JP6263682B1 - Structure of a device that enables cooling in a windless state using gas as a refrigerant - Google Patents

Structure of a device that enables cooling in a windless state using gas as a refrigerant Download PDF

Info

Publication number
JP6263682B1
JP6263682B1 JP2017065518A JP2017065518A JP6263682B1 JP 6263682 B1 JP6263682 B1 JP 6263682B1 JP 2017065518 A JP2017065518 A JP 2017065518A JP 2017065518 A JP2017065518 A JP 2017065518A JP 6263682 B1 JP6263682 B1 JP 6263682B1
Authority
JP
Japan
Prior art keywords
refrigerant
air
pipe
heat
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017065518A
Other languages
Japanese (ja)
Other versions
JP2018169074A (en
Inventor
村上輝明
中村保
Original Assignee
村上 輝明
村上 輝明
中村 保
中村 保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村上 輝明, 村上 輝明, 中村 保, 中村 保 filed Critical 村上 輝明
Priority to JP2017065518A priority Critical patent/JP6263682B1/en
Application granted granted Critical
Publication of JP6263682B1 publication Critical patent/JP6263682B1/en
Publication of JP2018169074A publication Critical patent/JP2018169074A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

【課題】ガスを冷媒に用いた建物内における無風状態での冷房を可能にする装置を使用したとき対象となる空間のガスの入り口と出口とで吸熱効果が異なるため、ガスの移動による吸熱効果を均一化する必要がある。【解決手段】ガスを冷媒に用いた冷媒配管は同等の品質及び同寸法で、かまぼこ状で半円筒の配管2本を1組として、それぞれの平面部分同士を接着し、1本の円筒にされており、密着したかまぼこ状の冷媒配管は、一方は入り口側用、もう一方は出口側用とし、冷媒を折り返しさせるため、円筒形の冷媒配管の末端部分には、内部に空間がある蓋で閉じ、冷媒が円筒内で往復または冷媒が円筒内で1往復以上することで、冷媒温度の平準化を図れるようにした吸熱装置の構造にすることで解決できる。【選択図】図10The present invention relates to an endothermic effect caused by gas movement because the endothermic effect differs between a gas inlet and an outlet in a target space when a device that uses a gas as a refrigerant to enable cooling in a windless state is used. Need to be made uniform. Refrigerant piping using gas as a refrigerant has the same quality and the same dimensions, and two sets of two semi-cylindrical pipes are bonded to each other, and each plane portion is bonded to form one cylinder. In order to allow the refrigerant to be folded back, one end of the closely-fitted kamaboko-shaped refrigerant pipe is for the inlet side and the other is for the outlet side. The problem can be solved by closing the refrigerant and reciprocating the refrigerant in the cylinder or reciprocating the refrigerant one or more times in the cylinder so that the temperature of the refrigerant can be leveled. [Selection] Figure 10

Description

本発明は、建物内における無風状態下での冷房装置とそれに用いる吸熱方法の構造に関する技術である。
ここにいう無風状態とは建物内を略水平方向に風が吹く(空気が水平方向に強く移動する)ことが無い状態をいう。
[Technical Field] The present invention is a technique related to the structure of a cooling device under no wind in a building and a heat absorption method used therefor.
The term “no wind” as used herein refers to a state in which wind does not blow in the building in a substantially horizontal direction (air does not move strongly in the horizontal direction).

バトミントンや卓球等の競技が国際的な規約によって室内で行われる理由は、屋外では競技中に風の影響を避けることができないからである。しかし、バトミントンや卓球を行う建物内の冷房を無風状態で行うことには困難を極めている。また、洗濯物にバーコードのタグを取り付けてコンピューター管理するクリーニング工場においても、同様に室内が無風状態にならないといけない。その他、一般住宅などでもアレルギーなどでぜんそくなどの体質や、埃が舞い上がることを嫌う研究施設、風きり音をマイクが拾うことを最も嫌う放送施設なども同様に冷房を無風状態にする必要がある。   The reason that competitions such as badminton and table tennis are performed indoors according to international regulations is that the influence of wind cannot be avoided outdoors during competition. However, it is extremely difficult to cool a building in which badminton or table tennis is played without wind. Similarly, in a cleaning factory where a bar code tag is attached to the laundry and managed by a computer, the room must be in a windless state as well. Other facilities such as asthma due to allergies in general housing, research facilities that dislike dust soaring, and broadcasting facilities that most dislike wind noise from microphones need to be air-cooled as well. .

通常一般に使用されている室内の冷房を行なう冷房装置としては、冷媒としてガス又は水を通す金属配管にフィンを接触させ吸熱面積を増やしたフィンを持つ吸熱器に、ファン又はブローによる風量が制御された風を吹き付け、熱変換で冷却された冷風によって運ばれた冷気を吹き出す事で室内の温度を下げるようにしており、空冷型や水冷型ヒートポンプ空調機が一般的である。   As a cooling device for indoor cooling that is generally used, a fan or blown air volume is controlled in a heat absorber having fins in contact with a metal pipe that passes gas or water as a refrigerant to increase the heat absorption area. The temperature inside the room is lowered by blowing cool air that is blown by cool air that is cooled by heat conversion, and air-cooled and water-cooled heat pump air conditioners are common.

一般に、室内機に吸熱器とファンを持ち、室外には通常室外機と称する圧縮機と凝縮器や冷却用ファンを持ち、冷媒を介して室内の温度を調整する空調装置で室内側吸熱器の冷気を風で運ぶという手法は、大きな建物であればあるほど遠方に風を送るために強力な風を使う必要があり無風状態での冷房には不向きである、これを実現するため様々な発明が提案されているが有効な方法が無い状態で今日に至っている。また、特開平10−300137号ではアルミ板を利用する例も見られるが実用に至っていない。特開2000−28167号にベンチュリーを設けて大きな建物において空気移動を行なわせる構造も提案されているが、特願2013-261920でようやく無風冷房方法が発明されるまで、無風状態下での冷房効率がよく経済的なガスを用いた冷房を可能にするものはなかった。   Generally, an indoor unit has a heat absorber and a fan, and an outdoor unit has a compressor, a condenser, and a cooling fan, usually called an outdoor unit, and an air conditioner that adjusts the indoor temperature via a refrigerant. The method of carrying cool air with wind is not suitable for cooling in a windless state because it is necessary to use a powerful wind to send the wind farther as the building is larger, various inventions to realize this Has been proposed, but there is no effective method. Japanese Patent Laid-Open No. 10-300137 also shows an example using an aluminum plate, but it has not been put into practical use. Japanese Patent Laid-Open No. 2000-28167 proposes a structure in which a venturi is provided to move air in a large building. However, until the invention of the non-air-cooling method was finally invented in Japanese Patent Application No. 2013-261920, the cooling efficiency under no-air conditions However, there was nothing that allowed cooling using a good and economical gas.

特開2000−28167号JP 2000-28167 A 特開平10−300137号JP-A-10-300137 特開平8−296266号JP-A-8-296266 特開2006−234229号JP 2006-234229 A 特願2013-261920号Japanese Patent Application No. 2013-261920

本発明は、建物内における無風状態での冷房を可能にする装置の構造を提供しようとするものである。ここにいう無風状態とは建物の内部に水平方向の風が生じないことである。さらに本発明は、ガスを用いて無風冷房装置を使用したとき対象となる空間のガスの入り口と出口とで吸熱効果が異なるため、対象となる部屋の広さに応じてガスの移動による吸熱効果を均一化する必要がある。この発明の冷房装置は設置作業や生産体制も容易にすることができ、冷房対象の室内温度を短時間で下げることができる装置の構造である。 The present invention seeks to provide a structure of a device that enables cooling without wind in a building. The term “no wind” as used herein means that no horizontal wind is generated inside the building. Furthermore, the present invention has an endothermic effect due to the movement of the gas according to the size of the target room because the endothermic effect differs between the gas inlet and outlet of the target space when using a non-air-cooling device using gas. Need to be made uniform. The cooling apparatus according to the present invention has a structure of an apparatus that can facilitate installation work and a production system, and can reduce the room temperature to be cooled in a short time.

本発明者は、冷気は暖気より比重が重く下に降りるという空気の沈下(降下)作用による冷房を行うことに着目した。そのためには、冷媒を通す冷媒配管を結露水受けに収まるように加工したフィン付き冷媒配管を必要に応じて天井近くに必要数設置し、冷気は自然と下に降りる作用を利用して冷房を行なうこととした。
すなわち、冷房対象の仕切られた空間1a上部に吸熱手段2 を設け、吸熱手段2 は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外に排熱手段10を設けて、吸熱手段2が設けられた空間1a上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での無風冷房装置である。吸熱手段は、フィンを有した部材で冷媒配管の外周が被覆されていることを特徴とし、冷媒にガスを使う本装置は冷媒配管に霜が付着するため、霜を剥離する程度にコントロールされた弱い風をフィンにあて霜の除去を行う。冷気は結露水受けからあふれ出し、自然降下を行うことにより、建物内における無風状態での冷房が可能になった。
The inventor of the present invention paid attention to cooling by air subsidence (descent) action in which cold air has lower specific gravity than warm air and falls down. For this purpose, install as many refrigerant pipes with fins that are processed so that the refrigerant pipes fit in the dew condensation receiver near the ceiling if necessary, and cool the air using the action of falling naturally down. I decided to do it.
That is, the heat absorption means 2 is provided in the upper part of the partitioned space 1a to be cooled, the heat absorption means 2 is provided with the refrigerant pipe 3 and the condensed water receiving means 5 in the lower part thereof, and the heat exhaust means 10 is provided in addition to the space 1a. This is a windless cooling device in a windless state in a building in which cooling is performed by natural descent of the cool air in the upper part of the space 1a in which the heat absorbing means 2 is provided. The heat absorbing means is characterized in that the outer periphery of the refrigerant pipe is covered with a member having fins, and this apparatus using gas as the refrigerant is controlled to the extent that frost is peeled off because frost adheres to the refrigerant pipe. Remove the frost by applying light wind to the fins. The cold air overflowed from the dew condensation water receiver, and it was possible to cool the building without wind in the natural descent.

本発明は冷房対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部または、冷媒配管3 の周囲を囲んだシンメントリーに並べたフィン4aの下方斜め両サイドに空気配管6 を備え、冷媒配管3、フィン4a、空気配管6をU字型をした結露水受け手段5で囲むように装備した吸熱システムに、前記空間1a以外に排熱手段10を設け、吸熱手段2は冷媒配管3 の周囲を囲んだシンメントリーに並べたフィン4aを冷媒配管3がフィン4aの中央付近を往復するように取り付けて熱変換するように配置し、空気配管6から出る風の強さをコントロールして自然降下が生じるようにし、フィン4aの間を通過して上部に設置されたルーバー6bで結露水受けから出た冷気を結露水受けの外に出るように設けられた空間上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での冷房装置の概要である。
無風冷房装置の室内機において、U字溝の形をした結露水受けの容積に合わせた高熱伝導率のフィンを3mmから10mm間隔に並べ結露水受けの下方両サイドに斜めに設置した空気配管の上部にフィンが止まるように設置し、冷媒配管を差し込むことができる穴二か所をひと組とする穴を一組又は二組以上をあけ、冷媒配管を行きと帰りの穴に差し込んで取り付け、フィンの下方左右に空気配管を取り付け左右両方から冷媒配管に霜がつかないようにコントロールされた風をフィンの隙間や冷媒配管に向かって斜め対称に吹きつける構造の無風冷房装置の構造。
本発明者は、冷気は暖気より比重が重く下に降りるという空気の沈下(降下)作用による冷房を行うことに着目した。そのためには、冷媒を通す冷媒配管3にらせん状に巻き付けたフィン4aを持つフィン付冷媒配管4を必要に応じて天井近くに必要数設置し、冷気は自然と下に降りる作用を利用して冷房を行うこととした。
すなわち、冷房対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部に結露水受け手段5を備え、前記空間1a以外に排熱手段10を設けて、吸熱手段吸熱手段2が設けられた空間1a上部冷気の自然降下により冷房を行うようにした建物内における無風状態下での無風冷房方法とそれに用いる装置である。
In the present invention, the heat absorbing means 2 is provided in the upper part of the partitioned space 1a of the cooling object 1, and the heat absorbing means 2 is obliquely below the fins 4a arranged in the refrigerant pipe 3 and the lower part thereof, or in the mententry surrounding the refrigerant pipe 3. A heat absorption system equipped with air pipes 6 on both sides and surrounded by refrigerant pipe 3, fins 4a, and air pipe 6 with U-shaped condensed water receiving means 5 is provided with heat exhaust means 10 in addition to space 1a. The heat-absorbing means 2 is arranged so that the fins 4a arranged in a shinmentley surrounding the refrigerant pipe 3 are attached so that the refrigerant pipe 3 reciprocates around the center of the fin 4a and heat is converted. Controls the strength of the wind that comes out, so that a natural fall occurs, and the louver 6b installed above the fin 4a passes through the condensation water receiver so that it exits the condensation water receiver. To the natural descent of the cool air in the upper space Ri is an overview of the cooling device under windless conditions in the building to perform cooling.
In an indoor unit of a non-cooled air conditioner, air pipes that are installed diagonally on both sides of the bottom of the dew condensation water receiver are arranged at intervals of 3 mm to 10 mm with high thermal conductivity fins that match the volume of the dew condensation water receiver in the shape of a U-shaped groove. Install so that the fins stop at the top, drill one or more pairs of holes with two holes into which the refrigerant pipe can be inserted, install the refrigerant pipe into the return and return holes, A structure of a windless cooling device in which air pipes are attached to the lower left and right sides of the fins, and air is blown obliquely symmetrically toward the gaps between the fins and the refrigerant pipes so that the refrigerant pipes are not frosted from both the left and right sides.
The present inventor has focused on cooling by air subsidence (descent) action in which cold air has a higher specific gravity than warm air and falls downward. For that purpose, the necessary number of finned refrigerant pipes 4 having fins 4a spirally wound around the refrigerant pipe 3 through which the refrigerant is passed is installed near the ceiling as necessary, and the cold air naturally uses the action of descending downward. Cooling was performed.
That is, the heat absorption means 2 is provided in the upper part of the partitioned space 1a of the cooling object 1, the heat absorption means 2 includes the refrigerant pipe 3 and the dew condensation water receiving means 5 in the lower part, and the exhaust heat means 10 is provided in addition to the space 1a. A heat-absorbing means and a heat-absorbing method in which no air is cooled in the building in which the air is cooled by the natural descent of the cool air in the upper part of the space 1a and the apparatus used therefor.

さらに本発明は冷房対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部または、冷媒配管3 の周囲を囲んだシンメントリーに並べたフィン4bの下方斜め両サイドに空気配管6 を備え、冷媒配管3a、フィン4a、空気配管6をU字型にした結露水受け手段5で囲むように装備した吸熱システムに、前記空間1a以外に排熱手段10を設け、吸熱手段2は冷媒配管3a の周囲を囲んだシンメントリーに並べたフィン4bをかまぼこ状の半円筒で形成したガスの入り口用冷媒配管3a出口3bとの平らな面同士を接着させ冷媒が折り返す部位に冷媒が通過するように接着面を短めにした冷媒配管3aがフィン4aの中央付近を往復するように取り付けて熱変換するように配置し、空気配管6から出る風の強さをコントロールして自然降下が生じるようにし、フィン4aの間を通過して上部に設置されたルーバー6bで結露水受けから出た冷気を結露水受けの外に出るように設けられた空間上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での冷房装置の概要である。
冷媒配管は同等の品質及び同寸法で、かまぼこ状の半円筒の配管2本を1組として、それぞれの平面部分同士を接着し、1本の円筒にする。接着したかまぼこ状の冷媒配管は、一方は入り口側用、もう一方は出口側用とし、冷媒が折り返しさせるため、円筒形の冷媒配管の末端部分には、内部に空間がある蓋で閉じ、冷媒が円筒内で往復するようにした請求項1に記載の吸熱装置の構造であり、ガスの入り口と出口の接着面は縦型にしてもよく、円筒の断面が扇形で4分割した冷媒配管は、冷媒が2往復でき折り返す所は空間がある蓋をして、冷媒が2往復して出口に戻ってくる吸熱装置の構造により、吸熱の平準化を図ることができる。またハニカム構造を用い2の倍数の冷媒配管を使用すれば3倍以上の冷媒の往復も可能である。
Further, in the present invention, the heat absorbing means 2 is provided in the upper part of the partitioned space 1a of the cooling object 1, and the heat absorbing means 2 is below the refrigerant pipe 3 and its lower part or the fins 4b arranged in the mententry surrounding the refrigerant pipe 3. In addition to the space 1a, the heat exhausting means 10 is provided in an endothermic system equipped with air pipes 6 on both sides and surrounded by the refrigerant pipes 3a, fins 4a, and air pipes 6 with a U-shaped condensed water receiving means 5. The heat absorption means 2 is a refrigerant in which the flat surfaces of the gas inlet refrigerant pipe 3a and the outlet 3b are formed by a semi-cylindrical fin 4b arranged in a cinimentary surrounding the refrigerant pipe 3a. The refrigerant pipe 3a whose adhesive surface is shortened so that the refrigerant passes through the part where it is folded back is installed so as to reciprocate near the center of the fin 4a so as to convert heat, and the strength of the wind from the air pipe 6 is increased. Control and natural descent The cooler that has passed through between the fins 4a and is provided with the louver 6b installed at the upper part so that the cold air from the dew condensation water receiver comes out of the dew condensation water receiver is cooled by the natural descent of the upper air in the space. It is the outline | summary of the air_conditioning | cooling apparatus in the windless state in the building made to perform.
The refrigerant pipes have the same quality and the same dimensions, and two sets of two semi-cylindrical pipes are bonded together, and the respective plane portions are bonded to form one cylinder. Adhered kamaboko-shaped refrigerant pipes, one for the inlet side and the other for the outlet side, allow the refrigerant to be folded back, so that the end part of the cylindrical refrigerant pipe is closed with a lid with a space inside. The structure of the heat absorbing device according to claim 1, wherein the gas inlet and outlet adhesive surfaces may be vertical, and the cylinder cross section is a sector and the refrigerant pipe is divided into four parts. In the place where the refrigerant can be reciprocated twice and turned up, a lid with a space is provided, and the structure of the heat absorption device in which the refrigerant reciprocates twice and returns to the outlet can level the heat absorption. In addition, if a refrigerant pipe having a multiple of 2 is used using a honeycomb structure, the refrigerant can be reciprocated three or more times.

無風冷房をより効果的に行う為には、冷媒配管を複数組フィンと接触させる構造とすることでより冷媒で冷やされた空気温度の平準化や冷房の効率を上げることができる。
一方通行の冷媒配管で冷房を行う構造を持つ冷媒配管の最大の欠点は冷媒の温度の不安定さにあり入り口と出口の温度差がある点である。この欠点を解消するにはU字型のヘアピン構造として入り口と出口を接触させることで温度の平準化を図ることができ、数組のU字型のヘアピン状の構造を持つ冷媒配管をフィンと接触させることで温度の平準化効果がおこなえる。
上記の空気配管6の材質は加工のしやすい塩化ビニル樹脂でも金属でもよく、スリット6aの代わりにフィン付冷媒配管4のフィン4aのピッチに合わせて小さな穴6bを風がフィン4aに当たるか、又はフィン4aとフィン4aの間を通過するようにすることで、熱変換が大きな値となる。この場合の空気を通す空気配管6の形状は丸でも参画でも多角形でもよい。この場合、穴6bの製作には数ミリ幅のスリット6aを空気配管6と並行に開講してアルミ箔やアルミテープ、もしくは紙テープや布などの粘着性を持つテープでスリット6aを部分的に塞ぎ、必要な大きさの穴を設けることで簡単に穴6bを作ることもできる。
In order to perform airless cooling more effectively, it is possible to level the temperature of the air cooled by the refrigerant and increase the efficiency of the cooling by adopting a structure in which the refrigerant pipes are in contact with a plurality of sets of fins.
The biggest drawback of the refrigerant pipe having a structure in which the cooling is performed with the one-way refrigerant pipe is that the refrigerant temperature is unstable and there is a temperature difference between the inlet and the outlet. In order to eliminate this drawback, the temperature can be leveled by bringing the inlet and outlet into contact with each other as a U-shaped hairpin structure, and several sets of refrigerant piping having a U-shaped hairpin-like structure are used as fins. A temperature leveling effect can be achieved by contact.
The material of the air pipe 6 may be easily processed vinyl chloride resin or metal, and instead of the slit 6a, the wind hits the fin 4a through a small hole 6b according to the pitch of the fin 4a of the finned refrigerant pipe 4, or By making it pass between the fin 4a and the fin 4a, thermal conversion becomes a large value. In this case, the shape of the air pipe 6 through which air passes may be round, participating, or polygonal. In this case, in order to manufacture the hole 6b, a slit 6a having a width of several millimeters is provided in parallel with the air pipe 6, and the slit 6a is partially blocked with an adhesive tape such as aluminum foil, aluminum tape, paper tape or cloth. The hole 6b can be easily made by providing a hole having a required size.

具体的な装置としては、冷房対象の仕切られた空間上部に吸熱手段を設け、吸熱手段はフィンと接触させた冷媒配管及びその下部斜め両サイドに空気配管とU 字型の結露水受け手段を備え、フィンの上方にU字型結露水受けより少し小さめのルーバーを備えた吸熱手段の前記空間以外に排熱手段を設け、吸熱手段はフィンを有した部材でフィンを複数枚持たせ冷媒配管がフィンを適選の長さを持つ冷媒配管を往復に貫通させていることを特徴とする冷房装置である。
上記冷媒配管はヘアピンの形状に形成された冷媒配管をフィンで吸熱する行きと帰りの往復で1組とし、冷媒配管を通す冷媒の温度が入り口と出口で異なるので平準化させることを目的に往復させた冷媒配管に高熱伝導率のフィンを介する構造とした。さらに温度の平準化を図るには複数組の冷媒配管を共通のフィンと接触させることで冷気の平準化を図ることができる。
As a specific device, heat absorption means is provided in the upper part of the space to be cooled, and the heat absorption means includes refrigerant pipes in contact with the fins, air pipes and U-shaped dew condensation receiving means on the diagonally lower sides thereof. In addition to the space of the heat absorption means provided with a louver slightly smaller than the U-shaped dew condensation water receiver above the fins, a heat exhaust means is provided, and the heat absorption means is a member having fins and has a plurality of fins and a refrigerant pipe Is a cooling device characterized in that a fin is reciprocated through a refrigerant pipe having an appropriate length.
The refrigerant pipe is formed in a hairpin shape, and the refrigerant pipe is reciprocated for the purpose of leveling because the temperature of the refrigerant passing through the refrigerant pipe is different between the inlet and the outlet. It was set as the structure which put the fin of high heat conductivity through the made refrigerant piping. Further, in order to level the temperature, the cold air can be leveled by bringing a plurality of sets of refrigerant pipes into contact with a common fin.

ヘアピン構造の冷媒配管を一体化することでガスを冷媒として冷房する唯一の点でもある冷媒配管の入り口付近の温度と出口付近の温度が同一ではないという欠点をさらに補うため、冷媒配管をかまぼこ状の半円筒として平面の部分を密着させ、さらに平板状に並べたフィンを串刺しした形状で熱変換を効率よく行うことができる。このかまぼこ状の冷媒配管の折り返し部分には冷媒が通過できるように空洞のキャップを取付る事で冷媒配管の入り口と出口が密着し温度差が最小となる構造である。   In order to further compensate for the disadvantage that the temperature near the inlet of the refrigerant pipe and the temperature near the outlet are not the same, which is the only point to cool the gas as refrigerant by integrating the hairpin structure refrigerant pipe, the refrigerant pipe has a kamaboko shape. As a semi-cylinder, a flat portion is brought into close contact with each other, and heat conversion can be efficiently performed in a shape in which fins arranged in a flat plate are skewered. By attaching a hollow cap so that the refrigerant can pass through the folded portion of the kamaboko refrigerant pipe, the inlet and outlet of the refrigerant pipe are in close contact with each other, and the temperature difference is minimized.

冷気の自然沈下による冷房を行なうが、より大きな熱変換を行なうようにするため冷媒配管の周囲全方向の下部の両端またはいずれかに、空気配管を設け直線又は曲線に伸びるフィン付き冷媒配管の斜め下方から両端の空気配管かフィン付き冷媒配管と平行に設置した空気配管の上部、又は冷媒配管に風が当たる方向に合わせてスリットや無数の穴を開けて、風がフィンにあたる方向に取り付けて開けた穴からフィン付き冷媒配管から冷気が剥離する程度のわずかの風をフィンに向けて吹き付ける。このとき床上から無風状態が必要となる高さまで無風状態に影響しないようにフィンに当てる強さをコントロールして空気を吹きつける。 Cooling by natural subsidence of cold air, but in order to perform a greater heat conversion, air pipes are provided at either or both ends of the lower part in all directions around the refrigerant pipe, and slant of the finned refrigerant pipe extending straight or curved From the bottom, open slits and countless holes in the upper part of the air pipe installed in parallel with the air pipes at both ends or the finned refrigerant pipe, or in the direction in which the wind hits the refrigerant pipe. A small amount of wind that blows off the cold air from the finned refrigerant pipe is blown toward the fins. At this time, air is blown by controlling the strength applied to the fin so as not to affect the windless state from the floor to the height where the windless state is required.

上記の空気配管の材質は加工のしやすい塩化ビニル樹脂でも金属でもよく、製造上結露水受けと一体型としてスリットの代わりに冷媒配管を通過させているフィンのピッチにあわせて小さな穴を風がフィンにあたるか、又はフィンとフィンの間を通過する様にすることで、熱変換がより大きな値となる。この場合の空気を通す空気配管の形状は丸でも三角でも多角形でもよい。この場合、穴の製作には数ミリ幅のスリットを空気配管と平行に開口してアルミ箔やアルミテープもしくは紙テープや布などの粘着性を持つテープでスリットを部分的に塞ぎ、必要な大きさの穴を設けることで簡単に穴を作ることもできる。
次に、分離した圧縮機10aは必要台数まとめて圧縮機10aを圧縮機室30に収納し
運転中は圧縮機10aも高温となるために圧縮機室30に圧縮機室室内器10cを取り付ける。この場合の圧縮機室用室内機10cは一般的な吸熱器とファンがセットされた室内機で風による冷却を行い圧縮機室用凝縮器10eは他の凝縮器10bと同じ水槽20で冷却をおこなう。
The material of the above air piping may be vinyl chloride resin or metal, which is easy to process, and as a single unit with a dew condensation water receiver for manufacturing, a small hole is made to fit the pitch of the fin passing through the refrigerant piping instead of the slit. By making it hit a fin or passing between fins, the heat conversion becomes a larger value. In this case, the shape of the air pipe through which air passes may be round, triangular, or polygonal. In this case, a few millimeters wide slit is opened in parallel with the air pipe, and the slit is partially closed with adhesive tape such as aluminum foil, aluminum tape, paper tape, cloth, etc. It is also possible to make holes easily by providing holes.
Next, the necessary number of separated compressors 10a are collectively stored in the compressor chamber 30, and the compressor 10a also becomes hot during operation, so the compressor chamber indoor unit 10c is attached to the compressor chamber 30. In this case, the compressor room indoor unit 10c is cooled by wind with a general heat sink and fan set, and the compressor room condenser 10e is cooled in the same water tank 20 as the other condensers 10b. Do it.

また、天井付近に設置するフィン付き冷媒配管を数本で一組として冷媒配管の下部に空気配管と結露水を受けるドレンパンをセットして一つの集合吸熱ユニットとし、何台も集合吸熱ユニットを連結可能とする。そのためフィン付き冷媒配管連結口と空気配管連結口及びドレンパン連結口を集合吸熱ユニットに設ける事で大きな建物の冷房の施工が簡単となる。 Also, several refrigerant pipes with fins installed near the ceiling are used as one set, and a drain pan that receives the air pipe and condensed water is set at the lower part of the refrigerant pipe to form one collective heat absorption unit. Make it possible. For this reason, providing a finned refrigerant pipe connection port, an air pipe connection port, and a drain pan connection port in the collective heat absorption unit facilitates cooling of a large building.

地下水脈を利用するとき、概ね数メートル乃至数百メートルから地下水をくみ上げて地上又は地下の水槽20に貯水された水を利用し、流動はポンプ又は自然対流により、熱変換された温水が一定の温度になると別に設けた三方弁41と貯湯タンク40に必要量を貯湯し、シャワーや風呂に利用することが出来る。温水の利用度が無いか、もしくは貯湯タンク40が満水になった残りは再度地下に戻すが、このときに給水側の地下に埋設する地下水供給用配管26aと地下に戻す地下水戻り用配管27aの深さは汲み上げる地下水脈A24と異なる地下の地下水脈B25に戻す。水脈が違った水脈に戻すことで同じ水脈でループが出来ないようにすることが出来、水脈によっては地上に噴出する圧力が地下水脈にある場合があるため、確実に地下に戻すことが必要なので地下水戻り用加圧ポンプ27bを設ける事で強制的に地下に戻すことが出来る。この思考は、特開2006−234229にも見られるが地下水源を利用して冷却して冷却後の高温になった水の処理についてはただ単純に元の地下水源に戻すのみの記載である。これにより空気を全く利用せずに複数台の凝縮器10bを同時に冷却できるので地上の温度上昇を防ぐことができ、地下水を汲み上げる事による地盤沈下を防止することもできる。この地下に戻す方法はやむをえない場合は一定の距離を隔てた同じ水脈に戻すことも可能である。 When using groundwater veins, the groundwater is drawn up from several meters to several hundred meters, and the water stored in the above or below water tank 20 is used. The flow is constant by hot water converted by heat by a pump or natural convection. When the temperature is reached, a necessary amount of hot water can be stored in a separately provided three-way valve 41 and hot water storage tank 40 and used for a shower or a bath. The hot water is not used, or the remaining hot water storage tank 40 is returned to the basement again. At this time, the groundwater supply pipe 26a buried in the basement on the water supply side and the groundwater return pipe 27a returned to the basement are used. The depth is returned to the underground groundwater vein B25 different from the groundwater vein A24 to be pumped. By returning the water vein to a different water vein, it is possible to prevent the loop from being made with the same water vein, and depending on the water vein, there is a case where the pressure of the groundwater vein is in the groundwater vein, so it is necessary to surely return to the underground By providing the groundwater return pressure pump 27b, it can be forcibly returned to the underground. Although this thought can be seen in Japanese Patent Application Laid-Open No. 2006-234229, the treatment of water that has been cooled using a groundwater source and has reached a high temperature after cooling is simply a return to the original groundwater source. As a result, the plurality of condensers 10b can be simultaneously cooled without using any air, so that a rise in temperature on the ground can be prevented and ground subsidence caused by pumping up groundwater can also be prevented. If it is unavoidable to return to this underground, it is possible to return to the same water vein at a certain distance.

また凝縮器10bを複数台水槽20に完全に水没するように設置し地下水で冷却する構造と方法は大型ビルや風を使用して冷気や暖気をファンで飛ばして行なう室外機にも利用でき、都会のヒートアイランド現象を防ぐことが出来ると同時に、通常の圧縮機と凝縮器やファンを持ついわゆる室外機と称される熱変換機に三方弁を設け熱風が出る夏場は地下水で冷却し暖房時の冬場はファンを用いた空冷にする事で冷気を地上に戻すことができ温暖化の防止に役立つ、もちろん地下水のみで熱変換する方法が、地下水は温度が一定の水温であるため省エネにつながり炭酸ガス排出の節減にも貢献できる。また地下水を使用する事で凝縮器の冷却温度が一定となり平均気温が40度を超える国や地域でも効率よく冷房を行なうことができる。 In addition, the structure and method of installing the condenser 10b so as to be completely submerged in a plurality of water tanks 20 and cooling with groundwater can be used for outdoor units that use a large building or wind to blow cool air and warm air with a fan, In addition to preventing urban heat island phenomena, a three-way valve is installed in a so-called outdoor unit with a normal compressor, condenser, and fan to provide hot air and cool in groundwater during the summer. In winter, air cooling using a fan can return cold air to the ground, which helps to prevent global warming.Of course, the method of heat conversion only with groundwater is energy saving because the groundwater has a constant temperature. It can also contribute to saving gas emissions. Also, by using groundwater, the cooling temperature of the condenser becomes constant, and cooling can be performed efficiently even in countries and regions where the average temperature exceeds 40 degrees.

本発明は、低温冷媒で冷却されたフィン付き冷媒配管4や金属平板吸熱材8cをそれぞれの吸熱装置を室内で熱変換するとき室内は無風状態で冷房するために必要最小限の風をフィン4aのすぐ近くからスリット6a又は小口径の穴6bを介して噴出させ、空気を一旦上部又は周辺に吹きつけたフィン付き冷媒配管4や金属平板吸熱材8cで冷却した後、冷気が自然落下による無風状態の冷房装置が出来る。
さらに風量の均一化を図るために、穴6bの大きさは風を送る手前方向は小さく、先端になるほど大きくすることで解決出来る。
In the present invention, when the finned refrigerant pipe 4 or the metal flat plate heat-absorbing material 8c cooled by the low-temperature refrigerant is converted into heat in the respective heat-absorbing devices indoors, the minimum necessary wind is required to cool the indoors in a windless state. The air is blown through the slit 6a or the small-diameter hole 6b from the immediate vicinity, and after cooling with the finned refrigerant pipe 4 or the metal flat plate heat-absorbing material 8c once blown to the upper part or the periphery, A cooling device in the state can be made.
Further, in order to make the air flow uniform, the size of the hole 6b can be solved by increasing the size of the hole 6b toward the tip, while the front direction is small.

この場合、冷気を熱変換する時に結露水が発生するが、ドレンパン5aをフィン付き冷媒配管4と空気配管6の真下や、金属平板吸熱材8cの最下部に配置しドレンパン5aが発生させる結露水を防止するためにドレンパン5aの内側又は外側にはゴムやウレタン類の化学物質や天然の結露防止材5bを取り付けることで解決できる。ドレンパン5aは市販の雨樋等でも代用が出来る。   In this case, condensed water is generated when the cold air is converted into heat. However, the condensed water generated by the drain pan 5a by disposing the drain pan 5a directly below the finned refrigerant pipe 4 and the air pipe 6 or the lowermost part of the metal flat plate heat absorbing material 8c. In order to prevent this, it can be solved by attaching a chemical substance such as rubber or urethane or a natural dew condensation prevention material 5b to the inside or outside of the drain pan 5a. The drain pan 5a can be replaced with a commercially available gutter.

本発明の空気を通す空気配管は冷媒配管とU字型のドレンパンの両サイドに斜めに冷媒配管に空気が当たるように取付け、又はU字型と一体成型とした空気配管でもよい。コーナーに設置した空気配管は風の方向が変わらないようにドレンパンに接着することで解決できた。この空気配管6の風が噴出す始点は空気配管6を数本に分割することでスリットの始点の位置が数箇所に分散させることで風量の均一化を図ることが容易になる。   The air pipe for passing air according to the present invention may be an air pipe that is attached so that air strikes the refrigerant pipe obliquely on both sides of the refrigerant pipe and the U-shaped drain pan, or that is integrally molded with the U-shape. The air pipe installed at the corner could be solved by adhering to the drain pan so that the direction of the wind did not change. The starting point from which the wind of the air pipe 6 is blown is divided into several air pipes 6 so that the positions of the starting points of the slits are dispersed in several places, thereby making it easy to achieve uniform air flow.

冷房装置の圧縮機10aと凝縮器10bやファンは撤去し圧縮機10aを一つの部屋に収納する。圧縮機室30の圧縮機10aは高温となるため圧縮機10aを冷却するための圧縮機室用室内機10cを配置し、圧縮機室30を冷房する圧縮機室用凝縮器10eは建物内を冷房する凝縮器10bと同じ水槽20で冷却する事で、室外機や室内機の冷房装置全体のいずれからも高温度の空気が出ることがなく周辺の気象温暖化の防止と地下水で冷却する事で凝縮器10bの熱変換が高効率化されるので消費電力も少なくなる。   The compressor 10a, the condenser 10b, and the fan of the cooling device are removed, and the compressor 10a is stored in one room. Since the compressor 10a of the compressor chamber 30 is at a high temperature, a compressor chamber indoor unit 10c for cooling the compressor 10a is disposed, and a compressor chamber condenser 10e for cooling the compressor chamber 30 is disposed inside the building. By cooling in the same water tank 20 as the condenser 10b to be cooled, high temperature air is not emitted from any of the outdoor unit and the entire cooling unit of the indoor unit, and it is cooled by ground water and prevention of surrounding weather warming. Thus, since the heat conversion of the condenser 10b is made highly efficient, the power consumption is reduced.

本発明によって、バトミントンや卓球を行う建物内の冷房を無風状態で行うことが可能になった。また、洗濯物にバーコードのタグを取り付けてコンピューター管理するクリーニング工場においても、同様に室内を無風状態にできるのでコンピューター管理が可能になった。その他、埃が舞い上がることを嫌う研究施設なども同様に冷房を無風状態で行うことができるようになった。   According to the present invention, it is possible to perform cooling in a building where badminton and table tennis are performed in a windless state. In addition, even in a cleaning factory where a bar code tag is attached to the laundry and managed by a computer, the room can be made airless as well, so that the computer can be managed. In addition, research facilities that dislike dust soaring can now be air-cooled.

本発明でフィン付き冷媒配管4、ドレンパン5a、結露防止材5b、空気配管6等を集合吸熱ユニット7に、また金属平板吸熱材8c、ドレンパン5a、空気配管6、高熱伝導率充填材8b等を平板吸熱装置8にユニット化することによって、施工能率や冷房効率等を高め、広さに応じた施工面積の大小に容易に適応可能となった。   In the present invention, the finned refrigerant pipe 4, the drain pan 5a, the dew condensation preventing material 5b, the air pipe 6 and the like are used as the collective heat absorption unit 7, and the metal flat plate heat absorbing material 8c, the drain pan 5a, the air pipe 6, the high thermal conductivity filler 8b and the like are used. By unitizing the flat plate heat absorption device 8, the construction efficiency, the cooling efficiency, etc. are improved, and the construction area corresponding to the size can be easily adapted.

通常室外機と称する冷媒を冷却するのに空気を利用して冷却をすることが殆どであるため、周辺の空気の温度が上昇していたが、特に大型施設では複数台の凝縮器10bを冷却する必要があるためこれらの凝縮器10bを一度に地下又は地上に設置した水槽20内に貯水した地下水に水没させて冷やす事で高温になった冷媒を効率よく冷却することができて、ヒートアイランド現象を防ぐなど環境に好適な効果がある。   Since the cooling of the refrigerant, usually called an outdoor unit, is usually performed by using air, the temperature of the surrounding air has risen. However, particularly in large facilities, a plurality of condensers 10b are cooled. Therefore, it is possible to efficiently cool the high-temperature refrigerant by immersing these condensers 10b in the underground water stored in the water tank 20 installed underground or on the ground at a time to cool the condenser 10b. It has an effect suitable for the environment, such as prevention.

通常室内機や室外機と称する冷媒を冷却して空調対象空間1aを冷却するとき室内温度センサー51や外気温温度センサー52などで温度管理をしている。本発明の吸熱手段2と圧縮機10a及び凝縮器10bを分離して設置する冷房対象空間1aや室外の温度によって圧縮機10aの出力制御手段や空気配管6に送る空気の流量制御手段、また水槽20内の水の温度を管理する温度センサー53などの信号で冷房装置全体の電気制御手段50を温度管理が出来ている圧縮機室30に収納する事で外気温や埃などによる影響をなくすことが出来る。   When the refrigerant called an indoor unit or outdoor unit is cooled to cool the air-conditioning target space 1a, the indoor temperature sensor 51 and the outside air temperature sensor 52 are used for temperature management. The heat absorbing means 2 of the present invention is separated from the compressor 10a and the condenser 10b. The cooling target space 1a, the output control means of the compressor 10a according to the outdoor temperature, the flow control means of the air sent to the air pipe 6, and the water tank By storing the electric control means 50 of the entire cooling device in the compressor chamber 30 in which the temperature can be managed by a signal from the temperature sensor 53 for managing the temperature of the water in the water 20, the influence of the outside air temperature, dust and the like is eliminated. I can do it.

本発明の無風冷房装置の全体図である。1 is an overall view of a windless cooling device of the present invention. 本発明の吸熱手段の構成を示す断面図である。It is sectional drawing which shows the structure of the heat absorption means of this invention. 本発明のフィン付き冷媒配管の構成を示す側面図である。It is a side view which shows the structure of the refrigerant | coolant piping with a fin of this invention. 本発明の空気配管の開口部を示す斜視図である。It is a perspective view which shows the opening part of the air piping of this invention. 本発明の空気配管の開口部の別の実施形態を示す斜視図である。It is a perspective view which shows another embodiment of the opening part of the air piping of this invention. 本発明の吸熱手段を冷房対象に設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the heat absorption means of this invention in the air conditioning object. 本発明の吸熱手段を二分割にしてガスの入り口と出口を密着させて吸熱効果を平準化させる斜視図である。It is a perspective view which equalizes the endothermic effect by making the endothermic means of the present invention into two parts and bringing the inlet and outlet of the gas into close contact. 本発明の吸熱手段を4分割にしてガスを2往復させるイメージ図である。It is an image figure which makes the heat-absorbing means of this invention into 4 divisions, and makes gas reciprocate twice. 本発明のフィンを付けた冷媒配管にガスが往復するように取り付けたイメージ図である。It is an image figure attached so that gas could reciprocate to the refrigerant | coolant piping which attached the fin of this invention. 冷媒配管内を冷媒が流れていく様子をイメージした図である。It is the figure which imaged a mode that a refrigerant | coolant flows through refrigerant | coolant piping. 本発明の吸熱手段を金属平板吸熱材で構成した場合の斜視図である。It is a perspective view at the time of comprising the heat absorption means of this invention with a metal flat plate heat absorption material. 本発明の吸熱手段を平板吸熱装置で構成した場合の断面図である。It is sectional drawing at the time of comprising the thermal absorption means of this invention with a flat plate thermal absorption apparatus. 銅製の冷媒配管にフィンを付けて実施した場合の温度変化を示すグラフである。It is a graph which shows the temperature change at the time of attaching and implementing a fin to copper refrigerant | coolant piping. 銅製の冷媒配管にフィンを付けて実施した場合の煙により無風状態を確認した写真である。It is the photograph which confirmed the windless state with the smoke at the time of carrying out by attaching a fin to copper refrigerant piping. ステンレス製の冷媒配管にフィンを付けて実施した場合の温度変化を示すグラフである。It is a graph which shows a temperature change at the time of attaching and implementing a fin to stainless steel refrigerant piping.

以下図面に基づき本発明の実施の形態を詳細に説明する。
図1は本発明の無風空調方法に用いる装置の全体図である。
この例にみられるように、本発明は無風状態の冷房対象の仕切られた空間の上部に吸熱手段を設け、吸熱手段は冷媒配管及びその下部に結露水受け手段を備え、吸熱装置の天井面にU字型のドレンパンの上部に冷気を分散させるルーバーを取付ける。その際ルーバーに結露水が付着して落下しても結露水受けに落下するようにU字型結露水受けの内径よりも小さなルーバーとする。
前記空間以外の場所に排熱手段を設けて、吸熱手段が設けられた空間上部の冷気の自然降下によりバトミントンのような風を好まない空間の冷房を行なうようにしている。これにより建物内における無風状態下での冷房を可能にした方法としたのである。
また、一般住宅や天井高が低い建物で使用する場合、剥離した冷気が直接天井面に当たらないようにルーバーを結露水受けの上部に配置することで小さな部屋でも無風冷房が可能となった。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall view of an apparatus used in the windless air conditioning method of the present invention.
As seen in this example, the present invention is provided with heat absorbing means in the upper part of the partitioned space of the air-cooled object, the heat absorbing means is provided with a refrigerant pipe and dew condensation water receiving means in the lower part, and the ceiling surface of the heat absorbing device Attach a louver to disperse the cold air at the top of the U-shaped drain pan. At this time, the louver is made smaller than the inner diameter of the U-shaped dew condensation water receptacle so that it will fall to the dew condensation water receiver even if it falls due to the condensation water adhering to the louver.
Exhaust heat means is provided in a place other than the space, and the space that does not like wind like badminton is cooled by natural descent of the cool air in the upper part of the space where the heat absorption means is provided. As a result, the air conditioner can be cooled under no wind conditions.
In addition, when used in ordinary houses and buildings with low ceiling heights, the louver is placed on the top of the condensed water receiver so that the separated cold air does not directly hit the ceiling surface.

冷房装置はしたがって冷房対象の仕切られた空間の吸熱手段が図2にみられるように冷媒配管及びその下部に結露水受け手段としてドレンパンを備えている。この空間以外に排熱手段が凝縮器、圧縮機として設けられている。吸熱手段は図3にみられるようにフィンを有した部材で冷媒が通過する冷媒配管の外周が被覆されていることを特徴とし、冷媒配管は一方通行ではなくフィンと接触させながら往復で1ループをセットした吸熱器である。 Therefore, the cooling device includes a refrigerant pipe and a drain pan as a dew condensation water receiving means at the lower part thereof as shown in FIG. In addition to this space, exhaust heat means is provided as a condenser and a compressor. As shown in FIG. 3, the heat absorbing means is characterized in that the outer periphery of the refrigerant pipe through which the refrigerant passes is covered with a member having fins, and the refrigerant pipe is not one-way but is in contact with the fins and reciprocates one loop. It is a heat sink with set.

ガスを冷媒に用いた吸熱装置では熱変換が著しく行われるため一方通行に設置した冷媒配管では冷媒の入り口付近の空気温度は出口付近の空気温度より低温と温度差があるため冷気の温度むらを生じ室内の冷房効果も斑を生ずる。この不安定さを解消するため冷媒配管は往復させ、フィンを介して行き戻りを逆方向に冷媒を通して熱変換を2度行うことでフィンの熱変換の平準化を図ることができた。実用機では2往復させることでさらに平準化を図れる。さらに、冷媒配管の冷媒温度を平準化するために、高熱伝動率の吸熱フィンが結露水受けに着水しないように空気配管で受けた構造とした。
また、かまぼこ状の冷媒配管の平らな部分同士を張り合わせて直接冷媒配管同士で冷媒温度の平準化を図れる。その時冷媒配管を扇状にすることで2往復の管長となり、さらに平準化と熱変換が大きいものとなる。
In heat absorption devices that use gas as a refrigerant, heat conversion is significant, so in refrigerant piping installed in one way, the temperature of the air near the inlet of the refrigerant is lower than the temperature of the air near the outlet. The resulting cooling effect in the room also produces spots. In order to eliminate this instability, the refrigerant piping was reciprocated and the heat conversion of the fins was leveled by performing the heat conversion twice through the refrigerant in the reverse direction through the fins. In a practical machine, leveling can be further achieved by reciprocating twice. Furthermore, in order to equalize the refrigerant temperature of the refrigerant pipe, a structure in which the heat absorption fins having a high heat transfer rate are received by the air pipe so as not to land on the condensed water receiver.
Further, the flat portions of the kamaboko-shaped refrigerant pipes can be bonded together to equalize the refrigerant temperature directly between the refrigerant pipes. At that time, by making the refrigerant pipe into a fan shape, the pipe length becomes two reciprocations, and further, leveling and heat conversion become large.

結露水受けの容積に合わせた高熱伝導率のフィンに冷媒配管が差し込むことができる穴二か所をひと組とする穴をひと組又は二組以上をあけ、冷媒配管を行きと帰りの穴に取り付ける。さらにフィンの下方左右に三角形の空気配管を取り付け左右両方から冷気を剥離するようにコントロールされた風をフィンの隙間や冷媒配管に向かって斜め対称に吹きつける。左右から吹き付けることで風は打ち消しあうようにして上方に上がり結露水受けの上方に設けたルーバーで分けられて冷気は左右に押し出され、さらにやさしい風となり無風状態(冷気の自然落下)を作り易くなり風量を増やしても無風冷房効果が出来る。
この時空気配管から噴き出す空気は空気清浄器できれいにした空気を使用することで室内の空気を浄化することもでき病室や精密機械室などで使用することができる。
Open one or two or more pairs of holes that allow the refrigerant piping to be inserted into the fins with high thermal conductivity that matches the volume of the dew condensation receiver, and use the refrigerant piping as the return and return holes. Install. Further, triangular air pipes are attached to the left and right sides of the fins, and a wind controlled so as to separate the cold air from both the left and right sides is blown obliquely toward the gaps of the fins and the refrigerant pipes. By blowing from the left and right, the winds rise upwards and are separated by louvers provided above the dew condensation water receiver, and the cold air is pushed out to the left and right, creating a gentler wind and making it easy to create a windless state (natural fall of cold air) No wind cooling effect can be achieved even if the air volume is increased.
At this time, the air blown out from the air pipe can be purified by using air cleaned by an air purifier and can be used in hospital rooms or precision machine rooms.

空気配管と結露水受けとを一体化した構造とし、フィンに対してフィンの下方左右に概ね15〜60度の角度をもつ直角三角形の空気配管を取り付け、左右両方から風をフィンの隙間や冷媒配管に向かって斜め対称に吹きつける。また冷媒配管やフィンに付着している結露水が空気配管に侵入しないように、空気穴またはスリットの空気吹き出し口を1から5mm高くした請求項1または2,3に記載の空気配管構造である。   The air pipe and the dew condensation water receiver are integrated, and a right-angled triangular air pipe with an angle of approximately 15 to 60 degrees is attached to the left and right sides of the fin with respect to the fin. Spray diagonally toward the pipe. The air piping structure according to claim 1 or 2, wherein the air outlet of the air hole or slit is raised by 1 to 5 mm so that the condensed water adhering to the refrigerant piping or the fin does not enter the air piping. .

原理は自明のことではあるがシンメントリーに配置した送風装置でフィンの隙間を通過する風は互いに干渉して上方に向かって移動しようとする。この時フィンが壁となってさらに風の方向を決定させることから風と風がぶつかり合って開放面、すなわち上方へ向かい冷気は自然落下で効率よく無風冷房を実現させることができる。無風冷房装置の室内機において、U字溝の形をした結露水受けの容積に合わせた高熱伝導率のフィンを3mmから10mm間隔に並べ結露水受けの下方両サイドに斜めに設置した空気配管の上部にフィンが止まるように設置し、冷媒配管を差し込むことができる穴二か所をひと組とする穴を一組又は二組以上をあけ、冷媒配管を行きと帰りの穴に差し込んで取り付け、フィンの下方左右に空気配管を取り付け左右両方から冷媒配管に霜がつかないように冷気を剥離するようにコントロールされた風をフィンの隙間や冷媒配管に向かって斜め対称に吹きつける構造の無風冷房装置の構造である。さらに冷媒配管に霜がつきそうになった時、冷媒配管の色を監視するセンサーを取り付けて冷媒配管に霜が付着する前にコントロールされた風を吹き付けるとさらに効率よく冷気を剥離することができる。 Although the principle is self-evident, the wind passing through the gaps of the fins in the air blower arranged in Sinmentry interferes with each other and tends to move upward. At this time, since the fin becomes a wall and further determines the direction of the wind, the wind and the wind collide with each other, so that the cool air can be efficiently realized by naturally falling toward the open surface, that is, upward. In an indoor unit of a non-cooled air conditioner, air pipes that are installed diagonally on both sides of the bottom of the dew condensation water receiver are arranged at intervals of 3 mm to 10 mm with high thermal conductivity fins that match the volume of the dew condensation water receiver in the shape of a U-shaped groove. Install so that the fins stop at the top, drill one or more pairs of holes with two holes into which the refrigerant pipe can be inserted, install the refrigerant pipe into the return and return holes, No air-cooling with a structure in which air pipes are attached to the left and right sides of the fins, and the air is blown diagonally symmetrically toward the gaps between the fins and the refrigerant pipe so that the cold air is peeled off from both the left and right sides to prevent frost from forming on the refrigerant pipe. The structure of the device. Furthermore, when frost is likely to be formed on the refrigerant pipe, a sensor that monitors the color of the refrigerant pipe is attached, and the controlled air is blown before the frost is attached to the refrigerant pipe, so that the cold air can be separated more efficiently. .

冷媒配管は同等の品質及び同寸法で、かまぼこ状で半円筒の配管2本を1組として、それぞれの平面部分同士を接着し、1本の円筒にする。密着したかまぼこ状の冷媒配管は、一方は入り口側用、もう一方は出口側用とし、冷媒を折り返しさせるため、円筒形の冷媒配管の末端部分には、内部に空間がある蓋で閉じ、冷媒が円筒内で往復するようにした吸熱装置の構造とした。
また、結露水受けの天井面に近いほうにルーバーを設けフィンに吹き付けた風が天井に当たらないように、ルーバーに当たった風は左右に分離されてから冷気の重みで自然降下を起こす。
また、円筒の断面が扇形で4分割した冷媒配管は1本の配管で、冷媒が2往復することで吸熱装置の吸熱温度が1往復するより平準化が図れる。
冷媒が折り返す3ヶ所の末端部分は扇形の4本のうち2本をそれぞれ出側、入り側で組み合わせて、2本を内部に空間がある蓋で閉じ、冷媒が円筒内で2往復するようにした吸熱装置である。さらに冷媒配管は2の倍数を持つハニカム構造で冷媒配管のうちの、穴2つをそれぞれ、出側、入り側で組み合わせて内部に空間がある蓋で閉じ、冷媒が円筒内で1往復以上するようにした吸熱装置の構造である。
The refrigerant pipes have the same quality and the same size, and two pipes that are semi-cylindrical and semicylindrical are combined into one set, and the respective plane portions are bonded together to form one cylinder. Adhering kamaboko-shaped refrigerant pipes are one for the inlet side and the other for the outlet side. In order to fold the refrigerant, the end of the cylindrical refrigerant pipe is closed with a lid with a space inside, The structure of the endothermic device is such that the reciprocating member moves back and forth within the cylinder.
In addition, a louver is provided closer to the ceiling surface of the dew condensation water receiver, and the wind that hits the fin does not hit the ceiling.
Further, the refrigerant pipe divided into four sections with a cylindrical cross section is a single pipe, and the level of heat absorption of the heat absorption device can be leveled by one reciprocation by the refrigerant reciprocating twice.
The end portions of the three places where the refrigerant folds are combined so that two of the four fan-shaped ones are combined on the exit side and the entrance side, respectively, and the two are closed with a lid having a space inside, so that the refrigerant reciprocates twice in the cylinder. Endothermic device. Further, the refrigerant pipe is a honeycomb structure having a multiple of two, and two holes of the refrigerant pipe are combined on the outlet side and the inlet side, respectively, and closed with a lid having a space inside, and the refrigerant makes one or more reciprocations in the cylinder. This is the structure of the heat absorption device.

吸熱手段2には、冷媒配管3に向かって開口部を有する空気配管6が、冷媒配管3と結露水受け手段5としてのドレンパン5aとの間に設けられている。
吸熱手段2は、ドレンパンの上方にフィン付き冷媒配管と空気配管からなる集合吸熱ユニットを複数設け、他の集合吸熱ユニットとのフィン付き冷媒配管連結口、空気配管連結口及びドレンパン連結口を有した構造がよい。
In the heat absorption means 2, an air pipe 6 having an opening toward the refrigerant pipe 3 is provided between the refrigerant pipe 3 and a drain pan 5 a as the condensed water receiving means 5.
The heat absorption means 2 has a plurality of collective heat absorption units composed of finned refrigerant pipes and air pipes above the drain pan, and has finned refrigerant pipe connection ports, air pipe connection ports, and drain pan connection ports with other collective heat absorption units. Good structure.

注水された水槽20に凝縮器10bが収納されていることも特徴とすることができる。地下水脈A24から水槽20への地下水供給ライン26の地下水供給用配管26a中に地下水供給用ポンプ26bと、水槽20から地下水脈B25への地下水戻りライン27の、地下水戻り用配管27a中に地下水戻り用加圧ポンプ27bが設けられている。
地下水戻りライン27の地下水脈B25は、地下水供給ライン26の地下水脈A24と異なりかつ浅い位置であると冷却効率がよい。
図1にみられるように冷却機能を有した圧縮機室30に複数組の空調装置の圧縮機10a及び電気制御手段50を収納させると場所をとらないし施工効率もよく外気温の影響や埃による故障の発生確率を下げることも出来る。
It can also be characterized that the condenser 10b is housed in the poured water tank 20. Groundwater return into the groundwater return pipe 27a of the groundwater return line 27 from the water tank 20 to the groundwater vein B25 in the groundwater supply pipe 26a of the groundwater supply line 26 to the water tank 20 from the groundwater vein A24. A pressurizing pump 27b is provided.
The groundwater vein B25 of the groundwater return line 27 is different from the groundwater vein A24 of the groundwater supply line 26 and has a shallow cooling efficiency when it is at a shallow position.
As shown in FIG. 1, when the compressor 10a and the electric control means 50 of a plurality of sets of air conditioners are housed in the compressor chamber 30 having a cooling function, the space is saved, the construction efficiency is good, and the influence of outside air temperature and dust It is also possible to reduce the probability of failure occurrence.

圧縮機10a及び凝縮器10bは、他機器との接続行うための接続部材を設けている。
冷媒を通す冷媒配管3にらせん状に巻きつけたフィン4aを持つフィン付き冷媒配管4を必要に応じた本数を天井近くに必要数設置しフィン付き冷媒配管4を冷媒を介して冷却し、フィン付き冷媒配管4に密着した冷気を剥離するために必要最小限の風を、フィン4aのすぐ近くからスリット6a又は小口径の穴6bを介して噴出させ、空気を一旦上部又は周辺に吹きつけたフィン付き冷媒配管4や金属平板吸熱材8cで冷却した後、冷気が自然落下による無風状態の冷房装置でフィン付き冷媒配管4を必要数まとめて施工がし易くするように一つの集合吸熱ユニット7としてフィン付き冷媒配管連結口7bや空気配管連結口7cや結露水を連結させるドレンパン連結口7dとを持ち、建物の大きさによって生ずる必要枚数の集合吸熱ユニット7を連結させて施工する。室内で熱交換された冷媒は一般には室外機に戻す。室外機の形態はファンを撤去して圧縮機10aと凝縮器10bを別々にして、凝縮器10bを地下又は地上に設置した水槽20に地下水又は地上水を貯水し、水槽20にためた水に浸かるように凝縮器10bを水没させる。このとき大型施設では複数台の凝縮器10bを冷却する必要があるためこれらの凝縮器10bを一度に地下又は地上に設置した水槽20内に貯水した地下水に水没させて冷やす事で高温になった冷媒を効率よく冷却することができる。
冷却する地下水は給水側の地下に埋設する地下水供給用配管26aと地下に戻す地下水戻り用配管27aの深さは汲み上げる地下水脈A24と異なる地下水脈B25に戻す事で地下水のループが出来ることが防止できると共に、地盤沈下を防止することが出来る。
The compressor 10a and the condenser 10b are provided with connection members for connection with other devices.
A necessary number of finned refrigerant pipes 4 having fins 4a spirally wound around the refrigerant pipe 3 through which the refrigerant is passed is installed near the ceiling, and the finned refrigerant pipes 4 are cooled via the refrigerant. The minimum air necessary to peel off the cold air tightly attached to the attached refrigerant pipe 4 was ejected from the vicinity of the fin 4a through the slit 6a or the small-diameter hole 6b, and the air was once blown to the upper part or the periphery. After cooling with the finned refrigerant pipe 4 or the metal flat plate heat absorbing material 8c, one collective heat absorbing unit 7 is provided so that the necessary number of the finned refrigerant pipes 4 can be easily put together by a cooling system in which the cold air is not naturally winded. And a finned refrigerant pipe connection port 7b, an air pipe connection port 7c, and a drain pan connection port 7d for connecting condensed water, and a necessary number of collective endothermic units generated depending on the size of the building. 7 are linked to by the construction. The refrigerant that has been heat exchanged indoors is generally returned to the outdoor unit. As for the form of the outdoor unit, the fan 10 is removed, the compressor 10a and the condenser 10b are separated, the ground water or the ground water is stored in the water tank 20 where the condenser 10b is installed underground or on the ground, and the water stored in the water tank 20 is stored. The condenser 10b is submerged so as to be immersed. At this time, since it is necessary to cool a plurality of condensers 10b in a large-scale facility, these condensers 10b became high temperature by being submerged in the groundwater stored in the water tank 20 installed on the ground or on the ground at a time and cooled. The refrigerant can be efficiently cooled.
Groundwater to be cooled is prevented from forming a groundwater loop by returning the depth of the groundwater supply pipe 26a buried in the underground on the water supply side and the depth of the groundwater return pipe 27a returned to the ground to the groundwater vein B25 different from the groundwater vein A24 to be pumped. While being able to prevent land subsidence.

本発明の実施例を初夏に行った。22mmの銅管にフィン長15mmのフィン4aをらせん状に1.5mにわたり巻きつけたフィン付き銅管を4本天井に取り付け下から弱い風をフィンに当て地下水を銅管に通水させて、室内の温度の変化と、風が発生するかを試した。結果を表1に示す。

30分後 室温 29.5度で4.5度の温度降下が見られた「図13」参照。
Examples of the present invention were conducted in early summer. A copper pipe with a fin length of 15 mm and a copper pipe with a length of 15 mm is wound around the ceiling with four finned copper pipes attached to the ceiling, and a weak wind is applied to the fins from below to let groundwater flow through the copper pipe. We tested whether the temperature in the room changed and wind was generated. The results are shown in Table 1.

After 30 minutes, a temperature drop of 4.5 degrees was seen at room temperature 29.5 degrees, see “FIG. 13”.

煙による気流のテストでは地表近くでは垂直に煙が上がり天井近くでは撹拌されて散っていった事で無風状態での冷房が可能なことが確認できた。「図14」参照。 In the airflow test with smoke, it was confirmed that the smoke was vertically raised near the surface and stirred and scattered near the ceiling, so that it was possible to cool in the windless state. See FIG.

比較例Comparative example

熱伝導度が小さい20mmのステンレス金属管にステンレスフィンをらせん状に1.5mにわたり巻きつけたフィン付きステンレス金属管(エロフィンチューブ)を4本天井に取り付け下から弱い風をフィンに当て地下水をステンレス金属管に通水させて、室内の温度の変化を試した。結果を表2に示す。

室温と外気温の差が最も良い場合でも1.2度の温度降下が見られるにすぎず、冷媒を送る金属管の熱伝導度が重要な因子を持っていることが判明した。「図15」参照。
Four stainless steel pipes with fins (stainless steel fins spirally wound for 1.5m around a 20mm stainless steel pipe with low thermal conductivity) are attached to the ceiling. Water was passed through a stainless metal tube, and the temperature change in the room was tested. The results are shown in Table 2.

Even when the difference between the room temperature and the outside air temperature is the best, only a 1.2 degree temperature drop is observed, and it has been found that the thermal conductivity of the metal pipe sending the refrigerant has an important factor. See FIG.

一般住宅などでもアレルギーなどでぜんそくなどの体質や、ほこりが舞い上がることを嫌う研究施設、風きり音をマイクが拾うことを最も嫌う放送施設なども同様に冷房を無風状態にする必要がある。
この冷房装置の設置作業や生産も容易にすることができ、冷房対象の室内温度を短時間で下げることができる装置である。
It is also necessary to make the air conditioner cool in the same way in general housing and other facilities such as asthma due to allergies, research facilities that dislike dust soaring, and broadcasting facilities that most dislike wind noise from being picked up by microphones.
This cooling device can be easily installed and produced, and can reduce the room temperature of the cooling target in a short time.

本発明は冷房対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部または、冷媒配管3 の周囲を囲んだシンメントリーに並べたフィン4bの下方斜め両サイドに空気配管6 を備え、冷媒配管3a、フィン4a、空気配管6をU字型をした結露水受け手段5で囲むように装備した吸熱システムに、前記空間1a以外に排熱手段10を設け、吸熱手段2は冷媒配管3a の周囲を囲んだシンメントリーに並べたフィン4bをかまぼこ状の半円筒で形成した冷媒配管3aの平らな面同士を接着させ冷媒が折り返す部位に冷媒が通過するように接着面を短めにした冷媒配管3aがフィン4aの中央付近を往復するように取り付けて熱変換するように配置し、空気配管6から出る風の強さをコントロールして自然降下が生じるようにし、フィン4aの間を通過して上部に設置されたルーバー6bで結露水受けから出た冷気を結露水受けの外に出るように設けられた空間上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での冷房装置の概要である。
無風冷房装置の室内機において、U字溝の形をした結露水受けの容積に合わせた高熱伝導率のフィンを3mmから10mm間隔に並べ結露水受けの下方両サイドに斜めに設置した空気配管の上部にフィンが止まるように設置し、冷媒配管を差し込むことができる穴二か所をひと組とする穴を一組又は二組以上をあけ、冷媒配管を行きと帰りの穴に差し込んで取り付け、フィンの下方左右に空気配管を取り付け左右両方から冷媒配管に霜がつかないようにコントロールされた風をフィンの隙間や冷媒配管に向かって斜め対称に吹きつける構造の無風冷房装置の構造。
In the present invention, the heat absorbing means 2 is provided in the upper part of the partitioned space 1a of the cooling object 1, and the heat absorbing means 2 is obliquely below the fins 4b arranged in the refrigerant pipe 3 and the lower part thereof or in the mententry surrounding the refrigerant pipe 3. A heat absorption system equipped with air pipes 6 on both sides and surrounded by refrigerant pipes 3a, fins 4a, and air pipes 6 with a U-shaped condensed water receiving means 5 is provided with a heat exhaust means 10 in addition to the space 1a. The heat absorption means 2 is provided such that fins 4b arranged in a mentmentary surrounding the refrigerant pipe 3a are bonded to each other on the flat surfaces of the refrigerant pipe 3a formed by a semi-cylindrical semi-cylinder, and the refrigerant passes through a portion where the refrigerant is turned back. In this way, the refrigerant pipe 3a having a shorter adhesive surface is attached so as to reciprocate around the center of the fin 4a and is arranged so as to convert heat, and the strength of the wind coming out of the air pipe 6 is controlled to cause a natural descent. And between the fins 4a Passing through the louver 6b installed at the upper part of the building, the cold air from the condensed water receiver is placed outside the condensed water receiver. It is the outline | summary of the air-conditioning apparatus.
In an indoor unit of a non-cooled air conditioner, air pipes that are installed diagonally on both sides of the bottom of the dew condensation water receiver are arranged at intervals of 3 mm to 10 mm with high thermal conductivity fins that match the volume of the dew condensation water receiver in the shape of a U-shaped groove. Install so that the fins stop at the top, drill one or more pairs of holes with two holes into which the refrigerant pipe can be inserted, install the refrigerant pipe into the return and return holes, A structure of a windless cooling device in which air pipes are attached to the lower left and right sides of the fins, and air is blown obliquely symmetrically toward the gaps between the fins and the refrigerant pipes so that the refrigerant pipes are not frosted from both the left and right sides.

本発明は冷房対象1の仕切られた空間1a上部に吸熱手段2を設け、吸熱手段2は冷媒配管3及びその下部または、冷媒配管3 の周囲を囲んだシンメントリーに並べたフィン4bの下方斜め両サイドに空気配管6 を備え、冷媒配管3a、フィン4a、空気配管6をU字型をした結露水受け手段5で囲むように装備した吸熱システムに、前記空間1a以外に排熱手段10を設け、吸熱手段2は冷媒配管3a の周囲を囲んだシンメントリーに並べたフィン4bをかまぼこ状の半円筒で形成した冷媒配管3aの平らな面同士を接着させ冷媒が折り返す部位に冷媒が通過するように接着面を短めにした冷媒配管3aがフィン4a の中央付近を往復するように取り付けて熱変換するように配置し、空気配管6から出る風の強さをコントロールして自然降下が生じるようにし、フィン4aの間を通過して上部に設置されたルーバー6bで結露水受けから出た冷気を結露水受けの外に出るように設けられた空間上部冷気の自然降下により冷房を行なうようにした建物内における無風状態下での冷房装置の概要である。
冷媒配管は図10に示すように同等の品質及び同寸法で、かまぼこ状の半円筒の配管2本を1組として、それぞれの平面部分同士を接着し、1本の円筒にする。接着したかまぼこ状の冷媒配管は、一方は入り口側用、もう一方は出口側用とし、冷媒が折り返しさせるため、円筒形の冷媒配管の末端部分には、内部に空間がある蓋で閉じ、冷媒が円筒内で往復するようにした吸熱装置の構造。
In the present invention, the heat absorbing means 2 is provided in the upper part of the partitioned space 1a of the cooling object 1, and the heat absorbing means 2 is obliquely below the fins 4b arranged in the refrigerant pipe 3 and the lower part thereof or in the mententry surrounding the refrigerant pipe 3. A heat absorption system equipped with air pipes 6 on both sides and surrounded by refrigerant pipes 3a, fins 4a, and air pipes 6 with a U-shaped condensed water receiving means 5 is provided with a heat exhaust means 10 in addition to the space 1a. The heat absorption means 2 is provided such that fins 4b arranged in a mentmentary surrounding the refrigerant pipe 3a are bonded to each other on the flat surfaces of the refrigerant pipe 3a formed by a semi-cylindrical semi-cylinder, and the refrigerant passes through a portion where the refrigerant is turned back. In this way, the refrigerant pipe 3a with a short adhesive surface is installed so as to reciprocate near the center of the fin 4a and is converted to heat, so that the strength of the wind coming out of the air pipe 6 is controlled so that a natural descent occurs. And between fins 4a Passing through the louver 6b installed at the upper part of the building, the cold air from the condensed water receiver is placed outside the condensed water receiver. It is the outline | summary of the air-conditioning apparatus.
As shown in FIG. 10, the refrigerant pipes have the same quality and the same dimensions, and two sets of semi-cylindrical pipes are joined together, and the respective plane portions are bonded to form one cylinder. Adhered kamaboko-shaped refrigerant pipes, one for the inlet side and the other for the outlet side, allow the refrigerant to be folded back, so that the end part of the cylindrical refrigerant pipe is closed with a lid with a space inside. The structure of the endothermic device that is designed to reciprocate in the cylinder.

無風冷房をより効果的に行う為には、冷媒配管を複数組フィンと接触させる構造とすることでより冷媒で冷やされた空気温度の平準化や冷房の効率を上げることができる。
一方通行の冷媒配管で冷房を行う構造を持つ冷媒配管の最大の欠点は冷媒の温度の不安定さにあり入り口と出口の温度差がある点である。この欠点を解消するにはU字型のヘアピン構造として入り口と出口を接触させることで温度の平準化を図ることができ、数組のU字型のヘアピン状の構造を持つ冷媒配管をフィンと接触させることで温度の平準化効果がおこなえる。
In order to perform airless cooling more effectively, it is possible to level the temperature of the air cooled by the refrigerant and increase the efficiency of the cooling by adopting a structure in which the refrigerant pipes are in contact with a plurality of sets of fins.
The biggest drawback of the refrigerant pipe having a structure in which the cooling is performed with the one-way refrigerant pipe is that the refrigerant temperature is unstable and there is a temperature difference between the inlet and the outlet. In order to eliminate this drawback, the temperature can be leveled by bringing the inlet and outlet into contact with each other as a U-shaped hairpin structure, and several sets of refrigerant piping having a U-shaped hairpin-like structure are used as fins. A temperature leveling effect can be achieved by contact.

具体的な装置としては、冷房対象の仕切られた空間上部に吸熱手段を設け、吸熱手段はフィンと接触させた冷媒配管及びその下部斜め両サイドに空気配管とU 字型の結露水受け手段を備え、フィンの上方にU字型結露水受けより少し小さめのルーバーを備えた吸熱手段の前記空間以外に排熱手段を設け、吸熱手段はフィンを有した部材でフィンを複数枚持たせ冷媒配管がフィンを適選の長さを持つ冷媒配管を往復に貫通させていることを特徴とする冷房装置である。
上記冷媒配管はヘアピンの形状に形成された冷媒配管をフィンで吸熱する行きと帰りの往復で1組とし、冷媒配管を通す冷媒の温度が入り口と出口で異なるので平準化させることを目的に往復させた冷媒配管に高熱伝導率のフィンを介する構造とした。さらに温度の平準化を図るには複数組の冷媒配管を共通のフィンと接触させることで冷気の平準化を図ることができる。
As a specific device, heat absorption means is provided in the upper part of the space to be cooled, and the heat absorption means includes refrigerant pipes in contact with the fins, air pipes and U-shaped dew condensation receiving means on the diagonally lower sides thereof. In addition to the space of the heat absorption means provided with a louver slightly smaller than the U-shaped dew condensation water receiver above the fins, a heat exhaust means is provided, and the heat absorption means is a member having fins and has a plurality of fins and a refrigerant pipe Is a cooling device characterized in that a fin is reciprocated through a refrigerant pipe having an appropriate length.
The refrigerant pipe is formed in a hairpin shape, and the refrigerant pipe is reciprocated for the purpose of leveling because the temperature of the refrigerant passing through the refrigerant pipe is different between the inlet and the outlet. It was set as the structure which put the fin of high heat conductivity through the made refrigerant piping. Further, in order to level the temperature, the cold air can be leveled by bringing a plurality of sets of refrigerant pipes into contact with a common fin.

ヘアピン構造の冷媒配管を一体化することでガスを冷媒として冷房する唯一の欠点でもある冷媒配管の入り口付近の温度と出口付近の温度が同一ではないという欠点をさらに補うため、冷媒配管をかまぼこ状の半円として平面の部分を密着させ、さらに平板状に並べたフィンを串刺しした形状で熱変換を効率よく行うことができる。このかまぼこ状の冷媒配管の折り返し部分には冷媒が通過できるように空洞のキャップを取り付る事で冷媒配管の入り口と出口が密着し温度差が最小となる構造である。   In order to further compensate for the disadvantage that the temperature near the inlet of the refrigerant pipe and the temperature near the outlet are not the same, which is the only disadvantage of cooling the gas as a refrigerant by integrating the refrigerant pipe with the hairpin structure, the refrigerant pipe is shaped like a semi-cylindrical shape. The heat conversion can be efficiently performed in a shape in which flat portions are in close contact with each other as semicircles and fins arranged in a flat plate are skewered. By attaching a hollow cap so that the refrigerant can pass through the folded portion of the kamaboko refrigerant pipe, the inlet and outlet of the refrigerant pipe are in close contact with each other, and the temperature difference is minimized.

上記の空気配管の材質は加工のしやすい塩化ビニル樹脂でも金属でもよく、製造上結露水受けと一体型としてスリットの代わりに冷媒配管を通過させているフィンのピッチにあわせて小さな穴を風がフィンにあたるか、又はフィンとフィンの間を通過する様にすることで、熱変換がより大きな値となる。この場合の空気を通す空気配管の形状は丸でも三角でも多角形でもよい。この場合、穴の製作には数ミリ幅のスリットを空気配管と平行に開口してアルミ箔やアルミテープもしくは紙テープや布などの粘着性を持つテープでスリットを部分的に塞ぎ、必要な大きさの穴を設けることで簡単に穴を作ることもできる。 The material of the above air piping may be vinyl chloride resin or metal, which is easy to process, and as a single unit with a dew condensation water receiver for manufacturing, a small hole is made to fit the pitch of the fin passing through the refrigerant piping instead of the slit. By making it hit a fin or passing between fins, the heat conversion becomes a larger value. In this case, the shape of the air pipe through which air passes may be round, triangular, or polygonal. In this case, a few millimeters wide slit is opened in parallel with the air pipe, and the slit is partially closed with adhesive tape such as aluminum foil, aluminum tape, paper tape, cloth, etc. It is also possible to make holes easily by providing holes.

また、天井付近に設置するフィン付き冷媒配管を数本で一組として冷媒配管の下部に空気配管と結露水を受けるドレンパンをセットして一つの集合吸熱ユニットとし、何台も集合吸熱ユニットを連結可能とする。そのためフィン付き冷媒配管連結口と空気配管連結口及びドレンパン連結口を集合吸熱ユニットに設ける事で大きな建物の冷房の施工が簡単となる。 Also, several refrigerant pipes with fins installed near the ceiling are used as one set, and a drain pan that receives the air pipe and condensed water is set at the lower part of the refrigerant pipe to form one collective heat absorption unit. Make it possible. For this reason, providing a finned refrigerant pipe connection port, an air pipe connection port, and a drain pan connection port in the collective heat absorption unit facilitates cooling of a large building.

本発明の空気を通す空気配管は冷媒配管とU字型のドレンパンの両サイドに斜めに冷媒配管に空気が当たるように取付け、又はU字型と一体成型とした空気配管でもよい。コーナーに設置した空気配管は風の方向が変わらないようにドレンパンに接着することで解決できた。この空気配管6の風が噴出す始点は空気配管6を数本に分割することでスリットの始点の位置が数箇所に分散させることで風量の均一化を図ることが容易になる。   The air pipe for passing air according to the present invention may be an air pipe that is attached so that air strikes the refrigerant pipe obliquely on both sides of the refrigerant pipe and the U-shaped drain pan, or that is integrally molded with the U-shape. The air pipe installed at the corner could be solved by adhering to the drain pan so that the direction of the wind did not change. The starting point from which the wind of the air pipe 6 is blown is divided into several air pipes 6 so that the positions of the starting points of the slits are dispersed in several places, thereby making it easy to achieve uniform air flow.

1 冷房対象
1a 仕切られた空間
1b 風を好まない空間
2 吸熱手段
3 冷媒配管
3a 冷媒配管固定具
3b 冷媒ガス入り口
3c 冷媒ガス出口
3d 冷媒ガス折り返し口
4 フィン付き冷媒配管
4a フィン
4b かまぼこ状冷媒配管
4c 扇状冷媒配管
5 結露水受け手段
5a ドレンパン
5b 結露防止材
5c ドレンパン固定具
6 空気配管
6a スリット
6b 穴
6c 空気配管固定具
7 集合吸熱ユニット
7a 枠
7b フィン付き冷媒配管連結口
7c 空気配管連結口
7d ドレンパン連結口
7e 冷媒配管連結口
8 平板吸熱装置
8a 傾斜
8b 高熱伝導率充填材
8c 金属平板吸熱材
8d 平板吸熱器固定具
10 排熱手段
10a 圧縮機
10b 凝縮器
10c 圧縮機室用室内機
10d 圧縮機室用圧縮機
10e 圧縮機室用凝縮器
20 水槽
21 地表面
24 地下水脈A
25 地下水脈B
26 地下水供給ライン
26a 地下水供給用配管
26b 地下水供給用ポンプ
27 地下水戻りライン
27a 地下水戻り用配管
27b 地下水戻り用加圧ポンプ
30 圧縮機室
40 貯湯タンク
41 三方弁
50 電気制御手段
51 室温検知センサー
52 外気温検知センサー
53 水温検知センサー
54 信号線
55 色温度識別センサー
DESCRIPTION OF SYMBOLS 1 Cooling object 1a The partitioned space 1b The space which does not like wind 2 Heat absorption means 3 Refrigerant piping 3a Refrigerant piping fixture 3b Refrigerant gas inlet 3c Refrigerant gas outlet 3d Refrigerant gas return port 4 Refrigerant piping 4a Fin 4b Kamaboko refrigerant piping 4c Fan-shaped refrigerant piping 5 Condensation water receiving means 5a Drain pan 5b Condensation prevention material 5c Drain pan fixture 6 Air piping 6a Slit 6b Hole 6c Air piping fixture 7 Collective heat absorption unit 7a Frame 7b Refrigerant piping connection port 7c Air piping connection port 7d Drain pan connection port 7e Refrigerant piping connection port 8 Flat plate heat absorption device 8a Inclination 8b High thermal conductivity filler 8c Metal flat plate heat absorption material 8d Flat plate heat sink fixture 10 Heat exhaust means 10a Compressor 10b Condenser 10c Compressor chamber indoor unit 10d Compression Compressor for machine room 10e Condenser for compressor room 20 Water tank 1 ground surface 24 underground water vein A
25 Groundwater veins B
26 Groundwater supply line 26a Groundwater supply pipe 26b Groundwater supply pump 27 Groundwater return line 27a Groundwater return pipe 27b Groundwater return pressure pump 30 Compressor room 40 Hot water tank 41 Three-way valve 50 Electric control means 51 Room temperature detection sensor 52 Outside Air temperature detection sensor 53 Water temperature detection sensor 54 Signal line 55 Color temperature identification sensor

Claims (4)

ガスを冷媒に用いた建物内における無風状態での冷房を可能にする装置を使用したとき対象となる空間のガスの入り口と出口とで吸熱効果が異なるため、ガスの移動による吸熱効果を均一化する必要があり、ガスを冷媒に用いた冷媒配管は同等の品質及び同寸法で、かまぼこ状で半円筒の配管2本を1組として、それぞれの平面部分同士を接着し、1本の円筒にされており、密着したかまぼこ状の冷媒配管は、一方は入り口側用、もう一方は出口側用とし、冷媒を折り返しさせるため、円筒形の冷媒配管の末端部分には、内部に空間がある蓋で閉じ、冷媒が円筒内で往復することで、冷媒温度の平準化を図れるようにした吸熱装置の構造。 When using a device that uses a gas as a refrigerant to allow cooling in the windless state in the building, the heat absorption effect differs between the gas inlet and outlet in the target space, so the heat absorption effect due to gas movement is made uniform Refrigerant pipes that use gas as a refrigerant must have the same quality and the same dimensions, and two pipes that are semi-cylindrical and semi-cylindrical, and each plane part is bonded to one cylinder. The closed kamaboko-shaped refrigerant pipe is for the inlet side and the other is for the outlet side, so that the refrigerant is folded back, so that the end of the cylindrical refrigerant pipe has a space inside. The structure of the heat-absorbing device that can be closed by closing and reciprocating in the cylinder so that the refrigerant temperature can be leveled. 円筒の断面が扇形で4分割した冷媒配管は1本の配管で、冷媒が2往復することで吸熱装置の吸熱温度が1往復するより平準化が図れるものであり、冷媒が折り返す3ヶ所の末端部分は扇形の4本のうち2本をそれぞれ出側、入り側で組み合わせて、2本を内部に空間がある蓋で閉じ、冷媒が円筒内で2往復するようにした請求項1記載の吸熱装置の構造。 The cylinder pipe is divided into four sections with a fan-shaped section. One pipe is used, and the endothermic temperature of the heat-absorbing device can be leveled by reciprocating the refrigerant twice. 2. The heat absorption according to claim 1, wherein two of the four fan-shaped portions are combined on the exit side and the entrance side, respectively, and the two are closed with a lid having a space inside so that the refrigerant reciprocates twice in the cylinder. The structure of the device. 冷媒配管は2の倍数を持つハニカム構造で冷媒配管のうちの、穴2つを出側、入り側で組み合わせて内部に空間がある蓋で閉じ、冷媒が円筒内で1往復以上するようにした請求項1に記載の吸熱装置の構造。 The refrigerant piping is a honeycomb structure having a multiple of two, and two holes of the refrigerant piping are combined on the outlet side and the inlet side and closed with a lid with a space inside, so that the refrigerant makes one or more reciprocations in the cylinder. The structure of the heat absorbing device according to claim 1. 冷媒配管の冷媒温度を平準化するために高熱伝導率の吸熱フィンが結露水受けに着水しないように空気配管で受けた請求項1または請求項2または請求項3に記載の吸熱装置の構造。 4. The structure of the heat absorbing device according to claim 1, wherein the heat absorbing fins having high thermal conductivity are received by the air pipe so as not to land on the condensed water receiver in order to level the refrigerant temperature of the refrigerant pipe. .
JP2017065518A 2017-03-29 2017-03-29 Structure of a device that enables cooling in a windless state using gas as a refrigerant Expired - Fee Related JP6263682B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065518A JP6263682B1 (en) 2017-03-29 2017-03-29 Structure of a device that enables cooling in a windless state using gas as a refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065518A JP6263682B1 (en) 2017-03-29 2017-03-29 Structure of a device that enables cooling in a windless state using gas as a refrigerant

Publications (2)

Publication Number Publication Date
JP6263682B1 true JP6263682B1 (en) 2018-01-17
JP2018169074A JP2018169074A (en) 2018-11-01

Family

ID=60989323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065518A Expired - Fee Related JP6263682B1 (en) 2017-03-29 2017-03-29 Structure of a device that enables cooling in a windless state using gas as a refrigerant

Country Status (1)

Country Link
JP (1) JP6263682B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880172A (en) * 2019-11-29 2021-06-01 广东美的制冷设备有限公司 Control method of air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104651A (en) * 1975-03-12 1976-09-16 Tonetsu Kogyo Jugen FUKUGONETSUKOKANKITO SONOSEIZOHOHO
JPH03122440A (en) * 1989-10-03 1991-05-24 Matsushita Electric Ind Co Ltd Method for controlling operation of air conditioner
JP2007240128A (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp Fin for heat exchanger, heat exchanger, and air conditioner
JP2009039560A (en) * 2008-10-24 2009-02-26 Sanyo Electric Co Ltd Air disinfection apparatus
WO2009038076A1 (en) * 2007-09-21 2009-03-26 Sanyo Electric Co., Ltd. Evaporator, refrigeration device, and method of controlling refrigeration device
JP2015500452A (en) * 2011-11-17 2015-01-05 エンベリッド システムズ, インコーポレイテッド Method and system for regulating air in a closed environment with a distributed air circulation system
JP2015117890A (en) * 2013-12-19 2015-06-25 村上 輝明 Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same
JP2015148357A (en) * 2014-02-05 2015-08-20 株式会社 エコファクトリー Cooling device for large space

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104651A (en) * 1975-03-12 1976-09-16 Tonetsu Kogyo Jugen FUKUGONETSUKOKANKITO SONOSEIZOHOHO
JPH03122440A (en) * 1989-10-03 1991-05-24 Matsushita Electric Ind Co Ltd Method for controlling operation of air conditioner
JP2007240128A (en) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp Fin for heat exchanger, heat exchanger, and air conditioner
WO2009038076A1 (en) * 2007-09-21 2009-03-26 Sanyo Electric Co., Ltd. Evaporator, refrigeration device, and method of controlling refrigeration device
JP2009039560A (en) * 2008-10-24 2009-02-26 Sanyo Electric Co Ltd Air disinfection apparatus
JP2015500452A (en) * 2011-11-17 2015-01-05 エンベリッド システムズ, インコーポレイテッド Method and system for regulating air in a closed environment with a distributed air circulation system
JP2015117890A (en) * 2013-12-19 2015-06-25 村上 輝明 Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same
JP2015148357A (en) * 2014-02-05 2015-08-20 株式会社 エコファクトリー Cooling device for large space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880172A (en) * 2019-11-29 2021-06-01 广东美的制冷设备有限公司 Control method of air conditioner
CN112880172B (en) * 2019-11-29 2022-05-31 广东美的制冷设备有限公司 Control method of air conditioner

Also Published As

Publication number Publication date
JP2018169074A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US20150034270A1 (en) Air conditioning system of data center using heat pipe and method for controlling thereof
AU2017272291B2 (en) A Cooling System
CN207819192U (en) A kind of moisture-proof and high heat dissipation performance outdoor high-low voltage electric power distribution cabinet
CN104697149A (en) Condensate water recovery comprehensive utilization system for air conditioning system
CN104019510B (en) Water-air radiant panel evaporative cooling air conditioning system provided with cold beam and used for data center
US20160348928A1 (en) Coaxial Ventilator
CN210602078U (en) Industrial fan with good cooling effect
JP6263682B1 (en) Structure of a device that enables cooling in a windless state using gas as a refrigerant
JP5810451B2 (en) No wind cooling method
NL2018716B1 (en) Cabinet for housing part of a heat pump
CN203687260U (en) Combined overall air conditioner suitable for subway station public area
US20200088425A1 (en) Coaxial Ventilator
KR200460933Y1 (en) Air conditioner for elevator
KR101562857B1 (en) Air conditioner which is not the outdoor unit
JP2015117928A (en) Windless air-conditioning method in building for playing badminton or table tennis and apparatus used for the same
KR20140036794A (en) An outdoor unit of air conditioner
JPH06221594A (en) Outside recooling air conditioning system utilizing condensed water of air conditioner
CN206583010U (en) Cold and hot window
CN206890682U (en) A kind of cabinet type upper air inlet air-conditioning
CN205505233U (en) Air conditioner comdenstion water utilizes system
JP2004108684A (en) Air conditioner
JP2015148439A (en) Method for performing windless air conditioning at cleaning factory and device for the same
JP2012154546A (en) Air conditioner
CN210241850U (en) Elevator cage type chip refrigeration type air conditioner device
CN210832280U (en) Wall air conditioner convenient to overhaul

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6263682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees