JP6260967B2 - Radioactive iodine labeled compound and radiopharmaceutical containing the same - Google Patents
Radioactive iodine labeled compound and radiopharmaceutical containing the same Download PDFInfo
- Publication number
- JP6260967B2 JP6260967B2 JP2013229993A JP2013229993A JP6260967B2 JP 6260967 B2 JP6260967 B2 JP 6260967B2 JP 2013229993 A JP2013229993 A JP 2013229993A JP 2013229993 A JP2013229993 A JP 2013229993A JP 6260967 B2 JP6260967 B2 JP 6260967B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- mmol
- salt
- radioactive iodine
- radioactive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Furan Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本発明は、放射性ヨウ素標識化合物、及び、これを含む放射性医薬に関する。 The present invention relates to a radioiodine-labeled compound and a radiopharmaceutical containing the same.
アルツハイマー病(以下、ADという)は、認知症の原因となる疾患として知られている。近年、先進各国では社会の高齢化に伴いAD患者数が急激に増加しており、社会的な問題となっている。 Alzheimer's disease (hereinafter referred to as AD) is known as a disease causing dementia. In recent years, in advanced countries, the number of AD patients has rapidly increased with the aging of society, which has become a social problem.
ADは、脳内にアミロイドβペプチド(Aβ)が沈着することを発端として発症すると考えられており(アミロイド仮説、非特許文献1)、Aβを標的とした治療剤の開発の試みがある(特許文献1、非特許文献2)。また、近年、Aβを非侵襲的に画像化するための薬剤が種々開発され(例えば、非特許文献3)、脳内Aβの蓄積量の生前評価が可能になりつつある。 AD is thought to start with the deposition of amyloid β peptide (Aβ) in the brain (amyloid hypothesis, Non-Patent Document 1), and there is an attempt to develop a therapeutic agent targeting Aβ (patent) Document 1, Non-Patent Document 2). In recent years, various drugs for non-invasively imaging Aβ have been developed (for example, Non-Patent Document 3), and it is now possible to evaluate the amount of Aβ accumulated in the brain before birth.
一方、ADは、タウタンパク質の異常凝集が原因となるタウオパチーと呼ばれる疾患の一種でもあると考えられている。タウオパチー患者の脳内にはタウタンパク質の凝集体が発現しており、このような病理的な変性の広がりが、神経細胞死の広がりやADの重症度に関係していると考えられている。 On the other hand, AD is also considered to be a kind of disease called tauopathy caused by abnormal aggregation of tau protein. Aggregates of tau protein are expressed in the brain of tauopathy patients, and the spread of such pathological degeneration is considered to be related to the spread of neuronal cell death and the severity of AD.
そこで、近年、凝集化タウタンパク質を非侵襲的に画像化する試みもなされている(特許文献2、非特許文献4〜10)。 Therefore, in recent years, attempts have been made to image aggregated tau protein noninvasively (Patent Document 2, Non-Patent Documents 4 to 10).
非特許文献6では、タウリガンドの[11C]PBB3の脳内集積は、海馬を含む領域で増加が始まり、アルツハイマー病の発症と進行に伴って広範な領域で増加をきたすことが示されている。これに対して、Aβリガンドの[11C]PIBの脳内集積は、海馬領域への集積はあまり見られず、Aβが多量に蓄積する大脳皮質で集積が認められ、病気が進行しても、集積量や分布にほとんど変化が見られていない。 Non-patent document 6 shows that [ 11 C] PBB3 accumulation of tau ligand begins to increase in a region including the hippocampus and increases in a wide range of regions with the onset and progression of Alzheimer's disease. . In contrast, the accumulation of [ 11 C] PIB in the brain of Aβ ligand is not observed in the hippocampal region, but is also observed in the cerebral cortex where Aβ accumulates in large amounts, and the disease progresses. There is almost no change in the accumulation and distribution.
本発明者らは、アルツハイマー病の発症時における、異常タウとAβとの発現領域が異なることに着目し、タウ親和性とアミロイド親和性との双方に親和性の高い化合物を用いることで、アルツハイマー病の進行度をより正確に判定できると考えた。 The present inventors paid attention to the fact that the expression regions of abnormal tau and Aβ are different at the onset of Alzheimer's disease, and by using a compound having high affinity for both tau affinity and amyloid affinity, Alzheimer's We thought that the degree of disease progression could be determined more accurately.
本発明は上記事情に鑑みてなされたものであり、タウ親和性とアミロイド親和性とを併せ持つ、放射性ヨウ素標識化合物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a radioactive iodine-labeled compound having both tau affinity and amyloid affinity.
本発明の一態様によれば、下記一般式(1)で表される放射性ヨウ素標識化合物又はその塩が提供される。また、本発明の他の態様によれば、この放射性ヨウ素標識化合物若しくはその塩を含み、タウタンパク質の画像化、若しくは、アミロイドの画像化に用いられる、画像化剤、放射性医薬、又は、アルツハイマー病診断剤が提供される。 According to one embodiment of the present invention, a radioactive iodine-labeled compound represented by the following general formula (1) or a salt thereof is provided. According to another aspect of the present invention, an imaging agent, a radiopharmaceutical, or Alzheimer's disease comprising the radioactive iodine-labeled compound or a salt thereof and used for imaging tau protein or amyloid. A diagnostic agent is provided.
さらに、本発明の他の態様によれば、
下記一般式(2)で表される化合物又はその塩。
Furthermore, according to another aspect of the invention,
A compound represented by the following general formula (2) or a salt thereof.
本発明によれば、タウ親和性とアミロイド親和性とを併せ持つ、放射性ヨウ素標識化合物が提供される According to the present invention, a radioactive iodine-labeled compound having both tau affinity and amyloid affinity is provided.
本発明に係る化合物は、具体的には以下の化合物が挙げられる。
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン
・放射性ヨウ素標識4−[(1E)−2−(6−ヨード−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン
Specific examples of the compound according to the present invention include the following compounds.
Radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzeneamine Radioiodine-labeled N, N-dimethyl-4-[(1E) -2- (6-Iodo-2-benzo [b] thiophene) ethenyl] -benzeneamine / radioactive iodine labeled 4-[(1E) -2- (6-iodo-2-benzofuranyl) ethenyl] -N, N- Dimethylbenzeneamine / radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzoxazolyl) ethenyl] -benzeneamine
本発明において、「放射性ヨウ素」とは、ヨウ素の放射性同位体であれば特に限定されないが、単光子放出コンピューター断層撮影(SPECT)等の核医学画像診断に用いられる放射性核種が好ましく、より好ましくは123I、124I、125I又は131Iであり、123Iが更に好ましい。 In the present invention, the “radioactive iodine” is not particularly limited as long as it is a radioactive isotope of iodine, but is preferably a radionuclide used for nuclear medicine imaging such as single photon emission computed tomography (SPECT), more preferably. 123 I, 124 I, 125 I or 131 I, and 123 I is more preferable.
上記一般式(1)で表される化合物は、塩を形成していてもよく、該塩としては酸付加塩、例えば無機酸塩(例えば、塩酸塩、硫酸塩、臭化水素酸塩、リン酸塩など)、有機酸塩(例えば、酢酸塩、トリフルオロ酢酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、プロピオン酸塩、クエン酸塩、酒石酸塩、乳酸塩、シュウ酸塩、メタンスルホン酸塩、p−トルエンスルホン酸塩など)などが挙げられる。また、上記一般式(1)で表される化合物またはその塩は水和物であってもよい。 The compound represented by the general formula (1) may form a salt, and examples of the salt include acid addition salts such as inorganic acid salts (for example, hydrochloride, sulfate, hydrobromide, phosphorus Acid salts), organic acid salts (eg acetate, trifluoroacetate, succinate, maleate, fumarate, propionate, citrate, tartrate, lactate, oxalate, methane Sulfonate, p-toluenesulfonate, etc.). Further, the compound represented by the general formula (1) or a salt thereof may be a hydrate.
本発明の放射性ヨウ素標識化合物は、好ましくは、下記一般式(3)又は(4)に示す化合物である。
一般式(3)及び(4)中、X,Y,Zの定義は、上記一般式(1)と同じである。一般式(3)で表される化合物は、上記一般式(1)中、Yが硫黄原子である化合物であり、一般式(4)で表される化合物は、上記一般式(1)中、Zが窒素原子である化合物である。 In the general formulas (3) and (4), the definitions of X, Y, and Z are the same as those in the general formula (1). The compound represented by the general formula (3) is a compound in which Y is a sulfur atom in the above general formula (1), and the compound represented by the general formula (4) is in the above general formula (1). A compound in which Z is a nitrogen atom.
一般式(3)に表される化合物としては、
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(式(3)中、Zが窒素原子の化合物。)
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン(式(3)中、Zが炭素原子の化合物。)
が挙げられる。
As the compound represented by the general formula (3),
Radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzenamine (in the formula (3), Z is a nitrogen atom compound.)
Radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzo [b] thiophene) ethenyl] -benzenamine (in the formula (3), Z is a carbon atom compound .)
Is mentioned.
また、一般式(4)に表される化合物としては、
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(式(4)中、Yが硫黄原子の化合物。)
・放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン(式(4)中、Yが酸素原子の化合物。)
Moreover, as a compound represented by General formula (4),
Radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzeneamine (in the formula (4), Y is a compound having a sulfur atom.)
Radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzoxazolyl) ethenyl] -benzenamine (in the formula (4), Y is a compound having an oxygen atom.)
中でも、放射性ヨウ素標識N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(一般式(3)中、Zが窒素原子であり、一般式(4)中、Yが硫黄原子の放射性ヨウ素標識化合物)が好ましい。 Among them, radioactive iodine-labeled N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzenamine (in the general formula (3), Z is a nitrogen atom, In general formula (4), Y is a radioactive iodine-labeled compound having a sulfur atom).
続いて、上記一般式(1)で表される放射性ヨウ素標識化合物又はその塩の製造方法について説明する。一般式(1)で表される放射性ヨウ素標識化合物又はその塩は、上記一般式(2)で表される化合物又はその塩を用いて放射性ヨウ素化反応を実行することにより、得ることができる。 Then, the manufacturing method of the radioactive iodine labeling compound represented by the said General formula (1) or its salt is demonstrated. The radioactive iodine labeled compound represented by the general formula (1) or a salt thereof can be obtained by performing a radioiodination reaction using the compound represented by the general formula (2) or a salt thereof.
上記一般式(2)中、Rで示されるトリアルキルスズ基としては、トリ(C1−C6アルキル)スズ基が挙げられ、トリブチルスズ基がより好ましい。トリアルキルシリル基としては、トリ(C1−C6アルキル)シリル基が挙げられ、トリメチルシリル基がより好ましい。 In the general formula (2), examples of the trialkyltin group represented by R include a tri (C1-C6 alkyl) tin group, and a tributyltin group is more preferable. Examples of the trialkylsilyl group include a tri (C1-C6 alkyl) silyl group, and a trimethylsilyl group is more preferable.
上記一般式(2)で表される化合物は、塩を形成してもよい。塩としては、上記一般式(1)が形成しうる塩と同様なものを採用することができる。 The compound represented by the general formula (2) may form a salt. As the salt, a salt similar to the salt that can be formed by the general formula (1) can be employed.
上記一般式(2)で表される化合物は、例えば、図1、3〜5に示すスキームで調製することができる。 The compound represented by the general formula (2) can be prepared, for example, by the scheme shown in FIGS.
放射性ヨウ素化反応は、上記一般式(2)で表される化合物又はその塩に対し、放射性ヨウ化アルカリ金属塩を作用させることで実行することができる。放射性ヨウ化アルカリ金属塩は、放射性ヨウ素とアルカリ金属との塩であればよく、例えば、放射性ヨウ化ナトリウム、放射性ヨウ化カリウム等が挙げられる。 The radioiodination reaction can be carried out by allowing a radioalkali metal iodide salt to act on the compound represented by the general formula (2) or a salt thereof. The radioactive alkali metal iodide salt may be a salt of radioactive iodine and an alkali metal, and examples thereof include radioactive sodium iodide and radioactive potassium iodide.
上記一般式(2)で表される化合物と放射性ヨウ化アルカリ金属塩との反応は、酸性条件下で行い、さらに酸化剤を反応させることにより行なわれる。酸化剤としては、クロラミン−T、過酸化水素、過酢酸、等が用いられる。 The reaction between the compound represented by the general formula (2) and the radioactive alkali metal iodide is carried out under acidic conditions and further by reacting with an oxidizing agent. As the oxidizing agent, chloramine-T, hydrogen peroxide, peracetic acid, or the like is used.
得られた一般式(1)の放射性ヨウ素標識化合物を放射性医薬として用いる場合には、未反応の放射性ヨウ素イオン及び不溶性の不純物を、メンブランフィルター、種々の充填剤を充填したカラム、HPLC等により精製することが望ましい。 When the obtained radioiodine labeled compound of the general formula (1) is used as a radiopharmaceutical, unreacted radioiodine ions and insoluble impurities are purified by membrane filters, columns packed with various packing materials, HPLC, etc. It is desirable to do.
本発明に係る放射性医薬は、上記得られた一般式(1)の放射性ヨウ素標識化合物を所望により適当なpHに調整された水又は生理食塩水、あるいはリンゲル液等に配合させた液として調製することができる。この場合における本化合物の濃度は、配合された本化合物の安定性が得られる濃度以下とすることが好ましい。本化合物の投与形態は、注射剤が好ましく、投与量は、投与された化合物の分布を画像化するために十分な濃度であれば特に限定する必要はない。 The radiopharmaceutical according to the present invention is prepared as a liquid in which the radioiodine-labeled compound of the above general formula (1) obtained above is blended in water or physiological saline adjusted to an appropriate pH or Ringer's solution as required. Can do. In this case, the concentration of the present compound is preferably not more than a concentration at which the stability of the blended present compound is obtained. The dosage form of the present compound is preferably an injection, and the dosage is not particularly limited as long as it is a concentration sufficient to image the distribution of the administered compound.
生体に投与された本放射性ヨウ素標識化合物の分布は、公知の方法にて画像化することができ、例えば[123I]ヨウ素標識化合物の場合はSPECT装置を用いて画像化することができる。このようにして得られた画像により、タウタンパク質やアミロイドを画像化することができ、例えば、アルツハイマー病を非侵襲的に診断することが可能になる。 The distribution of the present radioactive iodine-labeled compound administered to a living body can be imaged by a known method. For example, in the case of [ 123 I] iodine-labeled compound, it can be imaged using a SPECT apparatus. An image obtained in this manner can be used to image tau protein and amyloid. For example, Alzheimer's disease can be diagnosed non-invasively.
以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。 EXAMPLES Hereinafter, although an Example is described and this invention is demonstrated in more detail, this invention is not limited to these content.
本実施例で用いる略語は、以下のように定義される。
SBTA:N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン
SBTH:N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン
SBF:4−[(1E)−2−(6−ヨード−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン
SBOX:N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン
[125I]SBTA:N,N−ジメチル−4−[(1E)−2−(6−[125I]ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン
Abbreviations used in this example are defined as follows.
SBTA: N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzenamine SBTH: N, N-dimethyl-4-[(1E) -2- ( 6-iodo-2-benzo [b] thiophen) ethenyl] -benzenamine SBF: 4-[(1E) -2- (6-iodo-2-benzofuranyl) ethenyl] -N, N-dimethylbenzenamine SBOX: N , N-dimethyl-4-[(1E) -2- (6-iodo-2-benzoxazolyl) ethenyl] -benzenamine [ 125 I] SBTA: N, N-dimethyl-4-[(1E) -2 -(6- [ 125 I] iodo-2-benzothiazole) ethenyl] -benzenamine
本実施例において、NMR分析の結果は、日本電子社製、JNM400のNMR装置(島津製作所社製)を用いて測定した結果を示すものである。
また、本実施例において、「室温」は25℃である。
In this example, the results of NMR analysis indicate the results of measurement using a JNM400 NMR device (manufactured by Shimadzu Corporation) manufactured by JEOL Ltd.
In this example, “room temperature” is 25 ° C.
(実施例1)SBTA標識前駆体化合物(化合物4)の合成
N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(SBTA標識前駆体化合物)は、図1に示すスキームに沿って合成した。
Example 1 Synthesis of SBTA Labeled Precursor Compound (Compound 4) N, N-Dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzothiazole) ethenyl] -benzeneamine (SBTA The labeled precursor compound) was synthesized according to the scheme shown in FIG.
実施例1−1:N−(4−ブロモ−2−ヨードフェニル)−アセタミド(化合物1)の合成
4−ブロモ−2−ヨードアニリン(1.49g,5.00mmol)を、ジクロロメタン(15.0mL)に溶解し、無水酢酸(473μL,5mmol)を加えて室温で12時間撹拌した。反応終了後、水(50mL)を加え、クロロホルム(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物1を収量1.50g(収率88.5%)で得た。
1H−NMR(400MHz,CDCl3)δ 8.12(d,J=8.4Hz,1H),7.90(d,J=2.0Hz,1H),7.45(dd,J=9.0,2.3Hz,1H),7.38(s,1H),2.24(s,3H)。
Example 1-1: Synthesis of N- (4-bromo-2-iodophenyl) -acetamide (Compound 1) 4-Bromo-2-iodoaniline (1.49 g, 5.00 mmol) was added to dichloromethane (15.0 mL). ), Acetic anhydride (473 μL, 5 mmol) was added, and the mixture was stirred at room temperature for 12 hours. After completion of the reaction, water (50 mL) was added and extracted with chloroform (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1) as an elution solvent to give a compound. 1 was obtained in a yield of 1.50 g (88.5% yield).
1 H-NMR (400 MHz, CDCl 3 ) δ 8.12 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 2.0 Hz, 1H), 7.45 (dd, J = 9 0.0, 2.3 Hz, 1H), 7.38 (s, 1H), 2.24 (s, 3H).
実施例1−2:6−ブロモ−2−メチル−ベンゾチアゾール(化合物2)の合成
実施例1−1に示す方法で合成した化合物1(678mg,2.00mmol)をジメチルホルムアミド(4.00mL)に溶解し、硫化ナトリウム九水和物(721mg,6.00mmol)、ヨウ化銅(I)(38.0mg,0.200mmol)を加えた後、80℃で8時間撹拌した。室温に戻し、濃塩酸(1.6mL)を加え、80℃でさらに12時間撹拌した。飽和炭酸水素ナトリウム水溶液(20mL)を加え、酢酸エチル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物2を収量134mg(収率29.5%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.95(d,J=1.7Hz,1H),7.79(d,J=8.7Hz,1H),7.54(dd,J=8.7,2.0Hz,1H),2.82(s,3H)。
Example 1-2: Synthesis of 6-bromo-2-methyl-benzothiazole (Compound 2) Compound 1 (678 mg, 2.00 mmol) synthesized by the method shown in Example 1-1 was converted into dimethylformamide (4.00 mL). Then, sodium sulfide nonahydrate (721 mg, 6.00 mmol) and copper (I) iodide (38.0 mg, 0.200 mmol) were added, followed by stirring at 80 ° C. for 8 hours. The mixture was returned to room temperature, concentrated hydrochloric acid (1.6 mL) was added, and the mixture was further stirred at 80 ° C. for 12 hours. Saturated aqueous sodium hydrogen carbonate solution (20 mL) was added, and the mixture was extracted with ethyl acetate (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent. Compound 2 was obtained in a yield of 134 mg (yield 29.5%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.95 (d, J = 1.7 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.54 (dd, J = 8 .7, 2.0 Hz, 1H), 2.82 (s, 3H).
実施例1−3:N,N−ジメチル−4−[(1E)−2−(6−ブロモ−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(化合物3)の合成
実施例1−2に示す方法で合成した化合物2(227mg,1.00mmol)をメタノール(5.00mL)に溶解し、p−ジメチルアミノベンズアルデヒド(149mg,1.00mmol)、水酸化ナトリウム(120mg,3.00mmol)を加え、撹拌下24時間加熱還流させた。析出した結晶を濾取し、メタノールおよび精製水で洗浄して化合物3を収量179mg(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.94(d,J=1.7Hz,1H),7.77(d,J=8.7Hz,1H),7.52(dd,J=8.7,2.0Hz,1H),7.46(d,J=9.0Hz,2H),7.44(d,J=16.0Hz,1H),7.15(d,J=16.0Hz,1H),6.71(d,J=8.7Hz,2H),3.03(s,6H)。
Example 1-3: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-bromo-2-benzothiazole) ethenyl] -benzenamine (Compound 3) Method shown in Example 1-2 Compound 2 (227 mg, 1.00 mmol) synthesized in (1) was dissolved in methanol (5.00 mL), p-dimethylaminobenzaldehyde (149 mg, 1.00 mmol) and sodium hydroxide (120 mg, 3.00 mmol) were added, and the mixture was stirred. The mixture was heated to reflux for 24 hours. The precipitated crystals were collected by filtration and washed with methanol and purified water to obtain Compound 3 in a yield of 179 mg (yield 50.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.94 (d, J = 1.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.52 (dd, J = 8 .7, 2.0 Hz, 1H), 7.46 (d, J = 9.0 Hz, 2H), 7.44 (d, J = 16.0 Hz, 1H), 7.15 (d, J = 16. 0 Hz, 1H), 6.71 (d, J = 8.7 Hz, 2H), 3.03 (s, 6H).
実施例1−4:N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(化合物4)の合成
実施例1−3に示す方法で合成した化合物3(130mg,0.360mmol)を1,4−ジオキサン(10.0mL)に溶解し、ビス(トリブチルスズ)(364μL,0.730mmol)、テトラトリフェニルホスフィンパラジウム(180mg,0.116mmol)、トリエチルアミン(5.00mL)加えて、撹拌下8時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物4を収量104mg(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.89−7.91(m,2H),7.50(dd,J=8.1,0.9Hz,1H),7.47(d,J=8.7Hz,2H),7.45(d,J=15.9Hz,1H),7.20(d,J=16.0Hz,1H),6.71(d,J=9.0Hz,2H),3.02(s,6H),0.87−1.59(m,27H)。
Example 1-4: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzothiazole) ethenyl] -benzenamine (Compound 4) Example 1-3 Compound 3 (130 mg, 0.360 mmol) synthesized by the method shown was dissolved in 1,4-dioxane (10.0 mL), bis (tributyltin) (364 μL, 0.730 mmol), tetratriphenylphosphine palladium (180 mg, 0 116 mmol) and triethylamine (5.00 mL) were added, and the mixture was heated to reflux for 8 hours with stirring. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent, yielding 104 mg of compound 4 (yield 50.0). %).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.89-7.91 (m, 2H), 7.50 (dd, J = 8.1, 0.9 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 15.9 Hz, 1H), 7.20 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 2H), 3.02 (s, 6H), 0.87-1.59 (m, 27H).
(実施例2)非放射性SBTA(化合物7)の合成
N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾチアゾール)エテニル]−ベンゼンアミン(非放射性SBTA)は、図2に示すスキームに沿って合成した。
Example 2 Synthesis of Non-Radioactive SBTA (Compound 7) N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzothiazole) ethenyl] -benzenamine (non-radioactive SBTA) is Was synthesized according to the scheme shown in FIG.
実施例2−1:N−(2,4−ジヨードフェニル)−アセタミド(化合物5)の合成
2,4−ジヨードアニリン(1.00g,2.90mmol)を、ジクロロメタン(10.0mL)に溶解し、無水酢酸(274μL,2.90mmol)を加えて室温で12時間撹拌した。反応終了後、水(50mL)を加え、クロロホルム(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物5を収量786mg(収率70.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 8.08(s,1H),8.01(d,J=8.4Hz,1H),7.62(d,J=8.7Hz,1H),7.38(s,1H),2.23(s,3H)。
Example 2-1 Synthesis of N- (2,4-diiodophenyl) -acetamide (Compound 5) 2,4-Diiodoaniline (1.00 g, 2.90 mmol) was added to dichloromethane (10.0 mL). After dissolution, acetic anhydride (274 μL, 2.90 mmol) was added and stirred at room temperature for 12 hours. After completion of the reaction, water (50 mL) was added and extracted with chloroform (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent. Compound 5 was obtained in a yield of 786 mg (yield 70.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 8.08 (s, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.7 Hz, 1H), 7.38 (s, 1H), 2.23 (s, 3H).
実施例2−2:6−ヨード−2−メチル−ベンゾチアゾール(化合物6)の合成
実施例2−1に示す方法で合成した化合物5(876mg,2.20mmol)をジメチルホルムアミド(4.00mL)に溶解し、硫化ナトリウム九水和物(1.59g,6.60mmol)、ヨウ化銅(I)(42.0mg,0.220mmol)を加えた後、80℃で12時間撹拌した。室温に戻し、濃塩酸(2.0mL)を加え、80℃でさらに12時間撹拌した。飽和炭酸水素ナトリウム水溶液(20mL)を加え、酢酸エチル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物6を収量302mg(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 8.16(d,J=1.5Hz,1H),7.73(dd,J=8.7,1.7Hz,1H),7.68(d,J=8.7Hz,1H),2.82(s,3H)。
Example 2-2: Synthesis of 6-iodo-2-methyl-benzothiazole (Compound 6) Compound 5 (876 mg, 2.20 mmol) synthesized by the method shown in Example 2-1 was converted to dimethylformamide (4.00 mL). After sodium sulfide nonahydrate (1.59 g, 6.60 mmol) and copper (I) iodide (42.0 mg, 0.220 mmol) were added, the mixture was stirred at 80 ° C. for 12 hours. The mixture was returned to room temperature, concentrated hydrochloric acid (2.0 mL) was added, and the mixture was further stirred at 80 ° C. for 12 hours. Saturated aqueous sodium hydrogen carbonate solution (20 mL) was added, and the mixture was extracted with ethyl acetate (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent. Compound 6 was obtained in a yield of 302 mg (yield 50.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 8.16 (d, J = 1.5 Hz, 1H), 7.73 (dd, J = 8.7, 1.7 Hz, 1H), 7.68 (d , J = 8.7 Hz, 1H), 2.82 (s, 3H).
実施例2−3:化合物7(非放射性SBTA)の合成
実施例2−2に示す方法で合成した化合物6(275mg,1.00mmol)をメタノール(5.00mL)に溶解し、p−ジメチルアミノベンズアルデヒド(149mg,1.00mmol)、水酸化ナトリウム(120mg,3.00mmol)を加え、撹拌下24時間加熱還流させた。析出した結晶を濾取し、メタノールおよび精製水で洗浄して、化合物7を収量203mg(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 8.14(d,J=1.8Hz,1H),7.71(dd,J=8.7,1.6Hz,1H),7.65(d,J=8.5Hz,1H),7.47(d,J=8.9Hz,2H),7.46(d,J=16.3Hz,1H),7.16(d,J=16.3Hz,1H),6.72(d,J=8.9Hz,2H),3.04(s,6H)。
Example 2-3: Synthesis of Compound 7 (non-radioactive SBTA) Compound 6 (275 mg, 1.00 mmol) synthesized by the method shown in Example 2-2 was dissolved in methanol (5.00 mL), and p-dimethylamino was dissolved. Benzaldehyde (149 mg, 1.00 mmol) and sodium hydroxide (120 mg, 3.00 mmol) were added, and the mixture was heated to reflux with stirring for 24 hours. The precipitated crystals were collected by filtration and washed with methanol and purified water to give Compound 7 in a yield of 203 mg (yield 50.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 8.14 (d, J = 1.8 Hz, 1H), 7.71 (dd, J = 8.7, 1.6 Hz, 1H), 7.65 (d , J = 8.5 Hz, 1H), 7.47 (d, J = 8.9 Hz, 2H), 7.46 (d, J = 16.3 Hz, 1H), 7.16 (d, J = 16. 3 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 3.04 (s, 6H).
(実施例3)SBTH標識前駆体化合物(化合物13)の合成
N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン(SBTH標識前駆体化合物)は、図3に示すスキームに沿って合成した。
Example 3 Synthesis of SBTH Labeled Precursor Compound (Compound 13) N, N-Dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzo [b] thiophene) ethenyl] -benzene The amine (SBTH-labeled precursor compound) was synthesized according to the scheme shown in FIG.
実施例3−1:6−ブロモ−ベンゾ[b]チオフェン−2−カルボン酸メチルエステル(化合物8)の合成
4−ブロモ−2−フルオロベンズアルデヒド(808mg,4.00mmol)をジメチルスルホキシド(5.00mL)に溶解し、メチルメルカプトアセテート(375μL)、トリチルアミン(1.5mL)を加え、80℃で3時間撹拌した。精製水を20mL加え、析出した白色固体を濾取し、精製水で洗浄して化合物8を収量700mg(収率64.8%)で得た。
1H−NMR(400MHz,DMSO−d6)δ 8.40(s,1H),8.22(s,1H),7.98(d,J=8.7Hz,1H),7.64(dd,J=8.5,1.8,1H),3.90(s,3H)。
Example 3-1: Synthesis of 6-bromo-benzo [b] thiophene-2-carboxylic acid methyl ester (Compound 8) 4-Bromo-2-fluorobenzaldehyde (808 mg, 4.00 mmol) was added to dimethyl sulfoxide (5.00 mL). ), Methyl mercaptoacetate (375 μL) and tritylamine (1.5 mL) were added, and the mixture was stirred at 80 ° C. for 3 hours. 20 mL of purified water was added, and the precipitated white solid was collected by filtration and washed with purified water to obtain Compound 8 in a yield of 700 mg (yield 64.8%).
1 H-NMR (400 MHz, DMSO-d6) δ 8.40 (s, 1H), 8.22 (s, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.64 (dd , J = 8.5, 1.8, 1H), 3.90 (s, 3H).
実施例3−2:6−ブロモ−ベンゾ[b]チオフェン−2−メタノール(化合物9)の合成
水素化アルミニウムリチウム(756mg,19.9mmol)を、テトラヒドロフラン(20.0mL)に懸濁させ、氷冷下で撹拌した。実施例3−1に示す方法で合成した化合物8(1.79g,6.64mmol)をテトラヒドロフラン(20.0mL)に溶解した。得られた化合物8の溶液を、水素化アルミニウムリチウム溶液に氷冷下でゆっくり滴下した後、室温で3時間撹拌した。飽和硫酸ナトリウム水溶液を過剰に加え、硫酸ナトリウム粉末により脱水した。ガラスフィルターで濾過した後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物9を収量1.20g(収率74.7%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.95(s,1H),7.58(d,J=8.5Hz,1H),7.44(dd,J=8.5,1.8Hz,1H),7.18(s,1H),4.92(d,J=6.0Hz,2H),1.89(t,J=6.2Hz,1H)。
Example 3-2: Synthesis of 6-bromo-benzo [b] thiophene-2-methanol (Compound 9) Lithium aluminum hydride (756 mg, 19.9 mmol) was suspended in tetrahydrofuran (20.0 mL) and iced. Stir in the cold. Compound 8 (1.79 g, 6.64 mmol) synthesized by the method shown in Example 3-1 was dissolved in tetrahydrofuran (20.0 mL). The obtained compound 8 solution was slowly added dropwise to a lithium aluminum hydride solution under ice cooling, and the mixture was stirred at room temperature for 3 hours. A saturated aqueous sodium sulfate solution was added in excess and dehydrated with sodium sulfate powder. After filtration through a glass filter, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent to obtain 1.20 g of compound 9 in a yield of 1.20 g ( (Yield 74.7%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.95 (s, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.44 (dd, J = 8.5, 1.8 Hz) , 1H), 7.18 (s, 1H), 4.92 (d, J = 6.0 Hz, 2H), 1.89 (t, J = 6.2 Hz, 1H).
実施例3−3:6−ブロモ−2−(ブロモメチル)−ベンゾ[b]チオフェン(化合物10)の合成
実施例3−2に示す方法で合成した化合物9(1.20g,4.96mmol)を、ジエチルエーテル(10.0mL)に溶解し、三臭化リン(235μL,2.48mmol)をゆっくり滴下して室温で1時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加えて中和し、酢酸エチル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、化合物10を収量1.51g(収率100%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.93(s,1H),7.57(d,J=8.5Hz,1H),7.45(dd,J=8.5,1.8Hz,1H),7.28(s,1H),4.75(s,2H)。
Example 3-3: Synthesis of 6-bromo-2- (bromomethyl) -benzo [b] thiophene (Compound 10) Compound 9 (1.20 g, 4.96 mmol) synthesized by the method shown in Example 3-2 was prepared. , Dissolved in diethyl ether (10.0 mL), phosphorus tribromide (235 μL, 2.48 mmol) was slowly added dropwise and stirred at room temperature for 1 hour. After completion of the reaction, the mixture was neutralized by adding a saturated aqueous sodium hydrogen carbonate solution, and extracted with ethyl acetate (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain Compound 10 in a yield of 1.51 g (yield 100%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.93 (s, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.45 (dd, J = 8.5, 1.8 Hz) , 1H), 7.28 (s, 1H), 4.75 (s, 2H).
実施例3−4:P−(6−ブロモ−ベンゾ[b]チエン−2−イルメチル)−ホスホン酸ジエチルエステル(化合物11)の合成
実施例3−3に示す方法で合成した化合物10(1.51g,4.96mmol)をトルエン(40.0mL)に溶解し、亜リン酸トリエチル(4.17mL,24.8mmol)を加えて撹拌下44時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物11を収量2.47g(収率100%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.90(s,1H),7.55(d,J=8.5Hz,1H),7.42(dd,J=8.5,1.8Hz,1H),7.18(d,J=3.2Hz,1H),4.07−4.19(m,2H),3.40(d,J=21.3Hz,2H),1.28−1.39 (m,3H)。
Example 3-4: Synthesis of P- (6-bromo-benzo [b] thien-2-ylmethyl) -phosphonic acid diethyl ester (Compound 11) Compound 10 synthesized by the method shown in Example 3-3 (1. 51 g, 4.96 mmol) was dissolved in toluene (40.0 mL), triethyl phosphite (4.17 mL, 24.8 mmol) was added, and the mixture was heated to reflux for 44 hours with stirring. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent, yielding 2.47 g of compound 11 (yield 100). %).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.90 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.42 (dd, J = 8.5, 1.8 Hz) , 1H), 7.18 (d, J = 3.2 Hz, 1H), 4.07-4.19 (m, 2H), 3.40 (d, J = 21.3 Hz, 2H), 1.28. -1.39 (m, 3H).
実施例3−5:N,N−ジメチル−4−[(1E)−2−(6−ブロモ−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン(化合物12)の合成
実施例3−4に示す方法で合成した化合物11(2.81g,7.76mmol)をメタノール(30.0mL)に溶解し、p−ジメチルアミノベンズアルデヒド(1.16g,7.76mmol)、ナトリウムメトキシド(7.76mL,38.8mmol)を加え、撹拌下24時間加熱還流させた。析出した結晶を濾取し、メタノールおよび精製水で洗浄して化合物12を収量500mg(収率18.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.87(s,1H),7.50(d,J=8.7Hz,1H),7.37−7.41(m,3H),7.06−7.10(m,2H),6.92(d,J=16.0Hz,1H),6.71(d,J=9.0Hz,2H),3.00(s,6H)。
Example 3-5: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-bromo-2-benzo [b] thiophene) ethenyl] -benzenamine (Compound 12) Example 3-4 Compound 11 (2.81 g, 7.76 mmol) synthesized by the method shown in FIG. 5 was dissolved in methanol (30.0 mL), p-dimethylaminobenzaldehyde (1.16 g, 7.76 mmol), sodium methoxide (7.76 mL). , 38.8 mmol) was added, and the mixture was heated to reflux with stirring for 24 hours. The precipitated crystals were collected by filtration and washed with methanol and purified water to obtain Compound 12 in a yield of 500 mg (yield 18.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.87 (s, 1H), 7.50 (d, J = 8.7 Hz, 1H), 7.37-7.41 (m, 3H), 7. 06-7.10 (m, 2H), 6.92 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 2H), 3.00 (s, 6H).
実施例3−6:N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン(化合物13)の合成
実施例3−5に示す方法で合成した化合物12(179mg,0.500mmol)を1,4−ジオキサン(10.0mL)に溶解し、ビス(トリブチルスズ)(501μL,1.00mmol)、テトラトリフェニルホスフィンパラジウム(248mg,0.215mmol)、トリエチルアミン(5.00mL)加えて、撹拌下3時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/10、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物13を収量100mg(収率35.1%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.83(s,1H),7.60(d,J=8.7Hz,1H),7.39(d,J=8.7Hz,1H),7.36(d,J=7.5Hz,1H),7.09−7.13(m,2H),6.93(d,J=16.0Hz,1H),6.69(d,J=9.0Hz,2H),2.97(s,6H),0.88−1.60(m,27H)。
Example 3-6: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzo [b] thiophene) ethenyl] -benzenamine (Compound 13) Compound 12 (179 mg, 0.500 mmol) synthesized by the method shown in -5 was dissolved in 1,4-dioxane (10.0 mL), bis (tributyltin) (501 μL, 1.00 mmol), tetratriphenylphosphine palladium ( (248 mg, 0.215 mmol) and triethylamine (5.00 mL) were added, and the mixture was heated to reflux with stirring for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/10, volume ratio) as an elution solvent, yielding 100 mg of compound 13 (yield 35.1). %).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.83 (s, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.09-7.13 (m, 2H), 6.93 (d, J = 16.0 Hz, 1H), 6.69 (d, J = 9.0 Hz, 2H), 2.97 (s, 6H), 0.88-1.60 (m, 27H).
(実施例4)非放射性SBTH(化合物14)の合成
N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾ[b]チオフェン)エテニル]−ベンゼンアミン(非放射性SBTH)は、図3に示すスキームに沿って合成した。
実施例3に示す方法で合成した化合物13(100mg,0.180mmol)をクロロホルム(40mL)に溶解し、ヨウ素のクロロホルム溶液(50mg/mL)を5mL加え、室温で20分撹拌した。飽和亜硫酸水素ナトリウム水溶液で反応を停止させた後、クロロホルム(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/10、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物14を収量20mg(収率28.1%)で得た。
1H−NMR(400MHz,CDCl3)δ 8.07(s,1H),7.56(dd,J=8.5,1.6Hz,1H),7.37−7.41(m,3H),7.06−7.10(m,2H),6.93(d,J=16.0Hz,1H),6.71(d,J=8.5Hz,1H),3.00(s,6H)。
Example 4 Synthesis of Non-Radioactive SBTH (Compound 14) N, N-dimethyl-4-[(1E) -2- (6-iodo-2-benzo [b] thiophene) ethenyl] -benzenamine (non-radioactive SBTH) was synthesized according to the scheme shown in FIG.
Compound 13 (100 mg, 0.180 mmol) synthesized by the method shown in Example 3 was dissolved in chloroform (40 mL), 5 mL of a chloroform solution of iodine (50 mg / mL) was added, and the mixture was stirred at room temperature for 20 minutes. The reaction was quenched with a saturated aqueous sodium hydrogen sulfite solution, followed by extraction with chloroform (50 mL × 2). The organic layer was washed with saturated brine, dehydrated over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/10, volume ratio) as an elution solvent. Compound 14 was obtained in a yield of 20 mg (yield 28.1%).
1 H-NMR (400 MHz, CDCl 3 ) δ 8.07 (s, 1H), 7.56 (dd, J = 8.5, 1.6 Hz, 1H), 7.37-7.41 (m, 3H ), 7.06-7.10 (m, 2H), 6.93 (d, J = 16.0 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 3.00 (s) , 6H).
(実施例5)SBF標識前駆体化合物(化合物21)の合成
4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン(SBF標識前駆体化合物)は、図4に示すスキームに沿って合成した。
Example 5 Synthesis of SBF Label Precursor Compound (Compound 21) 4-[(1E) -2- (6-Tributylstannyl-2-benzofuranyl) ethenyl] -N, N-dimethylbenzenamine (SBF Label Precursor) Body compound) was synthesized according to the scheme shown in FIG.
実施例5−1:4−ブロモ−2−ヒドロキシ−ベンズアルデヒド(化合物15)の合成
4−ブロモフェノール(6.50mL,61.2mmol)をアセトニトリル(100mL)に溶解し、トリエチルアミン(32mL)を加えた。塩化マグネシウム(8.74g,91.8mmol)を加え、室温で20分撹拌した。パラホルムアルデヒド(12.3g,411mmol)を加え、撹拌下4時間加熱還流した。室温に戻した後、希塩酸を用いてpH2.0にした。ジエチルエーテル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物15を収量6.12g(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 11.1(s,1H),9.86(s,1H),7.41(d,J=8.2Hz,1H),7.15−7.20(m,2H)。
Example 5-1: Synthesis of 4-bromo-2-hydroxy-benzaldehyde (Compound 15) 4-Bromophenol (6.50 mL, 61.2 mmol) was dissolved in acetonitrile (100 mL) and triethylamine (32 mL) was added. . Magnesium chloride (8.74 g, 91.8 mmol) was added, and the mixture was stirred at room temperature for 20 minutes. Paraformaldehyde (12.3 g, 411 mmol) was added, and the mixture was heated to reflux with stirring for 4 hours. After returning to room temperature, the pH was adjusted to 2.0 with dilute hydrochloric acid. Extracted with diethyl ether (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent. Compound 15 was obtained in a yield of 6.12 g (yield 50.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 11.1 (s, 1H), 9.86 (s, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.15-7. 20 (m, 2H).
実施例5−2:6−ブロモ−2−ベンゾフランカルボン酸エチルエステル(化合物16)の合成
実施例5−1に示す方法で合成した化合物15(5.00g,25.0mmol)をジメチルホルムアミド(10mL)に溶解し、ブロモ酢酸エチル(2.77mL,25.0mmol)および炭酸カリウム(10.4g,75.0mmol)を加えた後、105℃で4時間撹拌した。室温に戻し、ジエチルエーテル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物16を収量4.40g(収率65.7%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.77(s,1H),7.55(d,J=8.4Hz,1H),7.49(s,1H),7.44(d,J=8.4Hz,1H),4.45(d,J=7.0Hz,2H),1.43(t,J=7.2Hz,3H)。
Example 5-2: Synthesis of 6-bromo-2-benzofurancarboxylic acid ethyl ester (Compound 16) Compound 15 (5.00 g, 25.0 mmol) synthesized by the method shown in Example 5-1 was converted to dimethylformamide (10 mL). ), Ethyl bromoacetate (2.77 mL, 25.0 mmol) and potassium carbonate (10.4 g, 75.0 mmol) were added, and the mixture was stirred at 105 ° C. for 4 hours. The mixture was returned to room temperature and extracted with diethyl ether (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent. Compound 16 was obtained in a yield of 4.40 g (yield 65.7%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.77 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.49 (s, 1H), 7.44 (d, J = 8.4 Hz, 1H), 4.45 (d, J = 7.0 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).
実施例5−3:6−ブロモ−2−ベンゾフランメタノール(化合物17)の合成
水素化アルミニウムリチウム(1.87g,49.3mmol)を、テトラヒドロフラン(50.0mL)に懸濁させ、氷冷下で撹拌した。実施例5−2に示す方法で合成した化合物16(4.40g,16.4mmol)をテトラヒドロフラン(50.0mL)に溶解した。得られた化合物16の溶液を、水素化アルミニウムリチウム溶液に氷冷下でゆっくり滴下した後、室温で1時間撹拌した。飽和硫酸ナトリウム水溶液を過剰に加え、硫酸ナトリウム粉末により脱水した。ガラスフィルターで濾過した後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物17を収量2.10g(収率56.6%)で得た。
1H−NMR(400MHz,CD3OD)δ 7.63(s,1H),7.43(d,J=8.2Hz,1H),7.32(dd,J=8.2,1.6Hz,1H),6.68(s,1H),4.65(s,2H)。
Example 5-3: Synthesis of 6-bromo-2-benzofuranmethanol (Compound 17) Lithium aluminum hydride (1.87 g, 49.3 mmol) was suspended in tetrahydrofuran (50.0 mL) and cooled with ice. Stir. Compound 16 (4.40 g, 16.4 mmol) synthesized by the method shown in Example 5-2 was dissolved in tetrahydrofuran (50.0 mL). The obtained compound 16 solution was slowly added dropwise to a lithium aluminum hydride solution under ice-cooling, followed by stirring at room temperature for 1 hour. A saturated aqueous sodium sulfate solution was added in excess and dehydrated with sodium sulfate powder. After filtration through a glass filter, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent to obtain Compound 10. (Yield 56.6%).
1 H-NMR (400 MHz, CD 3 OD) δ 7.63 (s, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.32 (dd, J = 8.2, 1. 6 Hz, 1H), 6.68 (s, 1H), 4.65 (s, 2H).
実施例5−4:6−ブロモ−2−(ブロモメチル)−ベンゾフラン(化合物18)の合成
実施例5−3に示す方法で合成した化合物17(2.10g,9.29mmol)を、ジエチルエーテル(10.0mL)に溶解し、三臭化リン(441μL,4.65mmol)をゆっくり滴下して室温で1時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を加えて中和し、酢酸エチル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/10、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、目的物18を収量1.80g(67.3%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.66(s,1H),7.40(d,J=8.2Hz,1H),7.36(d,J=8.5,1H),6.72(s,1H),4.56(s,2H)。
Example 5-4: Synthesis of 6-bromo-2- (bromomethyl) -benzofuran (Compound 18) Compound 17 (2.10 g, 9.29 mmol) synthesized by the method shown in Example 5-3 was treated with diethyl ether ( 10.0 mL), phosphorus tribromide (441 μL, 4.65 mmol) was slowly added dropwise and stirred at room temperature for 1 hour. After completion of the reaction, the mixture was neutralized by adding a saturated aqueous sodium hydrogen carbonate solution, and extracted with ethyl acetate (50 mL × 2). The organic layer was washed with saturated brine, dehydrated over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/10, volume ratio) as an elution solvent. The target product 18 was obtained in a yield of 1.80 g (67.3%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.66 (s, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.36 (d, J = 8.5, 1H), 6.72 (s, 1H), 4.56 (s, 2H).
実施例5−5:P−(6−ブロモ−ベンゾフラン−2−イルメチル)−ホスホン酸ジエチルエステル(化合物19)の合成
実施例5−4に示す方法で合成した化合物18(1.80g,6.25mmol)をトルエン(20.0mL)に溶解し、亜リン酸トリエチル(1.16mL,6.88mmol)を加えて撹拌下24時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物19を収量2.30g(収率100%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.61(s,1H),7.37(d,J=8.4Hz,1H),7.33(dd,J=8.4,1.7Hz,1H),6.62(d,J=3.8Hz,1H),4.09−4.16(m,2H),3.35(d,J=21.2Hz,2H),1.29−1.36(m,3H)。
Example 5-5: Synthesis of P- (6-bromo-benzofuran-2-ylmethyl) -phosphonic acid diethyl ester (Compound 19) Compound 18 synthesized by the method shown in Example 5-4 (1.80 g, 6. 25 mmol) was dissolved in toluene (20.0 mL), triethyl phosphite (1.16 mL, 6.88 mmol) was added, and the mixture was heated to reflux for 24 hours with stirring. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent to obtain 2.19 g of Compound 19 (yield 100). %).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.61 (s, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.33 (dd, J = 8.4, 1.7 Hz) , 1H), 6.62 (d, J = 3.8 Hz, 1H), 4.09-4.16 (m, 2H), 3.35 (d, J = 21.2 Hz, 2H), 1.29 -1.36 (m, 3H).
実施例5−6:4−[(1E)−2−(6−ブロモ−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン(化合物20)の合成
実施例5−5に示す方法で合成した化合物19(1.74g,5.03mmol)をメタノール(30.0mL)に溶解し、p−ジメチルアミノベンズアルデヒド(750mg,5.03mmol)、5mol/Lナトリウムメトキシドのメタノール溶液(5.00mL,25.0mmol)を加え、撹拌下15時間加熱還流させた。析出した結晶を濾取し、メタノールおよび精製水で洗浄して化合物20を収量475mg(収率27.7%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.60(s,1H),7.42(d,J=8.7Hz,2H),7.34(d,J=8.1Hz,1H),7.29(dd,J=8.4,1.7Hz,1H),7.25(d,J=16.0Hz,1H),6.76(d,J=16.0Hz,1H),6.71(d,J=9.0Hz,2H),6.51(s,1H),3.01(s,6H)。
Example 5-6: Synthesis of 4-[(1E) -2- (6-bromo-2-benzofuranyl) ethenyl] -N, N-dimethylbenzenamine (Compound 20) Synthesis by the method shown in Example 5-5. Compound 19 (1.74 g, 5.03 mmol) was dissolved in methanol (30.0 mL), p-dimethylaminobenzaldehyde (750 mg, 5.03 mmol), 5 mol / L sodium methoxide in methanol solution (5.00 mL, 25.0 mmol) was added and the mixture was heated to reflux with stirring for 15 hours. The precipitated crystals were collected by filtration and washed with methanol and purified water to obtain Compound 20 in a yield of 475 mg (yield 27.7%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.60 (s, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 8.1 Hz, 1H), 7.29 (dd, J = 8.4, 1.7 Hz, 1H), 7.25 (d, J = 16.0 Hz, 1H), 6.76 (d, J = 16.0 Hz, 1H), 6 .71 (d, J = 9.0 Hz, 2H), 6.51 (s, 1H), 3.01 (s, 6H).
実施例5−7:4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン(化合物21)の合成.
実施例5−6に示す方法で合成した化合物20(171mg,0.500mmol)を1,4−ジオキサン(10.0mL)に溶解し、ビス(トリブチルスズ)(501μL,1.00mmol)、テトラトリフェニルホスフィンパラジウム(248mg,0.215mmol)、トリエチルアミン(5.00mL)加えて、撹拌下3時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/10、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物21を収量88.0mg(収率31.8%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.56(s,1H),7.47(d,J=7.3Hz,1H),7.42(d,J=8.7Hz,2H),7.23−7.27(m,2H),6.81(d,J=16.0Hz,1H),6.72(d,J=8.9Hz,2H),6.54(s,1H),3.00(s, 6H),0.87−1.60(m,27H)。
Example 5-7: Synthesis of 4-[(1E) -2- (6-tributylstannyl-2-benzofuranyl) ethenyl] -N, N-dimethylbenzenamine (Compound 21).
Compound 20 (171 mg, 0.500 mmol) synthesized by the method shown in Example 5-6 was dissolved in 1,4-dioxane (10.0 mL), bis (tributyltin) (501 μL, 1.00 mmol), tetratriphenyl Phosphine palladium (248 mg, 0.215 mmol) and triethylamine (5.00 mL) were added, and the mixture was heated to reflux with stirring for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/10, volume ratio) as an elution solvent, yielding 88.0 mg (yield 31) of compound 21. 8%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.56 (s, 1H), 7.47 (d, J = 7.3 Hz, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.23-7.27 (m, 2H), 6.81 (d, J = 16.0 Hz, 1H), 6.72 (d, J = 8.9 Hz, 2H), 6.54 (s, 1H) ), 3.00 (s, 6H), 0.87-1.60 (m, 27H).
(実施例6)非放射性SBF(化合物22)の合成
4−[(1E)−2−(6−ヨード−2−ベンゾフラニル)エテニル]−N,N−ジメチルベンゼンアミン(非放射性SBF)は、図4に示すスキームに沿って合成した。
実施例5に示す方法で合成した化合物21(88.0mg,0.160mmol)をクロロホルム(10mL)に溶解し、ヨウ素のクロロホルム溶液(50mg/mL)を3mL加え、室温で1時間撹拌した。飽和亜硫酸水素ナトリウム水溶液で反応を停止させた後、クロロホルム(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/10、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物22を収量60mg(収率96.9%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.79(s,1H),7.47(d,J=8.4Hz,1H),7.41(d,J=8.7Hz),7.22−7.24(m,2H),6.75(d,J=16.0Hz,1H),6.70(d,J=8.7Hz,2H),6.49(s,1H),2.99(s,6H)。
Example 6 Synthesis of Non-Radioactive SBF (Compound 22) 4-[(1E) -2- (6-Iodo-2-benzofuranyl) ethenyl] -N, N-dimethylbenzenamine (non-radioactive SBF) Synthesis was performed according to the scheme shown in FIG.
Compound 21 (88.0 mg, 0.160 mmol) synthesized by the method shown in Example 5 was dissolved in chloroform (10 mL), 3 mL of an iodine chloroform solution (50 mg / mL) was added, and the mixture was stirred at room temperature for 1 hour. The reaction was quenched with a saturated aqueous sodium hydrogen sulfite solution, followed by extraction with chloroform (50 mL × 2). The organic layer was washed with saturated brine, dehydrated over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/10, volume ratio) as an elution solvent. Compound 22 was obtained in a yield of 60 mg (yield 96.9%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.79 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.7 Hz), 7. 22-7.24 (m, 2H), 6.75 (d, J = 16.0 Hz, 1H), 6.70 (d, J = 8.7 Hz, 2H), 6.49 (s, 1H), 2.99 (s, 6H).
(実施例7)SBOX標識前駆体化合物(化合物24)の合成
N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン(SBOX標識前駆体化合物)は、図5に示すスキームに沿って合成した。
Example 7 Synthesis of SBOX Labeled Precursor Compound (Compound 24) N, N-dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzoxazolyl) ethenyl] -benzenamine ( SBOX-labeled precursor compound) was synthesized according to the scheme shown in FIG.
実施例7−1:N,N−ジメチル−4−[(1E)−2−(6−ブロモ−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン(化合物23)の合成
2−アミノ−5−ブロモフェノール(935mg,5.00mmol)および4−(ジメチルアミノ)ケイ皮酸(955mg,5.00mmol)をポリリン酸(12g)に溶解し、180℃で1時間撹拌した。室温に戻し、精製水を加えて炭酸カリウムで中和した後、酢酸エチル(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/1、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物23を収量130mg(収率7.60%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.71(d,J=16.2Hz,1H),7.63(s,1H),7.47−7.52(m,3H),7.40(dd,J=8.4,1.7Hz,1H),6.79(d,J=16.2Hz,1H),6.70(d,J=9.0Hz,2H),3.03(s,6H)。
Example 7-1: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-bromo-2-benzoxazolyl) ethenyl] -benzenamine (Compound 23) 2-Amino-5-bromo Phenol (935 mg, 5.00 mmol) and 4- (dimethylamino) cinnamic acid (955 mg, 5.00 mmol) were dissolved in polyphosphoric acid (12 g) and stirred at 180 ° C. for 1 hour. After returning to room temperature, purified water was added and neutralized with potassium carbonate, followed by extraction with ethyl acetate (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/1, volume ratio) as an elution solvent. Compound 23 was obtained in a yield of 130 mg (yield 7.60%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.71 (d, J = 16.2 Hz, 1H), 7.63 (s, 1H), 7.47-7.52 (m, 3H), 7. 40 (dd, J = 8.4, 1.7 Hz, 1H), 6.79 (d, J = 16.2 Hz, 1H), 6.70 (d, J = 9.0 Hz, 2H), 3.03 (S, 6H).
実施例7−2:N,N−ジメチル−4−[(1E)−2−(6−トリブチルスタニル−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン(化合物24)の合成
実施例7−1に示す方法で合成した化合物23(130mg,0.380mmol)を1,4−ジオキサン(20.0mL)に溶解し、ビス(トリブチルスズ)(381μL,0.760mmol)、テトラトリフェニルホスフィンパラジウム(189mg,0.160mmol)、トリエチルアミン(10.0mL)加えて、撹拌下3時間加熱還流させた。反応終了後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物24を収量30.0mg(収率14.2%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.71(d,J=16.2Hz,1H),7.65(d,J=7.5Hz,1H),7.59(s,1H),7.49(d,J=9.0Hz,1H),7.36(d,J=7.5Hz,1H),6.85(d,J=16.0Hz,1H),6.71(d,J=8.7Hz,1H),3.03(s,6H),0.88−1.58(m,27H)。
Example 7-2: Synthesis of N, N-dimethyl-4-[(1E) -2- (6-tributylstannyl-2-benzooxazolyl) ethenyl] -benzenamine (Compound 24) Example 7-1 Compound 23 (130 mg, 0.380 mmol) synthesized by the method shown in 1 was dissolved in 1,4-dioxane (20.0 mL), bis (tributyltin) (381 μL, 0.760 mmol), tetratriphenylphosphine palladium (189 mg, 0.160 mmol) and triethylamine (10.0 mL) were added, and the mixture was heated to reflux with stirring for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent, yielding 30.0 mg (yield 14) of compound 24. .2%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.71 (d, J = 16.2 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.59 (s, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 6.85 (d, J = 16.0 Hz, 1H), 6.71 (d , J = 8.7 Hz, 1H), 3.03 (s, 6H), 0.88-1.58 (m, 27H).
(実施例8)非放射性SBOX(化合物25)の合成
N,N−ジメチル−4−[(1E)−2−(6−ヨード−2−ベンゾオキサゾールイル)エテニル]−ベンゼンアミン(非放射性SBOX)は、図5に示すスキームに沿って合成した。
実施例7に示す方法で合成した化合物24(30.0mg,5.0×10−2mmol)をクロロホルム(30mL)に溶解し、ヨウ素のクロロホルム溶液(50mg/mL)を3mL加え、室温で1時間撹拌した。飽和亜硫酸水素ナトリウム水溶液で反応を停止させた後、クロロホルム(50mL×2)で抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水後、溶媒を減圧留去し、残渣を酢酸エチル/へキサン(1/4、体積比)を溶出溶媒とするシリカゲルカラムクロマトグラフィーに付し、化合物25を収量10mg(収率50.0%)で得た。
1H−NMR(400MHz,CDCl3)δ 7.83(s,1H),7.72(d,J=16.0Hz,1H),7.59(dd,J=8.1,1.5Hz,1H),7.49(d,J=9.0Hz,2H),7.40(d,J=8.4Hz,1H),6.80(d,J=16.0Hz,1H),6.71(d,J=9.0Hz,2H),3.04(s,6H)。
Example 8 Synthesis of Non-Radioactive SBOX (Compound 25) N, N-Dimethyl-4-[(1E) -2- (6-iodo-2-benzoxazolyl) ethenyl] -benzenamine (Non-Radioactive SBOX) Was synthesized according to the scheme shown in FIG.
Compound 24 (30.0 mg, 5.0 × 10 −2 mmol) synthesized by the method shown in Example 7 was dissolved in chloroform (30 mL), and 3 mL of chloroform solution of iodine (50 mg / mL) was added. Stir for hours. The reaction was quenched with a saturated aqueous sodium hydrogen sulfite solution, followed by extraction with chloroform (50 mL × 2). The organic layer was washed with saturated brine, dehydrated with anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure, and the residue was subjected to silica gel column chromatography using ethyl acetate / hexane (1/4, volume ratio) as an elution solvent. Compound 25 was obtained in a yield of 10 mg (yield 50.0%).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.83 (s, 1H), 7.72 (d, J = 16.0 Hz, 1H), 7.59 (dd, J = 8.1, 1.5 Hz) , 1H), 7.49 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 16.0 Hz, 1H), 6 .71 (d, J = 9.0 Hz, 2H), 3.04 (s, 6H).
(実施例9)125I標識合成
125I標識には、実施例1に示す方法で合成した[125I]SBTAの標識前駆体化合物(化合物4)を用い、スズ−ヨウ素交換反応により標識した。[125I]NaI(0.1〜0.2mCi(3.7〜7.4MBq),比放射能81.4TBq/mmol)を添加し、1mol/L塩酸(100μL)、3体積%過酸化水素水溶液(100μL)に各標識前駆体化合物のエタノール溶液(1mg/mL)を150μL加えた。室温で10分間反応させた後、還元剤として飽和亜硫酸水素ナトリウム水溶液(200μL)を加え、反応を停止させた。飽和炭酸水素ナトリウム水溶液(200μL)を加え、反応液を中和した後、酢酸エチルで目的物を抽出した。無水硫酸ナトリウムを充填したカラムを通し脱水した後、窒素ガスにより溶媒を留去した。[125I]SBTAは、実施例2で合成した非放射性化合物を標品として、逆相HPLC[(装置)LC−20ATポンプ、SPD−20A UV検出器(λ=254nm、(カラム)ナカライテスク、Cosmosil C18、5C18−MSII、4.6×150mm、(流速)0.1mL/分、(移動相)水:アセトニトリル=2:8、体積比)を用いて精製し、酢酸エチルで目的物を抽出した。無水硫酸ナトリウムを充填したカラムを通し脱水した後、窒素ガスにより溶媒を留去し、[125I]SBTAを放射化学的収率47.0%、放射化学的純度99%以上で得た。
Example 9 125 I-labeled synthesis
For 125 I labeling, a labeling precursor compound of [ 125 I] SBTA (compound 4) synthesized by the method shown in Example 1 was used and labeled by a tin-iodine exchange reaction. [ 125 I] NaI (0.1-0.2 mCi (3.7-7.4 MBq), specific activity 81.4 TBq / mmol) was added, 1 mol / L hydrochloric acid (100 μL), 3% by volume hydrogen peroxide 150 μL of an ethanol solution (1 mg / mL) of each labeled precursor compound was added to an aqueous solution (100 μL). After reacting at room temperature for 10 minutes, a saturated aqueous sodium hydrogen sulfite solution (200 μL) was added as a reducing agent to stop the reaction. A saturated aqueous sodium hydrogen carbonate solution (200 μL) was added to neutralize the reaction solution, and then the target product was extracted with ethyl acetate. After dehydration through a column filled with anhydrous sodium sulfate, the solvent was distilled off with nitrogen gas. [ 125 I] SBTA was prepared using the non-radioactive compound synthesized in Example 2 as a standard, reverse-phase HPLC [(apparatus) LC-20AT pump, SPD-20A UV detector (λ = 254 nm, (column) Nacalai Tesque, Purification using Cosmosil C 18 , 5C 18 -MSII, 4.6 × 150 mm, (flow rate) 0.1 mL / min, (mobile phase) water: acetonitrile = 2: 8, volume ratio) and target product with ethyl acetate Extracted. After dehydration through a column filled with anhydrous sodium sulfate, the solvent was distilled off with nitrogen gas to obtain [ 125 I] SBTA with a radiochemical yield of 47.0% and a radiochemical purity of 99% or more.
(実施例10)正常マウス体内放射能分布実験
実施例9で得た[125I]SBTAを10体積%のエタノールを含む生理食塩水で希釈し、1群5匹の5週齢ddYマウス(雄26−28g)に、尾静脈より1匹あたり8.51−11.1kBq、100μL投与し、2,10,30,60分後に断頭、採血後、臓器を取り出し、γカウンター(パーキンエルマー社製WIZARD31480)で測定した。また、比較のため、[125I]SBTAに代えて、非特許文献9記載の4−[2−(6−[125I]ヨード−2−ベンゾチアゾリル)ジアゼニル]−N,N−ジメチル−ベンゼンアミン([125I]PDB−3)を用いて同様な実験を行った。結果を表1、2、図6に示す。表1中、[125I]SBTAについて、各臓器の%ID/g(胃のみ%ID)の平均値±標準偏差を示す。表2は、[125I]SBTA及び[125I]PDB−3について、投与2分、60分後の脳の%ID/gの平均値、及び、その比率(2分後/60分後)を示す。図6は、[125I]SBTA及び[125I]PDB−3の脳の%ID/gの経時変化をそれぞれ示す。結果は以下の表2に併せて表記した。
(Example 10) Radioactivity distribution experiment in normal mouse [ 125 I] SBTA obtained in Example 9 was diluted with physiological saline containing 10% by volume of ethanol, and 5 5-week-old ddY mice per group (male) 26-28 g) was administered at 100 μL of 8.51-11.1 kBq per animal from the tail vein, decapitated after 2, 10, 30, 60 minutes, blood was collected, and the organ was removed, and a γ counter (WIZARD manufactured by PerkinElmer) 3 1480). For comparison, instead of [ 125 I] SBTA, 4- [2- (6- [ 125 I] iodo-2-benzothiazolyl) diazenyl] -N, N-dimethyl-benzenamine described in Non-Patent Document 9 A similar experiment was performed using ([ 125 I] PDB-3). The results are shown in Tables 1 and 2 and FIG. In Table 1, the mean value ± standard deviation of% ID / g of each organ (% ID of stomach only) is shown for [ 125 I] SBTA. Table 2 shows the average value of% ID / g of the brain at 2 minutes and 60 minutes after administration and the ratio (2 minutes / 60 minutes after) for [ 125 I] SBTA and [ 125 I] PDB-3. Indicates. FIG. 6 shows the change over time in% ID / g of the brain of [ 125 I] SBTA and [ 125 I] PDB-3, respectively. The results are shown in Table 2 below.
表1、2、図6で示すように、[125I]SBTAは脳内タウをイメージングするのに十分な脳移行性を示した。また、投与後2分/60分の脳内放射能の比は0.3から1.1に向上し,PDB−3において問題となっていた脳内放射能滞留に改善が認められた。 As shown in Tables 1 and 2 and FIG. 6, [ 125 I] SBTA showed sufficient brain migration to image tau in the brain. In addition, the ratio of radioactivity in the brain 2 minutes / 60 minutes after administration was improved from 0.3 to 1.1, and improvement in the retention of radioactivity in the brain, which was a problem in PDB-3, was observed.
(実施例11)LogP値の測定
12mLのテストチューブに0.37MBqの[125I]SBTA、又は、[125I]PDB−3を加え、1−オクタノール(3.0mL)とPBS(−)(pH7.4)(3.0mL)を摘下し、2分間ボルテックスした後に遠心分離(10分、2000rpm)にかけた。1−オクタノール層及びPBS(−)相を500μLずつとり、2つのチューブに移送した。1−オクタノール相の残渣(1mL)を別のチューブに移送した。該テストチューブに1−オクタノール(2.0mL)及びPBS(−)(3.0mL)を滴下し、ボルテックス、遠心分離及び放射能測定を繰り返した。各チューブの放射能量は、γカウンター(パーキンエルマー社製WIZARD1470)で測定した。分配係数(r)は、数式(1)に従って算出した。結果は表2に示した。[125I]SBTAのLog P値は[125I]PDB−3に比べて低減した。
r=(カウント数/1−オクタノールの液量(μL)/(カウント数/PBS(−)の液量(μL)・・・(1)
(Example 11) Measurement of LogP value To a 12 mL test tube, 0.37 MBq of [ 125 I] SBTA or [ 125 I] PDB-3 was added, and 1-octanol (3.0 mL) and PBS (−) ( pH 7.4) (3.0 mL) was plucked, vortexed for 2 minutes and then centrifuged (10 minutes, 2000 rpm). 500 μL each of the 1-octanol layer and the PBS (−) phase was taken and transferred to two tubes. The 1-octanol phase residue (1 mL) was transferred to another tube. 1-octanol (2.0 mL) and PBS (−) (3.0 mL) were added dropwise to the test tube, and vortexing, centrifugation, and radioactivity measurement were repeated. The amount of radioactivity in each tube was measured with a γ counter (WIZARD 1470 manufactured by PerkinElmer). The distribution coefficient (r) was calculated according to Equation (1). The results are shown in Table 2. The Log P value of [ 125 I] SBTA was reduced compared to [ 125 I] PDB-3.
r = (count number / 1-octanol solution amount (μL) / (count number / PBS (−) solution amount (μL)) (1)
(実施例12)タウタンパク質およびAβ1−42凝集体を用いたインビトロ結合実験
実施例2、4、6、8で合成した各化合物の、タウ及びAβ凝集体に対する親和性を定量的に評価するために[125I]PDB−3を用いた競合阻害実験を行い、阻害定数(Ki)を算出した。
(1)Aβ1−42凝集体の作製
Aβ1−42は、ペプチド研究所社から購入した。PBS(―)(pH7.4)を用い、Aβ1−42が0.25mg/mLの濃度になるように調製した。37℃で42時間インキュベートし、これをAβ1−42凝集体溶液とした。凝集体溶液は、種々の実験に用いるまで−78℃で保存した。
(2)タウタンパク凝集体の作製
Tau−441発現ベクターを大腸菌(BL21)に導入後、培養し、タウタンパクを抽出、精製した。精製したタウタンパク(1mg/mL)にヘパリン(0.1mg/mL)を加え、50mmol/L MES(pH6.8,100mmol/L塩化ナトリウム水溶液,0.5mmol/Lグリコールエーテルジアミン四酢酸水溶液)中37℃で3日間インキュベートし、凝集体を作製した。凝集体の生成は、SDS−PAGE、及び、チオフラビンS(ThS)による蛍光飽和実験により確認した。
(3)タウタンパク質およびAβ1−42凝集体を用いたインビトロ結合実験
12×75mmのガラスチューブに5体積%エタノール水溶液(850μL)、実施例2で合成した非放射性SBTA、実施例4で合成した非放射性SBTH、実施例6で合成した非放射性SBF、実施例8で合成した非放射性SBOXの各100%エタノール溶液(50μL)、及び、[125I]PDB−3の100%エタノール溶液(50μL)を混和し、最後に、上記(1)で調製した2.5μg/mLのAβ1−42凝集体溶液(50μL)、あるいは、上記(2)で調製した10μg/mLのタウ凝集体溶液(50μL)を加えてボルテックスし、室温で3時間静置した。非特異的結合は、過剰の非放射性PDB−3(4−[2−(6−ヨード−2−ベンゾチアゾリル)ジアゼニル]−N,N−ジメチル−ベンゼンアミン、調製法は非特許文献9参照)の各100%エタノール溶液(50μL)を用いて算出した。3時間後、混合溶液をM−24R cell harvester、GF/B filterを用いて吸引濾過し、フィルターに残存した放射能をγカウンター(パーキンエルマー社製WIZARD31480)で測定し、GraphPad Prism 6.0を用いて阻害曲線を作成し、IC50を算出し、Ki値をCheng−Prusoff式を用いて計算した。結果を表3に示す。
(Example 12) In vitro binding experiment using tau protein and Aβ 1-42 aggregates The affinity of each compound synthesized in Examples 2, 4, 6, and 8 for tau and Aβ aggregates is quantitatively evaluated. Therefore, a competitive inhibition experiment using [ 125 I] PDB-3 was performed, and an inhibition constant (Ki) was calculated.
(1) Production of Aβ 1-42 Aggregate Aβ 1-42 was purchased from Peptide Institute. PBS (−) (pH 7.4) was used to prepare Aβ 1-42 at a concentration of 0.25 mg / mL. This was incubated at 37 ° C. for 42 hours to obtain an Aβ 1-42 aggregate solution. Aggregate solutions were stored at −78 ° C. until used in various experiments.
(2) Production of Tau Protein Aggregate A Tau-441 expression vector was introduced into Escherichia coli (BL21) and cultured, and tau protein was extracted and purified. Heparin (0.1 mg / mL) was added to the purified tau protein (1 mg / mL) and 37 in 50 mmol / L MES (pH 6.8, 100 mmol / L sodium chloride aqueous solution, 0.5 mmol / L glycol ether diamine tetraacetic acid aqueous solution). Incubated at 0 ° C. for 3 days to produce aggregates. The formation of aggregates was confirmed by fluorescence saturation experiments with SDS-PAGE and thioflavin S (ThS).
(3) In vitro binding experiment using tau protein and Aβ 1-42 aggregate 5 vol% ethanol aqueous solution (850 μL) in a 12 × 75 mm glass tube, non-radioactive SBTA synthesized in Example 2, synthesized in Example 4 Non-radioactive SBTH, non-radioactive SBF synthesized in Example 6, non-radioactive SBOX synthesized in Example 8 in 100% ethanol solution (50 μL), and [ 125 I] PDB-3 in 100% ethanol solution (50 μL) Finally, 2.5 μg / mL Aβ 1-42 aggregate solution (50 μL) prepared in (1) above, or 10 μg / mL tau aggregate solution (50 μL prepared in (2) above). ) Was added and vortexed, and allowed to stand at room temperature for 3 hours. Non-specific binding is caused by excess of non-radioactive PDB-3 (4- [2- (6-iodo-2-benzothiazolyl) diazenyl] -N, N-dimethyl-benzenamine, see Non-Patent Document 9 for the preparation method). Calculation was performed using each 100% ethanol solution (50 μL). After 3 hours, the mixed solution was subjected to suction filtration using an M-24R cell harvester and GF / B filter, and the radioactivity remaining on the filter was measured with a γ counter (WIZARD 3 1480 manufactured by PerkinElmer Co., Ltd.). GraphPad Prism 6. An inhibition curve was generated using 0, IC 50 was calculated, and Ki value was calculated using the Cheng-Prusoff equation. The results are shown in Table 3.
表3に示すとおり、ヘテロ環の種類により、タウ凝集体への結合親和性、Aβ凝集体との親和性に差が認められた。中でも、SBTAはタウ凝集体に対して最も高い結合親和性を示すと同時に、Aβ凝集体との選択的結合性に関しても最も高い値を示した。 As shown in Table 3, depending on the type of heterocycle, a difference was observed in the binding affinity to the tau aggregate and the affinity with the Aβ aggregate. Among them, SBTA showed the highest binding affinity for tau aggregates, and at the same time the highest value for selective binding to Aβ aggregates.
(実施例13)アルツハイマー病患者剖検脳組織切片を用いた、老人斑及び神経原線維濃縮体(NFT)描出実験
(1)蛍光観察
京都大学大学院医学研究科より提供されたアルツハイマー病(AD)患者剖検脳切片に、実施例2で得た非放射性SBTA、実施例4で得た非放射性SBTH、実施例6で合成した非放射性SBF、実施例8で合成した非放射性SBOXの50体積%エタノール水溶液(250μmol/L)を30分間反応させ、エタノールで洗浄後、蛍光顕微鏡を用いて、BZフィルタGFP−BP(励起波長(450−490nm)、吸収波長(510−560nm)、ダイクロイックミラー波長(495nm))で蛍光観察した結果を示す。
(2)Gallyas染色
非放射性SBTAを使用した脳切片については、NFTの染色の可否を確認するため、蛍光観察を行った同一切片をGallyas染色により染色した。まず、キシレン洗浄(15分×2)、エタノール(1分×2)、90体積%エタノール水溶液(1分×1)、80体積%エタノール水溶液(1分×1)、70体積%エタノール水溶液(1分×1)および精製水洗浄(2.5分×2)をすることで脱パラフィン処理を行った。水洗した後、以下の手順により、Gallyas染色を行った後、顕微鏡で観察した。
i)0.3体積%過マンガン酸カリウム溶液(10分間)
ii)2体積%シュウ酸水溶液(3分)
iii)硝酸ランタン水溶液※1(1時間)
iv)精製水(5分間×3)
v)アルカリヨウ化銀水溶液※2(1−2分間)
vi)0.5体積%酢酸水溶液(5分間×3)
vii)還元液※3(20分間)
viii)0.5体積%酢酸水溶液(5分間×3)
ix)0.5体積%塩化金水溶液※4(15分間)
x)精製水(5分間×3)
xi)2体積%チオ硫酸ナトリウム水溶液(2分間)
xii)流水洗浄(5分間)
xiii)精製水(5分間×3)
xiv)封入
※1 硝酸ランタン水溶液組成:
硝酸ランタン(200mg),酢酸ナトリウム3水和物(1g),精製水(50mL)
※2 アルカリヨウ化銀水溶液組成:
水酸化ナトリウム(2g),ヨウ化カリウム(5g),精製水(50mL),硝酸銀(17.5mg)
※3 還元液組成:
下記(A)液と(B)液とを別々に調製し、それぞれを25mLずつ混合したもの。
(A液):精製水(1L),硝酸アンモニウム(2g),硝酸銀(2g),ケイタングステイン酸(10g),35%ホルムアルデヒド(5.1mL)
(B液):精製水(1L),炭酸ナトリウム(50g)
※4 塩化金水溶液組成:
塩化金(250mg),精製水(50mL)
(Example 13) Alzheimer's disease patient Necrotic and neurofibrillary tangle (NFT) imaging experiment using autopsy brain tissue section (1) Fluorescence observation Alzheimer's disease (AD) patient provided by Kyoto University Graduate School of Medicine A non-radioactive SBTA obtained in Example 2, the non-radioactive SBTH obtained in Example 4, the non-radioactive SBF synthesized in Example 6, and the non-radioactive SBOX synthesized in Example 8 in a 50% by volume ethanol solution were prepared on autopsy brain sections. (250 μmol / L) is allowed to react for 30 minutes, washed with ethanol, and using a fluorescence microscope, BZ filter GFP-BP (excitation wavelength (450-490 nm), absorption wavelength (510-560 nm), dichroic mirror wavelength (495 nm) ) Shows the result of fluorescence observation.
(2) Gallyas staining For brain sections using non-radioactive SBTA, the same sections subjected to fluorescence observation were stained with Gallyas staining in order to confirm the possibility of NFT staining. First, washing with xylene (15 minutes × 2), ethanol (1 minute × 2), 90% by volume ethanol aqueous solution (1 minute × 1), 80% by volume ethanol aqueous solution (1 minute × 1), 70% by volume ethanol aqueous solution (1 The deparaffinization treatment was performed by washing with purified water (2.5 minutes × 2). After washing with water, Gallyas staining was performed according to the following procedure, followed by observation with a microscope.
i) 0.3% by volume potassium permanganate solution (10 minutes)
ii) 2% by volume oxalic acid aqueous solution (3 minutes)
iii) Lanthanum nitrate aqueous solution * 1 (1 hour)
iv) Purified water (5 minutes × 3)
v) Alkaline silver iodide aqueous solution * 2 (1-2 minutes)
vi) 0.5 volume% acetic acid aqueous solution (5 minutes × 3)
vii) Reducing solution * 3 (20 minutes)
viii) 0.5% by volume acetic acid aqueous solution (5 minutes × 3)
ix) 0.5 vol% gold chloride aqueous solution * 4 (15 minutes)
x) Purified water (5 minutes x 3)
xi) 2% by volume aqueous sodium thiosulfate solution (2 minutes)
xii) Washing with running water (5 minutes)
xiii) Purified water (5 minutes × 3)
xiv) Encapsulation * 1 Lanthanum nitrate aqueous solution composition:
Lanthanum nitrate (200 mg), sodium acetate trihydrate (1 g), purified water (50 mL)
* 2 Alkali silver iodide aqueous solution composition:
Sodium hydroxide (2 g), potassium iodide (5 g), purified water (50 mL), silver nitrate (17.5 mg)
* 3 Reducing liquid composition:
The following (A) liquid and (B) liquid were prepared separately, and 25 mL of each was mixed.
(Liquid A): Purified water (1 L), ammonium nitrate (2 g), silver nitrate (2 g), catangstatin acid (10 g), 35% formaldehyde (5.1 mL)
(Liquid B): Purified water (1 L), sodium carbonate (50 g)
* 4 Composition of aqueous gold chloride solution:
Gold chloride (250 mg), purified water (50 mL)
結果を図7〜11に示す。図7はSBTAの結果であり、図8はSBTHの結果であり、図9はSBFの結果であり、図10はSBOXの結果である。図7(a)、図8(a)、図9(a)、図10(a)は、老人斑(SP)の描出像を示し、図7(b)、図8(b)、図9(b)、図10(b)は、神経原線維濃縮体(NFT)の描出像を示す。図7(a)、図8(a)、図9(a)、図10(a)で示すように、全ての化合物において老人斑が明瞭に描出された。一方、NFTについては、図7(b)、図8(b)、図9(b)、図10(b)で示すように、ヘテロ環構造の種類によりNFTの染色結果に差が認められた。中でもSBTAが最も明瞭にNFTを描出した。 The results are shown in FIGS. FIG. 7 shows the result of SBTA, FIG. 8 shows the result of SBTH, FIG. 9 shows the result of SBF, and FIG. 10 shows the result of SBOX. FIGS. 7 (a), 8 (a), 9 (a), and 10 (a) show depictions of senile plaques (SP). FIGS. 7 (b), 8 (b), and 9 (B) and FIG.10 (b) show the depiction image of a neurofibril concentrate (NFT). As shown in FIGS. 7 (a), 8 (a), 9 (a), and 10 (a), senile plaques were clearly depicted in all the compounds. On the other hand, as for NFT, as shown in FIG. 7 (b), FIG. 8 (b), FIG. 9 (b), and FIG. 10 (b), there was a difference in NFT staining results depending on the type of heterocyclic structure. . Among them, SBTA depicted NFT most clearly.
図11(a)は、図7(b)よりも倍率を低くしたSBTAの蛍光観察画像であり、図11(b)はGallyas染色画像である。図示するように、SBTAによる蛍光染色画像とがGallyas染色画像とが一致した。 FIG. 11A is a fluorescence observation image of SBTA with a lower magnification than that in FIG. 7B, and FIG. 11B is a Gallyas stained image. As shown in the figure, the fluorescence stained image by SBTA and the Gallyas stained image coincided.
(実施例14)アルツハイマー病(AD)患者剖検脳組織切片を用いたインビトロオートラジオグラフィー
(1)インビトロオートラジオグラフィー
AD患者脳組織切片及び健常人脳組織切片は、京都大学大学院医学研究科より提供されたものを使用した。キシレン洗浄(15分×2)、エタノール(1分×2)、90体積%エタノール水溶液(1分×1)、80体積%エタノール水溶液(1分×1)、70体積%エタノール水溶液(1分×1)および精製水洗浄(2.5分×2)をすることで脱パラフィン処理を行った。実施例9で得た[125I]SBTAを50体積%エタノール水溶液を用いて15kBq/mLに希釈した。調製した[125I]SBTAの溶液を、それぞれ、切片上に滴下し1時間静置した。その後、50体積%エタノール水溶液で1分×2回洗浄した。BASイメージングプレート(富士フィルム社製)に24時間固定した後、BAS5000スキャナーシステム(富士フィルム社製)を用い分析を行った。
(2)免疫染色
オートラジオグラフィーで使用した脳切片の隣接切片を用いて、老人斑(SP)及び神経原線維変化(NFT)の染色を行った。SPの免疫染色における一次抗体には、抗Aβ1−42モノクローナル抗体(BC05、WAKO社製)を、NFTの免疫染色における抗体には、抗リン酸化タウモノクローナル抗体(AT8、Thermo Scientific社製)を用いた。キシレン洗浄(15分×2)、エタノール(1分×2)、90体積%エタノール水溶液(1分×1)、80体積%エタノール水溶液(1分×1)、70体積%エタノール水溶液(1分×1)および精製水洗浄(2.5分×2)をすることで脱パラフィン処理を行った。抗原の賦活化には0.01mol/Lクエン酸緩衝液(pH6.8)中オートクレーブ(15分)および蟻酸処理(5分)を行った。流水で洗浄(5分)した後、PBS−Tween20(2分)で洗浄した。1次抗体(上記の抗体(BC05又はAT8))と1時間反応させた後、PBS−Tween20(5分×3)で洗浄した。ヒストファイン シンプルステイン MAX−PO(MULTI)(ニチレイバイオサイエンス社製)と30分間反応させた後、PBS−Tween20(3分×3)およびTBS(5分)で洗浄した。最後に、DAB溶液と室温で1分間反応させた。蒸留水で1分間洗浄し反応を停止させ、封入後、顕微鏡で観察した。
(Example 14) In vitro autoradiography using autopsy brain tissue section of Alzheimer's disease (AD) patient (1) In vitro autoradiography AD patient brain tissue section and healthy human brain tissue section are provided by Kyoto University Graduate School of Medicine We used what was done. Xylene cleaning (15 minutes × 2), ethanol (1 minute × 2), 90% by volume ethanol aqueous solution (1 minute × 1), 80% by volume ethanol aqueous solution (1 minute × 1), 70% by volume ethanol aqueous solution (1 minute × 1) The paraffin was removed by washing with 1) and purified water (2.5 minutes × 2). [ 125 I] SBTA obtained in Example 9 was diluted to 15 kBq / mL using a 50 vol% aqueous ethanol solution. The prepared [ 125 I] SBTA solution was dropped onto the sections and allowed to stand for 1 hour. Then, it was washed with 50 volume% ethanol aqueous solution for 1 minute × 2 times. After fixing on a BAS imaging plate (Fuji Film) for 24 hours, analysis was performed using a BAS5000 scanner system (Fuji Film).
(2) Immunostaining Using a section adjacent to the brain section used in autoradiography, senile plaques (SP) and neurofibrillary tangles (NFT) were stained. The primary antibody in SP immunostaining is anti-Aβ 1-42 monoclonal antibody (BC05, manufactured by WAKO), and the antibody in NFT immunostaining is anti-phosphorylated tau monoclonal antibody (AT8, manufactured by Thermo Scientific). Using. Xylene cleaning (15 minutes × 2), ethanol (1 minute × 2), 90% by volume ethanol aqueous solution (1 minute × 1), 80% by volume ethanol aqueous solution (1 minute × 1), 70% by volume ethanol aqueous solution (1 minute × 1) The paraffin was removed by washing with 1) and purified water (2.5 minutes × 2). For antigen activation, autoclave (15 minutes) and formic acid treatment (5 minutes) in 0.01 mol / L citrate buffer (pH 6.8) were performed. After washing with running water (5 minutes), it was washed with PBS-Tween 20 (2 minutes). After reacting with the primary antibody (the above-mentioned antibody (BC05 or AT8)) for 1 hour, it was washed with PBS-Tween 20 (5 minutes × 3). Histofine simple stain MAX-PO (MULTI) (manufactured by Nichirei Bioscience) was reacted for 30 minutes, and then washed with PBS-Tween 20 (3 minutes × 3) and TBS (5 minutes). Finally, it was reacted with the DAB solution at room temperature for 1 minute. The reaction was stopped by washing with distilled water for 1 minute, and after enclosing, it was observed with a microscope.
結果を図12に示す。図12(a)が健常人脳組織切片のオートラジオグラムであり、図12(b)がAD患者脳組織切片のオートラジオグラムであり、図12(c)が、図12(b)中aの領域のSPの免疫染色画像であり、図12(d)が図12(b)中bの領域のNFTの免疫染色画像である。放射能分布は、SPの蓄積部位とも一致し、かつ、NFTの蓄積部位と一致する結果が得られた。また、健常者脳組織切片には顕著な放射能集積が認められなかったことより、[125I]SBTAは脳組織切片への非特異的結合が少ないことが明らかになった。 The results are shown in FIG. 12 (a) is an autoradiogram of a brain tissue section of a healthy person, FIG. 12 (b) is an autoradiogram of a brain tissue section of an AD patient, and FIG. 12 (c) is a in FIG. 12 (b). Fig. 12 (d) is an NFT immunostained image of the region b in Fig. 12 (b). The radioactivity distribution was consistent with the SP accumulation site and the results were consistent with the NFT accumulation site. In addition, since no significant radioactivity accumulation was observed in the brain tissue sections of healthy subjects, it was revealed that [ 125 I] SBTA has little nonspecific binding to brain tissue sections.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013229993A JP6260967B2 (en) | 2013-11-06 | 2013-11-06 | Radioactive iodine labeled compound and radiopharmaceutical containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013229993A JP6260967B2 (en) | 2013-11-06 | 2013-11-06 | Radioactive iodine labeled compound and radiopharmaceutical containing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015089879A JP2015089879A (en) | 2015-05-11 |
JP6260967B2 true JP6260967B2 (en) | 2018-01-17 |
Family
ID=53193575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013229993A Expired - Fee Related JP6260967B2 (en) | 2013-11-06 | 2013-11-06 | Radioactive iodine labeled compound and radiopharmaceutical containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6260967B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016227062A1 (en) | 2015-03-04 | 2017-08-03 | Kyoto University | Radioactive iodine labeled pyrido(1,2-a)benzoimidazole derivative compound |
NZ736222A (en) * | 2015-07-02 | 2024-05-31 | F Hoffmann La Roche Ag | Benzoxazepin oxazolidinone compounds and methods of use |
TW201707726A (en) * | 2015-08-19 | 2017-03-01 | 國立大學法人京都大學 | A radioactive halogen labeled pyrido [1,2-a] benzimidazole derivative compound |
WO2023100942A1 (en) * | 2021-12-02 | 2023-06-08 | 国立大学法人 東京大学 | Compound for photooxygenation catalyst and medicinal composition containing same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003242233A1 (en) * | 2002-06-12 | 2003-12-31 | Bf Research Institute, Inc. | Probe compound for image diagnosis of disease with amyloid accumulation, compound for staining age spots/diffuse age spots, and remedy for disease with amyloid accumulation |
DK1611115T3 (en) * | 2003-03-14 | 2012-11-26 | Univ Pittsburgh | BENZOTHIAZOLD DERIVATIVE COMPOUNDS, COMPOSITIONS AND APPLICATIONS THEREOF |
KR101126080B1 (en) * | 2008-06-12 | 2012-04-12 | 한미홀딩스 주식회사 | Styrylbenzofuran derivatives?as inhibitors for beta-amyloid fibril formation, and preparation method thereof |
WO2010087315A1 (en) * | 2009-01-29 | 2010-08-05 | 株式会社林原生物化学研究所 | Anti-alzheimer’s disease agent |
-
2013
- 2013-11-06 JP JP2013229993A patent/JP6260967B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015089879A (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7700616B2 (en) | Compounds and amyloid probes thereof for therapeutic and imaging uses | |
JP4436928B2 (en) | Stilbene derivatives and their use for binding and imaging of amyloid plaques | |
JP5128956B2 (en) | Stilbene derivatives and their use for binding and imaging amyloid plaques | |
TWI700268B (en) | Compositions, methods, and systems for the synthesis and use of imaging agents | |
US20120263646A1 (en) | Imaging agents and their use for the diagnostic in vivo of neurodegenerative diseases, notably alzheimer's disease and derivative diseases | |
US20110158907A1 (en) | Diphenyl-heteroaryl derivatives and their use for binding and imaging amyloid plaques | |
JPWO2005016888A1 (en) | Probes for amyloid-accumulating diseases, amyloid stains, therapeutic and preventive agents for amyloid-accumulate diseases, and diagnostic probes and stains for neurofibrillary tangles | |
JP6260967B2 (en) | Radioactive iodine labeled compound and radiopharmaceutical containing the same | |
AU2011200667A1 (en) | Benzothiazole derivative compounds, compositions and uses | |
JP2010512325A (en) | Acetylene derivatives and their use to bind and image amyloid plaques | |
Fuchigami et al. | Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT | |
EP1655287A1 (en) | Probe for diseases with amyloid accumulation, amyloid-staining agent, remedy and preventive for diseases with amyloid accumulation and diagnostic probe and staining agent for neurofibrillary change | |
Wang et al. | 99mTc-labeled-2-arylbenzoxazole derivatives as potential Aβ imaging probes for single-photon emission computed tomography | |
JP2006502220A (en) | Biphenyl and fluorene as imaging agents in Alzheimer's disease | |
KR101469275B1 (en) | Heterocyclic indene derivatives and their radioisotope labeled compounds for imaging β-amyloid deposition | |
Watanabe et al. | Synthesis and biological evaluation of radioiodinated 2, 5-diphenyl-1, 3, 4-oxadiazoles for detecting β-amyloid plaques in the brain | |
US8476449B2 (en) | Radioactive iodine labeled organic compound or salt thereof | |
US20080253967A1 (en) | Halo-Stilbene Derivatives And Their Use For Binding And Imaging Of Amyloid Plaques | |
JP2016079108A (en) | Radioactive iodine labeled styryl substituted aromatic heterocyclic compound | |
WO2014132919A1 (en) | Diagnostic composition | |
Fu et al. | Synthesis and biological evaluation of 18F-labled 2-phenylindole derivatives as PET imaging probes for β-amyloid plaques | |
US20020064500A1 (en) | Radiotracers for in vivo study of acetylcholinesterase and alzheimer's disease | |
JP6831802B2 (en) | Radionuclide-labeled compound and imaging agent containing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6260967 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |