridge | crosslinking an organic monomer.
For example, in Patent Document 1 and Patent Document 2, a crosslinked resin particle is produced by adding a radical polymerization catalyst to an acrylic monomer, a styrene monomer or the like and polymerizing it in a medium containing water as a main component. A polymerization method (1) or a dispersion polymerization method (2) in which resin particles are produced by adding a radical polymerization catalyst to an acrylic monomer, a styrene monomer or the like and polymerizing in a medium in which the monomer is dissolved but the polymer is not dissolved. ) Is described.
However, the crosslinked resin particles formed in the production method (1) are not uniform in molecular weight or particle diameter, or the crosslinking is not uniform, so that sufficient heat resistance and solvent resistance cannot be obtained. There was a problem. In addition, the crosslinked resin particles formed in the production method (2) have a uniform particle diameter, but because of simple radical polymerization, the molecular weight is not uniform. When a crosslinkable monomer is used, There was a problem that the particles could not be combined to obtain desired spherical fine particles.

特開2009−029951号公報JP 2009-029951 A 特開2006−335977号公報JP 2006-335977 A

本発明は、樹脂の分子量及び粒子径を均一に制御することができ、かつ、耐溶剤性や力学特性に優れる樹脂粒子を製造することが可能な架橋樹脂粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing crosslinked resin particles capable of uniformly controlling the molecular weight and particle diameter of a resin and capable of producing resin particles having excellent solvent resistance and mechanical properties. And

本発明は、1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーを用いてリビング重合を行い、かつ、前記架橋性アレンモノマーを用いてリビング重合させて得られる樹脂を架橋させるものであり、前記架橋性アレンモノマーは、ジアレンモノマーであり、前記ジアレンモノマーは、下記式(1)、下記式(2)又は下記式(3)で表される構造を有する架橋樹脂粒子の製造方法である。
式(1)〜(3)中、Rは下記式(13)に示す何れかの連結基を表す。
以下に本発明を詳述する。
The present invention performs living polymerization using a crosslinkable allene monomer having two or more allenyl groups per molecule and crosslinks a resin obtained by living polymerization using the crosslinkable allene monomer. the crosslinking Allen monomers are Jiarenmonoma over, the di Allen monomer represented by the following formula (1), in the manufacturing method of the crosslinked resin particle having a structure represented by the following formula (2) or the following formula (3) is there.
In formulas (1) to (3), R 1 represents any linking group represented by the following formula (13).
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、アレンモノマーを用いてリビング重合を行い、かつ、樹脂を架橋させることで架橋樹脂粒子を作製することにより、樹脂の分子量及び粒子径を均一に制御することができ、かつ、耐溶剤性や力学特性に優れる樹脂粒子が作製できること
を見出し、本発明を完成させるに至った。
As a result of intensive studies, the present inventors have uniformly controlled the molecular weight and particle diameter of the resin by conducting living polymerization using an allene monomer and producing crosslinked resin particles by crosslinking the resin. In addition, the inventors have found that resin particles having excellent solvent resistance and mechanical properties can be produced, and have completed the present invention.

本発明の架橋樹脂粒子の製造方法は、アレンモノマーを用いてリビング重合を行い、かつ、樹脂を架橋させる工程を有する。
なお、上記リビング重合と、樹脂の架橋は、同時に行ってもよく、リビング重合を行う工程の後に、樹脂を架橋させる工程を行ってもよい。
本発明では、1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーを用いてリビング重合を行い、かつ、樹脂を架橋させることが好ましい。
The manufacturing method of the crosslinked resin particle of this invention has the process of performing living polymerization using an allene monomer, and bridge | crosslinking resin.
The living polymerization and the crosslinking of the resin may be performed simultaneously, or after the step of performing the living polymerization, a step of crosslinking the resin may be performed.
In the present invention, it is preferable to perform living polymerization using a crosslinkable allene monomer having two or more allenyl groups per molecule and to crosslink the resin.

上記リビング重合とは、開始剤を起点とする重合反応が停止反応や連鎖移動反応などの副反応で妨げられることなく分子鎖が生長していく重合のことをいう。
特に、本発明では、上記リビング重合を分散重合で行う方法が好ましい。
本発明では、このようなリビング重合を用いることで、重合反応が同時に開始すれば分子量が均一な重合体を得ることができ、例えば析出重合を用いた場合、粒子核が発生するタイミングを揃えることができるので、分子量や一次構造の規制された高分子鎖からなる粒子径が揃った架橋樹脂粒子を得ることができる。
The living polymerization refers to polymerization in which a molecular chain grows without the polymerization reaction starting from an initiator being hindered by a side reaction such as a termination reaction or a chain transfer reaction.
In particular, in the present invention, a method in which the living polymerization is performed by dispersion polymerization is preferable.
In the present invention, by using such living polymerization, a polymer having a uniform molecular weight can be obtained if the polymerization reaction starts simultaneously. For example, when precipitation polymerization is used, the timing at which particle nuclei are generated is aligned. Therefore, it is possible to obtain crosslinked resin particles having a uniform particle diameter composed of a polymer chain having a regulated molecular weight and primary structure.

上記リビング重合としては、特に限定されず、例えば、リビングアニオン重合、リビングラジカル重合、リビングカチオン重合、リビング配位重合等を採用することができる。
なかでも、リビング配位重合が好ましい。
The living polymerization is not particularly limited, and for example, living anionic polymerization, living radical polymerization, living cation polymerization, living coordination polymerization and the like can be employed.
Of these, living coordination polymerization is preferred.

上記リビング重合において使用する開始剤としては、例えば、π−アリルニッケル触媒をはじめとする各種遷移金属触媒が使用できる。
上記π−アリルニッケル触媒は、ハロゲン化アリル、アリルアセテート等のアリル化合物に、ビス(1,5−シクロオクタジエン)ニッケル(以下Ni(COD)とする)等の有機ニッケル、トリフェニルフォスフィン、トリブチルフォスフィン、トリフェノキシフォスフィン、トリエトキシフォスフィン等のフォスフィンを添加して得られる。
As the initiator used in the living polymerization, for example, various transition metal catalysts including a π-allyl nickel catalyst can be used.
The π-allyl nickel catalyst is composed of allyl compounds such as allyl halide and allyl acetate, organic nickel such as bis (1,5-cyclooctadiene) nickel (hereinafter referred to as Ni (COD) 2 ), triphenylphosphine. And phosphine such as tributylphosphine, triphenoxyphosphine, triethoxyphosphine, and the like.

上記リビング重合においては、分散安定剤を用いても良い。使用する分散安定剤としては、例えば、ポリビニルピロリドン、ポリビニルアルコール、メチルセルロース、エチルセルロース、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリエチレングリコール等が挙げられる。 In the living polymerization, a dispersion stabilizer may be used. Examples of the dispersion stabilizer used include polyvinyl pyrrolidone, polyvinyl alcohol, methyl cellulose, ethyl cellulose, poly (meth) acrylic acid, poly (meth) acrylic acid ester, and polyethylene glycol.

上記リビング重合において使用する重合溶媒としては特に限定されず、例えば、ヘキサン、シクロヘキサン、オクタン、トルエン、キシレン等の非極性溶媒のほか、水、メタノール、エタノール、プロパノール、ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド等の高極性溶媒を用いることができる。これらの溶媒は、1種類又は2種類以上用いてもよい。これらの中では、水およびメタノール、エタノールを適宜混合して使用するのが好ましい。
また、重合温度は、反応速度の観点から0〜90℃が好ましい。
The polymerization solvent used in the living polymerization is not particularly limited. For example, in addition to nonpolar solvents such as hexane, cyclohexane, octane, toluene, xylene, water, methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, methyl isobutyl. High polar solvents such as ketone, tetrahydrofuran, dioxane, N, N-dimethylformamide can be used. These solvents may be used alone or in combination of two or more. Among these, it is preferable to use water, methanol, and ethanol in an appropriate mixture.
The polymerization temperature is preferably 0 to 90 ° C. from the viewpoint of the reaction rate.

上記リビング重合の具体的方法としては、例えば、窒素置換した重合容器に予め調製したπ−アリルニッケル触媒に溶媒、架橋性アレンモノマーを添加し、室温で数時間攪拌する方法が挙げられる。 Specific examples of the living polymerization include a method in which a solvent and a crosslinkable allene monomer are added to a π-allyl nickel catalyst prepared in advance in a nitrogen-substituted polymerization vessel and stirred for several hours at room temperature.

上記架橋性アレンモノマーは、1分子あたり2個以上のアレニル基を有するものである。このように1分子あたり2個以上のアレニル基を有することで、少ない導入量で粒子表面の架橋密度を上げ、得られる架橋樹脂粒子は、高い架橋度を有するとともに、リビング重合を経て重合したときに、分子量が均一な重合体を得ることができる。また、リビング重
合を経て重合することで、架橋を均一に形成することが可能となる。
なお、上記アレニル基の数は1分子あたり2個以上であれば特に限定されないが、1分子あたり2〜4個有するものが好ましい。
上記架橋性アレンモノマーとしては、例えば、下記式(1)〜(3)に示すジアレンモノマー、下記式(4)〜(7)に示すトリアレンモノマー、下記式(8)〜(12)に示すテトラアレンモノマー等が挙げられる。これらのなかでは、モノマーの反応性が良好であることから、下記式(3)、(7)及び(12)に示す架橋性アレンモノマーがより好ましい。
The crosslinkable allene monomer has two or more allenyl groups per molecule. Thus, by having two or more allenyl groups per molecule, the crosslinking density of the particle surface is increased with a small amount of introduction, and the resulting crosslinked resin particles have a high degree of crosslinking and are polymerized through living polymerization. In addition, a polymer having a uniform molecular weight can be obtained. Moreover, it becomes possible to form bridge | crosslinking uniformly by superposing | polymerizing through living polymerization.
The number of allenyl groups is not particularly limited as long as it is 2 or more per molecule, but those having 2 to 4 per molecule are preferable.
Examples of the crosslinkable allene monomer include a dialene monomer represented by the following formulas (1) to (3), a trialene monomer represented by the following formulas (4) to (7), and the following formulas (8) to (12). And the tetraarene monomer shown. Among these, crosslinkable allene monomers represented by the following formulas (3), (7), and (12) are more preferable because the reactivity of the monomers is good.

式(1)〜(3)中、Rは下記式(13)に示す何れかの連結基を表し、式(4)〜(7)中、Rは下記式(14)に示す何れかの連結基を表し、式(8)〜式(12)中、Rは下記式(15)に示す何れかの連結基を表す。 In formulas (1) to (3), R 1 represents any linking group represented by the following formula (13), and in formulas (4) to (7), R 2 represents any of the following formula (14). In the formulas (8) to (12), R 3 represents any one of the linking groups represented by the following formula (15).

上記1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーとしては、例えば、1,4−ジアレノキシベンゼン、1,4−ジアレニルベンゼン、ビスフェノールAジアレニルエーテル(各種ビスフェノール系の化合物のジアレニルエーテルを含む)、1,4−ブタンジオールジアレニルエーテル、ジヒドロキシナフタレンジアレニルエーテル、1−アレノキシ−4−アレニルベンゼン、その他にもジオール類および多官能アルコール(例えばポリウレタンやポリカーボナートの合成用の原料など)のアレニルエーテル類等が挙げられる。
モノマーの反応性が良好で、かつ、凝集の少ない粒子が得られることや、得られる粒子の硬さが硬くなること等から、1,4−ジアレノキシベンゼン、1,4−ジアレニルベンゼン、ビスフェノールAジアレニルエーテル、1,4−ブタンジオールジアレニルエーテル、ジヒドロキシナフタレンジアレニルエーテル、1−アレノキシ−4−アレニルベンゼンが好ましい。
Examples of the crosslinkable allene monomer having two or more allenyl groups per molecule include 1,4-dialenoxybenzene, 1,4-dialenylbenzene, bisphenol A dialenyl ether (various bisphenol compounds) ), 1,4-butanediol diarenyl ether, dihydroxynaphthalenediallenyl ether, 1-allenoxy-4-allenylbenzene, and other diols and polyfunctional alcohols (for example, polyurethanes and polycarbonates). Raw materials for synthesis) and the like.
1,4-dialenoxybenzene, 1,4-diarenylbenzene because the reactivity of the monomer is good and particles with little aggregation are obtained and the hardness of the obtained particles is hard. Bisphenol A dialenyl ether, 1,4-butanediol diarenyl ether, dihydroxynaphthalenediallenyl ether, and 1-allenoxy-4-allenylbenzene are preferred.

架橋性アレンモノマーにおけるアレニル基とは、3個の炭素の間に2個の二重結合が連続した不飽和基のことである。また、アレニル基と結合しているその他の部分については特に何でも構わないが、アレニル基の重合触媒に対する反応性を高める目的から、アレニル基とその他の部分は酸素で結合していることが好ましい。 The allenyl group in the crosslinkable allene monomer is an unsaturated group in which two double bonds are continuous between three carbons. The other part bonded to the allenyl group may be anything, but in order to increase the reactivity of the allenyl group to the polymerization catalyst, the allenyl group and the other part are preferably bonded with oxygen.

上記架橋性アレンモノマーの添加量は、すべてのアレンモノマーに対し、好ましい下限が5mol%である。上記架橋性アレンモノマーの添加量が5mol%未満であると架橋が形成されにくくなることがある。
上記架橋性アレンモノマーの添加量のより好ましい下限は8mol%である。
また、好ましい上限は50mol%である。50mol%以下であれば、凝集の少ない微粒子が高収率で得られる。より好ましい上限は40mol%である。
The preferable lower limit of the addition amount of the crosslinkable allene monomer is 5 mol% with respect to all the allene monomers. When the addition amount of the crosslinkable allene monomer is less than 5 mol%, it may be difficult to form a crosslink.
The more preferable lower limit of the addition amount of the crosslinkable allene monomer is 8 mol%.
Moreover, a preferable upper limit is 50 mol%. If it is 50 mol% or less, fine particles with little aggregation can be obtained in a high yield. A more preferred upper limit is 40 mol%.

本発明では、上記リビング重合を行う工程において、必要に応じて、他のアレンモノマーを添加してもよい。具体的には、炭化水素系アレンモノマー、官能基含有アレンモノマー、炭素−炭素結合以外の不飽和結合を有するアレンモノマー、光二量化する官能基を有するアレンモノマー等が挙げられる。
上記炭素−炭素結合以外の不飽和結合を有するアレンモノマー、光二量化する官能基を有するアレンモノマーを用いれば、後述する架橋工程を経ることにより、良好な架橋樹脂粒子を得ることができる。
特に、前述の架橋性アレンモノマーと併せて、炭素−炭素結合以外の不飽和結合を有するアレンモノマー、光二量化する官能基を有するアレンモノマーを用いることで、後述する架橋工程と合わせて用いることで、更に高い架橋密度を有する架橋樹脂粒子を得ることができる。
In the present invention, other allene monomers may be added as necessary in the step of performing the living polymerization. Specific examples include a hydrocarbon-based allene monomer, a functional group-containing allene monomer, an allene monomer having an unsaturated bond other than a carbon-carbon bond, and an allene monomer having a photodimerizable functional group.
If an allene monomer having an unsaturated bond other than the carbon-carbon bond or an allene monomer having a functional group to be photodimerized is used, good crosslinked resin particles can be obtained through a crosslinking step described later.
In particular, by using an allene monomer having an unsaturated bond other than a carbon-carbon bond and an allene monomer having a functional group to be photodimerized in combination with the above-mentioned crosslinkable allene monomer, Further, crosslinked resin particles having a higher crosslinking density can be obtained.

上記炭化水素系アレンモノマーとしては、例えば、フェノキシアレン、アレン(1,2−プロパジエン)、メチルアレン、エチルアレン、プロピルアレン、ブチルアレン、イソプロピルアレン、ヘキシルアレン、フェニルアレン、ベンジルアレン、ジメチルアレン、ジエチルアレン、ジヘキシルアレン、ジフェニルアレン、置換アルキルブタジニエルエーテル、アレン酸エステル、ポリオキシエチレンアレニルアルキルエーテル等が挙げられる。上記フェノキシアレンとしては、例えば、フェノキシアレン、(4−tert−ブチルフェノキシ)アレン、(4−ニトロフェノキシ)アレン、(4−アセチルフェノキシ)アレン等が挙げられる。 Examples of the hydrocarbon-based allene monomer include phenoxyallene, allene (1,2-propadiene), methylallene, ethylallene, propylallene, butylallene, isopropylallene, hexylallene, phenylallene, benzylallene, dimethylallene, and diethyl. Examples include allene, dihexyl allene, diphenyl allene, substituted alkyl butadiene ether, arenic acid ester, polyoxyethylene allenyl alkyl ether, and the like. Examples of the phenoxyallene include phenoxyallene, (4-tert-butylphenoxy) allene, (4-nitrophenoxy) allene, and (4-acetylphenoxy) allene.

上記官能基含有アレンモノマーとしては、例えば、アレン酸、カルボキシメチルアレン、2−カルボキシエチルアレン、ジカルボキシルメチルアレン、2,2−ジカルボキシエチルアレン、アミノメチルアレン、2−アミノエチルアレン、シアノメチルアレン、2−シアノエチルアレン、ヒドロキシメチルアレン、ヒドロキシエチルアレン等が挙げられる。 Examples of the functional group-containing allene monomer include allenic acid, carboxymethyl allene, 2-carboxyethyl allene, dicarboxylmethyl allene, 2,2-dicarboxyethyl allene, aminomethyl allene, 2-aminoethyl allene, and cyanomethyl. Allene, 2-cyanoethyl allene, hydroxymethyl allene, hydroxyethyl allene and the like can be mentioned.

上記炭素−炭素結合以外の不飽和結合を有するアレンモノマーとしては、アルコキシ基を有するアレンモノマーを用いることが好ましい。
上記アルコキシ基を有するアレンモノマーとしては、例えば、ナフトキシアレン、メトキシアレン、フェノキシアレン等が挙げられる。
As the allene monomer having an unsaturated bond other than the carbon-carbon bond, an allene monomer having an alkoxy group is preferably used.
Examples of the allene monomer having an alkoxy group include naphthoxyallene, methoxyallene, phenoxyallene, and the like.

上記光二量化する官能基を有するアレンモノマーとしては、例えば、クマリン基変性アレン、アントラセン基変性アレン、ケイ皮酸エステル基変性アレン、マレイミド変性、チミン変性等が挙げられる。具体的には、7−アレニロキシ−4−メチルクマリン等が挙げられる。 Examples of the allene monomer having a functional group to be photodimerized include coumarin group-modified allene, anthracene group-modified allene, cinnamate ester group-modified allene, maleimide modification, and thymine modification. Specific examples include 7-arenyloxy-4-methylcoumarin.

本発明の架橋樹脂粒子の製造方法としては、上記1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーを用いてリビング重合を行う工程を有するか、リビング重合を行う工程を行った後、樹脂を架橋させる工程を行ってもよい。
このような架橋工程を行うことで、粒子同士が凝集することなく、粒子径や分子量が均一で耐熱性、耐溶剤性に優れた架橋樹脂粒子を得ることができる。
As a manufacturing method of the crosslinked resin particle of the present invention, after performing a living polymerization using a crosslinkable allene monomer having two or more allenyl groups per molecule or performing a living polymerization, You may perform the process of bridge | crosslinking resin.
By performing such a crosslinking step, crosslinked resin particles having a uniform particle diameter and molecular weight and excellent heat resistance and solvent resistance can be obtained without aggregation of the particles.

上記架橋工程としては、例えば、上記他のアレンモノマーとして炭素−炭素結合以外の不飽和結合を有するアレンモノマーを用いる場合、強酸で処理する方法を用いることができる。
また、上記他のアレンモノマーとして光二量化する官能基を有するアレンモノマーを用いる場合、光を照射する方法を用いることができる。
As the crosslinking step, for example, when an allene monomer having an unsaturated bond other than a carbon-carbon bond is used as the other allene monomer, a method of treating with a strong acid can be used.
Moreover, when using the allene monomer which has a functional group photodimerized as said other allene monomer, the method of irradiating light can be used.

上記強酸としては、硫酸、リン酸、フッ化水素、三フッ化ホウ素、ヘキサフルオロリン酸、メタンスルホン酸及びトリフルオロメタンスルホン酸等が挙げられる。
また、光や熱により上記強酸を発生する材料を用いてもよい。
また、上記強酸は、全量を一度に添加してもよく、分割添加してもよい。
Examples of the strong acid include sulfuric acid, phosphoric acid, hydrogen fluoride, boron trifluoride, hexafluorophosphoric acid, methanesulfonic acid and trifluoromethanesulfonic acid.
Further, a material that generates the strong acid by light or heat may be used.
The strong acid may be added all at once or in divided portions.

上記架橋工程における強酸の添加量としては、上記炭素−炭素結合以外の不飽和結合を有するアレンモノマー100重量部に対して1〜20重量部であることが好ましい。上記範囲内とすることで、粒子に対するダメージを与えないまま、架橋を効率良く行うことが可能となる。より好ましくは、上記炭素−炭素結合以外の不飽和結合を有するアレンモノマー100重量部に対して3〜10重量部である。 The addition amount of the strong acid in the crosslinking step is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the allene monomer having an unsaturated bond other than the carbon-carbon bond. By setting it within the above range, crosslinking can be efficiently performed without damaging the particles. More preferably, it is 3 to 10 parts by weight with respect to 100 parts by weight of the allene monomer having an unsaturated bond other than the carbon-carbon bond.

上記光を照射する方法としては、例えば、電磁波照射、赤外線照射、紫外線照射等が挙げられ、好ましくは、紫外線照射である。また、上記紫外線照射は、UVランプ等を使用することにより行うことができる。 Examples of the method of irradiating with light include electromagnetic wave irradiation, infrared irradiation, ultraviolet irradiation, and the like, preferably ultraviolet irradiation. The ultraviolet irradiation can be performed by using a UV lamp or the like.

上記架橋樹脂粒子は、平均粒子径の好ましい下限が0.01μm、好ましい上限が10μmである。平均粒子径が0.01μm未満であると、耐溶剤性が低下することがある。平均粒子径が10μmを超えると、凝集が発生しやすくなることがある。上記平均粒子径のより好ましい下限は0.05μm、より好ましい上限は5μmである。
なお、上記架橋樹脂粒子の平均粒子径は、光学顕微鏡、又は、電子顕微鏡を用いて無作為に選んだ50個の架橋樹脂粒子を観察して得られた直径の平均値を意味する。
The above-mentioned crosslinked resin particles have a preferable lower limit of the average particle diameter of 0.01 μm and a preferable upper limit of 10 μm. When the average particle size is less than 0.01 μm, the solvent resistance may be lowered. When the average particle diameter exceeds 10 μm, aggregation may easily occur. A more preferable lower limit of the average particle diameter is 0.05 μm, and a more preferable upper limit is 5 μm.
In addition, the average particle diameter of the said crosslinked resin particle means the average value of the diameter obtained by observing the 50 crosslinked resin particles selected at random using an optical microscope or an electron microscope.

本発明の架橋樹脂粒子の製造方法で得られる架橋樹脂粒子を構成するポリマーの分子量分布(=重量平均分子量/数平均分子量)は2.0以下である。
上記分子量分布が2.0より大きくなると、粒子径分布が広くなるほか、2種類以上のモノマーを用いてブロックコポリマーを合成する際、各ブロックの組成比のばらつきが大きくなる。好ましくは1.0〜1.5である。
The molecular weight distribution (= weight average molecular weight / number average molecular weight) of the polymer constituting the crosslinked resin particles obtained by the method for producing crosslinked resin particles of the present invention is 2.0 or less.
When the molecular weight distribution is larger than 2.0, the particle size distribution is widened, and when the block copolymer is synthesized using two or more kinds of monomers, the variation in the composition ratio of each block increases. Preferably it is 1.0-1.5.

本発明で得られる架橋樹脂粒子は、スペーサー、表面改質剤、艶消し剤、塗料、トナー等のほか、異方導電性フィルム用導電性粒子等の電子材料等として好適に用いることができる。 The crosslinked resin particles obtained in the present invention can be suitably used as electronic materials such as spacers, surface modifiers, matting agents, paints, toners, and other conductive particles for anisotropic conductive films.

本発明によれば、樹脂の分子量及び粒子径を均一に制御することができ、かつ、耐溶剤性や力学特性に優れる樹脂粒子を製造することが可能な架橋樹脂粒子の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the molecular weight and particle diameter of resin can be controlled uniformly, and the manufacturing method of the crosslinked resin particle which can manufacture the resin particle which is excellent in solvent resistance and a dynamic characteristic can be provided.

実施例1で得られた架橋樹脂粒子の顕微鏡写真である。2 is a photomicrograph of the crosslinked resin particles obtained in Example 1. 実施例1で得られた架橋樹脂粒子の耐溶剤性試験後の顕微鏡写真である。2 is a photomicrograph after a solvent resistance test of the crosslinked resin particles obtained in Example 1. FIG. 実施例2で得られた架橋樹脂粒子の顕微鏡写真である。2 is a photomicrograph of the crosslinked resin particles obtained in Example 2. 実施例2で得られた架橋樹脂粒子の耐溶剤性試験後の顕微鏡写真である。2 is a photomicrograph after a solvent resistance test of the crosslinked resin particles obtained in Example 2. FIG. 参考例8で得られた架橋樹脂粒子の顕微鏡写真である。 6 is a photomicrograph of the crosslinked resin particles obtained in Reference Example 8. 参考例8で得られた架橋樹脂粒子の耐溶剤性試験後の顕微鏡写真である。It is a microscope picture after the solvent resistance test of the crosslinked resin particle obtained in Reference Example 8. 比較例1で得られた樹脂粒子の顕微鏡写真である。2 is a photomicrograph of resin particles obtained in Comparative Example 1. 比較例1で得られた樹脂粒子の耐溶剤性試験後の顕微鏡写真である。2 is a photomicrograph after a solvent resistance test of resin particles obtained in Comparative Example 1.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
三方コックをつけたすり付き試験管中に、分散安定剤としてポリ(N−ビニルピロリドン)(Mw=40,000)を0.00105gを加え、窒素置換を行った。これにビス(シクロオクタジエン)ニッケルのトルエン溶液(0.010M)を0.15mL、アリルトリフルオロアセテートのトルエン溶液(1.0M)を22.5μL、トリフェニルホスフィンのトルエン溶液(1.0M)を22.5μLを順次加え、減圧下にてトルエンを留去した。ここに重合媒体として乾燥エタノールを1.5mL加え、π−アリルニッケル触媒溶液を作成した。こうして調整した触媒溶液に対し、フェノキシアレンを0.198g(1.5mmol)加え、室温にて24時間攪拌して重合を行った。次に、1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーとして、1,4−ジアレノキシベンゼンを0.0279g(0.15mmol)を乾燥エタノール1.5mL中に溶かしたものを加え、共重合を行い、約24時間反応させて、架橋樹脂粒子を得た。
Example 1
0.00105 g of poly (N-vinylpyrrolidone) (Mw = 40,000) was added as a dispersion stabilizer to a rubbed test tube fitted with a three-way cock, and nitrogen substitution was performed. 0.15 mL of toluene solution (0.010 M) of bis (cyclooctadiene) nickel, 22.5 μL of toluene solution of allyl trifluoroacetate (1.0 M), and toluene solution of triphenylphosphine (1.0 M) Were sequentially added, and toluene was distilled off under reduced pressure. Here, 1.5 mL of dry ethanol was added as a polymerization medium to prepare a π-allyl nickel catalyst solution. 0.198 g (1.5 mmol) of phenoxyallene was added to the catalyst solution thus prepared, and polymerization was carried out by stirring at room temperature for 24 hours. Next, as a crosslinkable allene monomer having two or more allenyl groups per molecule, 0.0279 g (0.15 mmol) of 1,4-dialenoxybenzene dissolved in 1.5 mL of dry ethanol is added. Then, copolymerization was performed and the reaction was performed for about 24 hours to obtain crosslinked resin particles.

(実施例2)
1,4−ジアレノキシベンゼンの添加量を0.0558g(0.30mmol)とした以外は実施例1と同様にして架橋樹脂粒子を得た。
(Example 2)
Crosslinked resin particles were obtained in the same manner as in Example 1 except that the amount of 1,4-dialenoxybenzene added was changed to 0.0558 g (0.30 mmol).

(実施例3)
1,4−ジアレノキシベンゼンの添加量を0.0837g(0.45mmol)とした以外は実施例1と同様にして架橋樹脂粒子を得た。
(Example 3)
Crosslinked resin particles were obtained in the same manner as in Example 1 except that the amount of 1,4-dialenoxybenzene added was changed to 0.0837 g (0.45 mmol).

(実施例4)
1,4−ジアレノキシベンゼンの添加量を0.1395g(0.75mmol)とした以外は実施例1と同様にして架橋樹脂粒子を得た。
Example 4
Crosslinked resin particles were obtained in the same manner as in Example 1 except that the amount of 1,4-dialenoxybenzene added was changed to 0.1395 g (0.75 mmol).

(比較例1)
1,4−ジアレノキシベンゼンを添加しなかった以外は実施例1と同様にして架橋樹脂粒子を得た。
(Comparative Example 1)
Crosslinked resin particles were obtained in the same manner as in Example 1 except that 1,4-dialenoxybenzene was not added.

(実施例5)
三方コックをつけたすり付き試験管中に、分散安定剤としてポリ(N−ビニルピロリドン)(Mw=40,000)を0.00105gを加え、窒素置換を行った。これにビス(シクロオクタジエン)ニッケルのトルエン溶液(0.01M)を0.15mL、アリルトリフルオロアセテートのトルエン溶液(1.0M)を22.5μL、トリフェニルホスフィンのトルエン溶液(1.0M)を22.5μLを順次加え、減圧下にてトルエンを留去した。ここに重合媒体として乾燥エタノールを0.5mL加え、π−アリルニッケル触媒溶液を作成した。こうして調整した触媒溶液に対し、フェノキシアレンを0.198g(1.5mmol)及び、1,4−ジアレノキシベンゼンを0.0279g(0.15mmol)を乾燥エタノール1.0mL中に溶かしたものを1段階で加え、室温にて24時間攪拌して共重合を行い、架橋樹脂粒子を得た。
(Example 5)
0.00105 g of poly (N-vinylpyrrolidone) (Mw = 40,000) was added as a dispersion stabilizer to a rubbed test tube fitted with a three-way cock, and nitrogen substitution was performed. To this, 0.15 mL of a toluene solution (0.01 M) of bis (cyclooctadiene) nickel, 22.5 μL of a toluene solution of allyl trifluoroacetate (1.0 M), and a toluene solution of triphenylphosphine (1.0 M) Were sequentially added, and toluene was distilled off under reduced pressure. Here, 0.5 mL of dry ethanol was added as a polymerization medium to prepare a π-allyl nickel catalyst solution. To the catalyst solution thus prepared, 0.198 g (1.5 mmol) of phenoxyallene and 0.0279 g (0.15 mmol) of 1,4-dialenoxybenzene were dissolved in 1.0 mL of dry ethanol. In one step, the copolymerization was carried out by stirring for 24 hours at room temperature to obtain crosslinked resin particles.

(実施例6)
1,4−ジアレノキシベンゼンの添加量を0.0558g(0.30mmol)とした以外は実施例5と同様にして架橋樹脂粒子を得た。
(Example 6)
Crosslinked resin particles were obtained in the same manner as in Example 5 except that the amount of 1,4-dialenoxybenzene added was changed to 0.0558 g (0.30 mmol).

(実施例7)
1,4−ジアレノキシベンゼンの添加量を0.0837g(0.45mmol)とした以外は実施例5と同様にして架橋樹脂粒子を得た。
(Example 7)
Crosslinked resin particles were obtained in the same manner as in Example 5 except that the amount of 1,4-dialenoxybenzene added was changed to 0.0837 g (0.45 mmol).

参考例8)
実施例1で得られたπ−アリルニッケル触媒溶液に対して、ナフトキシアレン0.273g(1.5mmol)、乾燥エタノール1.5mLを加え、24時間重合を行った。
その後、BF(三フッ化ホウ素)を添加して24時間攪拌することで架橋樹脂粒子を得た。
( Reference Example 8)
To the π-allylnickel catalyst solution obtained in Example 1, 0.273 g (1.5 mmol) of naphthoxyallene and 1.5 mL of dry ethanol were added, and polymerization was performed for 24 hours.
Thereafter, BF 3 (boron trifluoride) was added and stirred for 24 hours to obtain crosslinked resin particles.

参考例9)
三方コックをつけたすり付き試験管中に、分散安定剤としてポリエチレングリコール−ポリプロピレングリコール−ポリエチレングリコールのトリブロック共重合体を0.00105gを加え、窒素置換を行った。これにビス(シクロオクタジエン)ニッケルのトルエン溶液(0.01M)を0.15mL、アリルトリフルオロアセテートのトルエン溶液(1.0M)を22.5μL、トリフェニルホスフィンのトルエン溶液(1.0M)を22.5μLを順次加え、減圧下にてトルエンを留去した。ここに重合媒体としてテトラヒドロフランを1.5mL加え、π−アリルニッケル触媒溶液を作成した。こうして調整した触媒溶液に対し、7−アレニロキシ−4−メチルクマリンを0.321g(1.5mmol)加え、室温にて24時間攪拌して重合を行った。
その後、高圧水銀ランプを用いて、波長310nmの紫外線を60分間照射することで架橋樹脂粒子を得た。
( Reference Example 9)
0.00105 g of a polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer was added as a dispersion stabilizer to a rubbed test tube fitted with a three-way cock, followed by nitrogen substitution. To this, 0.15 mL of a toluene solution (0.01 M) of bis (cyclooctadiene) nickel, 22.5 μL of a toluene solution of allyl trifluoroacetate (1.0 M), and a toluene solution of triphenylphosphine (1.0 M) Were sequentially added, and toluene was distilled off under reduced pressure. Here, 1.5 mL of tetrahydrofuran was added as a polymerization medium to prepare a π-allyl nickel catalyst solution. To the catalyst solution thus prepared, 0.321 g (1.5 mmol) of 7-arenyloxy-4-methylcoumarin was added and polymerization was carried out by stirring at room temperature for 24 hours.
Thereafter, using a high pressure mercury lamp, ultraviolet rays having a wavelength of 310 nm were irradiated for 60 minutes to obtain crosslinked resin particles.

(実施例10)
1,4−ジアレノキシベンゼンに代えて、1,4−ブタンジオールジアレニルエーテル0.0747g(0.45mmol)を用いた以外は実施例3と同様にして架橋樹脂粒子を得た。
(Example 10)
Instead of 1,4-dialenoxybenzene, crosslinked resin particles were obtained in the same manner as in Example 3 except that 0.0747 g (0.45 mmol) of 1,4-butanediol diarenyl ether was used.

(実施例11)
1,4−ジアレノキシベンゼンに代えて、1,4−ビスアレニルベンゼン0.0693g(0.45mmol)を用いた以外は実施例3と同様にして架橋樹脂粒子を得た。
(Example 11)
Crosslinked resin particles were obtained in the same manner as in Example 3 except that 0.0693 g (0.45 mmol) of 1,4-bisallenylbenzene was used in place of 1,4-dialenoxybenzene.

(実施例12)
1,4−ジアレノキシベンゼンに代えて、1−アレノキシ−4−アレニルベンゼン0.0765g(0.45mmol)を用いた以外は実施例3と同様にして架橋樹脂粒子を得た。
(Example 12)
Crosslinked resin particles were obtained in the same manner as in Example 3 except that 0.0765 g (0.45 mmol) of 1-allenoxy-4-allenylbenzene was used instead of 1,4-dialenoxybenzene.

(比較例2)
セパラブルフラスコに、分散安定剤としてポリ(N−ビニルピロリドン)(Mw=40,000)を1.0g加え、これにエタノールを100g加えて分散溶液を作成した。これにアゾビスイソブチロニトリル0.15g、スチレン7.0g、架橋性モノマーとしてジビニルベンゼン3.0gを加え、70℃に昇温し、24時間攪拌して重合を行うことで、架橋樹脂粒子を得た。得られた架橋樹脂粒子は塊状の凝集体であった。
(Comparative Example 2)
To the separable flask, 1.0 g of poly (N-vinylpyrrolidone) (Mw = 40,000) was added as a dispersion stabilizer, and 100 g of ethanol was added thereto to prepare a dispersion solution. By adding 0.15 g of azobisisobutyronitrile, 7.0 g of styrene, and 3.0 g of divinylbenzene as a crosslinkable monomer, the mixture is heated to 70 ° C. and stirred for 24 hours to carry out polymerization, whereby crosslinked resin particles are obtained. Got. The obtained crosslinked resin particles were massive aggregates.

(比較例3)
セパラブルフラスコに、分散安定剤としてポリ(N−ビニルピロリドン)(Mw=40,000)を1.0g加え、これにエタノールを100g加えて分散溶液を作成した。これにアゾビスイソブチロニトリル0.15g、メタクリル酸メチル10.0gを加え、70℃に昇温し、24時間攪拌して重合を行うことで、樹脂粒子を得た。
(Comparative Example 3)
To the separable flask, 1.0 g of poly (N-vinylpyrrolidone) (Mw = 40,000) was added as a dispersion stabilizer, and 100 g of ethanol was added thereto to prepare a dispersion solution. To this, 0.15 g of azobisisobutyronitrile and 10.0 g of methyl methacrylate were added, the temperature was raised to 70 ° C., and the mixture was stirred for 24 hours for polymerization to obtain resin particles.

(比較例4)
セパラブルフラスコに、分散安定剤としてポリビニルアルコールを1.0g加え、これにイオン交換水を100g加えて分散溶液を作成した。これにアゾビスイソブチロニトリル0.15g、スチレン7.0g、架橋性モノマーとしてジビニルベンゼン3.0gを加え、ホモジナイザーを用いて乳化分散を行い、その後、70℃に昇温し、24時間攪拌して重合を行うことで、架橋樹脂粒子を得た。
(Comparative Example 4)
To the separable flask, 1.0 g of polyvinyl alcohol was added as a dispersion stabilizer, and 100 g of ion-exchanged water was added thereto to prepare a dispersion solution. To this was added 0.15 g of azobisisobutyronitrile, 7.0 g of styrene, and 3.0 g of divinylbenzene as a crosslinkable monomer, emulsified and dispersed using a homogenizer, then heated to 70 ° C. and stirred for 24 hours. Then, cross-linked resin particles were obtained by performing polymerization.

(比較例5)
セパラブルフラスコに、分散安定剤としてポリビニルアルコールを1.0g加え、これにイオン交換水を100g加えて分散溶液を作成した。これにアゾビスイソブチロニトリル0.15g、スチレン7.0g、架橋性モノマーとして1,4−ジアレノキシベンゼン3.0gを加え、ホモジナイザーを用いて乳化分散を行い、その後、70℃に昇温し、24時間攪拌して重合を行った。しかしながら、重合反応が進行せず、反応途中で中止した。
(Comparative Example 5)
To the separable flask, 1.0 g of polyvinyl alcohol was added as a dispersion stabilizer, and 100 g of ion-exchanged water was added thereto to prepare a dispersion solution. To this was added 0.15 g of azobisisobutyronitrile, 7.0 g of styrene, and 3.0 g of 1,4-dialenoxybenzene as a crosslinkable monomer, emulsified and dispersed using a homogenizer, and then raised to 70 ° C. The polymerization was carried out by warming and stirring for 24 hours. However, the polymerization reaction did not proceed and was stopped during the reaction.

(評価)
(1)平均粒子径の測定
得られた架橋樹脂粒子を真空乾燥機にて50℃24時間乾燥させ、架橋樹脂粒子粉体を得た。
得られた粉体を、走査型電子顕微鏡により、任意の50個の粒子を観察し、ノギスにより計測した値の数平均粒子径(Dn)を測定した。また、以下の式により重量平均粒子径(Dw)を測定した。
Dw=Σ(各粒子の粒径×各粒子の体積)/Σ(各粒子の体積)
そして、重量平均粒子径(Dw)と数平均粒子径(Dn)との比(Dw/Dn)を算出した。
(Evaluation)
(1) Measurement of average particle diameter The obtained crosslinked resin particles were dried in a vacuum dryer at 50 ° C. for 24 hours to obtain crosslinked resin particle powders.
Arbitrary 50 particles of the obtained powder were observed with a scanning electron microscope, and the number average particle diameter (Dn) measured with a caliper was measured. Moreover, the weight average particle diameter (Dw) was measured by the following formula.
Dw = Σ (particle diameter of each particle × volume of each particle) / Σ (volume of each particle)
And ratio (Dw / Dn) of the weight average particle diameter (Dw) and the number average particle diameter (Dn) was calculated.

(2)耐溶剤性
得られた架橋樹脂粒子を真空乾燥機にて50℃24時間乾燥させ、架橋樹脂粒子粉体を得た。得られた粉体を、0.05gガラスシャーレに採取し、1.0gのトルエンを加え、24時間静置した後、真空乾燥機にて50℃24時間乾燥させ、架橋樹脂粒子粉体(トルエン後)を得た。得られた架橋樹脂粒子粉体(トルエン後)について、上記と同様の評価方法にて数平均粒子径を測定し、Dnxとした。そして、Dnx/Dnを算出し、以下の基準で評価した。
Dnx/Dnが0.00以上0.80未満 ×
Dnx/Dnが0.80以上0.90未満 ○
Dnx/Dnが0.90以上1.10未満 ◎
Dnx/Dnが1.10以上1.20未満 ○
Dnx/Dnが1.20以上 ×
(2) Solvent resistance The obtained crosslinked resin particles were dried in a vacuum dryer at 50 ° C. for 24 hours to obtain crosslinked resin particle powders. The obtained powder was collected in a 0.05 g glass petri dish, 1.0 g of toluene was added, and the mixture was allowed to stand for 24 hours, and then dried at 50 ° C. for 24 hours in a vacuum dryer, to obtain a crosslinked resin particle powder (toluene). After). About the obtained crosslinked resin particle powder (after toluene), the number average particle diameter was measured by the same evaluation method as described above, and was defined as Dnx. And Dnx / Dn was calculated and evaluated according to the following criteria.
Dnx / Dn is not less than 0.00 and less than 0.80 ×
Dnx / Dn is 0.80 or more and less than 0.90 ○
Dnx / Dn is 0.90 or more and less than 1.10.
Dnx / Dn is 1.10 or more and less than 1.20 ○
Dnx / Dn is 1.20 or more ×

(3)強度
得られた架橋樹脂粒子を真空乾燥機にて50℃24時間乾燥させ、架橋樹脂粒子粉体を得た。得られた粉体を0.1gと、直径1mmのジルコニアボール(アズワン社製「YTZ−10」)20gとトルエン10gとを50mLのビーカー(内径5.5cm)に入れ、スリーワンモーター攪拌機(HEIDON社製「BL1200」)を用いて、25℃で10分間、500rpmで撹拌した。次に、撹拌後の架橋樹脂粒子を、濾過洗浄、乾燥を経て、走査型電子顕微鏡で5000倍で観察した。
得られる顕微鏡画像から、ノギスを用いて粒子の最短径と最長径を計測し、真球度A1を評価した。同様の操作を、任意の20個の粒子に対して行い、A1〜A20の平均真球度Anを算出した。
真球度=粒子の最短径/最長径
Anが0.85未満 ×
Anが0.85以上 ○
(3) Strength The obtained crosslinked resin particles were dried in a vacuum dryer at 50 ° C. for 24 hours to obtain crosslinked resin particle powder. 0.1 g of the obtained powder, 20 g of zirconia balls having a diameter of 1 mm (“YTZ-10” manufactured by ASONE) and 10 g of toluene were placed in a 50 mL beaker (inner diameter 5.5 cm), and a three-one motor stirrer (HEIDON) The product was stirred at 25 ° C. for 10 minutes at 500 rpm. Next, the crosslinked resin particles after stirring were filtered, washed and dried, and observed with a scanning electron microscope at a magnification of 5000 times.
From the obtained microscopic image, the shortest diameter and the longest diameter of the particles were measured using calipers, and the sphericity A1 was evaluated. The same operation was performed on arbitrary 20 particles, and the average sphericity An of A1 to A20 was calculated.
Sphericality = Smallest particle diameter / Longest particle diameter An is less than 0.85 ×
An is 0.85 or more ○

なお、実施例1で得られた樹脂粒子の顕微鏡写真を図1に、耐溶剤性試験後の顕微鏡写真を図2に示した。また、実施例2、参考例8、比較例1で得られた樹脂粒子の顕微鏡写真、耐溶剤性試験後の顕微鏡写真についても図3〜8に示した。 In addition, the microscope picture of the resin particle obtained in Example 1 was shown in FIG. 1, and the microscope picture after a solvent resistance test was shown in FIG. In addition, the micrographs of the resin particles obtained in Example 2, Reference Example 8 and Comparative Example 1 and the micrographs after the solvent resistance test are also shown in FIGS.

本発明によれば、樹脂の分子量及び粒子径を均一に制御することができ、かつ、耐溶剤性や力学特性に優れる樹脂粒子を製造することが可能な架橋樹脂粒子の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the molecular weight and particle diameter of resin can be controlled uniformly, and the manufacturing method of the crosslinked resin particle which can manufacture the resin particle which is excellent in solvent resistance and a dynamic characteristic can be provided.

Claims (6)

1分子あたり2個以上のアレニル基を有する架橋性アレンモノマーを用いてリビング重合を行い、かつ、前記架橋性アレンモノマーを用いてリビング重合させて得られる樹脂を架橋させるものであり、
前記架橋性アレンモノマーは、ジアレンモノマーであり、
前記ジアレンモノマーは、下記式(1)、下記式(2)又は下記式(3)で表される構造を有することを特徴とする架橋樹脂粒子の製造方法。
式(1)〜(3)中、Rは下記式(13)に示す何れかの連結基を表す。
Living polymerization is performed using a crosslinkable allene monomer having two or more allenyl groups per molecule, and the resin obtained by living polymerization using the crosslinkable allene monomer is crosslinked.
The crosslinking Allen monomers are Jiarenmonoma over,
The said dialene monomer has a structure represented by following formula (1), following formula (2), or following formula (3), The manufacturing method of the crosslinked resin particle characterized by the above-mentioned.
In formulas (1) to (3), R 1 represents any linking group represented by the following formula (13).
架橋性アレンモノマーの添加量が、すべてのアレンモノマーに対し、5〜50mol%であることを特徴とする請求項1記載の架橋樹脂粒子の製造方法。 The method for producing crosslinked resin particles according to claim 1, wherein the addition amount of the crosslinkable allene monomer is 5 to 50 mol% with respect to all the allene monomers. アレンモノマーとして、炭素−炭素結合以外の不飽和結合を有するアレンモノマーを添加することを特徴とする請求項1記載の架橋樹脂粒子の製造方法。 The method for producing crosslinked resin particles according to claim 1, wherein an allene monomer having an unsaturated bond other than a carbon-carbon bond is added as the allene monomer. アレンモノマーとして、光二量化する官能基を有するアレンモノマーを添加することを特徴とする請求項1記載の架橋樹脂粒子の製造方法。 2. The method for producing crosslinked resin particles according to claim 1, wherein an allene monomer having a functional group to be photodimerized is added as the allene monomer. 強酸で処理することで架橋させることを特徴とする請求項3記載の架橋樹脂粒子の製造方法。 4. The method for producing crosslinked resin particles according to claim 3, wherein the crosslinked resin particles are crosslinked by treatment with a strong acid. 光を照射することで架橋させることを特徴とする請求項4記載の架橋樹脂粒子の製造方法。 The method for producing crosslinked resin particles according to claim 4, wherein crosslinking is performed by irradiating light.
JP2013195710A 2012-10-04 2013-09-20 Method for producing crosslinked resin particles Active JP6268513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195710A JP6268513B2 (en) 2012-10-04 2013-09-20 Method for producing crosslinked resin particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012222427 2012-10-04
JP2012222427 2012-10-04
JP2013195710A JP6268513B2 (en) 2012-10-04 2013-09-20 Method for producing crosslinked resin particles

Publications (2)

Publication Number Publication Date
JP2014088546A JP2014088546A (en) 2014-05-15
JP6268513B2 true JP6268513B2 (en) 2018-01-31

Family

ID=50790703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195710A Active JP6268513B2 (en) 2012-10-04 2013-09-20 Method for producing crosslinked resin particles

Country Status (1)

Country Link
JP (1) JP6268513B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933354B1 (en) * 1970-06-30 1974-09-06
JP2532270B2 (en) * 1988-03-15 1996-09-11 日本ペイント株式会社 Polyvalent allene compound and method for producing the same
JPH0745422B2 (en) * 1988-03-15 1995-05-17 日本ペイント株式会社 Polycyclic phenoxyarene compound and process for producing the same
JPH1180264A (en) * 1997-09-11 1999-03-26 Fuji Oil Co Ltd Allenyloxymethylnaphthalene, its preparation and polymer obtained therefrom
US20040171712A1 (en) * 1999-12-30 2004-09-02 Ojeda Telmo Manfrom Process for preparing high melt strength polypropylene and crosslinked prepared therewith
JP2001247628A (en) * 2000-03-07 2001-09-11 Daicel Chem Ind Ltd New optically active allene compound containing asymmetric carbon, its polymer and its production method
JP4413581B2 (en) * 2003-11-07 2010-02-10 株式会社クラレ NOVEL POLYMER AND PROCESS FOR PRODUCING THE SAME
JP5664971B2 (en) * 2010-07-01 2015-02-04 国立大学法人東京工業大学 Method for producing fluoropolymer composite particles

Also Published As

Publication number Publication date
JP2014088546A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
Pang et al. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles
Wu et al. Synthesis of hybrid silica nanoparticles densely grafted with thermo and pH dual-responsive brushes via surface-initiated ATRP
JP2013505319A (en) Use of addition copolymerized branched copolymers in curing systems.
Xiong et al. Bifunctional core–shell–corona particles for amphiphobic coatings
JP6231646B2 (en) Visor containing methacrylic resin
JP4106240B2 (en) Polymer fine particle having living radical polymerization initiating group and method for producing the same
JP2013505318A (en) Use of addition copolymerized branched copolymers in film and membrane applications
JPH05170845A (en) Fine organic polymer particle and its preparation
Chen et al. Facile synthesis of nanocapsules and hollow nanoparticles consisting of fluorinated polymer shells by interfacial RAFT miniemulsion polymerization
Islam et al. Synthesis and characterization of poly (HEMA‐co‐MMA)‐g‐POSS nanocomposites by combination of reversible addition fragmentation chain transfer polymerization and click chemistry
Karesoja et al. Phase Separation of Aqueous Poly (2-dimethylaminoethyl methacrylate-block-N-vinylcaprolactams)
Qin et al. Dispersible Shaped Nanoobjects from Bulk Microphase Separation of High T g Block Copolymers without Chemical Cross-linking
JP4215455B2 (en) POLYMER PARTICLES HAVING LIVING INITIATION SPECIES AND METHOD FOR PRODUCING THE SAME
JP6049059B2 (en) Visor containing methacrylic resin
JP2007246704A (en) Core-shell type polymer gel particulates and its manufacturing method
Kuo et al. Star Poly (N‐isopropylacrylamide) Tethered to Polyhedral Oligomeric Silsesquioxane (POSS) Nanoparticles by a Combination of ATRP and Click Chemistry
Yu et al. Preparation of polystyrene microspheres using rosin–acrylic acid diester as a cross-linking agent
JP6268513B2 (en) Method for producing crosslinked resin particles
JP7258709B2 (en) Hollow particles and their uses
Xiao et al. Transitioning from Photoinitiation to Thermal Initiation in RAFT Dispersion Polymerization via a Small Modification of the Macro-RAFT Agent: A Scalable Approach for Monodisperse Surface-Functional Polymeric Microspheres
Ishizuka et al. Synthesis of Hydrophobic Block Copolymer Nanoparticles in Alcohol/Water Stabilized by Poly (methyl methacrylate) via RAFT Dispersion Polymerization-Induced Self-Assembly
JPWO2010047305A1 (en) Method for producing polymer fine particles
Tingting et al. Synthesis and characterization of core‐shell particles containing a perfluoroacrylate copolymer rich in the shell
Bousquet et al. Single‐step process to produce functionalized multiresponsive polymeric particles
JP6227311B2 (en) Method for producing hydrophilic resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6268513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250