JP6266476B2 - Magnet film and magnet film card using the same - Google Patents

Magnet film and magnet film card using the same Download PDF

Info

Publication number
JP6266476B2
JP6266476B2 JP2014180360A JP2014180360A JP6266476B2 JP 6266476 B2 JP6266476 B2 JP 6266476B2 JP 2014180360 A JP2014180360 A JP 2014180360A JP 2014180360 A JP2014180360 A JP 2014180360A JP 6266476 B2 JP6266476 B2 JP 6266476B2
Authority
JP
Japan
Prior art keywords
magnetic
film
magnet
deformation
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014180360A
Other languages
Japanese (ja)
Other versions
JP2016054263A (en
Inventor
清 前橋
清 前橋
一正 藤井
一正 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichilaymagnet Co Ltd
Original Assignee
Nichilaymagnet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichilaymagnet Co Ltd filed Critical Nichilaymagnet Co Ltd
Priority to JP2014180360A priority Critical patent/JP6266476B2/en
Publication of JP2016054263A publication Critical patent/JP2016054263A/en
Application granted granted Critical
Publication of JP6266476B2 publication Critical patent/JP6266476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硬質磁性材料粉と粘結材である有機高分子エラストマーと溶剤を主たる成分とする磁性塗料を、支持体の片面に塗布、乾燥して磁性塗膜を形成して成る磁性フィルムに多極着磁を施して成る磁石フィルムに関するものである。そうして該磁性フィルムは掲示板の表示、室内壁面の表装、各種カードなどに使用されるものである。   The present invention provides a magnetic film in which a magnetic coating material comprising a hard magnetic material powder, an organic polymer elastomer as a binder and a solvent as main components is applied to one side of a support and dried to form a magnetic coating film. The present invention relates to a magnetic film formed by multipolar magnetization. Thus, the magnetic film is used for a display on a bulletin board, a cover on a room wall surface, various cards and the like.

従来の磁性塗料を用いて磁性層を形成した磁性フィルムは、磁性塗料を支持体の片面に塗布し異方性の硬質磁性材料粉の磁化容易軸を支持体面と平行の方向(面内方向)に磁場配向したものである。
該磁性フィルムに多極着磁を施すには、異方性硬質磁性材料粉の磁化容易軸の配向方向に対して多極着磁の磁極方向を直角にして磁束の向きが磁化容易軸方向になるように着磁をすることが必須条件である。しかし用途的に場合によっては磁極方向を変化出来ないことは大変不都合な事である。先行技術文献としては下記の特許文献があるが全て面内配向技術を用いたものである。
A magnetic film in which a magnetic layer is formed using a conventional magnetic paint, the magnetic paint is applied to one side of the support, and the axis of easy magnetization of the anisotropic hard magnetic material powder is parallel to the support surface (in-plane direction) Are magnetically oriented.
In order to perform multipolar magnetization on the magnetic film, the magnetic pole direction of the multipolar magnetization is perpendicular to the orientation direction of the easy magnetization axis of the anisotropic hard magnetic material powder so that the direction of the magnetic flux is the easy magnetization axis direction. It is an indispensable condition to be magnetized. However, it is very inconvenient that the magnetic pole direction cannot be changed depending on the application. Prior art documents include the following patent documents, but all use the in-plane orientation technique.

特許第1460017号Patent No. 1460017 特開2001−76920JP 2001-76920 A 特許第3271620号Japanese Patent No. 3271620 特許第3297807号Japanese Patent No. 3297807 特許第3309854号Japanese Patent No. 3309854 特許第3309855号Patent No. 3309855 特許第3326690号Japanese Patent No. 3326690 特許第3429503号Patent No. 3429503

従来の異方性の磁石フィルムは、薄層磁石の割に磁気吸着力が強く、薄層であることから印刷加工がし易く軽量で取り扱性に優れたものと言われていたが、近時、用途拡大に伴い定尺に裁断して複数枚重ねて取り扱う時に、接触する表裏が磁気吸着力で磁着して四隅を揃えて重ねる事が困難なことなどが問題視され、解決策が強く求められるように成った。本発明はこの問題を解決するものである。   Conventional anisotropic magnet films have a strong magnetic attraction compared to thin-layer magnets, and since they are thin layers, they are said to be easy to print and lightweight and have excellent handling properties. At times, as the application expands, it is considered as a problem that it is difficult to align the four corners by magnetically adhering the front and back to touch when multiple sheets are cut into a standard size and handled in layers. It came to be strongly demanded. The present invention solves this problem.

上記問題を解決するために種々検討を行った結果、定尺に裁断した磁石シート(カード)同士が重なった場合に、両者が同一極間の場合は磁極方向が重なることで、両者の表面同士、又は裏面同士、または表裏面間で磁気吸着力が生じる不都合に対して、多極着磁の極間をランダムに変えた着磁を施すこと、又、両者の磁極方向を交差することで相互の磁気吸着力が低下すること、又、多極着磁の極間をランダムに変え且つ磁極方向を交差することで更に両者の表裏間の磁気吸着力低減効果が向上すること。   As a result of various investigations to solve the above problem, when the magnetic sheets (cards) cut to a fixed size overlap each other, the magnetic pole directions overlap when both are in the same pole, Or, against the inconvenience that magnetic attraction force occurs between the back surfaces or between the front and back surfaces, magnetizing by randomly changing the poles of multipolar magnetization, and crossing the magnetic pole directions of both In addition, the effect of reducing the magnetic attractive force between the front and back sides of the magnetic poles is further improved by randomly changing the poles of multipolar magnetization and crossing the magnetic pole directions.

更に、それに伴い多極着磁の磁極方向をランダムに変えた着磁を施すことで磁石フィルム同士が異極との磁気吸引力で磁極に沿って斜め向きに磁気吸着した状態から、磁気吸着力に抗して端部を揃える作業で飛び出た端部をテーブル面に当てる(図19)衝撃などによって生じる変形〜傷付きを防止する為に、磁石フィルムの両面に支持体(フィルム)を設けることの効果が大であること、及び多極着磁の極間をランダムに変えて着磁を施した場合に近傍の異極間の磁気吸引吸着による波うち変形の発生(図15)を防止する効果が大(図16)であり、又、それによって全体的に両者間の磁気吸着力を低減する効果があることを見出した。   In addition, by applying magnetization with randomly changing the magnetic pole direction of multipolar magnetization, the magnetic attraction force is changed from the state in which the magnet films are magnetically attracted obliquely along the magnetic pole by the magnetic attraction force with different polarities. In order to prevent deformation and scratches caused by impacts, etc., a support (film) should be provided on both sides of the magnet film in order to prevent the deformation and scratches caused by impact etc. And the occurrence of wave deformation (FIG. 15) due to magnetic attraction between adjacent different poles when magnetizing by randomly changing the poles of multipolar magnetization. It has been found that the effect is large (FIG. 16), and that it has the effect of reducing the magnetic attractive force between the two as a whole.

又、重ねた時に磁極方向が交差するように、四角形の定尺品の一辺が磁場配向方向に対して所定の範囲内で任意の角度で裁断をすることで、原反に所定の範囲内で任意の角度で斜めに着磁を施したものと同様になること(図17)に着目し本発明を完成するに至った。   In addition, one side of a rectangular standard product is cut at an arbitrary angle within a predetermined range with respect to the magnetic field orientation direction so that the magnetic pole directions intersect with each other, so that the original fabric is within the predetermined range. The present invention has been completed by paying attention to the fact that it is the same as that obliquely magnetized at an arbitrary angle (FIG. 17).

(1)ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを乾燥後の厚みが40〜250μmに成るように塗布し、異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と平行方向に面内磁場配向し乾燥して磁性塗膜を形成して成る磁性フィルムに、
前記の支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に磁極方向を磁場配向方向に対して、直角方向に多極着磁の各極間の距離をランダムに着磁を施したことで、取り扱い時の磁石フィルム同士の磁気吸着力を低減した磁石フィルムであって、下記の耐波打変形吸着性試験、及び耐角端部変形性試験で評価:◎印に適合する耐波打変形吸着性及び耐角端部変形性に優れたことを特徴とする磁石フィルムとする。

1、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
2、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
(1) Mainly made of polyethylene terephthalate-based synthetic paper with an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder on one side of a support having a thickness of 40 to 220 μm. The filling amount of the anisotropic ferrite hard magnetic material powder is 50 to 65 volumes with respect to the total amount of the anisotropic ferrite hard magnetic material powder, the organic polymer elastomer and the processing aid, which are solid components after drying. % Is applied so that the thickness after drying is 40 to 250 μm, and the axis of easy magnetization of the anisotropic ferrite-based hard magnetic material powder is aligned in the in-plane magnetic field in the direction parallel to the support surface and dried to form a magnetic coating film. a magnetic film obtained by forming a
Magnetic layer between bonded to it as a magnetic film having a support on both sides to grant seaworthiness droplet deformation adsorptive and耐角end deformation of the laminate or magnetic film similar to the film and support,
The magnetic pole direction on one side or both sides with respect to the magnetic orientation direction, it was subjected to magnetization randomly distance between the poles of the multipolar magnetized in a direction perpendicular, the magnetic attraction force of the magnet between films during handling Reduced magnet film , evaluated by the following undulation deformation adsorption test and corner end deformation test: Excellent undulation deformation adsorption and corner end deformation conforming to ◎ The magnetic film is a feature.

1. Anti-waving deformation adsorption test method
Two magnetic films, which are test samples (100 × 150 mm), are overlapped, and after standing for 7 days in a hot-air circulating thermostatic device at 38 to 42 ° C., the presence or absence of undulation deformation adsorption is observed and evaluated in four stages. . )
◎: No undulations are observed. ○: Most undulations are not observed. △: Some undulations are observed.
2. Corner edge resistance test method
At a room temperature of 21 to 25 ° C., two magnetic film cards, which are test samples (100 × 150 mm), are first stacked, and the angle at which the magnetic attractive force between the cards becomes maximum within a magnetic pole direction of 360 ° ( The front and back sides are magnetically attracted with the magnetic pole directions overlapping. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches.
◎: Deformation is not recognized ○: Deformation is hardly recognized Δ: Deformation is slightly recognized
X: Deformation is recognized.

(2)前記多極着磁の各極間の距離を磁石フィルムの厚みに対して適する極間寸法を基準極間とし、該基準極間×5の寸法を1単位として、1単位毎に基準極間×0.8、0.9、1.0、1.1、1.2の寸法でなる極間が各1個存在し、その順番が連続する各単位内でランダムである着磁を施したことを特徴とする磁石フィルムとする。 (2) The distance between the poles of the multi-pole magnetization is the distance between the poles suitable for the thickness of the magnet film, and the distance between the reference poles is 5 units. There is one pole between the poles each having a dimension of 0.8, 0.9, 1.0, 1.1, and 1.2, and magnetization is random within each unit in which the order is continuous. The magnetic film is characterized by being applied.

(3)ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料紛の充填量が50〜65容量%ものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と平行方向に面内磁場配向し乾燥して磁性塗膜を形成して成る磁性フィルムに、
前記の支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に磁極方向を磁場配向方向に対して、直角方向に多極着磁の各極間の距離を等間隔に着磁を施し、四角形の定尺裁断を四角形の縦辺又は横辺の方向を磁場配向方向に対して10〜80度又はマイナス10〜80度の範囲内で任意の傾斜を設けて裁断したことで、取り扱い時の磁石フィルム同士の磁気吸着力を低減し、更に前記請求項1に記載の耐耐角端部変形性試験方法で評価:◎印に適合する耐角端部変形の優れたことを特徴とする定尺磁石フィルムとする。
(3) Mainly made of polyethylene terephthalate-based synthetic paper with an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder on one side of a support having a thickness of 40 to 220 μm. 50 to 65 volume of anisotropic ferrite hard magnetic material powder with respect to the total amount of anisotropic ferrite hard magnetic material powder, organic polymer elastomer, and processing aid as solid components after drying Is applied so that the thickness after drying becomes 40 to 250 μm, and the axis of easy magnetization of the anisotropic ferrite-based hard magnetic material powder is aligned in the in-plane magnetic field in the direction parallel to the surface of the support, and then dried and magnetically coated. To a magnetic film formed by forming a film ,
Magnetic layer between bonded to it as a magnetic film having a support on both sides to grant seaworthiness droplet deformation adsorptive and耐角end deformation of the laminate or magnetic film similar to the film and support,
The magnetic pole direction is magnetized on one side or both sides of the magnetic field in the direction perpendicular to the direction of the magnetic field, and the distance between each pole of the multipolar magnetization is magnetized at equal intervals. The direction of the magnetic field is 10 to 80 degrees or minus 10 to 80 degrees with respect to the magnetic field orientation direction and is cut by providing an arbitrary inclination, thereby reducing the magnetic attractive force between the magnet films during handling , evaluation in耐耐angle end modified test method according to claim 1: ◎ and Blank magnet film characterized indicia that excellent compatible 耐角end deformability on.

(4)前記(1)又は(2)いずれか1項記載の磁石フィルムを用いて、四角形の定尺裁断を四角形の縦辺又は横辺の方向を磁場配向方向に対して10〜80度又はマイナス10〜80度の範囲内で任意の傾斜を設けて裁断することで、更に磁石フィルム同士の磁気吸着力を低減したことを特徴とする前記(2)項記載の定尺磁石フィルムとする。
(4) Using the magnet film according to any one of (1) and (2) above, the square cut is made 10 to 80 degrees with respect to the magnetic field orientation direction with respect to the direction of the vertical or horizontal side of the square. by cutting with an optional inclination in a range of minus 10 to 80 degrees, more and Blank magnet film of the item (2), wherein the reduced magnetic attraction force between the magnet film.

(5)磁性塗膜中のフエライト系硬質磁性材料粉の充填量が50〜65v%であり、磁性塗膜の厚みが40〜250μmである磁性フィルムの片面又は両面に極間1〜2.5mmの多極着磁を施したことを特徴とする前記(1)〜(4)項いずれか1項記載の磁石フィルムとする。 (5) The amount of ferrite hard magnetic material powder in the magnetic coating film is 50 to 65 v%, and the thickness of the magnetic coating film is 40 to 250 μm. The magnetic film according to any one of the items (1) to (4), wherein the magnet film is subjected to multipolar magnetization.

(6)前記両面に支持体を有する磁石フィルムの支持体がポリエチレンテレフタレート系合成紙で厚み40〜60μm、磁性塗膜の厚み80〜100μm、磁気吸着力0.5〜2.0g/cm2、自重480g/m2以下であることを特徴とする前記(1)〜(5)項いずれか1項記載の磁石フィルムとする。 (6) The support of the magnetic film having the support on both sides is a polyethylene terephthalate synthetic paper having a thickness of 40 to 60 μm, a magnetic coating film thickness of 80 to 100 μm, a magnetic adsorption force of 0.5 to 2.0 g / cm 2 , The magnet film according to any one of (1) to (5) above, having a self-weight of 480 g / m 2 or less.

(7)前記支持体の非塗布面が印刷可能又は書き消し可能面であることを特徴とする前記
(1)〜(6)項いずれか1項記載の磁石フィルムとする。
(7) The magnetic film according to any one of (1) to (6), wherein the non-coated surface of the support is a printable or erasable surface.

(8)前記(1)〜(7)いずれか1項に記載の磁石フィルムを用いたことを特徴とする磁石フィルムカードとする。 (8) A magnetic film card using the magnetic film according to any one of (1) to (7).

本発明は、多極着磁を施した磁石フィルムを用いたカードなどの使用時の重ね合わせによる相互の磁気吸着力の低減策として、多極着磁の各極間の距離をランダムにすること、又は及び磁極を交差させる事による不都合を解決したものである。   The present invention randomizes the distance between each pole of multipolar magnetization as a measure for reducing the mutual magnetic attraction force by superimposing a card using a magnetic film subjected to multipolar magnetization. Or the problem caused by crossing the magnetic poles is solved.

即ち、多極着磁の各極間の距離をランダムにすること、又は及び磁極を交差させる事による磁気吸着力の軽減策に於いて、両面に支持体を設けることで、磁気吸着力に抗して四隅を揃える端部衝撃や自動送り機などによる磁石フィルムの変形、傷つきが防止され、又、極間が異なる異極磁気吸引による波うち変形吸着が防止され、且つ変形吸着しないことで全体の磁気吸着力の減少効果が向上する。即ち、重ね時の相互の磁気吸着力が弱く、取り扱いが容易で、磁石フィルムの変形、傷つき防止効果が得られる。   That is, in order to reduce the magnetic attraction force by randomizing the distance between each pole of multipolar magnetization or by crossing the magnetic poles, it is possible to resist the magnetic attraction force by providing supports on both sides. As a result, it is possible to prevent the magnet film from being deformed or damaged by end impacts that align the four corners, automatic feeders, etc. The effect of reducing the magnetic attraction force is improved. That is, the mutual magnetic attractive force at the time of overlapping is weak and easy to handle, and the effect of preventing deformation and scratching of the magnet film can be obtained.

本発明の基本構成を示す断面模式図である。(a)は支持体の片面に磁性粉が面内配向された磁性層を形成した後、支持体と同様なフィルムを積層して成ることを示し、(b)は他の方法として、支持体の片面に磁性粉が面内配向された磁性層を形成した後、磁性層面同士を張り合わせて成ることを示す断面模式図である。It is a cross-sectional schematic diagram which shows the basic composition of this invention. (A) shows that a magnetic layer in which magnetic powder is oriented in the plane is formed on one side of the support, and then a film similar to the support is laminated, and (b) shows the support as another method. It is a cross-sectional schematic diagram which shows that after forming the magnetic layer by which the magnetic powder was in-plane-oriented on one side of this, the magnetic layer surfaces were bonded together. 前記図1の先駆体を示す断面模式図である。(a)は図1の(a)に対応し、(b)は図1の(b)に対応する。It is a cross-sectional schematic diagram which shows the precursor of the said FIG. (A) corresponds to (a) in FIG. 1, and (b) corresponds to (b) in FIG. 磁場配向装置を付設した塗布機(コーター)の一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of the coating device (coater) which attached the magnetic field orientation apparatus. 磁場配向装置を示す側面模式図である。It is a side surface schematic diagram which shows a magnetic field orientation apparatus. 磁性層中の面内方向に磁場配向された異方性フエライト粒子の1個を示す模式図(斜視図)である。It is a schematic diagram (perspective view) showing one anisotropic ferrite particle that is magnetically oriented in the in-plane direction in the magnetic layer. ドライラミネーターの一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a dry laminator. 熱ラミネーターの一例を示す側面模式図である。It is a side surface schematic diagram which shows an example of a thermal laminator. 磁性層中の面内方向に磁場配向された異方性フエライト粒子の1個に対して着磁ヨークからの磁束が磁化容易軸(C)方向に成っている状態を示す模式図(斜視図)である。Schematic diagram (perspective view) showing a state in which the magnetic flux from the magnetizing yoke is in the easy axis (C) direction for one anisotropic ferrite particle that is magnetically oriented in the in-plane direction in the magnetic layer. It is. 永久磁石型着磁ロールの一例を示す模式図であり、(a)は斜視図、(b)は側面図である。It is a schematic diagram which shows an example of a permanent magnet type | mold magnetizing roll, (a) is a perspective view, (b) is a side view. 永久磁石型着磁ロール2本を用いて、面内方向の磁束を形成して着磁する一例を示す側面模式図である。It is a side surface schematic diagram which shows an example which forms and magnetizes the magnetic flux of an in-plane direction using two permanent magnet type | mold magnetizing rolls. 本発明の磁石フィルムに施された着磁極間をランダムに着磁した状態を示す上面図である。It is a top view which shows the state which magnetized between the magnetic poles given to the magnet film of this invention at random. 従来の磁石フィルムの着磁極間(等間隔)と同様に着磁を施した断面(側面)模式図である。It is the cross section (side surface) schematic diagram which magnetized similarly to between the magnetic poles (equal intervals) of the conventional magnet film. 従来の磁石フィルムの着磁極間(等間隔)と同様に着磁を施した二枚が、着磁面と裏面(非着磁)を接して磁気吸着した状態を示す断面(側面)模式図である。It is a cross-sectional (side) schematic diagram showing a state in which two magnetized magnets in the same manner as between the magnetized magnetic poles (equal intervals) of a conventional magnet film are magnetically attracted by contacting the magnetized surface and the back surface (non-magnetized) is there. 本発明の磁石フィルムに施された着磁極間をランダムに着磁を施した二枚が、接して磁気吸着した状態を示す断面(側面)模式図であり、(a)は着磁面と裏面(非着磁)を接して磁気吸着した状態を示し、(b)は着磁面同士接して磁気吸着した状態を示す。It is a cross section (side surface) schematic diagram which shows the state which two sheets which magnetized between the magnetic poles given to the magnet film of this invention at random were touched and magnetically attracted, (a) is a magnetized surface and a back surface (B) shows a state in which the magnetized surfaces are in contact with each other and magnetically adsorbed. 表面(片面)に支持体を設けた磁石フィルム同士の表面と裏面を重ねて磁気吸着させた場合に生じた波うち部分吸着を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)It is a conceptual schematic cross section which shows partial adsorption | suction among the waves produced when the surface and back surface of magnet films which provided the support body on the surface (one side) were piled up and made to magnetically adsorb | suck. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted) 両面に支持体を設けた磁石フィルム同士の表面と裏面を重ねて磁気吸着させた場合の、波うち部分吸着を生じない磁気吸着状態を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)It is a conceptual schematic cross section which shows the magnetic attraction | suction state which does not produce partial adsorption | suction among waves, when the magnetic film which provided the support body on both surfaces overlap | superposed and adsorb | sucked magnetically. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted) 本発明の定尺磁石フィルムである磁場配向方向に対して傾斜を設けて裁断することを示す上面模式図である。It is an upper surface schematic diagram which shows providing with inclination with respect to the magnetic field orientation direction which is a fixed-length magnet film of this invention, and cutting. 多極着磁を施した二枚の磁石フィルムの着磁面と裏面(非着磁)が、磁極方向を交差して重なった場合に磁気吸着力が弱くなる理由を示す上面模式図であり、(a)は交差の状態を示し、(b)は交差箇所の部分拡大図である。It is a schematic top view showing the reason why the magnetic attractive force is weakened when the magnetized surface and back surface (non-magnetized) of two magnet films subjected to multipolar magnetization overlap each other in the magnetic pole direction, (A) shows the state of intersection, and (b) is a partially enlarged view of the intersection. 本発明の磁石フィルムカードを多数重ねて四周を揃える場合を示す正面模式図であり、(a)は平らな面18に下端部を当てて揃える模式図、(b)は揃えた状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a front schematic diagram which shows the case where many magnet film cards of this invention are piled up, and arrange | positions four rounds, (a) is a schematic diagram which hits a flat surface 18 and aligns a lower end part, (b) shows the state which arranged. 磁石フィルムと軟鉄板との垂直方向磁気吸着力測定装置を示す概念模式図(正面)である。It is a conceptual schematic diagram (front) which shows the perpendicular direction magnetic attraction force measuring apparatus of a magnet film and a soft iron plate. 磁石フィルム同士の引張剪断磁気吸着力測定装置を示す概念模式図(正面)である。It is a conceptual diagram (front) which shows the tensile shear magnetic attraction force measuring apparatus of magnet films.

以下、本発明を実施するための形態を図1〜19に基づいて説明する。
(1)図1は、本発明の磁石フィルムAの基本構成を示す断面模式図である。(a)は支持体1の片面に磁性粉が面内配向された磁性層2を塗布成形によって形成した後、支持体と同様なフィルム11を積層して成る磁性フィルムの片面に多極着磁を施した(非着磁面に生じる弱い磁極の表示は省略)磁石フィルムAを示し、(b)は他の方法として、支持体1の片面に磁性粉が面内配向された磁性層2を形成した後、磁性面同士を張り合せて成る磁性フィルムの片面に多極着磁を施した(非着磁面に生じる弱い磁極の表示は省略)磁石フィルムA1を示す断面模式図である。
Hereinafter, the form for implementing this invention is demonstrated based on FIGS.
(1) FIG. 1 is a schematic cross-sectional view showing the basic structure of a magnet film A of the present invention. (A) shows that a magnetic layer 2 in which magnetic powder is oriented in-plane on one side of a support 1 is formed by coating, and then a multi-pole magnetization is applied to one side of a magnetic film in which a film 11 similar to the support is laminated. (B) shows a magnetic film 2 in which magnetic powder is oriented in-plane on one side of the support 1 as an alternative method. It is a cross-sectional schematic diagram which shows magnet film A1 which formed multipolar magnetization on the single side | surface of the magnetic film formed by bonding together magnetic surfaces after forming (it does not display the weak magnetic pole produced on a non-magnetized surface).

(2)図2は、前記図1の磁石フィルムAの先駆体を示す断面模式図である。(a)は図1の(a)に対応し、支持体1の片面に磁性粉が面内配向された磁性層2を塗布成形によって形成した先駆体Bを示し、(b)は図1の(b)に対応し、支持体1の片面に目的とする磁石フィルムの磁性層の二分の一の厚みの、磁性粉が面内配向された磁性層2を塗布成形によって形成した先駆体B1を示す。この先駆体B1を支持体側から着磁を施した後、磁石面同士を張り合わせることで、両面の磁気吸着力が同等な両面着磁品が得られる。 (2) FIG. 2 is a schematic sectional view showing a precursor of the magnet film A shown in FIG. (A) corresponds to (a) in FIG. 1, and shows a precursor B in which a magnetic layer 2 in which magnetic powder is in-plane oriented is formed on one side of a support 1 by coating, and (b) in FIG. Corresponding to (b), a precursor B1 formed by coating and forming a magnetic layer 2 having a magnetic powder of in-plane orientation, which is half the thickness of the magnetic layer of the target magnetic film, on one side of the support 1 Show. After the precursor B1 is magnetized from the support side, the magnet surfaces are bonded to each other to obtain a double-sided magnetized product having the same magnetic attraction force on both sides.

支持体1としては、表面に印刷可能層(印刷可能層の図示省略・以下同じ)を有する合成紙、無機粉末を含有したプラスチックフィルム、耐水紙などが挙げられ、その中でも引張弾性率3200〜4200MPa(JIS K7127)のものが好ましい。又、印刷可能層とは使用目的に適した印刷インキ受理層を意味する。   Examples of the support 1 include a synthetic paper having a printable layer on the surface (not shown of the printable layer, the same applies hereinafter), a plastic film containing an inorganic powder, water-resistant paper, and the like. Among them, the tensile elastic modulus is 3200 to 4200 MPa. (JIS K7127) is preferred. The printable layer means a printing ink receiving layer suitable for the purpose of use.

合成紙としては、例えばユポ合成紙FEB,FGS,FPG,VJFP,VJFD等(ユポコーポレイション社製)、トヨジェットGP,MW,MT,MP等(東洋紡績社製)、ピーチコートSPUY,(日清紡社製)が挙げられ、その中でもPET系(ポリエチレンテレフタレート)の合成紙であるトヨジェットMW,MT(東洋紡績社製)、ピーチコートSEY(日清紡社製)などが好適である。   Examples of synthetic paper include YUPO synthetic paper FEB, FGS, FPG, VJFP, VJFD, etc. (manufactured by Yupo Corporation), Toyojet GP, MW, MT, MP, etc. (manufactured by Toyobo Co., Ltd.), Peach Coat SPY, (Nisshinbo Co., Ltd.) Among them, Toyojet MW, MT (manufactured by Toyobo Co., Ltd.) and Peach Coat SEY (Nisshinbo Co., Ltd.), which are PET (polyethylene terephthalate) synthetic paper, are preferred.

無機粉末等を含有したプラスチックフィルムとしては、ポリエステルフィルム・クリスパーG2311,K1212、2323、K2411(日清紡社製)、半硬質塩化ビニルフィルム10P(リケンテクノス社製)等が挙げられ、耐水紙としては、エコクリスタル(新巴川製紙社製)、カレカ(三菱化学メデイア社製)などが挙げられる。   Examples of the plastic film containing inorganic powder include polyester films / Chrispar G2311, K1212, 2323, K2411 (Nisshinbo Co., Ltd.), semi-rigid vinyl chloride film 10P (Riken Technos), etc. Crystal (manufactured by Shinyodogawa Paper Co., Ltd.), Kaleka (manufactured by Mitsubishi Chemical Media Co., Ltd.) and the like can be mentioned.

表面に印刷可能層を有する支持体の厚みは40〜220μmが好ましく、40μm以下では磁石フィルムの端部傷付きや部分磁気吸着による波打変形の防止、形成する磁性層の色に対する隠蔽力が不足となる場合があり、220μmより厚いと磁気貼着時の磁気エアーギャップ(磁石の磁気吸着面と被着体(磁性体)面までの距離)となり磁気吸着力の低下が無視出来なくなるので好ましくない。   The thickness of the support having a printable layer on the surface is preferably 40 to 220 μm. If the thickness is 40 μm or less, the end of the magnetic film is not damaged or the wavy deformation due to partial magnetic adsorption is prevented, and the color hiding power of the formed magnetic layer is insufficient. If it is thicker than 220 μm, the magnetic air gap (distance between the magnet's magnetic attracting surface and the adherend (magnetic material) surface) will become a magnetic adhesion, and the decrease in magnetic attraction force cannot be ignored. .

インキ受理層は、合成紙は印刷方式(オフセット印刷、凸版印刷、インキジェット印刷、熱転写印刷等)に適したグレードを選べばよく、無機粉末等を含有したプラスチックフィルムは、印刷方式に適した公知のインキ受理層を塗布すればよい。   The ink receiving layer may be selected from a grade suitable for printing methods (offset printing, letterpress printing, ink jet printing, thermal transfer printing, etc.) for synthetic paper, and plastic films containing inorganic powders are known for printing methods. The ink receiving layer may be applied.

磁性粉が面内配向された磁性層2は、異方性フエライト系硬質磁性材料粉と有機高分子エラストマーを主たる組成とし、異方性フエライト系硬質磁性材料粉としてはストロンチュウムフエライト系、バリウムフェライト系などのM型フエライトが好適である。   The magnetic layer 2 in which the magnetic powder is oriented in the plane has a composition mainly composed of anisotropic ferrite hard magnetic material powder and organic polymer elastomer, and anisotropic ferrite hard magnetic material powder includes strontium ferrite and barium. M-type ferrites such as ferrite are suitable.

磁性層の全量に対する磁性材料粉の含有量は、50〜65容量%が好ましく50容量%より少ないと得られる磁気吸着力が不足する場合があり、65容量%を超えると塗布加工性が低下するので好ましくない。   The content of the magnetic material powder with respect to the total amount of the magnetic layer is preferably 50 to 65% by volume, and if it is less than 50% by volume, the magnetic attractive force obtained may be insufficient, and if it exceeds 65% by volume, the coating processability decreases. Therefore, it is not preferable.

有機高分子エラストマーとしては、エチレン酢酸ビニル共重合体エラストマー、エチレンエチルアクリレートエラストマー、エチレンプロピレンエラストマー、ウレタン系エラストマーなどが挙げられ、又、希望する物性によって適宜これらの混合物及びこれらとプラストマー(プラスチック)との混合物を使用することが出来る。   Examples of the organic polymer elastomer include an ethylene vinyl acetate copolymer elastomer, an ethylene ethyl acrylate elastomer, an ethylene propylene elastomer, a urethane elastomer, and the like, and a mixture thereof and a plastomer (plastic) as appropriate depending on desired physical properties. Can be used.

塗工液の作成は、前記有機高分子エラストマーを有機溶剤に溶解したワニス、又はエマルジョンと磁性材料粉を攪拌混合後、ビーズミルを用いて分散処理したものを使用する。
次に使用するコーターに適した粘度に粘度調整(有機溶剤に溶解したものは有機溶剤で、エマルジョンは水で希釈)を行った後、異物除去のための濾過処理を行う。
For the preparation of the coating liquid, a varnish obtained by dissolving the organic polymer elastomer in an organic solvent, or an emulsion and magnetic material powder which are stirred and mixed and then dispersed using a bead mill is used.
Next, after adjusting the viscosity to a viscosity suitable for the coater to be used (the one dissolved in the organic solvent is an organic solvent and the emulsion is diluted with water), a filtration treatment for removing foreign matters is performed.

図2で示す先駆体の磁性層の厚みは、(a)では50〜150μmが好ましく50μm未満では性能不足と成る場合があり、150μmを超えると性能過多になる他に厚みが厚くなることを避けたいので好ましくない。(b)では25〜75μmが好ましく25μm未満では性能不足と成る場合があり、75μmを超えると性能過多になる他に厚みが厚くなることを避けたいので好ましくない。   The thickness of the precursor magnetic layer shown in FIG. 2 is preferably 50 to 150 μm in (a), and if it is less than 50 μm, the performance may be insufficient, and if it exceeds 150 μm, in addition to excessive performance, avoid increasing the thickness. This is not preferable. In (b), 25 to 75 [mu] m is preferable, and if it is less than 25 [mu] m, the performance may be insufficient. If it exceeds 75 [mu] m, in addition to excessive performance, it is not preferable because the thickness is not increased.

又、先駆体の磁性層を、塗布成形後にニップ方式のプレスロールで加圧することで、平滑化、磁性層の密度向上(磁性の向上)をすることが出来る。そして先駆体に施す方が張り合わせ後に施すよりも効果的であり、又厚みバラツキ及びニップロールの加圧過多による皺入り不良を生じる可能性が少ない。   Further, the magnetic layer of the precursor can be smoothed and the density of the magnetic layer can be improved (improvement of magnetism) by applying pressure with a nip type press roll after coating and molding. And it is more effective to apply to the precursor than after pasting, and there is less possibility of causing flaws due to thickness variation and excessive pressurization of the nip roll.

磁性層の張り合わせ時の加圧変形による磁化磁粉のずれ動きによる磁気吸着力の低下防止(着磁を施す以前に加圧処理をすることで)となる。
加圧処理条件は、温度:60〜80°C、ニップゴムロールの硬度:ショアA55〜65°、線圧:200〜400N/cm程度が望ましい。
This prevents the magnetic attraction force from being lowered due to the displacement of the magnetized magnetic powder due to the pressurization deformation at the time of laminating the magnetic layers (by applying the pressure treatment before applying the magnetization).
The pressure treatment conditions are preferably a temperature of 60 to 80 ° C., a hardness of the nip rubber roll: Shore A of 55 to 65 °, and a linear pressure of about 200 to 400 N / cm.

(3)図3は、磁性層を塗布形成する面内配向磁場装置MMを布設したコーターMCの一例を示す側面模式図であり、巻出機7より支持体1をコンマコーターヘッドに供給して上面に塗布し、乾燥炉4の入り口に布設した面内配向磁場装置MMで磁場配向する。乾燥炉を出たところでニップロール5で加圧処理後冷却ロール6で冷却して巻取機8で先駆体B又はB1を巻取る。 (3) FIG. 3 is a schematic side view showing an example of a coater MC provided with an in-plane orientation magnetic field device MM for coating and forming a magnetic layer. The support 1 is supplied from the unwinder 7 to the comma coater head. It is applied to the upper surface, and is magnetically oriented by an in-plane orientation magnetic field device MM installed at the entrance of the drying furnace 4. When it leaves the drying furnace, it is pressurized with the nip roll 5 and then cooled with the cooling roll 6, and the precursor B or B 1 is wound up by the winder 8.

塗布は上記の他に、ブレードコーター、バーコーター、コンマコーター、グラビヤコーター、ロールコーター、リバースロールコーター等公知の方法で行う事が出来る。   In addition to the above, the coating can be performed by a known method such as a blade coater, a bar coater, a comma coater, a gravure coater, a roll coater, or a reverse roll coater.

(4)図4は、前記面内配向用磁場装置MMの概念模式図であり、永久磁石9を対峙させることによりM方向の磁束が得られ、この位置を通過するようにガイドロール14を設けることで、支持体1に塗布した磁性層(磁性塗料)中の磁粉が磁粉の磁化容易軸(結晶C軸方向)をM方向に揃えて配向することを示す。つまり製品の流れ方向Fと面内配向磁束方向Mと磁化容易軸方向Cが同方向となる。 (4) FIG. 4 is a conceptual schematic diagram of the in-plane orientation magnetic field device MM. A magnetic flux in the M direction is obtained by confronting the permanent magnet 9, and a guide roll 14 is provided so as to pass through this position. This indicates that the magnetic powder in the magnetic layer (magnetic coating material) applied to the support 1 is oriented with the easy axis of magnetization (crystal C-axis direction) aligned in the M direction. That is, the product flow direction F, the in-plane orientation magnetic flux direction M, and the easy magnetization axis direction C are the same.

(5)図5は、磁性層中に含まれる異方性フエライト粒子(平均粒子径1.0〜1.5μm程度)の1個10を取り上げて前記図4の面内方向の磁束Mによって磁化容易軸Cを同方向に向けて配向されることを示す概念模式図である。 (5) FIG. 5 shows the magnetization of the anisotropic ferrite particles (average particle diameter of about 1.0 to 1.5 μm) 10 contained in the magnetic layer by the magnetic flux M in the in-plane direction of FIG. It is a conceptual schematic diagram which shows that the easy axis C is orientated in the same direction.

(6)図6は、ドライラミネーターを用いた一例を示す側面模式図であり、巻出機7より支持体と同様なフィルム1−1、又は先駆体B1を巻きだしてグラビヤコーター11で接着剤を塗布し、乾燥炉4にて乾燥後加熱ニップロール5で、巻出機7より供給される先駆体B、又はB1と張合せて冷却ロール6で冷却して得られた、この磁性フィルム(磁石フィルムの未着磁品)を巻取機8で巻き取ることを示す。 (6) FIG. 6 is a schematic side view showing an example using a dry laminator. The film 1-1 similar to the support or the precursor B1 is unwound from the unwinder 7, and the adhesive is used with the gravure coater 11. This magnetic film (magnet) obtained by drying in the drying furnace 4 and then being bonded to the precursor B or B1 supplied from the unwinder 7 by the heating nip roll 5 and cooled by the cooling roll 6 It shows that the non-magnetized product of the film is wound by the winder 8.

ドライラミネートに用いる接着剤は、塗布乾燥後張り合わせ時に再加熱を行い熱再活性可能な接着剤、又は、張り合わせ時に即接着できる粘接着剤(コンタクトタイプ)が好ましい。熱再活性可能な接着剤としては、水性型ウレタン樹脂系接着剤、例えば、コニシボンドCU3(コニシボンド社製)、ハイドランHW―311(DICグラフィックス社製)、WA―374(大日精化社製)が挙げられ、溶剤型ゴム系のクロロプレン系 セメダインGF(セメダイン社製)、樹脂系のポリエステル系R820(セメダイン社製)、ポリエステル系ウレタンのクリスボン4070(DICグラフィックス社製)が挙げられる。   The adhesive used for the dry lamination is preferably an adhesive that can be reheated by reheating at the time of lamination after coating and drying, or an adhesive (contact type) that can be immediately bonded at the time of lamination. Examples of heat-reactive adhesives include water-based urethane resin adhesives such as Konishi Bond CU3 (manufactured by Konishi Bond), Hydran HW-311 (manufactured by DIC Graphics), WA-374 (manufactured by Dainichi Seika). Solvent type rubber-based chloroprene-based cemedine GF (made by Cemedine), resin-based polyester-based R820 (made by Cemedine), and polyester-based urethane Crisbon 4070 (made by DIC Graphics).

又、粘接着剤(コンタクトタイプ)では、エマルジョンタイプのアクリル樹脂系のアクワテックスAP―25(中央理化工業社製)、溶剤タイプのシリル基含有特殊ポリマー スーパーX(セメダイン社製)が挙げられる。   For adhesives (contact type), emulsion type acrylic resin-based AQUATEX AP-25 (manufactured by Chuo Rika Kogyo Co., Ltd.), solvent type silyl group-containing special polymer Super X (manufactured by Cemedine) .

接着層は、1〜4μm(ドライ)程度になるように、ブレードコーター、バーコーター、コンマコーター、グラビヤコーター、ロールコーター、リバースロールコーター等公知の方法で接着剤を塗布乾燥したものでよい。   The adhesive layer may be obtained by applying and drying an adhesive by a known method such as a blade coater, a bar coater, a comma coater, a gravure coater, a roll coater, and a reverse roll coater so as to be about 1 to 4 μm (dry).

加熱ニップ方式プレスロールの条件は、接着剤によって異なるが、略加熱温度:70〜90°C(粘接着剤を使用の場合は加熱不要)、 ニップゴムロールの硬度:ショアA55〜65°、線圧:100〜300N/cm程度が望ましい。   The conditions of the heated nip type press roll differ depending on the adhesive, but the approximate heating temperature: 70 to 90 ° C. (No heating is required when using an adhesive), the hardness of the nip rubber roll: Shore A 55 to 65 °, line Pressure: about 100 to 300 N / cm is desirable.

(7)図7は、熱ラミネーターを用いた一例を示す側面模式図であり、先駆体同士の張り合わせに接着剤を用いないで磁性層同士を熱圧着によって張合せることが出来る。
上下の巻出機7より先駆体B1を加熱ロール13にて加熱後ニップロール5で張合せて冷却ロール6をへて巻取機8で磁性フィルム(磁石フィルムの未着磁品)を巻取ることを示す。
(7) FIG. 7 is a schematic side view showing an example using a thermal laminator, and the magnetic layers can be bonded together by thermocompression bonding without using an adhesive for bonding the precursors together.
The precursor B1 is heated by the heating roll 13 from the upper and lower unwinding machines 7, and then bonded by the nip roll 5 and then the cooling roll 6 is wound, and the magnetic film (unmagnetized product of the magnet film) is wound by the winder 8. Indicates.

この場合の磁性層に用いる有機高分子エラストマーは、熱圧着性の優れるクロロスルホン化ポリエチレンエラストマー、エチレン酢酸ビニル共重合体エラストマー、エチレンエチルアクリレートエラストマーなどと有機溶剤から成るワニス又はエマルジョンを用いることが好ましい。   The organic polymer elastomer used for the magnetic layer in this case is preferably a varnish or emulsion composed of an organic solvent and a chlorosulfonated polyethylene elastomer, an ethylene vinyl acetate copolymer elastomer, an ethylene ethyl acrylate elastomer or the like having excellent thermocompression bonding properties. .

加熱ニップ方式プレスロールの熱圧着条件は、磁性層の粘結材である有機高分子エラストマーの感熱性にもよるが、加熱温度:80〜90°C、 ニップゴムロールの硬度:ショアA55〜65、°線圧:200〜400N/cm程度が望ましい。   The thermocompression bonding conditions of the heated nip type press roll depend on the heat sensitivity of the organic polymer elastomer that is the binder of the magnetic layer, but the heating temperature is 80 to 90 ° C., the hardness of the nip rubber roll is Shore A 55 to 65, ° Linear pressure: about 200 to 400 N / cm is desirable.

(8)図8は、磁性層中に含まれる異方性フエライト粉10が前記図4の面内方向の磁束Mによって磁化容易軸Cを同方向にして配向されていることに対して、その磁粉を着磁(磁化)する為の磁束の向きを示す概念模式図である。 (8) FIG. 8 shows that the anisotropic ferrite powder 10 contained in the magnetic layer is oriented with the easy axis C in the same direction by the magnetic flux M in the in-plane direction of FIG. It is a conceptual schematic diagram which shows the direction of the magnetic flux for magnetizing (magnetizing) magnetic powder.

(9)図9は、公知の永久磁石型着磁ロールを用いて、片面着磁を施す一例を示す。(a)は斜視図であり(b)は側面図でありN極からS極への外部漏洩磁束MB1を生じていることを示す。磁性フィルムを該着磁ロールの約三分の一周接触通過することで着磁が施される。そして該着磁ロールの磁極方向が面内配向方向(磁性フィルムの流れ方向)に対して直角であるので着磁効率が良いものが得られる。 (9) FIG. 9 shows an example in which single-sided magnetization is performed using a known permanent magnet type magnetizing roll. (A) is a perspective view, (b) is a side view, and shows that an external leakage magnetic flux MB1 from the N pole to the S pole is generated. Magnetization is performed by passing the magnetic film through about one third of the circumference of the magnetizing roll. And since the magnetic pole direction of the magnetizing roll is perpendicular to the in-plane orientation direction (the flow direction of the magnetic film), a magnet with a good magnetizing efficiency can be obtained.

(10)図10は、公知の永久磁石型着磁ロールを2本用いて、面内方向の磁束MBを得るために着磁ロールを対向させて同極反発により得ることを示す概念模式図(側面図)であり図8のMBに相当する。この方法により両面に同様な着磁を施すことが出来る。 (10) FIG. 10 is a conceptual schematic diagram showing that two known permanent magnet type magnetizing rolls are used to obtain the magnetic flux MB in the in-plane direction, and the magnetizing rolls are opposed to each other and obtained by homopolar repulsion ( Side view) and corresponds to MB in FIG. By this method, the same magnetization can be applied to both sides.

又、着磁は公知の高圧パルス電流発生装置とワンターン着磁ヨークより成る着磁方法によっても着磁出来るが、磁性フィルムが薄物で極間が小なる場合は永久磁石型着磁ロール方式の方が好適である。   Magnetization can also be performed by a magnetizing method comprising a known high-voltage pulse current generator and a one-turn magnetizing yoke. However, if the magnetic film is thin and the distance between the poles is small, the permanent magnet type magnetizing roll method is preferred. Is preferred.

多極着磁は、極間0.5〜3mmの多極着磁を施すのが好ましいが、極間1mm以下では着磁ヨーク又は、着磁ロールの製作が困難であり、3mm以上では薄層磁石に適する極間の範囲(効率の良い着磁)を逸脱するので好ましくない。   For multipolar magnetization, it is preferable to apply multipolar magnetization of 0.5 to 3 mm between poles. However, it is difficult to produce a magnetizing yoke or a magnetizing roll if the distance between poles is 1 mm or less. This is not preferable because it deviates from the range between the poles suitable for the magnet (efficient magnetization).

(11)図11は、本発明の磁石フィルムに施された着磁極間をランダムに着磁した状態を示す上面図である。 (11) FIG. 11 is a top view showing a state in which the magnetic poles applied to the magnet film of the present invention are randomly magnetized.

(12)図12は、従来の磁石フィルムの着磁(磁極が等間隔)を示す断面模式図であり、nは非着磁面のN極を示し、sは非着磁面のS極を示し、Nは着磁面のN極を示し、Sは着磁面のS極を示しているが、その各々の磁石極間(d1、d2、d3、d4、d5、d6、d7、d8、d9)は均一である。 (12) FIG. 12 is a schematic cross-sectional view showing magnetization (magnetic poles are equally spaced) of a conventional magnet film, where n is the N pole of the non-magnetized surface, and s is the S pole of the non-magnetized surface. N indicates the N pole of the magnetized surface, and S indicates the S pole of the magnetized surface, but between each of the magnet poles (d1, d2, d3, d4, d5, d6, d7, d8, d9) is uniform.

(13)図13は、従来の磁石フィルム同士が非着磁面と着磁面でN極の中心線とs極の中心線、S極の中心線とn極の中心線が合致して磁気吸着している状態を示したものである。
このように、従来の磁石フィルムの多極着磁は、夫々の極間距離が均一であるために、磁石フィルム同士が非着磁面と着磁面又は、着磁面と着磁面が接した場合に異極吸引によってS−n、N−s間又はS−N、N−S間で磁気吸着をするので、場合によっては不都合である。
(13) FIG. 13 shows that the conventional magnet films are non-magnetized and magnetized surfaces, and the center line of the N pole and the center line of the s pole, and the center line of the S pole and the center line of the n pole match. It shows the adsorbed state.
As described above, in the multipolar magnetization of the conventional magnet film, since the distance between the poles is uniform, the magnet films are in contact with each other between the non-magnetized surface and the magnetized surface or between the magnetized surface and the magnetized surface. In such a case, magnetic adsorption is performed between Sn and Ns or between SN and NS due to different polar attraction, which is inconvenient in some cases.

(14)その現象を阻害するためには、夫々の極間距離を不均一とさせれば対峙するN−Sの位置が極の中心線上に来ないため磁気吸引を阻害することができる。
図14(a)は、本発明の磁石フィルムA2,A2同士が非着磁面と着磁面でN極の中心線とs極の中心線、S極の中心線とn極の中心線が合致していない状態を示したものである。
この状態では著しく吸着力が低下するので不都合を生じる心配が無い。
又、図14(b)、磁石フィルムA2,A2同士が着磁面同士でN極の中心線とS極の中心線、S極の中心線とN極の中心線が合致していない状態を示したものである。
この状態においても、著しく吸着力が低下するので不都合を生じる心配が無い。
(14) In order to inhibit the phenomenon, if the distance between the respective poles is made non-uniform, the opposing NS position does not come on the center line of the pole, so that magnetic attraction can be inhibited.
FIG. 14 (a) shows that the magnetic films A2 and A2 of the present invention have a non-magnetized surface and a magnetized surface, and an N-pole center line and an s-pole center line, and an S-pole center line and an n-pole center line. It shows a state that does not match.
In this state, the adsorptive power is remarkably reduced, so there is no fear of inconvenience.
FIG. 14B shows a state in which the magnet films A2 and A2 are magnetized surfaces and the center line of the N pole and the center line of the S pole do not match the center line of the S pole and the center line of the N pole. It is shown.
Even in this state, the attractive force is remarkably lowered, so there is no fear of inconvenience.

磁石フィルムの極間は、厚みに対して適する極間寸法を基準極間として、この基準極間×(4〜6)の寸法を1単位として、1単位毎に基準極間×0.8、0.9、1.0、1.1、1.2の極間の範囲内で4〜6個の磁極を存在させ、その順番が連続する各単位内でランダムである多極着磁とすることが好ましく、より好ましくは基準極間×5の寸法を1単位として、1単位毎に基準極間×0.8、0.9、1.0、1.1、1.2の極間を各1個、計5個存在させ、その順番が連続する各単位内でランダムである多極着磁とすることである。例えば基準極間2mmの場合は、単位の寸法が10mmであり、その中に1.6mm、1.8mm、2.0mm、2.2mm、2.4mmの極間が各1個存在し、その順番がランダムであり、連続する各単位内の順番がランダムである多極着磁である。具体例を示せば、1単位を「 」で表わすと、「1.6mm、2.0mm、2.4mm、1.8mm、2.2mm」「2.0mm、2.4mm、1.8mm、2.2mm」・・・の如く各単位内の磁極の順番をランダムにすることになる。   Between the poles of the magnet film, the dimension between the poles suitable for the thickness is set as the gap between the reference poles, the dimension between the reference poles × (4 to 6) is taken as one unit, and the gap between the reference poles per unit is 0.8. There are 4 to 6 magnetic poles in the range between 0.9, 1.0, 1.1, and 1.2 poles, and multipole magnetization is random in each unit in which the order is continuous. More preferably, the dimension between the reference electrodes × 5 is one unit, and the distance between the reference electrodes × 0.8, 0.9, 1.0, 1.1, 1.2 is determined for each unit. One is each, and a total of five are present, and multipolar magnetization is random within each unit in which the order is continuous. For example, in the case of 2 mm between the reference electrodes, the unit size is 10 mm, and there is one each between 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm, and 2.4 mm, Multipolar magnetization in which the order is random and the order within each successive unit is random. For example, when one unit is represented by “”, “1.6 mm, 2.0 mm, 2.4 mm, 1.8 mm, 2.2 mm” “2.0 mm, 2.4 mm, 1.8 mm, 2 .2 mm "..., The order of the magnetic poles in each unit is random.

1単位が基準極間×4の場合は、基準極間×0.8、0.9、1.1、1.2の極間を各1個、計4個存在させ、基準極間×6の場合は、基準極間×0.8、0.9、1.1、1.2の極間を各1個と基準極間×1.0、の極間を2個の計6個存在させれば良い。
又、1単位が基準極間×4の寸法より小さいと極間をランダムにする自由度が少なくなり、1単位が基準極間×6の寸法より大きいと同寸法の極間が多くなり極間のランダム性の低下を招くので好ましくない。
尚、磁極間の寸法は、基準極間×(0.8〜1.2)とすることが、厚みに対して適する極間の範囲を逸脱しないので好ましい。
When one unit is between the reference poles x 4, there are four gaps between the reference poles x 0.8, 0.9, 1.1, and 1.2, for a total of 4 x reference gaps x 6 In the case of, there are a total of 6 between the reference poles × 0.8, 0.9, 1.1 and 1.2, one between each and the reference gap × 1.0 You can do it.
In addition, if one unit is smaller than the standard gap x 4 dimensions, the degree of freedom to make the gap between the poles is less, and if one unit is larger than the standard gap x 6, the gap between the same dimensions increases and the gap between This is not preferable because it causes a decrease in randomness.
In addition, it is preferable that the dimension between the magnetic poles is a reference inter-electrode interval × (0.8 to 1.2) because it does not deviate from the range between the inter-electrode electrodes suitable for the thickness.

磁極間ランダム方式は、従来公知の永久磁石を用いた多極着磁ロールの形式で、各極間を特定することで実施できるので、長尺(巻物)原反を連続して着磁することが出来る利点がある。そして、幅広の長尺の着磁済原反から磁性カードを裁断する際に、まず原反の横方向に磁性カードの縦寸法で帯状に裁断し、次いで磁気カードの横寸法で裁断すればよい。この場合、最初の端部の捨て代を、標準磁極間寸法の10倍程度の寸法範囲内でランダムに切り捨ててから開始することで、各帯状に裁断したものから製作した磁性カードの磁極パターンが他のカードの磁極パターンと一致すること(吸着力低減効果が生じない組み合わせ)は殆ど生じない。   The random method between magnetic poles can be implemented by specifying the distance between each pole in the form of a multi-pole magnetized roll using a conventionally known permanent magnet. There is an advantage that can be. Then, when cutting a magnetic card from a wide and long magnetized raw material, it is necessary to first cut into a strip shape in the longitudinal direction of the magnetic card in the horizontal direction of the original material, and then cut in the horizontal size of the magnetic card. . In this case, the magnetic pole pattern of the magnetic card manufactured from what was cut into each band shape is started by starting the discarding of the first end portion after randomly cutting it within a range of about 10 times the standard magnetic pole dimension. There is almost no coincidence with the magnetic pole pattern of other cards (a combination that does not produce an attractive force reduction effect).

(15)図15は、表面(片面)に支持体を設けた磁石フィルムA4−1同士の表面と裏面を重ねた場合に生じた波うち部分吸着を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)
表面(片面)のみに支持体を設けた可撓性磁石フィルム(粘結材を有機高分子エラストマーとする)は、場合によっては温度、時間、によって略対峙する異極との磁気吸引力によって波打ち変形して部分磁気吸着を生じる不都合がある。
(15) FIG. 15 is a conceptual schematic cross-sectional view showing the partial adsorption of the wave generated when the front and back surfaces of the magnet films A4-1 provided with a support on the front surface (one surface) are overlapped. (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted)
A flexible magnet film (a binder is made of an organic polymer elastomer) provided with a support only on the surface (one side) is sometimes corrugated by a magnetic attraction force with a different polarity that opposes the temperature and time. There is an inconvenience of deformation and partial magnetic adsorption.

(16)図16は、本発明の両面に支持体を設けた磁石フィルムA2同士の表面と裏面を重ねた場合の、波うち部分吸着を生じない弱い磁気吸着状態を示す概念模式断面図である。(両者の磁気吸着に直接関与しない反対側の磁極の記載省略)
両面に支持体を有することで適度の可撓性を有し且つ略対峙する異極との磁気吸引力に抗して波打ち部分吸着を生じない弱い磁気吸着状態を発現維持する。又、磁石フィルムの表面同士を重ねた場合も同様である。
(16) FIG. 16 is a conceptual schematic cross-sectional view showing a weak magnetic adsorption state that does not cause partial adsorption of waves when the front and back surfaces of the magnet films A2 provided with supports on both sides of the present invention are overlapped. . (Description of the opposite magnetic pole not directly involved in the magnetic adsorption of the two is omitted)
By having the support on both sides, it has moderate flexibility and maintains a weak magnetic adsorption state that does not cause wavy partial adsorption against the magnetic attractive force with the opposite polarities. The same applies to the case where the surfaces of the magnet films are stacked.

(17)図17は、本発明の定尺磁石フィルムを、磁場配向方向に対して傾斜を設けて裁断したことを示す上面模式図である。
磁場配向方向(製造流れ方向)に、面内磁場配向をした異方性磁石フィルムの着磁は、多極着磁の磁極の方向を磁場配向方向(製造流れ方向)に対して直角の方向にすることが必須条件であり、当然、定尺磁石フィルムの1辺に対して傾斜を設けて着磁を施すために、着磁ヨークの極方向に対して、未着磁の定尺磁石フィルムの1辺を傾斜するように着磁機に供給しても正常な着磁を施すことは出来ない。
(17) FIG. 17 is a schematic top view showing that the regular magnet film of the present invention is cut with an inclination with respect to the magnetic field orientation direction.
Magnetization of an anisotropic magnet film with in-plane magnetic field orientation in the magnetic field orientation direction (manufacturing flow direction) is a direction perpendicular to the magnetic field orientation direction (manufacturing flow direction). It is an essential condition, and, of course, in order to magnetize with an inclination with respect to one side of the fixed magnet film, the non-magnetized fixed magnet film is aligned with respect to the polar direction of the magnetized yoke. Even if it is supplied to the magnetizer so that one side is inclined, normal magnetization cannot be performed.

そこで本発明のものは、多極着磁の磁極の方向を磁場配向方向(製造流れ方向)に対して直角の方向に着磁を施した磁石シートを用いて、傾斜を設けて裁断することで得ることを示している。   Therefore, according to the present invention, by using a magnet sheet magnetized in a direction perpendicular to the magnetic field orientation direction (manufacturing flow direction), the direction of the magnetic poles of multipolar magnetization is provided with an inclination and cut. Show you get.

図18は、傾斜着磁された磁石フィルムを用いて作製された磁性カードを使って、非着磁面と着磁面を重ねた場合の吸着力低減を説明する模式図を表わしたものであり、図18(a)は平面図、図18(b)は最小単位の拡大図を示している。
これらの図に表わされるように、磁性カードの非着磁面には傾斜角度Eでなる磁極s,nが形成されており、その面に対して異なる傾斜角度Fで着磁された磁性カードを載せると、Gで表わされる交差角度で重なることになる。
ちなみに、現在の図面は、傾斜角度Eが30°(非着磁面)、傾斜角度Fが60°(着磁面)であり、交差角度Gは30°となっている。
FIG. 18 is a schematic diagram for explaining a reduction in the attractive force when a non-magnetized surface and a magnetized surface are overlapped using a magnetic card produced using a magnetic film that is tilted and magnetized. 18A shows a plan view, and FIG. 18B shows an enlarged view of the minimum unit.
As shown in these figures, magnetic poles s and n having an inclination angle E are formed on the non-magnetized surface of the magnetic card, and magnetic cards magnetized at different inclination angles F with respect to the surface are provided. When placed, they overlap at the intersection angle represented by G.
Incidentally, in the current drawing, the inclination angle E is 30 ° (non-magnetized surface), the inclination angle F is 60 ° (magnetized surface), and the intersection angle G is 30 °.

そして、この状態における磁気吸着状況は、図18(b)に示されるように、傾斜着磁の一対の磁極同士、即ち、N極、S極、n極、s極が交差することにより四つの同一形状・面積のブロック「V(N,n同極反撥)、W(S,s同極反撥)、Y(N,s異極吸引)、Z(S,n異極吸引)」が形成され、反撥するブロック2個と異極吸引するブロック2個となるので磁気吸着力は略相殺され、磁性カード同士は、図18(a)で示されるように、この関係が多数構成されているので、同様に磁気吸着力は略相殺(磁気吸着力低減)される。   Then, as shown in FIG. 18B, there are four magnetic adsorption states in this state by crossing the pair of magnetic poles of gradient magnetization, that is, the N pole, the S pole, the n pole, and the s pole. Blocks “V (N, n same polarity repulsion), W (S, s same polarity repulsion), Y (N, s different polarity suction), Z (S, n different polarity suction)” having the same shape and area are formed. Since two repelling blocks and two blocks attracting different poles are used, the magnetic attractive force is substantially offset, and the magnetic cards have a large number of relationships as shown in FIG. 18 (a). Similarly, the magnetic attractive force is substantially canceled (reduced magnetic attractive force).

なお、この作用効果は、交差角度Gが0、或いは極めて小さくない限り奏することができるため、その条件の範囲であれば、傾斜角度E、傾斜角度Fは、上記数値以外でも実施可能であることはいうまでもない。また、この現象及び作用効果は、着磁面同士を重ねた場合でも同様に生ずるものである。   This effect can be achieved as long as the crossing angle G is not 0 or very small. Therefore, as long as the conditions are within the range, the inclination angle E and the inclination angle F can be implemented by other than the above numerical values. Needless to say. In addition, this phenomenon and the effect are similarly generated even when the magnetized surfaces are overlapped with each other.

以下実施例を用いて、本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

(1)先駆体の作成
1)支持体:ポリエステル系合成紙クリスパーK2311(東洋紡績社製)38μm厚×930mm幅にインキ受理層NS600X(高松油脂社製)をコンマコーターを用いて塗布した総厚50μmの合成紙を使用する。
(1) Preparation of precursor 1) Support: Polyester synthetic paper Krisper K2311 (Toyobo Co., Ltd.) 38 μm thick × 930 mm wide, ink receiving layer NS600X (Takamatsu Yushi Co., Ltd.) was applied using a comma coater 50 μm synthetic paper is used.

2)磁性層の形成
2)−1塗工液の配合
エチレン・酢酸ビニル共重体 商品名:エバフレックスEW−40LX(VA41%)三井・デュポンポリケミカル社製〔エラストマー〕・・・・・・・・・・・・・70重量部
エチレン・酢酸ビニル共重体 商品名:エバフレックスV−5772ET(VA33%)三井・デュポンポリケミカル社製〔エラストマー〕・・・・・・・・・・・・30重量部
異方性ストロンチュウムフエライト粉・磁場配向型(OP−71)DOWAエフテック社製〔硬質磁性材料〕・・・・・・・・・・・・・・・・・・・・・・・・・800重量部
メチルエチルケトン〔有機溶剤〕・・・・・・・・・・・・・・・・・・・240重量部
トルエン〔有機溶剤〕・・・・・・・・・・・・・・・・・・・・・・・・730重量部
〔固形分中の磁性材料粉の充填量 88.9重量%(60.3容量%)〕
2) Formation of magnetic layer 2) -1 Blending of coating liquid Ethylene / vinyl acetate copolymer Product name: Evaflex EW-40LX (VA 41%) Mitsui / DuPont Polychemical Co., Ltd. [Elastomer]・ ・ ・ ・ ・ ・ 70 parts by weight Ethylene / vinyl acetate copolymer Product name: EVAFLEX V-5572ET (VA 33%), Mitsui, manufactured by DuPont Polychemical Co., Ltd. [Elastomer] Part by weight anisotropic strontium ferrite powder, magnetic field orientation type (OP-71), manufactured by DOWA FTEC Co., Ltd. [Hard magnetic material] ... ... 800 parts by weight methyl ethyl ketone [organic solvent] ... 240 parts by weight toluene [organic solvent] ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 73 Parts [loading 88.9 wt% of the magnetic material powder in the solid content (60.3% by volume)]

2)−2塗工液の作成
前記配合に従って、攪拌機(ディスパー;剪断型 羽径200mm)に有機溶剤とエラストマーを投入し攪拌溶解後、次いで異方性ストロンチュウムフエライト粉を投入し混合攪拌したものを、サンドミル(ビーズ;1.25mm、ディスク;平型、周速12m/s)にて分散処理を行う。
2) -2 Preparation of coating liquid According to the above formulation, an organic solvent and an elastomer were added to a stirrer (disper; shear type blade diameter 200 mm), stirred and dissolved, and then anisotropic strontium ferrite powder was added and mixed and stirred. The material is subjected to a dispersion treatment in a sand mill (beads: 1.25 mm, disk: flat type, peripheral speed 12 m / s).

2)−3磁石層のコーティング
コーティングの直前に攪拌機で攪拌・粘度調整を行った後、支持体の片面にコンマコーターを用いて塗布厚90μm(ドライ)に塗布し乾燥炉の手前に布施した公知の磁場反発型磁場配向装置(図4参照)を通して面内配向(図5)を行った後、乾燥炉(50〜100°C×10分)を通して乾燥後冷却することで先駆体を作成する。
(2)他の片面に他の支持体を積層
2) -3 Magnetic layer coating Known after stirring and viscosity adjustment with a stirrer just before coating, applying to a coating thickness of 90 μm (dry) using a comma coater on one side of the support and spreading before the drying oven After performing in-plane orientation (FIG. 5) through a magnetic field repulsive magnetic field orientation device (see FIG. 4), the precursor is prepared by cooling through a drying furnace (50 to 100 ° C. × 10 minutes) and then cooling.
(2) Laminate another support on the other side

グラビヤコーターヘッド、乾燥炉、ニップロール(加熱ロールとゴムロール)より成る公知のドライラミネーターを用いて、他の片面に他の支持体を下記の条件で積層する。(図3)
支持体の裏面に接着剤(ハイドランHW−311/DICグラフィックス社製)を塗布、塗布厚:1〜3μm(ドライ)、熱活性温度:80〜90°C、ニップロールのゴムロールの硬度:60、線圧:約120N/cmとする。
Using a known dry laminator composed of a gravure coater head, a drying furnace, and a nip roll (heating roll and rubber roll), another support is laminated on the other surface under the following conditions. (Figure 3)
An adhesive (Hydran HW-311 / DIC Graphics) was applied to the back surface of the support, coating thickness: 1 to 3 μm (dry), thermal activation temperature: 80 to 90 ° C., hardness of rubber roll of nip roll: 60, Linear pressure: about 120 N / cm.

(3)着磁
公知の永久磁石型着磁ロール(Y)2本を用いた形式(図10)で、磁極の方向が磁石シートの面内配向方向(製造流れ方向)に対して直角で、多極着磁の極間2.0mmピッチを基準としたランダムの両面着磁を施したて、両面に支持体を有する磁石フィルムを得る。即ち、従来公知のる永久磁石型着磁ロールは、組み込む永久磁石の厚みを2.0mm均一とするのに対して、本発明を実施する着磁ロールは、組み込む永久磁石の厚みを、1単位の寸法が10mmで、その中に1.6mm、1.8mm、2.0mm、2.2mm、2.4mmの極間が各1個存在し、その順番が連続する各単位内でランダムであるように組み込んだ着磁ロールを用いて着磁を施す。
(3) Magnetization In a type using two known permanent magnet type magnetizing rolls (Y) (FIG. 10), the direction of the magnetic pole is perpendicular to the in-plane orientation direction (production flow direction) of the magnet sheet, Random double-sided magnetization based on a 2.0 mm pitch between the poles of multipolar magnetization is performed to obtain a magnet film having a support on both sides. That is, the conventionally known permanent magnet type magnetizing roll makes the thickness of the incorporated permanent magnet uniform 2.0 mm, whereas the magnetizing roll implementing the present invention has a thickness of the incorporated permanent magnet of 1 unit. Is 10 mm, and there is one each between 1.6 mm, 1.8 mm, 2.0 mm, 2.2 mm, and 2.4 mm, and the order is random within each successive unit. Magnetization is performed using a magnetizing roll incorporated as described above.

先駆体の磁性層の厚みを45μmとし、接着剤を用いて磁性性層同士を張合せる以外は実施例1同様にする。
(1)磁性性層同士意の張合せ
グラビヤコーターヘッド、乾燥炉、ニップロール(加熱ロールとゴムロール)より成る公知のドライラミネーターを用いて、下記の条件で積層する。(図3参照)
一方の先駆体の磁性層面に、接着剤(ハイドランHW−311/DICグラフィックス社製)を塗布、塗布厚:1〜3μm(ドライ)、熱活性温度:80〜90°C、ニップロールのゴムロールの硬度:60、線圧:約120N/cmとする。
The thickness of the magnetic layer of the precursor is 45 μm, and the same procedure as in Example 1 is performed except that the magnetic layers are bonded to each other using an adhesive.
(1) Bonding of magnetic layers with each other Using a known dry laminator comprising a gravure coater head, a drying furnace, and a nip roll (heating roll and rubber roll), lamination is performed under the following conditions. (See Figure 3)
Adhesive (Hydran HW-311 / manufactured by DIC Graphics) is applied to the magnetic layer surface of one precursor, coating thickness: 1 to 3 μm (dry), thermal activation temperature: 80 to 90 ° C., rubber roll of nip roll Hardness: 60, linear pressure: about 120 N / cm.

(2)応用例(ポストカードの作成)
縦480mm×横930mmに断裁して、縦150mm×横100mmのはがきを横9列×縦3段の27枚に対して、片面に郵便はがきの宛名面を印刷(郵便はがき、郵便番号枠、切手貼付枠の印刷)及び、他の片面に風景画をインキジェット印刷にて印刷を施し、縦150mm×横100mmのはがきを裁断する。
(2) Application example (creation of postcards)
Cut the postcard of length 480mm x width 930mm, and print the address face of the postcard on one side of the postcard of length 150mm x width 100mm on 27 sheets of width 9 rows x length 3 (postcard, postal code frame, stamp Printing a sticky frame) and printing a landscape image on the other side by ink jet printing, and cutting a postcard of 150 mm length × 100 mm width.

支持体をPET系合成紙クリスパーK2323(東洋紡社製)75μm厚にインキ受理層NS600X(高松油脂社製)を塗布して総厚100μm、磁性層の厚みを130μmとする以外は実施例2と同様にする。(以下、ポストカードの作成はしない)   Example 2 except that the base material is PET synthetic paper Krisper K2323 (Toyobo Co., Ltd.) with a thickness of 75 μm and an ink receiving layer NS600X (Takamatsu Yushi Co., Ltd.) is applied to make the total thickness 100 μm and the magnetic layer thickness 130 μm. To. (Hereafter, no postcard is created)

片面着磁(図9)で極間を等間隔にすること、磁極方向の傾斜を設けるために、傾斜して裁断(図17)する他は実施例2と同様にする。
裁断は、傾斜角度30°のものと、60°のものを作成する(重ね磁気吸着力測定時の交差角が30°となる)。
In the same manner as in Example 2, except that the poles are equally spaced by single-sided magnetization (FIG. 9), and in order to provide an inclination in the direction of the magnetic pole, the film is inclined and cut (FIG. 17).
The cutting is made with an inclination angle of 30 ° and an angle of 60 ° (the crossing angle when measuring the overlapping magnetic attraction force is 30 °).

極間を等間隔(1mm)とし、磁極方向の傾斜を設けるための傾斜裁断を変えた他は実施例2と同様にする。
裁断は、傾斜角度60°のものと、30°のものを作成する(重ね磁気吸着力測定時の交差角が90°となる)。
Example 2 is the same as Example 2 except that the distance between the poles is equal (1 mm) and the inclination cutting for providing the inclination in the magnetic pole direction is changed.
Cutting is made with an inclination angle of 60 ° and 30 ° (the crossing angle when measuring the overlapping magnetic attraction force is 90 °).

極間を実施例1と同様にしてランダムにする他は、実施例4と同様にして傾斜裁断した磁石フィルム。   The magnet film which carried out the inclination cutting like Example 4 except having made the space | interval between random like Example 1. FIG.

支持体をPP系合成紙SPUY115VSIP100μm厚(日清紡社製)とし、磁性層の厚みを130μm(磁性面張合せ)、ランダム着磁(標準極間を2.5mmP)とする他は実施例5と同様にする。
ランダム着磁は、1単位の寸法が12.50mmで、その中に2.0mm、2.25mm、2.5mm、2.75mm、3.00mmの極間が各1個存在し、その順番が連続する各単位内でランダムであるように組み込んだ着磁ロールを用いて着磁を施す。
Same as Example 5 except that the support is PP synthetic paper SPUY115VSIP 100 μm thick (Nisshinbo Co., Ltd.), the magnetic layer thickness is 130 μm (magnetic surface bonding), and random magnetization (2.5 mmP between standard poles) is used. To.
Random magnetization has a unit size of 12.50 mm, and there is one each between 2.0 mm, 2.25 mm, 2.5 mm, 2.75 mm, and 3.00 mm poles. Magnetization is performed using a magnetizing roll incorporated so as to be random within each continuous unit.

(比較例1)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、極間が等間隔(2mmP)の両面磁を施した磁石フィルム。
(Comparative Example 1)
In the same manner as in Example 1, a magnetic layer formed on one surface of the support, without the support provided to other one side, the magnet film machining gap subjected to double-sided magnetization equally spaced (2mmP).

(比較例2)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、標準極間2.0mmのランダム着磁を施した磁石フィルム。
(Comparative Example 2)
In the same manner as in Example 1, a magnetic film in which a magnetic layer is formed on one side of a support and random magnetization with a standard pole distance of 2.0 mm is performed without providing a support on the other side.

(比較例3)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、極間が等間隔(2mmP)の着磁を施した磁石フィルムを用いて、傾斜裁断した磁石フィルム(傾斜角度30°と60°、重ね磁気吸着力測定時の交差角30°となる)。
(Comparative Example 3)
In the same manner as in Example 1, a magnetic layer was formed on one side of a support, and a support was not provided on the other side, and a magnet film was used that was magnetized with an equal interval (2 mmP) between the poles. Inclined and cut magnetic film (inclination angles of 30 ° and 60 °, with a crossing angle of 30 ° when measuring the overlapping magnetic attractive force).

(比較例4)
実施例1と同様にして、支持体の片面に磁性層を形成し、他の片面に支持体を設けないで、標準極間2.0mmのランダム着磁を施した磁石フィルムを用いて、傾斜裁断した磁石フィルム(傾斜角度30°と60°、重ね磁気吸着力測定時の交差角30°となる)。
(Comparative Example 4)
In the same manner as in Example 1, a magnetic layer is formed on one side of a support, and a support is not provided on the other side, and a magnet film subjected to random magnetization with a standard pole distance of 2.0 mm is used. Cut magnetic film (inclination angles of 30 ° and 60 °, and an intersecting angle of 30 ° when measuring the overlapping magnetic attractive force).

(比較例5)
支持体をPET系合成紙クリスパーK2323(東洋紡社製)75μm厚に、インキ受理層NS600X(高松油脂社製)を塗布して総厚100μmとし、他の片面に支持体を設けない他は、実施例7と同様にした磁性フィルム。
(Comparative Example 5)
Except that the support is PET synthetic paper Krisper K2323 (Toyobo Co., Ltd.) with a thickness of 75 μm, and the ink receiving layer NS600X (Takamatsu Yushi Co., Ltd.) is applied to a total thickness of 100 μm, and no support is provided on the other side. Magnetic film as in Example 7.

次に、性能試験方法等について説明する。
1、磁気吸着力測定方法(磁石フィルムと軟鉄板との垂直方向磁気吸着力)
該測定方法は、標準的な磁気吸着力の測定方法であり、磁石フィルム単体の磁気吸着力の性能を知る事ができる。
平滑なプラスチック板の上面に1辺が約60mmの正方形の平滑な2mm厚の軟鉄板を両面テープを用いて貼着する。一方、背面中央に引掛けを設けた1辺が50mmの正方形の平滑なプラスチック板に、1辺が40mmの正方形の試験試料を両面テープを用いて貼着する。そして両者を磁気吸着させて垂直方向に引き離すに要する力を、プラスチック板背面の引掛けにバネ秤を引っ掛けて測定して磁気吸着力(g/cm2)を算出する。(図20参照)
Next, a performance test method and the like will be described.
1. Magnetic adsorption force measurement method (perpendicular magnetic adsorption force between magnet film and soft iron plate)
This measuring method is a standard method for measuring magnetic attraction force, and the performance of the magnetic attraction force of a single magnet film can be known.
A smooth 2 mm-thick soft iron plate having a square of about 60 mm on one side is attached to the upper surface of a smooth plastic plate using a double-sided tape. On the other hand, a square test sample with a side of 40 mm is stuck to a smooth plastic plate with a side of 50 mm provided with a hook at the center of the back using a double-sided tape. Then, the magnetic adsorption force (g / cm 2) is calculated by measuring the force required to magnetically attract the two and pulling them apart in the vertical direction by hooking a spring balance on the back of the plastic plate. (See Figure 20)

2、重ね引張剪断磁気吸着力測定方法
平滑なプラスチック板の上面に1辺が約60mmの正方形の試験試料を両面テープを用いて貼着する。一方、側面中央に引掛けを設けた1辺が50mmの正方形のプラスチック板に両面テープを用いて他の試験試料を貼着する。そして両者を磁気吸着させて水平方向に引き離すに要する力を、プラスチック板側面の引掛けにバネ秤を引っ掛けて測定して引張剪断磁気吸着力(g/cm2)を算出する。(図21参照)
2. Method for measuring lap tensile shear magnetic adsorption force A square test sample having a side of about 60 mm is attached to the upper surface of a smooth plastic plate using a double-sided tape. On the other hand, another test sample is attached to a square plastic plate having a hook at the center of the side and having a side of 50 mm using a double-sided tape. Then, the force required to magnetically attract the two and pull them apart in the horizontal direction is measured by hooking a spring balance to the hook on the side of the plastic plate to calculate the tensile shear magnetic attracting force (g / cm 2) . (See Figure 21)

3、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。(図15参照)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
3. Anti-waving deformation adsorbability test method Two anti-magnetic wave test cards (100 x 150 mm) are stacked, and the anti-waving deformation after standing for 7 days in a hot air circulation thermostat at 38-42 ° C. A four-step evaluation is performed by observing the presence or absence of adsorption. (See Figure 15)
◎: No undulations are observed. ○: Most undulations are not observed. △: Some undulations are observed.

4、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。(図19参照)
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
4. Corner edge resistance test method
At a room temperature of 21 to 25 ° C., two magnetic film cards, which are test samples (100 × 150 mm), are first stacked, and the angle at which the magnetic attractive force between the cards becomes maximum within a magnetic pole direction of 360 ° ( The front and back sides are magnetically attracted with the magnetic pole directions overlapping. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches. (See Figure 19)
A: Deformation is not recognized. O: Deformation is hardly recognized. Δ: Deformation is slightly recognized. X: Deformation is recognized.

5、作業性試験方法
試験試料(100×150mm)である磁石フィルム製のカード50枚を、テーブル上に散乱させた後、十枚ずつ四隅を揃える作業を行い、4段階の評価を行う。
◎:優れる ○:良い △:やや劣る ×:劣る
5. Workability test method After 50 magnetic film cards, which are test samples (100 × 150 mm), are scattered on the table, the work of aligning the four corners by 10 pieces is performed, and four-stage evaluation is performed.
◎: Excellent ○: Good △: Slightly inferior ×: Inferior

次に試験結果について説明する。
各実施例、比較例について各試験を行い主な構成と試験結果を表にまとめた。
表1は本発明の実施例、表2は比較例についてまとめたものである。

Figure 0006266476
Figure 0006266476
Next, test results will be described.
Each test was conducted for each example and comparative example, and the main configuration and test results were summarized in a table.
Table 1 summarizes the examples of the present invention, and Table 2 summarizes the comparative examples.
Figure 0006266476
Figure 0006266476

1、実施例1と比較例1から分かるように、実施例1は支持体が両面にあり極間がランダムであるので重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打吸着性、耐角部変形性が優れるので作業性も優れる。それにたいして比較例1は極間が等間隔であるので重ね磁気吸着力が大きく耐角端部変形性と作業性が劣る。 1. As can be seen from Example 1 and Comparative Example 1, since Example 1 has a support on both sides and the distance between the poles is random, the effect of reducing the overlap magnetic attractive force (shear tensile magnetic attractive force) is great, and the wave resistance The workability is also excellent because of the excellent hitting and adsorbing properties and deformation resistance at the corners. On the other hand, in Comparative Example 1, since the distance between the poles is equal, the overlapping magnetic attractive force is large, and the corner end resistance and workability are inferior.

2、実施例2と比較例2から分かるように、実施例2は支持体が両面にあり極間がランダムであるので重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打吸着性、耐角部変形性が優れるので作業性も優れる。それにたいして比較例2は支持体が片面のみであるので耐波打吸着性、耐角部変形性が劣るので作業性も劣る。
3、実施例3も実施例2と同様に優れる。
2. As can be seen from Example 2 and Comparative Example 2, Example 2 has a large effect of reducing the superposition magnetic adsorption force (shear tensile magnetic adsorption force) because the support is on both sides and the distance between the poles is random. The workability is also excellent because of the excellent hitting and adsorbing properties and deformation resistance at the corners. On the other hand, in Comparative Example 2, since the support is only on one side, the wave-adsorbing adsorption property and the corner portion deformation property are inferior, and the workability is also inferior.
3 and Example 3 are also excellent as in Example 2.

4、実施例4と比較例3から分かるように、実施例4は支持体が両面にあり磁極を交差させることにより、重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打吸着性、耐角部変形性が優れるので作業性も優れる。それにたいして比較例3は支持体が片面のみであるので耐角部変形性が劣り、作業に注意を要するので作業性も劣る。
5、実施例5も実施例4と同様に優れる。
4. As can be seen from Example 4 and Comparative Example 3, in Example 4, the support is on both sides and the magnetic poles are crossed, so that the effect of reducing the overlap magnetic attractive force (shear tensile magnetic attractive force) is great, and the wave resistance The workability is also excellent because of the excellent hitting and adsorbing properties and deformation resistance at the corners. On the other hand, in Comparative Example 3, since the support is only on one side, the corner portion deformation resistance is inferior and the workability is also inferior because the work requires attention.
5 and Example 5 are excellent as in Example 4.

6、実施例6と比較例4から分かるように、実施例6は支持体が両面にあり極間をランダムに且つ磁極を交差させることにより、重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が大きく又、耐波打吸着性、耐角部変形性が優れるので作業性も優れる。それに対して比較例4は支持体が片面であるので耐角端部変形性が劣るので作業に注意を要するので作業性も劣る。又、実施例7と比較例5についても同様である。 6. As can be seen from Example 6 and Comparative Example 4, in Example 6, the support is on both sides and the magnetic poles are randomly separated between the poles, and the magnetic poles are crossed, thereby reducing the overlap magnetic attractive force (shear tensile magnetic attractive force). The effect is great, and the workability is also excellent because of the excellent anti-corrugation and corner deformation resistance. On the other hand, Comparative Example 4 is inferior in workability because the support is single-sided and the corner end resistance is inferior. The same applies to Example 7 and Comparative Example 5.

7、これらの結果からも分かるように、本発明の支持体を両面に有する効果が大きいことが分かる。又、本発明の面内配向した磁石フィルムの流れ方向に対して、傾斜を設けて定尺裁断することで(実施例4〜7、比較例3〜5)、重ね磁気吸着力(剪断引張磁気吸着力)の低減効果が得られることも分かる。 7. As can be seen from these results, it can be seen that the effect of having the support of the present invention on both sides is great. In addition, by applying an incline to the flow direction of the in-plane oriented magnet film of the present invention and cutting it at regular scales (Examples 4 to 7, Comparative Examples 3 to 5), the superposition magnetic adsorption force (shear tensile magnetism) It can also be seen that an effect of reducing the adsorption force is obtained.

8、その他、実施例2の応用例で作成した郵便はがきについて、スチールロッカーに磁気貼着して着脱の実用性を調べた。その結果は着脱容易で風景画の貼着は好感をもてるものであった。 8. In addition, the postcard created in the application example of Example 2 was magnetically attached to a steel locker to examine the practicality of attachment / detachment. As a result, it was easy to put on and take off, and the pasting of the landscape was positive.

本発明品は、両面に印刷可能な支持体を有し、片面又は両面に着磁が施された磁石フィルムであって、重ねた場合の磁気吸着力が弱く、耐波打吸着性、耐角端部変形性が優れる。
又、裏返して使用できる両面使いの、カード類、室内壁面の表装、掲示板の表示への応用が期待される。特に自重480g/m2以下のものは、ポストカードに応用して、はがき(第二種郵便物)の定額料金のサイズ・重さに適合するものが得られるので好適である。
The product of the present invention is a magnet film having a support that can be printed on both sides and magnetized on one side or both sides. Excellent part deformability.
In addition, it is expected that the double-sided use that can be used upside down will be applied to cards, display of indoor wall surfaces, and display of bulletin boards. In particular, those with a weight of 480 g / m 2 or less are suitable because they can be applied to postcards and can be obtained in accordance with the size and weight of the flat rate of postcards (second-class postal items).

A 本発明の磁石フィルム(非着磁面側の弱い磁極の記載省略)
A1 磁石層形成を異にする本発明の磁石フィルム
A2 着磁極間をランダムに着磁を施した本発明の磁石フィルム
A3 着磁の磁極方向に対して斜めに裁断した本発明の定尺磁石フィルム
A4 従来の着磁方式による磁石フィルム(極間が等間隔)
A4−1 従来の片面に支持体を有する磁石フィルム(着磁極間がランダム)
B 前記本発明の磁石フィルムAの先駆体
B1 前記本発明の磁石フィルムA1の先駆体
MC 磁場配向装置を付設した塗布機(コーター)
MM 面内配向型磁場配向装置
CA1、CA2、CA3 本発明の磁石フィルムカード
DL ドライラミネーター
HL 熱ラミネーター
C 磁性粉結晶のC軸方向
F 製品の流れ方向
M 磁場配向磁束の方向
MB 上下反発磁界(面内方向)型着磁ヨークからの磁束
MB1 片面着磁型ヨークからの磁束
N 磁石のN極 n、裏面(非着磁面)生じるN極、 N1、他の磁石のN極
S 磁石のS極 s、裏面(非着磁面)生じるS極、 S1、他の磁石のS極
d1、d2、d3、d4、d5、d6、d7、d8、d9 極間
Y 永久磁石型着磁ロール
MA1 軟鉄版と磁石フィルム間の垂直方向磁気吸着力測定装置
MA2 磁石フィルム同士の引張剪断磁気吸着力測定装置
1 支持体
1―1 支持体と同様なフィルム
2 磁性粉が面内配向された磁性層
3 コーターヘッド(コンマコーター)
4 乾燥炉
5 ニップロール
6 冷却ロール
7 巻出機
8 B、B―1(巻取機)
9 永久磁石
10 磁性粉(異方性フエライト結晶)
11 コーターヘッド(グラビヤロールコーター)
12 磁性フィルム(磁石フィルムの未着磁品)
13 加熱ロール
14 ガイドロール(非磁性製)
15 Nd―Fe―B系希土類永久磁石
16 軟質磁性材料(鉄など)製バックヨーク
17 シャフト
18 平坦な台(テーブル)
19 平滑なプラスチック板
20 両面粘着テープ
21 軟鉄板
22 試験試料
23 中央に引掛けを設けた平滑なプラスチック板
24 バネ秤
25 試験試料
26 他の試験試料
27 側面中央に引掛けを設けた平滑なプラスチック板
A Magnet film of the present invention (omitted description of weak magnetic poles on the non-magnetized surface side)
A1 Magnet film of the present invention with different magnet layer formation A2 Magnet film of the present invention A3 magnetized randomly between magnetized poles A3 Standard magnet film of the present invention cut obliquely with respect to the magnetic pole direction of magnetization A4 Magnet film by conventional magnetizing system (equal spacing between poles)
A4-1 Conventional magnetic film with a support on one side (between the magnetic poles is random)
B Precursor B1 of the magnetic film A of the present invention B1 Precursor MC of the magnetic film A1 of the present invention MC A coater provided with a magnetic field orientation device
MM In-plane orientation type magnetic field orientation apparatus CA1, CA2, CA3 Magnet film card DL of the present invention Dry laminator HL Thermal laminator C C axis direction of magnetic powder crystal F Flow direction of product M Direction of magnetic field orientation magnetic flux MB Vertical repulsive magnetic field (plane Inward) Magnetic flux MB1 from type magnetized yoke Magnetic flux from single-sided magnetized yoke N N pole of magnet n, N pole generated on the back (non-magnetized surface), N1, N pole of other magnet S S pole of magnet S, S pole generated on the back surface (non-magnetized surface), S1, S poles d1, d2, d3, d4, d5, d6, d7, d8, d9 of other magnets Y between poles Permanent magnet type magnetized roll MA1 Soft iron plate Measuring device MA2 perpendicular to magnetic film between magnet film and tensile shearing magnetic force measuring device 1 between magnet films 1 Support 1-1 Film similar to support 2 Magnetic layer with in-plane orientation of magnetic powder 3 Coater head ( Nmakota)
4 Drying furnace 5 Nip roll 6 Cooling roll 7 Unwinder 8 B, B-1 (winder)
9 Permanent magnet 10 Magnetic powder (anisotropic ferrite crystal)
11 Coater head (gravure roll coater)
12 Magnetic film (Magnet film not magnetized)
13 Heating roll 14 Guide roll (non-magnetic)
15 Nd-Fe-B rare earth permanent magnet 16 Back yoke 17 made of soft magnetic material (such as iron) Shaft 18 Flat base (table)
19 smooth plastic plate 20 double-sided adhesive tape 21 soft iron plate 22 test sample 23 smooth plastic plate provided with a hook in the center 24 spring balance 25 test sample 26 other test sample 27 smooth plastic provided with a hook in the center of the side Board

Claims (7)

ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%のものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と平行方向に面内磁場配向し乾燥して磁性塗膜を形成して成る磁性フィルムに、
前記の支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に磁極方向を磁場配向方向に対して、直角方向に多極着磁の各極間の距離をランダムに着磁を施したことで、取り扱い時の磁石フィルム同士の磁気吸着力を低減した磁石フィルムであって、下記の耐波打変形吸着性試験、及び耐角端部変形性試験で評価:◎印に適合する耐波打変形吸着性及び耐角端部変形性に優れたことを特徴とする磁石フィルム。

1、耐波打変形吸着性試験方法
試験試料(100×150mm)である磁石フィルム2枚を重ねて、38〜42℃の熱風循環式恒温装置内に7日放置後の、耐波打変形吸着の有無を観察して4段階評価を行う。)
◎:波打が認められない ○:波打が殆ど認められない △:波打がやや認められる ×:波打が認められる
2、耐角端部変形性試験方法
室温21〜25℃において、最初に試験試料(100×150mm)である磁石フィルム製のカード2枚を重ねて、磁極方向を360°の範囲内でカード相互の磁気吸着力が最大と成る角度(磁極方向が重なる)で表裏を磁気吸着させる。その上に順次同様にして合計10枚を重ねた不揃いのカードを、磁気吸着力に抗して揃える為に、4辺を1辺ずつテーブルの平らな面に当てて揃えることを3回繰り返した後、角端部の変形、傷付き具合を目視で観察して4段階評価を行う。
◎:変形が認められない ○:変形が殆ど認められない △:変形がやや認められる
×:変形が認められる。
With polyethylene terephthalate-based synthetic paper, on one side of the support having a thickness of 40 to 220 μm, the main component is an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder, Filling amount of anisotropic ferrite hard magnetic material powder 50 to 65% by volume with respect to the total amount of anisotropic ferrite hard magnetic material powder, organic polymer elastomer and processing aid, which is a solid part after drying Is applied so that the thickness after drying becomes 40 to 250 μm, and the easy axis of magnetization of the anisotropic ferrite type hard magnetic material powder is aligned in the in-plane magnetic field in the direction parallel to the support surface to dry the magnetic coating film. To the magnetic film formed ,
Magnetic layer between bonded to it as a magnetic film having a support on both sides to grant seaworthiness droplet deformation adsorptive and耐角end deformation of the laminate or magnetic film similar to the film and support,
The magnetic pole direction on one side or both sides with respect to the magnetic orientation direction, it was subjected to magnetization randomly distance between the poles of the multipolar magnetized in a direction perpendicular, the magnetic attraction force of the magnet between films during handling Reduced magnet film , evaluated by the following undulation deformation adsorption test and corner end deformation test: Excellent undulation deformation adsorption and corner end deformation conforming to ◎ Characteristic magnet film.

1. Anti-waving deformation adsorption test method
Two magnetic films, which are test samples (100 × 150 mm), are overlapped, and after standing for 7 days in a hot-air circulating thermostatic device at 38 to 42 ° C., the presence or absence of undulation deformation adsorption is observed and evaluated in four stages. . )
◎: No undulations are observed. ○: Most undulations are not observed. △: Some undulations are observed.
2. Corner edge resistance test method
At a room temperature of 21 to 25 ° C., two magnetic film cards, which are test samples (100 × 150 mm), are first stacked, and the angle at which the magnetic attractive force between the cards becomes maximum within a magnetic pole direction of 360 ° ( The front and back sides are magnetically attracted with the magnetic pole directions overlapping. In addition, in order to align the irregular cards in which a total of 10 cards were stacked in the same manner sequentially against the magnetic attractive force, the alignment was repeated three times by placing the four sides one by one against the flat surface of the table. Then, the four-level evaluation is performed by visually observing the deformation of the corner ends and the degree of scratches.
◎: Deformation is not recognized ○: Deformation is hardly recognized Δ: Deformation is slightly recognized
X: Deformation is recognized.
ポリエチレンテレフタレート系合成紙で、厚みが40〜220μmである支持体の片面に、磁性塗料である異方性フエライト系硬質磁性材料粉と粘結材である有機高分子エラストマー系ワニスを主たる成分とし、乾燥後の固型分である異方性フエライト系硬質磁性材料粉と有機高分子エラストマーと加工助剤から成る全量に対する異方性フエライト系硬質磁性材料粉の充填量が50〜65容量%ものを用いて乾燥後の厚みが40〜250μmに成るように塗布し、異方性フエライト系硬質磁性材料粉の磁化容易軸を支持体面と平行方向に面内磁場配向し乾燥して磁性塗膜を形成して成る磁性フィルムに、
前記の支持体と同様のフィルムを積層又は磁性フィルムの磁性塗膜同士を貼り合わせて両面に支持体を有する磁性フィルムとして耐波打変形吸着性及び耐角端部変形性を付与し、
その片面又は両面に磁極方向を磁場配向方向に対して、直角方向に多極着磁の各極間の距離を等間隔に着磁を施し、四角形の定尺裁断を四角形の縦辺又は横辺の方向を磁場配向方向に対して10〜80度又はマイナス10〜80度の範囲内で任意の傾斜を設けて裁断したことで、取り扱い時の磁石フィルム同士の磁気吸着力を低減し、更に前記請求項1に記載の耐耐角端部変形性試験方法で評価:◎印に適合する耐角端部変形の優れたことを特徴とする定尺磁石フィルム。
With polyethylene terephthalate-based synthetic paper, on one side of the support having a thickness of 40 to 220 μm, the main component is an anisotropic ferrite-based hard magnetic material powder as a magnetic paint and an organic polymer elastomer-based varnish as a binder, The amount of the anisotropic ferrite hard magnetic material powder filled to 50 to 65% by volume with respect to the total amount of the anisotropic ferrite hard magnetic material powder, the organic polymer elastomer and the processing aid, which is a solid part after drying, Using this coating, the thickness after drying is 40-250 μm, and the magnetic axis of the magnetic axis of the anisotropic ferrite-based hard magnetic material is aligned in the in-plane magnetic field parallel to the support surface and dried to form a magnetic coating film. the magnetic film which is formed by,
Magnetic layer between bonded to it as a magnetic film having a support on both sides to grant seaworthiness droplet deformation adsorptive and耐角end deformation of the laminate or magnetic film similar to the film and support,
The magnetic pole direction is magnetized on one side or both sides of the magnetic field in the direction perpendicular to the direction of the magnetic field, and the distance between each pole of the multipolar magnetization is magnetized at equal intervals. The direction of the magnetic field is 10 to 80 degrees or minus 10 to 80 degrees with respect to the magnetic field orientation direction and is cut by providing an arbitrary inclination, thereby reducing the magnetic attractive force between the magnet films during handling , claim 1 for evaluation in耐耐angle end modified test method described: ◎ Blank magnet film characterized good that compatible 耐角end deformable to mark.
前記請求項1記載の磁石フィルムを用いて、四角形の定尺裁断を四角形の縦辺又は横辺の方向を磁場配向方向に対して10〜80度又はマイナス10〜80度の範囲内で任意の傾斜を設けて裁断することで、更に磁石フィルム同士の磁気吸着力を低減したことを特徴とする請求項2記載の定尺磁石フィルム。
Using the magnetic film according to claim 1, the rectangular cut can be arbitrarily set within a range of 10 to 80 degrees or minus 10 to 80 degrees with respect to the magnetic field orientation direction in the direction of the vertical or horizontal side of the square. 3. The fixed-length magnet film according to claim 2, wherein the magnetic attractive force between the magnet films is further reduced by providing an inclination and cutting.
前記硬質磁性材料粉がフエライト系硬質磁性材料粉であり、磁性塗膜中のフエライト系硬質磁性材料粉の充填量が50〜65v%であり、磁性塗膜の厚みが40〜250μmである磁性フィルムの片面又は両面に極間1〜2.5mmの多極着磁を施したことを特徴とする請求項1〜3いずれか1項記載の磁石フィルム。   A magnetic film in which the hard magnetic material powder is a ferrite hard magnetic material powder, the amount of the ferrite hard magnetic material powder in the magnetic coating film is 50 to 65 v%, and the thickness of the magnetic coating film is 40 to 250 μm The magnet film according to any one of claims 1 to 3, wherein a multipolar magnetization having a gap of 1 to 2.5 mm is applied to one side or both sides. 前記両面に支持体を有する磁石フィルムの支持体がポリエチレンテレフタレート系合成紙で厚み40〜60μm、磁性塗膜の厚み80〜100μm、磁気吸着力0.5〜2.0g/cm2、自重480g/m2以下であることを特徴とする請求項1〜4いずれか1項に記載の磁石フィルム。 The support of the magnet film having a support on both sides is a polyethylene terephthalate synthetic paper having a thickness of 40 to 60 μm, a magnetic coating film thickness of 80 to 100 μm, a magnetic adsorption force of 0.5 to 2.0 g / cm 2 , and its own weight 480 g / The magnetic film according to claim 1, wherein the magnetic film is m 2 or less. 前記支持体の非塗布面が印刷可能又は書き消し可能面であることを特徴とする請求項1〜5いずれか1項に記載の磁石フィルム。   6. The magnet film according to claim 1, wherein the non-coated surface of the support is a printable or erasable surface. 前記請求項1〜6いずれか1項に記載の磁石フィルムを用いたことを特徴とする磁石フィルムカード。   A magnet film card using the magnet film according to any one of claims 1 to 6.
JP2014180360A 2014-09-04 2014-09-04 Magnet film and magnet film card using the same Active JP6266476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180360A JP6266476B2 (en) 2014-09-04 2014-09-04 Magnet film and magnet film card using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180360A JP6266476B2 (en) 2014-09-04 2014-09-04 Magnet film and magnet film card using the same

Publications (2)

Publication Number Publication Date
JP2016054263A JP2016054263A (en) 2016-04-14
JP6266476B2 true JP6266476B2 (en) 2018-01-24

Family

ID=55744351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180360A Active JP6266476B2 (en) 2014-09-04 2014-09-04 Magnet film and magnet film card using the same

Country Status (1)

Country Link
JP (1) JP6266476B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324635B2 (en) * 1974-03-04 1978-07-21
JP2002141219A (en) * 2000-10-31 2002-05-17 Dainippon Ink & Chem Inc Flexible magnet sheet and its manufacturing method
JP2003158011A (en) * 2001-11-21 2003-05-30 Sony Corp Magnetic attraction sheet, its magnetizing method, and its manufacturing method
JP5276034B2 (en) * 2010-03-17 2013-08-28 ニチレイマグネット株式会社 Magnetic film and magnetic card using the same

Also Published As

Publication number Publication date
JP2016054263A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2009154177A1 (en) Electrostatic attracting sheet
JP6363432B2 (en) Electrostatic adsorption sheet and display using the same
WO2013191289A1 (en) Electrostatically adsorptive sheet and display using same
JP5276034B2 (en) Magnetic film and magnetic card using the same
JP6492058B2 (en) Flexible magnetic adsorption sheet and method for manufacturing the same
EP2222458B1 (en) Flexible magnetic sheet systems
JP2010266474A (en) Electrostatic attracting sheet
JP6266476B2 (en) Magnet film and magnet film card using the same
JP6144972B2 (en) Electrostatic adsorption sheet, method for producing the same, and display using the electrostatic adsorption sheet
JP6091029B1 (en) Window film having magnetic composite layer and double-sided display mechanism
JP6410531B2 (en) Magnet film manufacturing method and magnet film card using the product
JP5974934B2 (en) Magnetic composite film having printable layers on both sides and method for producing the magnetic composite film
JP5911177B2 (en) Repair method of deteriorated book
JP3326690B2 (en) Magnetic adsorption sheet for display
JP2004212433A (en) Display mechanism and wall surface design mechanism
JP2002049318A (en) Flexible magnet sheet
JP6004583B2 (en) Superposition type magnetic sticking display mechanism
JP3619412B2 (en) Stacked display mechanism
JP6203807B2 (en) Magnetic window film and double-sided display mechanism
JP3429503B2 (en) Magnetic adsorption sheet
JP2003337539A (en) Pasting sheet for display of attraction type which does not use tacky adhesive
JP7056992B1 (en) Magnetic wall and magnetic display mechanism and its construction method
JPH11273938A (en) Flexible magnet sheet and method for manufacturing the same
JP2002244562A (en) Magnetic attraction sheet
JP2003318018A (en) Magnetic attraction sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6266476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250