JP6253189B2 - Building shell structure - Google Patents

Building shell structure Download PDF

Info

Publication number
JP6253189B2
JP6253189B2 JP2013241181A JP2013241181A JP6253189B2 JP 6253189 B2 JP6253189 B2 JP 6253189B2 JP 2013241181 A JP2013241181 A JP 2013241181A JP 2013241181 A JP2013241181 A JP 2013241181A JP 6253189 B2 JP6253189 B2 JP 6253189B2
Authority
JP
Japan
Prior art keywords
outer peripheral
column
building
steel
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241181A
Other languages
Japanese (ja)
Other versions
JP2015101839A (en
Inventor
隆之 佐川
隆之 佐川
大吾 石井
大吾 石井
浩資 伊藤
浩資 伊藤
聡 北岡
聡 北岡
福田 浩司
浩司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Shimizu Corp
Original Assignee
Nippon Steel Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Shimizu Corp filed Critical Nippon Steel Corp
Priority to JP2013241181A priority Critical patent/JP6253189B2/en
Publication of JP2015101839A publication Critical patent/JP2015101839A/en
Application granted granted Critical
Publication of JP6253189B2 publication Critical patent/JP6253189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ビルなどの建物の構造に関し、特に建物内に大空間を確保するために架構の大スパン化を可能にする建物の外殻構造に関する。   The present invention relates to a structure of a building such as a building, and more particularly to a building outer shell structure that enables a span of a frame to have a large span in order to secure a large space in the building.

従来、オフィスビルなどの多層階の建物では、レンタブル比など、内部空間の利用効率を上げることが重要であり、これに伴い、耐震要素を建物外周部に配置して内部の柱をできるだけ少なくする構造を採用するケースが増えている。   Conventionally, in multi-storey buildings such as office buildings, it is important to increase the utilization efficiency of the internal space, such as the rentable ratio, and accordingly, seismic elements are arranged on the outer periphery of the building to reduce the number of internal pillars as much as possible. The number of cases adopting the structure is increasing.

一方、柱や梁の架構にS造(鉄骨造)のみ、またはRC造(鉄筋コンクリート造)のみを採用して建物を構築するケースが多々あるが、S造は、工期が短くなるという大きな利点を有する反面、高価格の鋼材を多く使用することでコスト増を招き、さらにRC造に比べて剛性が低いという欠点がある。RC造は、S造よりも剛性が高く、かつ経済性に優れる反面、工期が長期化するという欠点がある。   On the other hand, there are many cases in which buildings are constructed using only S structures (steel structures) or RC structures (reinforced concrete structures) for pillars and beams, but S structures have the great advantage of shortening the construction period. On the other hand, the use of a large amount of high-priced steel causes a cost increase, and further has a drawback that its rigidity is lower than that of RC construction. The RC structure is higher in rigidity and economical than the S structure, but has the disadvantage that the construction period is prolonged.

これに対し、鉄骨(鉄骨部)と鉄筋コンクリート(鉄筋コンクリート部)や、鉄骨と鉄骨鉄筋コンクリートを組み合わせて架構を構築する構法が提案、実用化されている。   In contrast, steel frames (steel frame portions) and reinforced concrete (reinforced concrete portions), or construction methods that construct a frame by combining steel frames and steel reinforced concrete have been proposed and put into practical use.

例えば、RC造の柱とS造の梁を組み合わせるRCS構造や、高強度コンクリートを用いたRC造の柱とS造の梁を組み合わせるRCSS構造は、鉄筋コンクリートと鉄骨のそれぞれの材料の良さを活かした合理的な構造で、特にRCSS構造は、高強度で高耐震性を備え、柱間隔を大きくとることができるため、柱の少ない大空間をローコスト・短工期で構築することができる(例えば、特許文献1参照)。   For example, the RCS structure that combines RC columns and S beams, and the RCSS structure that combines RC columns and S beams using high-strength concrete make use of the good materials of reinforced concrete and steel frames. With a rational structure, especially the RCSS structure has high strength and high earthquake resistance, and can take a large interval between columns, a large space with few columns can be constructed at a low cost with a short construction period (for example, patents) Reference 1).

さらに、RC造の柱とS造の梁を組み合わせるとともに、柱と接合する鉄骨梁の両端部側を鉄筋コンクリートに所定埋設長だけ埋設してなる混合構造梁もある。この混合構造梁は、大きなせん断力が作用する梁構造の両端部側に鉄筋コンクリートが設けられているため、せん断耐力に優れ、また、鉄骨の断面サイズを小さくしても剛性の高い梁構造を実現できるため、使用鋼材量を減少させて低コスト化を図りつつ、大スパン架構を実現できるという大きな利点を有する。また、鉄骨を柱に貫入して接合する必要がないため、柱の主筋の施工が容易になり、かつ鉄骨端部の加工を容易にすることができ、施工性の向上、ひいては工期の短縮をも図ることができる(例えば、特許文献2参照)。   Furthermore, there is a mixed structure beam in which RC columns and S beams are combined, and both ends of the steel beam to be joined to the columns are embedded in reinforced concrete for a predetermined embedment length. This mixed structure beam has reinforced concrete on both ends of the beam structure where a large shearing force is applied, so it has excellent shear strength and realizes a highly rigid beam structure even if the cross-sectional size of the steel frame is reduced. Therefore, there is a great advantage that a large span frame can be realized while reducing the amount of steel used and reducing the cost. In addition, since it is not necessary to penetrate the steel frame into the column and join it, the construction of the main bars of the column can be facilitated and the processing of the end of the steel frame can be facilitated, improving workability and consequently shortening the construction period. (For example, refer to Patent Document 2).

また、建物の外殻構造をSRC造の壁柱(外周柱)を用いて構成するとともに、このSRC造の壁柱とS造の梁(外周梁、内部梁)の接合部構造として、SRC壁柱のコンクリートにS造の梁を埋め込んだ部分でS造の梁とコンクリートの支圧伝達機構を形成し、両部材の剛接合を実現する技術が提案、実用化されている。   In addition, the outer shell structure of the building is configured using SRC wall columns (outer peripheral columns), and the SRC wall is used as a joint structure between the SRC wall columns and S beams (outer and inner beams). A technique has been proposed and put into practical use in which a bearing support transmission mechanism between an S-shaped beam and concrete is formed at a portion where the S-shaped beam is embedded in the concrete of the column, and a rigid connection between the two members is realized.

特開昭61−237737号公報JP 61-237737 A 特開2010−281044号公報JP 2010-281044 A

しかしながら、上記のSRC造の壁柱とS造の梁の接合部構造として、S造の梁とコンクリートの支圧伝達機構を形成する技術は、上下階が存在する基準階(中間階)を対象とした構法であり、建物の最上階に対しては、梁上方向のコンクリート厚さが足りず、すなわち、梁上方向にかぶりコンクリート程度しかコンクリート部分がないため、その適用が困難であった。   However, the technology for forming a bearing support transmission mechanism between S-beams and concrete as the joint structure between SRC wall columns and S-beams mentioned above is for the standard floor (intermediate floor) where upper and lower floors exist. For the top floor of the building, the concrete thickness in the beam upper direction is insufficient, that is, the concrete portion is only about the cover concrete in the beam upper direction, and its application is difficult.

本発明は、上記事情に鑑み、建物の中間階だけでなく最上階に対してもSRC造の壁柱と鉄骨造の梁の支圧伝達機構を形成して剛接合を可能にした接合部構造を備える建物の外殻構造を提供することを目的とする。   In view of the above circumstances, the present invention provides a joint structure that enables rigid joining by forming a bearing support transmission mechanism for SRC wall columns and steel beams not only on the middle floor of the building but also on the top floor. It aims at providing the outer shell structure of a building provided with.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の建物の外殻構造は、芯鉄骨及び鉄筋コンクリートからなるSRC造の外周柱と、前記外周柱の鉄筋コンクリートに端部側を埋設して前記外周柱に剛接合されるS造の外周梁とを備えてなる建物の外殻構造であって、建物の最上階の前記外周柱と前記外周梁の接合部構造は、前記外周梁の鉄骨が前記外周柱の前記芯鉄骨に対して構造的に接合することなく配設されると共に、上下方向に延設され、前記外周梁の端部側を囲繞するように逆U字状に配筋された柱U字主筋とU字補強筋を備えて構成され、少なくとも前記外周梁のフランジと前記U字補強筋によって、前記外周柱の鉄筋コンクリートと前記外周梁との間で支圧力を伝達する前記建物の最上階の支圧伝達機構が形成されていることを特徴とする。 The outer shell structure of the building of the present invention includes an SRC outer peripheral column made of core steel frame and reinforced concrete, and an S outer peripheral beam that is embedded in the reinforced concrete of the outer peripheral column and is rigidly joined to the outer peripheral column. The outer shell structure of the building comprising: the outer peripheral column and the outer peripheral beam on the uppermost floor of the building , wherein the steel frame of the outer peripheral beam is structurally relative to the core steel frame of the outer peripheral column A column U-shaped main bar and a U-shaped reinforcing bar which are arranged without being joined and extend in the vertical direction and are arranged in an inverted U shape so as to surround the end side of the outer peripheral beam. And a support pressure transmission mechanism on the uppermost floor of the building that transmits the support pressure between the reinforced concrete of the outer periphery column and the outer periphery beam is formed by at least the flange of the outer periphery beam and the U-shaped reinforcing bar. It is characterized by that.

本発明の建物の外殻構造においては、最上階の外殻構造のSRC造の外周壁とS造の外周梁の接合部構造を、外周梁のフランジで外周柱のコンクリートとの下方向の支圧伝達機構を形成し、外周梁のフランジとU字補強筋で外周柱のコンクリートとの上方向の支圧伝達機構を形成するように構成したことにより、梁上方向のコンクリート厚さがかぶりコンクリート程度であっても、確実に支圧伝達機構を形成することが可能になる。   In the outer shell structure of the building of the present invention, the joint structure of the SRC outer peripheral wall of the uppermost outer shell structure and the S outer peripheral beam is supported by the flange of the outer peripheral beam and the concrete of the outer column. By forming a pressure transmission mechanism and forming an upward support pressure transmission mechanism with the outer column concrete with the flange of the outer beam and the U-shaped reinforcing bar, the concrete thickness in the upper direction of the beam is covered concrete Even in such a case, it is possible to reliably form the support pressure transmission mechanism.

よって、本発明の建物の外殻構造によれば、中間階だけでなく最上階に対してもSRC造の壁柱(外周柱)と鉄骨造の梁(外周梁)の支圧伝達機構を形成して剛接合が可能になり、より確実に、耐震性能に優れた建物を構築することが可能になるとともに、例えば14m超の大スパンでも支障なく実現することが可能になる。   Therefore, according to the outer shell structure of the building of the present invention, not only the intermediate floor but also the top floor is formed with a bearing transmission mechanism for SRC wall columns (outer peripheral columns) and steel beams (outer peripheral beams). As a result, it is possible to make a rigid connection, and it is possible to more reliably construct a building having excellent seismic performance, and to realize a large span of, for example, more than 14 m without any problem.

本発明の一実施形態に係る建物、建物の外殻構造を示す斜視図である。It is a perspective view which shows the building which concerns on one Embodiment of this invention, and the outer shell structure of a building. 本発明の一実施形態に係る建物の最上階を除く中間階の外殻構造の外周柱と外周梁、内部梁の接合部構造を示す図である。It is a figure which shows the junction part structure of the outer periphery pillar of the outer shell structure of the intermediate floor except the uppermost floor of the building which concerns on one Embodiment of this invention, an outer periphery beam, and an inner beam. 本発明の一実施形態に係る建物の最上階を除く中間階の外殻構造の支圧伝達機構を示す図である。It is a figure which shows the support pressure transmission mechanism of the outer shell structure of the intermediate floor except the top floor of the building which concerns on one Embodiment of this invention. 本発明の一実施形態に係る建物の最上階を除く中間階の外殻構造の外周柱と外周梁、内部梁の接合部構造を示す図である。It is a figure which shows the junction part structure of the outer periphery pillar of the outer shell structure of the intermediate floor except the uppermost floor of the building which concerns on one Embodiment of this invention, an outer periphery beam, and an inner beam. 本発明の一実施形態に係る建物の外殻構造において、外周柱の芯鉄骨の連結構造を示す図である。In the outer shell structure of the building which concerns on one Embodiment of this invention, it is a figure which shows the connection structure of the core steel frame of an outer periphery pillar. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の第一の接合部構造を示す図である。It is a figure which shows the 1st junction part structure of the outer periphery pillar of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, an outer periphery beam, and an inner beam. 図6のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の第二の接合部構造を示す図である。It is a figure which shows the 2nd junction structure of the outer periphery pillar of the outer-shell structure of the top floor of the building which concerns on one Embodiment of this invention, an outer periphery beam, and an inner beam. 図8のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の第三の接合部構造を示す図である。It is a figure which shows the 3rd junction part structure of the outer periphery pillar of the outer-shell structure of the top floor of the building which concerns on one Embodiment of this invention, an outer periphery beam, and an inner beam. 図8のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の接合部構造、支圧伝達機構を示す図である。It is a figure which shows the outer periphery column and outer periphery beam of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, the junction part structure of an internal beam, and a bearing transmission mechanism. 図12のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG. 図12のX2−X2線矢視図である。It is the X2-X2 line arrow directional view of FIG. 図12のX3−X3線矢視図である。It is the X3-X3 line arrow figure of FIG. 図12のX4−X4線矢視図である。It is the X4-X4 line arrow figure of FIG. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の接合部構造、支圧伝達機構を示す図である。It is a figure which shows the outer periphery column and outer periphery beam of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, the junction part structure of an internal beam, and a bearing transmission mechanism. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の接合部構造、支圧伝達機構を示す図である。It is a figure which shows the outer periphery column and outer periphery beam of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, the junction part structure of an internal beam, and a bearing transmission mechanism. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の接合部構造、支圧伝達機構を示す図である。It is a figure which shows the outer periphery column and outer periphery beam of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, the junction part structure of an internal beam, and a bearing transmission mechanism. 本発明の一実施形態に係る建物の最上階の外殻構造の外周柱と外周梁、内部梁の接合部構造、支圧伝達機構を示す図である。It is a figure which shows the outer periphery column and outer periphery beam of the outermost shell structure of the top floor of the building which concerns on one Embodiment of this invention, the junction part structure of an internal beam, and a bearing transmission mechanism. 本発明の一実施形態に係る建物の最上階の外殻構造において、パラペットを設けた状態を示す図である。It is a figure which shows the state which provided the parapet in the outer-shell structure of the top floor of the building which concerns on one Embodiment of this invention.

以下、図1から図21を参照し、本発明の一実施形態に係る建物の外殻構造について説明する。   Hereinafter, an outer shell structure of a building according to an embodiment of the present invention will be described with reference to FIGS.

はじめに、本実施形態の外殻構造を備える建物Aは、図1に示すように、オフィスビルなどの複数の地上階を備える多層建物であり、SRC造の壁柱(SRC壁柱)1と、S造の梁(鉄骨梁)4、5を備えて構築されている。そして、本実施形態の建物Aの外殻構造Bは、SRC壁柱1と鉄骨梁4の接合部分の構造、すなわち仕口部の構造、さらに、鉄骨梁4とSRC壁柱1のコンクリートの支圧伝達機構の構造に特徴を有するものである。   First, as shown in FIG. 1, a building A having an outer shell structure according to the present embodiment is a multi-layered building having a plurality of ground floors such as an office building, and an SRC wall column (SRC wall column) 1. It is constructed with S-shaped beams (steel beams) 4 and 5. The outer shell structure B of the building A according to the present embodiment has a structure of a joint portion between the SRC wall column 1 and the steel beam 4, that is, a structure of a joint portion, and a concrete support of the steel beam 4 and the SRC wall column 1. It has a feature in the structure of the pressure transmission mechanism.

具体的に、本実施形態の外殻構造Bは、図1に示すように、建物Aにおける外壁面の位置に配置した外周柱1と、隣接配置した外周柱1の間に架設した各階の外周梁4と、建物A内を横断して相対向する外壁面の位置に配置した外周柱1の間に架設した各階の内部梁5とを主な構成要素として構築されている。   Specifically, as shown in FIG. 1, the outer shell structure B of the present embodiment has an outer periphery of each floor constructed between the outer peripheral column 1 arranged at the position of the outer wall surface in the building A and the adjacent outer peripheral column 1. The beam 4 and the internal beam 5 on each floor constructed between the outer peripheral columns 1 arranged at the positions of the opposing outer wall surfaces across the building A are constructed as main components.

また、本実施形態の外殻構造Bは、外周柱1を鉄骨鉄筋コンクリート造(SRC造)の壁柱とし、外周梁4及び内部梁5をいずれも鉄骨造(S造)の鉄骨梁として構成されるとともに、内部梁5の梁端が外周柱1に対して剛接合して構成されている。また、本実施形態の外殻構造Bにおいては、支圧伝達機構の構成の点で、建物の最上階と、最上階を除く中間階とが区分けされている。   The outer shell structure B of the present embodiment is configured such that the outer peripheral column 1 is a steel reinforced concrete (SRC) wall column, and the outer beam 4 and the inner beam 5 are both steel (S) steel beams. In addition, the beam end of the internal beam 5 is configured to be rigidly connected to the outer peripheral column 1. Further, in the outer shell structure B of the present embodiment, the uppermost floor of the building and the intermediate floor excluding the uppermost floor are separated in terms of the configuration of the bearing transmission mechanism.

はじめに、本実施形態の中間階の外殻構造Bにおいて、外周柱1は、図2(a)、図2(b)に示すように、断面視で、厚さ寸法に比べて幅寸法が数倍程度大きい壁柱形式で形成され、幅方向中心位置に配置した芯鉄骨2の周囲に鉄筋コンクリートからなる壁状の被覆コンクリート(鉄筋コンクリート)3を一体に設けて形成されている。これにより、この外周柱1は、頑強なSRC造の柱として形成されている。   First, in the outer shell structure B of the intermediate floor of the present embodiment, the outer peripheral column 1 has a width dimension several times larger than the thickness dimension in a cross-sectional view as shown in FIGS. 2 (a) and 2 (b). The wall-shaped covering concrete (reinforced concrete) 3 made of reinforced concrete is integrally provided around the core steel frame 2 which is formed in a wall pillar form about twice as large and arranged at the center in the width direction. As a result, the outer peripheral column 1 is formed as a robust SRC column.

また、本実施形態では、外周柱1の芯鉄骨2としてH形鋼が適用されており、図2(b)に示すように、この芯鉄骨2のH形鋼が、そのフランジ2aを外周柱1の幅方向に沿わせ、すなわち、フランジ2aを外壁の面内方向に沿って配し、ウェブ2bを壁厚方向に沿って配して設けられている。   Moreover, in this embodiment, H-section steel is applied as the core steel frame 2 of the outer periphery pillar 1, and as shown in FIG.2 (b), this H-section steel of the core steel frame 2 makes the flange 2a the outer periphery pillar. 1, the flange 2a is provided along the in-plane direction of the outer wall, and the web 2b is provided along the wall thickness direction.

さらに、外周柱1に対して接合される鉄骨造の内部梁5にもH形鋼が適用されている。このとき、内部梁5は、外周柱1に対し、ピン接合ではなく、図2(b)に示すように、H形鋼の上下のフランジ5a及びウェブ5bの全てを外周柱1の芯鉄骨2であるH形鋼のフランジ2aに直接的に溶接して接合されている。これにより、内部梁5は、その梁端を外周柱1(芯鉄骨2)に対して剛接合して配設されている。なお、ガセットプレートを用い、内部梁5のウェブ(やフランジ)を外周柱1にボルト接合するようにしてもよい。   Further, H-shaped steel is also applied to the steel-structured internal beam 5 joined to the outer peripheral column 1. At this time, the inner beam 5 is not pin-bonded to the outer peripheral column 1, and the upper and lower flanges 5 a and the web 5 b of the H-shaped steel are all connected to the core steel frame 2 of the outer peripheral column 1 as shown in FIG. It is directly welded and joined to the flange 2a of the H-shaped steel. Thereby, the internal beam 5 is disposed with its beam end rigidly joined to the outer peripheral column 1 (core steel frame 2). A gusset plate may be used to bolt the web (or flange) of the internal beam 5 to the outer peripheral column 1.

そして、このように内部梁5の梁端を芯鉄骨2に直接的に溶接して剛接合することにより、通常のように内部梁5を外周柱1にピン接合とする場合と比べ、内部梁5の撓みを1/5程度に低減できる。これにより、撓みを考慮しても、通常より内部梁5のスパンを大きくすることができ、建物A内に無柱の大空間を支障なく形成、確保することが可能になる。   Then, the beam end of the internal beam 5 is directly welded to the core steel frame 2 to be rigidly connected, so that the internal beam 5 is pin-bonded to the outer peripheral column 1 as usual. 5 can be reduced to about 1/5. Thereby, even if it considers bending, the span of the internal beam 5 can be enlarged more than usual, and it becomes possible to form and ensure a pillarless large space in the building A without trouble.

次に、本実施形態の外殻構造Bでは、外周柱1に接合される外周梁4も内部梁5と同様にH形鋼が適用されている。また、この外周梁4は、芯鉄骨2に対して溶接せず、すなわち、図2(b)、図2(c)に示すように、外周梁4のH形鋼のウェブ4bを外周柱1の芯鉄骨5のウェブ2bに対して構造的に直接接合することなく、芯鉄骨2に溶接した鋼板(仮設のスチフナ)6に端部を載置して支持するのみで配設されている。そして、この状態の外周梁4は、その端部を外周柱1の芯鉄骨2を埋設するように被覆する被覆コンクリート3に定着させ、外周柱1と一体に設けられている。   Next, in the outer shell structure B of the present embodiment, H-beams are applied to the outer peripheral beam 4 joined to the outer peripheral column 1 similarly to the inner beam 5. Further, the outer peripheral beam 4 is not welded to the core steel frame 2, that is, as shown in FIGS. 2B and 2C, the H-shaped steel web 4b of the outer peripheral beam 4 is connected to the outer peripheral column 1. Without being structurally directly joined to the web 2 b of the core steel frame 5, only the end portion is placed and supported on the steel plate 6 (temporary stiffener) welded to the core steel frame 2. The outer peripheral beam 4 in this state is fixed to the covering concrete 3 which covers the end portion of the outer peripheral beam 1 so as to embed the core steel frame 2 of the outer peripheral column 1, and is provided integrally with the outer peripheral column 1.

これにより、外周梁4を芯鉄骨2に対して溶接せずとも、また、外周梁4のフランジ4aを芯鉄骨2に対して直接的に接合せずとも、外周梁4を外周柱1に対して剛接合することができる。   As a result, the peripheral beam 4 can be attached to the outer peripheral column 1 without welding the outer peripheral beam 4 to the core steel frame 2 and without directly joining the flange 4 a of the outer peripheral beam 4 to the core steel frame 2. Can be rigidly joined.

すなわち、このような中間階の外殻構造Bの外周柱1と外周梁4の接合部構造(支圧伝達機構)Cでは、図3に示すように、外周梁4の端部が被覆コンクリート3に埋め込まれて剛接合されているため、この部分で外周梁4と被覆コンクリート3との間で応力が伝達され、これら部材3、4の間でせん断力Qと曲げモーメントMの双方を支障なく伝達させることが可能になる。   That is, in such a joint structure (supporting pressure transmission mechanism) C between the outer peripheral column 1 and the outer peripheral beam 4 of the outer shell structure B on the intermediate floor, as shown in FIG. In this portion, stress is transmitted between the outer peripheral beam 4 and the covering concrete 3, and both the shearing force Q and the bending moment M are not affected between these members 3 and 4. It becomes possible to transmit.

これにより、外周梁4としてのH形鋼を通常のように溶接せずとも外周柱1に対して剛接合することが可能になり、その結果として、外周梁4を外周柱1に対して接合するための施工労務費を削減できるとともに、その際の鉄骨部材の加工費と材料費を削減することができ、工費削減に大きく寄与することができる。   As a result, the H-shaped steel as the outer circumferential beam 4 can be rigidly joined to the outer circumferential column 1 without welding as usual. As a result, the outer circumferential beam 4 is joined to the outer circumferential column 1. In addition to reducing the construction labor costs for doing so, it is possible to reduce the processing costs and material costs of the steel members at that time, which can greatly contribute to the reduction of construction costs.

なお、外周梁4を外周柱1に対して上記の構造により接合する場合、図3に示すように、外周梁4のフェイス位置では被覆コンクリート3の支圧応力が高くなる。このため、図4(a)〜図4(d)に示すように、被覆コンクリート3に水平方向のせん断補強筋7と幅止筋8を外周梁4のH形鋼の上下の近傍位置に密に集約配筋して埋設し、この部分での支圧耐力を増強することが好ましい。また、このような配筋を施す場合においても、せん断補強筋7を外周梁4と並行に配筋すればよいので、外周梁4や被覆コンクリート3の主筋と干渉することはなく、施工性が悪化することはない。   In addition, when joining the outer periphery beam 4 with the outer periphery pillar 1 by said structure, as shown in FIG. For this reason, as shown in FIGS. 4A to 4D, the horizontal shear reinforcement bar 7 and the width stop bar 8 are densely placed on the covering concrete 3 at positions near the upper and lower sides of the H-shaped steel of the outer circumferential beam 4. It is preferable to embed and bury them in order to enhance the bearing strength in this part. Further, even when such bar arrangement is performed, since the shear reinforcement bar 7 may be arranged in parallel with the outer peripheral beam 4, it does not interfere with the main bar of the outer peripheral beam 4 and the covering concrete 3, and workability is improved. There is no deterioration.

また、本実施形態において、外周柱1における芯鉄骨2は、図5(a)、図5(b)に示すように、ウェブ2b同士を継手板9を介してボルトで締結することにより上下方向に連結されている。これら一連のH形鋼の芯鉄骨2が外周柱1における被覆コンクリート3に一体に定着されることにより、壁柱形式の外周柱1の全体が形成されている。   Further, in the present embodiment, the core steel frame 2 in the outer peripheral column 1 is vertically moved by fastening the webs 2b with bolts via a joint plate 9 as shown in FIGS. 5 (a) and 5 (b). It is connected to. The series of H-shaped steel core steel frames 2 are integrally fixed to the covering concrete 3 in the outer peripheral column 1, whereby the entire outer column 1 in the form of a wall column is formed.

そして、このように芯鉄骨2のウェブ2b同士をボルトを締結するだけで連結するようにしても、外周柱1としての応力伝達は芯鉄骨2から被覆コンクリート3に振り替えられ、これにより、外周柱1としての構造的性能を支障なく確保することができる。また、芯鉄骨2のH形鋼同士を溶接しなくても、さらに芯鉄骨2のフランジ2a同士を直接的に接合しなくても、芯鉄骨2と被覆コンクリート3とを構造的に確実に一体化してSRC造の頑強な外周柱1を形成することができる。   And even if it connects the web 2b of the core steel frame 2 only by fastening a volt | bolt in this way, the stress transmission as the outer periphery pillar 1 is transferred from the core steel frame 2 to the covering concrete 3, and, thereby, an outer periphery pillar. The structural performance as 1 can be secured without hindrance. Also, the core steel 2 and the covering concrete 3 can be structurally and reliably integrated without welding the H-shaped steels of the core steel frame 2 and without directly joining the flanges 2a of the core steel frame 2 together. It is possible to form a strong outer peripheral column 1 made of SRC.

よって、芯鉄骨2同士を接合するにあたり、その施工労務費を削減できるとともに、壁厚方向にボルトの突出がなくなって外周柱1としての壁柱の壁厚を抑制することができ、被覆コンクリート3の施工の際の材料費と労務費を削減できるとともに、スペース効率の向上を図ることが可能になる。   Therefore, when joining the core steel frames 2, the construction labor cost can be reduced, and the protrusion of the bolt can be eliminated in the wall thickness direction, so that the wall thickness of the wall column as the outer peripheral column 1 can be suppressed. It is possible to reduce material costs and labor costs during construction, and to improve space efficiency.

そして、上記のように本実施形態の外殻構造Bにおいては、外周柱1をSRC造の壁柱とし、内部梁5をS造の鉄骨梁とし、内部梁5の梁端を外周柱1の芯鉄骨2に直接的に溶接して剛接合したことで、内部梁5が撓みにくくなる。これにより、内部梁5のスパンを大きくすることができ、例えば14m超の大スパンでも支障なく実現することが可能になる。   As described above, in the outer shell structure B of the present embodiment, the outer peripheral column 1 is an SRC wall column, the inner beam 5 is an S steel beam, and the beam end of the inner beam 5 is the outer column 1. Since the core beam 2 is directly welded and rigidly joined, the internal beam 5 becomes difficult to bend. As a result, the span of the internal beam 5 can be increased. For example, even a large span exceeding 14 m can be realized without any trouble.

一方、本実施形態の最上階の外殻構造Bは、梁上方向にかぶりコンクリート程度しかコンクリート部分がなく、上記の中間階の外殻構造Bの接合部構造、ひいては支圧伝達機構Cの適用が困難になるケースがある。   On the other hand, the outermost shell structure B of the present embodiment has only a concrete portion as much as cover concrete in the beam upper direction, and the application structure of the joint structure of the outer shell structure B of the intermediate floor and the support pressure transmission mechanism C is applied. May be difficult.

これに対し、本実施形態の外殻構造Bでは、最上階に対し、3種類の接合部構造(支圧伝達機構)Dの少なくとも1種を採用する。   On the other hand, in the outer shell structure B of the present embodiment, at least one of three types of joint structure (support pressure transmission mechanism) D is adopted for the top floor.

まず、第一の接合部構造Dは、中間階の接合部構造と同様、図6及び図7に示すように、外周柱1の芯鉄骨5に鋼板(スチフナ)6を取り付け、この鋼板6で外周梁4を支持するとともにボルト10で固定して位置決めする。そして、このように鋼板6を介して外周梁4を支持することにより、外周梁4のフランジ4a下方向では、外周柱1の被覆コンクリート3に埋設された部分で支圧伝達機構を形成し、剛接合を実現する(図17、図18、図19参照)。   First, as shown in FIGS. 6 and 7, the first joint structure D has a steel plate 6 attached to the core steel frame 5 of the outer peripheral column 1. The outer peripheral beam 4 is supported and fixed with bolts 10 for positioning. And by supporting the outer peripheral beam 4 through the steel plate 6 in this way, in the downward direction of the flange 4a of the outer peripheral beam 4, a supporting pressure transmission mechanism is formed at a portion embedded in the covering concrete 3 of the outer peripheral column 1, Rigid joining is realized (see FIGS. 17, 18, and 19).

第二の接合部構造Dは、図8及び図9に示すように、外周柱1の芯鉄骨2に接合鋼板(ガセットプレート)11を取り付け、この接合鋼板11とウェブ2bをボルト接合することで、外周梁4を固定して位置決め及び接合する。そして、このように接合鋼板11を介して外周梁4を接合することにより、外周梁4のフランジ4a下方向では、外周柱1の被覆コンクリート3に埋設された部分で支圧伝達機構を形成し、剛接合を実現する(図17、図18、図19参照)。   As shown in FIGS. 8 and 9, the second joint structure D is obtained by attaching a joining steel plate (gusset plate) 11 to the core steel frame 2 of the outer peripheral column 1 and bolting the joining steel plate 11 and the web 2 b. The outer peripheral beam 4 is fixed and positioned and joined. Then, by joining the outer peripheral beam 4 through the bonded steel plate 11 in this way, a support pressure transmission mechanism is formed at a portion embedded in the covering concrete 3 of the outer peripheral column 1 in the downward direction of the flange 4a of the outer peripheral beam 4. , To realize a rigid joint (see FIGS. 17, 18, and 19).

第三の接合部構造Dは、図10及び図11に示すように、外周柱1の芯鉄骨2に第1〜第3接合鋼板(ガセットプレート)12、13、14を取り付け、第1接合鋼板12とウェブ4b、第2接合鋼板13と上フランジ4a、第3接合鋼板14と下フランジ4aをボルト接合することで、外周梁4を固定して位置決め及び接合する。そして、このように接合鋼板12、13、14を介して外周梁4を接合することにより、外周梁4のフランジ4a下方向では、外周柱1の被覆コンクリート3に埋設された部分で支圧伝達機構を形成し、剛接合を実現する(図17、図18、図19参照)。   As shown in FIGS. 10 and 11, the third joint structure D is formed by attaching the first to third joined steel plates (gusset plates) 12, 13, 14 to the core steel frame 2 of the outer peripheral column 1. 12 and the web 4b, the 2nd joining steel plate 13 and the upper flange 4a, and the 3rd joining steel plate 14 and the lower flange 4a are bolt-joined, and the outer periphery beam 4 is fixed and positioned and joined. Then, by joining the outer peripheral beam 4 through the bonded steel plates 12, 13, and 14 in this way, in the downward direction of the flange 4 a of the outer peripheral beam 4, the bearing pressure is transmitted at the portion embedded in the covering concrete 3 of the outer peripheral column 1. A mechanism is formed to realize a rigid joint (see FIGS. 17, 18, and 19).

さらに、図12から図16、図17、図18、図19(図7、図9、図11)に示すように、これら第一から第三の接合部構造(支圧伝達機構)Dにおいて、外周梁4のフランジ4a上方向では、外周柱1の被覆コンクリート3に埋設された部分で外周梁4と被覆コンクリート3とU字補強筋15で支圧伝達機構を形成し、剛接合を実現するようにしている。   Furthermore, as shown in FIGS. 12 to 16, 17, 18, and 19 (FIGS. 7, 9, and 11), in these first to third joint structure (support pressure transmission mechanism) D, In the upward direction of the flange 4a of the outer peripheral beam 4, a support pressure transmission mechanism is formed by the outer peripheral beam 4, the covering concrete 3, and the U-shaped reinforcing bar 15 in the portion embedded in the covering concrete 3 of the outer peripheral column 1, thereby realizing a rigid joint. I am doing so.

より具体的に、本実施形態の外殻構造Bの最上階部分は、外周柱1の被覆コンクリート3に、逆U字状に形成され、上下方向に延びるとともに外周梁4の埋設された部分を囲繞するように配設されたU字補強筋15と、柱U字主筋16と、横方向に配設され、接合部のU字補強筋15及び柱U字主筋16を囲繞するように配筋された接合部せん断補強筋17及び接合部内直線定着筋18、柱せん断補強筋19と、横方向に配設され、柱頭部のU字補強筋15及び柱U字主筋16を囲繞するように配筋された柱頭補強筋20と、柱U字主筋16(及びU字補強筋15)の幅方向の変位を抑えるための幅止筋21とを備えて構成されている。   More specifically, the uppermost floor portion of the outer shell structure B of the present embodiment is formed in an inverted U shape on the covering concrete 3 of the outer peripheral column 1 and extends in the vertical direction and is embedded in the outer peripheral beam 4. A U-shaped reinforcing bar 15 arranged so as to surround, a column U-shaped main reinforcing bar 16, and a bar arrangement arranged so as to surround the U-shaped reinforcing bar 15 and the column U-shaped main reinforcing bar 16 in the lateral direction. The joint shear reinforcing bar 17, the in-joint straight anchoring bar 18, and the column shear reinforcing bar 19 are arranged in the lateral direction so as to surround the U-shaped reinforcing bar 15 and the column U-shaped main bar 16 of the column head. The straight columnar reinforcement 20 and the width stop reinforcement 21 for suppressing the displacement of the column U-shaped main reinforcement 16 (and the U-shaped reinforcement 15) in the width direction are configured.

これにより、第一から第三の接合部構造(支圧伝達機構)Dにおいて、外周梁4のフランジ4a上方向では、外周梁4のフランジ4a上方向への支圧力を被覆コンクリート3を介して柱U字主筋16及びU字補強筋15に伝達させるようにして支圧伝達機構が形成され、剛接合を実現している。   As a result, in the first to third joint structure (bearing pressure transmission mechanism) D, in the upward direction of the flange 4 a of the outer peripheral beam 4, the support pressure in the upper direction of the flange 4 a of the outer peripheral beam 4 is applied via the covering concrete 3. A support pressure transmission mechanism is formed so as to be transmitted to the column U-shaped main reinforcing bar 16 and the U-shaped reinforcing bar 15 to realize a rigid joint.

さらに、図17、図18、図19に示すように、外周梁4のフェイス位置では、コンクリート3の支圧応力が高くなる。これに対し、外周梁4のフランジ4a上下位置に水平方向にせん断補強筋17、19と幅止筋21を配置して補強することで、大きな支圧応力を受け止めることができる。また、このとき、せん断補強筋17、19と幅止筋21は、外周梁4と平行に配置されるため、外周梁4及び柱U字主筋16と干渉することがなく、施工性を向上させることができる。   Furthermore, as shown in FIGS. 17, 18, and 19, the bearing stress of the concrete 3 increases at the face position of the outer peripheral beam 4. On the other hand, a large bearing stress can be received by arranging and reinforcing the shear reinforcement bars 17 and 19 and the width stop bars 21 in the horizontal direction above and below the flange 4a of the outer peripheral beam 4. Further, at this time, since the shear reinforcement bars 17 and 19 and the width stop bars 21 are arranged in parallel with the outer peripheral beam 4, they do not interfere with the outer peripheral beam 4 and the column U-shaped main bar 16, thereby improving the workability. be able to.

ここで、最上階の接合部構造Dの設計方法、外周梁4のフランジ面に対するかぶりコンクリート厚さの設計方法について説明する。   Here, a design method of the joint structure D on the uppermost floor and a design method of the cover concrete thickness with respect to the flange surface of the outer peripheral beam 4 will be described.

まず、最上階接合部構造Dの設計方法において、
N1:フェイス位置側の支圧力合計(kN)
N2:柱内側の支圧力合計(kN)
N1:三角形分布の支圧力N1の重心位置から支圧力入れ替わり位置(フェイスからxdの位置)までの長さ(mm)
N2:三角形分布の支圧力N2の重心位置から支圧力入れ替わり位置(フェイスからxdの位置)までの長さ(mm)
T1:フェイス位置側のU字補強筋の引張耐力の合計(kN)
T2:柱内側のU字補強筋の引張耐力の合計(kN)
T1:U字補強筋の引張耐力T1の重心位置から支圧力入れ替わり位置(フェイスからxdの位置)までの長さ(mm)
T2:U字補強筋の引張耐力T2の重心位置から支圧力入れ替わり位置(フェイスからxdの位置)までの長さ(mm)
とする。
First, in the design method of the top floor joint structure D,
N1: Total support pressure on the face position side (kN)
N2: Total support pressure inside the column (kN)
L N1 : Length (mm) from the gravity center position of the tributary support pressure N1 to the support pressure change position (position xd from the face)
L N2 : Length (mm) from the center of gravity of the tributary support pressure N2 to the support pressure change position (position xd from the face)
T1: Total tensile strength of U-shaped reinforcing bars on the face side (kN)
T2: Total tensile strength of the U-shaped reinforcing bars inside the column (kN)
L T1 : Length (mm) from the center of gravity position of the tensile strength T1 of the U-shaped reinforcing bar to the position where the support pressure is switched (position xd from the face)
L T2 : Length (mm) from the center of gravity position of the tensile strength T2 of the U-shaped reinforcing bar to the position where the support pressure is switched (position xd from the face)
And

U字補強筋15は、支圧力と支圧力の重心位置、U字補強筋15の引張耐力と引張耐力の重心位置を以下の式(1)、式(2)を満たすように設定することで、効率的な位置に配置することができる。ここで、U字補強筋15の引張耐力に柱U字主筋16による引張耐力を加えてもよい。   The U-shaped reinforcing bar 15 is set by setting the supporting pressure and the center of gravity position of the supporting pressure and the tensile strength and the gravity center position of the tensile strength of the U-shaped reinforcing bar 15 so as to satisfy the following expressions (1) and (2). Can be placed in an efficient position. Here, the tensile strength of the column U-shaped main bar 16 may be added to the tensile strength of the U-shaped reinforcing bar 15.

Figure 0006253189
Figure 0006253189
Figure 0006253189
Figure 0006253189

次に、外周梁4のフランジ面に対するかぶりコンクリート厚さの設計方法では、終局状態においても当該部分に押し抜き破壊が生じないようにかぶりコンクリート厚さを設計する。そして、ここでは、「鋼コンクリート構造接合部の応力伝達と抵抗機構:日本建築学会、2011年2月」に記載されたS造の柱脚を対象とした鉄骨フランジ面に対するかぶりコンクリート厚さの提案式を準用する。   Next, in the design method of the cover concrete thickness with respect to the flange surface of the outer peripheral beam 4, the cover concrete thickness is designed so that the punching failure does not occur in the portion even in the final state. And here, the proposal of the cover concrete thickness for the steel flange base for the S column base described in “Stress transmission and resistance mechanism of steel-concrete joints: Architectural Institute of Japan, February 2011” The formula applies mutatis mutandis.

具体的に、鉄骨部材が塑性化するまでその部分がパンチングシヤ破壊を起こさないための鉄骨部材の埋め込み長さの下限値と、鉄骨フランジ面に対するかぶりコンクリート厚さの下限値rsの条件として、加藤らにより提案されている以下の式(3)、式(4)を用いてかぶりコンクリート厚さの設計を行う(図20参照)。 Specifically, the lower limit value b l 1 of the embedding length of the steel member so that the portion does not cause punching shear failure until the steel member is plasticized, and the lower limit value rs d 1 of the cover concrete thickness with respect to the steel flange surface As the condition, the cover concrete thickness is designed using the following formulas (3) and (4) proposed by Kato et al. (See FIG. 20).

Figure 0006253189
Figure 0006253189
Figure 0006253189
Figure 0006253189

ここに、
:鉄骨部材の埋め込み深さの下限値
D:鉄骨部材のせい
b:鉄骨部材の幅
:鉄骨フランジの厚さ
σ:鉄骨の降伏応力度
rs:鉄骨フランジ面に対するかぶりコンクリート厚さの下限値
l:鉄骨部材の埋込み長さ
here,
b l 1 : lower limit value of embedding depth of steel member
s D: Because of steel members
s b: Steel member width t f : Steel flange thickness
s σ Y : Yield stress of steel frame
rs d 1 : Lower limit value of the cover concrete thickness with respect to the steel flange surface
b l: Embedding length of steel member

また、上記のかぶり厚さを確保すると、最上階のスラブ厚さ内に納まらなくなるケースもある。これに対し、本実施形態は外殻構造Bであるため、図21に示すように、最上階のスラブ22の厚さ納まらなかった壁柱1は建物Aの外周部のみとなる。このため、この場合には、パラペット23と兼用が可能であり、屋上の外殻内側をフラットな状態で維持することが可能である。   Moreover, if the above-mentioned cover thickness is ensured, there are cases in which it cannot be accommodated within the slab thickness on the top floor. On the other hand, since this embodiment is the outer shell structure B, the wall pillar 1 that does not fit the thickness of the slab 22 on the uppermost floor is only the outer peripheral portion of the building A as shown in FIG. For this reason, in this case, the parapet 23 can be used together, and the inside of the outer shell of the roof can be maintained in a flat state.

したがって、本実施形態の建物の外殻構造Bにおいては、最上階の外殻構造のSRC造の外周壁1とS造の外周梁4の接合部構造を、外周梁4のフランジ4aで外周柱1のコンクリート3との下方向の支圧伝達機構を形成し、外周梁4のフランジ4aとU字補強筋15で外周柱1のコンクリート3との上方向の支圧伝達機構を形成するように構成した。これにより、梁上方向のコンクリート厚さがかぶりコンクリート程度であっても、確実に支圧伝達機構を形成することが可能になる。   Therefore, in the outer shell structure B of the building according to the present embodiment, the joint structure of the SRC outer peripheral wall 1 and the S outer peripheral beam 4 of the outermost shell structure of the uppermost floor is connected to the outer peripheral column by the flange 4a of the outer peripheral beam 4. A downward bearing transmission mechanism with the concrete 3 of 1 is formed, and an upward bearing transmission mechanism with the concrete 3 of the outer peripheral column 1 is formed by the flange 4a of the outer peripheral beam 4 and the U-shaped reinforcing bar 15. Configured. As a result, even if the concrete thickness in the beam upper direction is about the same as the cover concrete, it is possible to reliably form the bearing transmission mechanism.

よって、中間階だけでなく最上階に対してもSRC造の壁柱1と鉄骨造の梁4の支圧伝達機構を形成して剛接合が可能になり、より確実に、耐震性能に優れた建物Aを構築することが可能になるとともに、例えば14m超の大スパンでも支障なく実現することが可能になる。   Therefore, not only the middle floor but also the top floor can form a bearing transmission mechanism of the SRC wall pillar 1 and the steel beam 4 to enable rigid joining, and more reliably and excellent in earthquake resistance. It becomes possible to construct the building A, and it can be realized without any trouble even with a large span exceeding 14 m, for example.

以上、本発明に係る建物の外殻構造の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the outer shell structure of the building which concerns on this invention was described, this invention is not limited to said one Embodiment, It can change suitably in the range which does not deviate from the meaning.

1 外周柱(SRC造の壁柱)
2 芯鉄骨
2a フランジ
2b ウェブ
3 被覆コンクリート(鉄筋コンクリート)
4 外周梁(S造の梁)
5 内部梁(S造の梁)
5a フランジ
5b ウェブ
6 鋼板(スチフナ)
7 せん断補強筋
8 幅止筋
9 継手板
10 ボルト
11 接合鋼板
12 接合鋼板
13 接合鋼板
14 接合鋼板
15 U字補強筋
16 柱U字主筋
17 接合部せん断補強筋
18 接合部内直線定着筋
19 柱せん断補強筋
20 柱頭補強筋
21 幅止筋
22 スラブ
23 パラペット
A 建物
B 建物の外殻構造
C 中間階の外周柱と外周梁の接合部構造(支圧伝達機構)
D 最上階の外周柱と外周梁の接合部構造(支圧伝達機構)
1 Peripheral columns (SRC wall columns)
2 Core steel 2a Flange 2b Web 3 Covered concrete (steel reinforced concrete)
4 Peripheral beam (S-structured beam)
5 Internal beam (S-shaped beam)
5a Flange 5b Web 6 Steel plate (stiffener)
7 Shear reinforcement bar 8 Securing bar 9 Joint plate 10 Bolt 11 Bonded steel sheet 12 Bonded steel sheet 13 Bonded steel sheet 14 Bonded steel sheet 15 U-shaped reinforcement bar 16 Column U-shaped main bar 17 Joint shear reinforcement bar 18 Joint fixing line 19 Column shear Reinforcing bar 20 Columnar reinforcing bar 21 Securing bar 22 Slab 23 Parapet A Building B Building outer shell structure C Joint structure of outer column and outer beam on intermediate floor (supporting pressure transmission mechanism)
D Joint structure of outer peripheral column and outer peripheral beam on the top floor (support pressure transmission mechanism)

Claims (1)

芯鉄骨及び鉄筋コンクリートからなるSRC造の外周柱と、前記外周柱の鉄筋コンクリートに端部側を埋設して前記外周柱に剛接合されるS造の外周梁とを備えてなる建物の外殻構造であって、
建物の最上階の前記外周柱と前記外周梁の接合部構造は、前記外周梁の鉄骨が前記外周柱の前記芯鉄骨に対して構造的に接合することなく配設されると共に、上下方向に延設され、前記外周梁の端部側を囲繞するように逆U字状に配筋された柱U字主筋とU字補強筋を備えて構成され、
少なくとも前記外周梁のフランジと前記U字補強筋によって、前記外周柱の鉄筋コンクリートと前記外周梁との間で支圧力を伝達する前記建物の最上階の支圧伝達機構が形成されていることを特徴とする建物の外殻構造。
An outer shell structure of a building comprising an SRC outer peripheral column made of core steel and reinforced concrete, and an S outer peripheral beam which is embedded in the reinforced concrete of the outer peripheral column and is rigidly joined to the outer peripheral column. There,
The joint structure between the outer peripheral column and the outer peripheral beam on the uppermost floor of the building is arranged without the steel frame of the outer peripheral beam being structurally bonded to the core steel frame of the outer peripheral column, and in the vertical direction. It is provided with a pillar U-shaped main bar and a U-shaped reinforcing bar which are extended and arranged in an inverted U shape so as to surround the end side of the outer peripheral beam,
At least the flange of the outer peripheral beam and the U-shaped reinforcing bar form a support transmission mechanism on the uppermost floor of the building that transmits the support pressure between the reinforced concrete of the outer peripheral column and the outer peripheral beam. The outer shell structure of the building.
JP2013241181A 2013-11-21 2013-11-21 Building shell structure Active JP6253189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241181A JP6253189B2 (en) 2013-11-21 2013-11-21 Building shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241181A JP6253189B2 (en) 2013-11-21 2013-11-21 Building shell structure

Publications (2)

Publication Number Publication Date
JP2015101839A JP2015101839A (en) 2015-06-04
JP6253189B2 true JP6253189B2 (en) 2017-12-27

Family

ID=53377795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241181A Active JP6253189B2 (en) 2013-11-21 2013-11-21 Building shell structure

Country Status (1)

Country Link
JP (1) JP6253189B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175144A (en) * 1984-09-21 1986-04-17 鹿島建設株式会社 Structure of high building
JPH07310367A (en) * 1994-05-17 1995-11-28 Ohbayashi Corp Post/beam joint area-reinforcing structure of reinforced concrete post and steel beam
JPH11166267A (en) * 1997-12-03 1999-06-22 Shimizu Corp Capital structure of column reinforced-concrete constructed-beam steel-constructed mixed structure
KR100797194B1 (en) * 2007-04-26 2008-01-29 (주)엠씨에스공법 Composite concrete column and construction method using the same

Also Published As

Publication number Publication date
JP2015101839A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6009778B2 (en) Joint structure of steel pier and concrete pile foundation
KR20120074130A (en) Compisite column structure for steel and concrete
JP6543084B2 (en) Structure
JP5316490B2 (en) Steel sheet pile underground wall structure
JP2015172299A (en) Opening reinforcement structure in rc beam
JP5789173B2 (en) S-beam RC shear wall structure
JP6013028B2 (en) Outer shell structure
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP5841887B2 (en) Column base pin structure
JP6253189B2 (en) Building shell structure
JP6143068B2 (en) Underground structure of building
JP2010024775A (en) Reinforcement cage lifting method, reinforcement cage, and reinforcement cage assembling method
JP6353647B2 (en) Seismic isolation device joint structure
JP2018013012A (en) Column base joint structure
KR101193796B1 (en) Seismic Reinforcing Method of Column & Girder Frame
JP4936172B2 (en) Beam-column joint structure and building frame structure
JP4772308B2 (en) How to build a unit building
CN106121077B (en) A kind of antidetonation connection structure of prestressed concrete double T plate
JP6752006B2 (en) Fixed structure of building unit and unit building
KR102144579B1 (en) Module structure with shear reinforcement device
JP5843419B2 (en) Outer frame with eccentric column beam joint
JP7155488B2 (en) Structural Seismic Reinforcement Structure
KR101188367B1 (en) Punching shear reinforcement for reinforcing flat-plate slab
JP5248784B2 (en) Column and beam joint structure
JP6383559B2 (en) Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6253189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250