JP6249934B2 - Differential pressure flow meter - Google Patents

Differential pressure flow meter Download PDF

Info

Publication number
JP6249934B2
JP6249934B2 JP2014250950A JP2014250950A JP6249934B2 JP 6249934 B2 JP6249934 B2 JP 6249934B2 JP 2014250950 A JP2014250950 A JP 2014250950A JP 2014250950 A JP2014250950 A JP 2014250950A JP 6249934 B2 JP6249934 B2 JP 6249934B2
Authority
JP
Japan
Prior art keywords
differential pressure
space
fluid
measured
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250950A
Other languages
Japanese (ja)
Other versions
JP2016114380A (en
Inventor
小野 弘文
弘文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2014250950A priority Critical patent/JP6249934B2/en
Publication of JP2016114380A publication Critical patent/JP2016114380A/en
Application granted granted Critical
Publication of JP6249934B2 publication Critical patent/JP6249934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は差圧流量計に関するものであり、特に微小流量から大流量までの測定が1種類のもので可能な差圧流量計に係る。   The present invention relates to a differential pressure flow meter, and more particularly to a differential pressure flow meter capable of measuring from a minute flow rate to a large flow rate with a single type.

差圧流量計には、キャピラリ(毛細管)、オリフィス、長円ノズル或いは円錐形ベンチュリ管を用いたものなど様々なタイプのものがある。先行例としてオリフィス及びキャピラリ(毛細管)を利用した差圧流量計を例にとって説明する。   There are various types of differential pressure flowmeters such as those using capillaries (capillaries), orifices, oval nozzles or conical venturi tubes. As a prior example, a differential pressure flow meter using an orifice and a capillary (capillary) will be described as an example.

流体がオリフィスを通過すると、このオリフィスにより圧力降下が生じる。ここで、JIS(日本工業規格)で定められている条件を満たした場合、オリフィスの両側に設置された圧力センサの測定値P1 ,P2 を用いてオリフィスの前後における圧力差(P1 −P2 )から被測定流体Fの流量を求めることができる(特許文献1)。   As fluid passes through the orifice, the orifice causes a pressure drop. Here, when the conditions defined in JIS (Japanese Industrial Standards) are satisfied, the pressure difference (P1 -P2) before and after the orifice is measured using the measured values P1 and P2 of the pressure sensors installed on both sides of the orifice. The flow rate of the fluid F to be measured can be obtained (Patent Document 1).

特許文献1に示されている差圧流量計は、ある程度流量の大きいものには有効であるが、微少流量の測定が中心となる半導体製造工程で使用されるような差圧流量計には不向きである。   The differential pressure flow meter disclosed in Patent Document 1 is effective for a flow having a certain amount of flow, but is not suitable for a differential pressure flow meter used in a semiconductor manufacturing process in which measurement of a minute flow rate is central. It is.

何故ならば上述のようなオリフィス(又はノズル)を用いた差圧流量計は、微少流量の測定において、絞り部分における十分な圧力差を得ることが困難であり、そのためには、絞り部分の径を極微小径にしなければならなかった。これには高度な技術を要する微細加工が必要であるばかりか、この絞り部分の製造コストが多大となることが避けられなかった。加えて、絞り部分の径が小さくなると、この絞り部分を通過する液体に含まれている極小不純物(パーティクル)によって閉塞することがあるし、絞り部分の下流側で、減圧沸騰による様々な障害を引き起こすキャビテーション(発泡現象)が起こることもあった。   This is because the differential pressure flowmeter using the orifice (or nozzle) as described above is difficult to obtain a sufficient pressure difference in the throttle portion in the measurement of a minute flow rate. Must have a very small diameter. This not only requires fine processing that requires high technology, but also inevitably increases the manufacturing cost of the drawn portion. In addition, when the diameter of the throttle portion becomes small, it may be blocked by the very small impurities (particles) contained in the liquid passing through the throttle portion, and various obstacles due to vacuum boiling occur on the downstream side of the throttle portion. In some cases, cavitation (foaming phenomenon) occurred.

そこで、特許文献2に示す発明が提案された。特許文献2に示す発明はキャピラリ(毛細管)を用いたもので、流路となるキャピラリの内径を大きくするためと、これを本体内にコンパクトに収納するために湾曲部分を多用してその全長を長くしてこれを差圧発生部とした。そして、この差圧発生部の前後において発生する圧力差(P1−P2)を圧力センサで計測し、前記圧力差の測定値から液体の流量を演算処理部で求めるようにした。なお、温度調節部で差圧発生部を流れる液体の温度を一定温度に調節している。そして一定温度におけるその流体の粘度を記憶しておくことにより、その流体の流量を正確に求めることができるとしている。   Therefore, the invention shown in Patent Document 2 has been proposed. The invention shown in Patent Document 2 uses a capillary (capillary tube), and in order to increase the inner diameter of the capillary serving as the flow path and to store it in the main body in a compact manner, the curved portion is frequently used to reduce its overall length. This was used as a differential pressure generator. And the pressure difference (P1-P2) which generate | occur | produces before and after this differential pressure generation part was measured with the pressure sensor, and the flow volume of the liquid was calculated | required by the arithmetic processing part from the measured value of the said pressure difference. In addition, the temperature of the liquid flowing through the differential pressure generating unit is adjusted to a constant temperature by the temperature adjusting unit. By storing the viscosity of the fluid at a constant temperature, the flow rate of the fluid can be accurately obtained.

特開2001−125649号公報JP 2001-125649 A 特許5119208号公報Japanese Patent No. 5119208

しかしながら、特許文献2の方式は前述のように、太くて長い差圧発生部(キャピラリ)をコンパクトに収納するために曲線で構成している。その結果、複雑な加工が必要となり加工コストが増大する。加えて、原料液体の成膜装置への供給量は操業環境によって変化することがあるが、この方式では差圧発生部(キャピラリ)が固定であるためキャピラリアセンブリ全体を交換しない限り対応不可能である。   However, as described above, the method of Patent Document 2 is configured with a curve in order to accommodate a thick and long differential pressure generating portion (capillary) in a compact manner. As a result, complicated processing is required and processing costs increase. In addition, the supply amount of the raw material liquid to the film deposition system may vary depending on the operating environment. However, this method cannot be handled unless the entire capillary assembly is replaced because the differential pressure generation unit (capillary) is fixed. is there.

本発明は、このような従来技術の問題点に鑑みてなされたもので、第1に原料液体或いは原料ガスの微少流量から大流量まで、流量の大幅な変更に対しても簡単に対応することができ、第2に測定精度が高いにも拘わらず製造コストも安く設計の簡単な差圧流量計を提供することを目的とする。   The present invention has been made in view of such problems of the prior art. First, it can easily cope with a large change in flow rate from a very small flow rate to a large flow rate of a raw material liquid or gas. Secondly, an object is to provide a differential pressure flow meter that is simple in design with low manufacturing cost despite high measurement accuracy.

請求項1に記載の差圧流量計Aは、
被測定流体Fが通流する流量計本体1と、
流量計本体1に内蔵され、被測定流体Fの流れに抵抗を与える差圧発生部10と、
該差圧発生部10の両側にそれぞれ設けられ、前記差圧発生部10に向かう被測定流体Fが流れ込む入口側空間12と、前記差圧発生部10からの被測定流体Fが外部に向かって流出する出口側空間14と、
入口側空間12の圧力P1を検出する入口側圧力センサPG1及び出口側空間14の圧力P2を検出する出口側圧力センサPG2と、
両センサPG1,PG2の測定値の差分である圧力差(P1−P2)から被測定流体Fの流量を求める演算処理部5とで構成され、
前記差圧発生部10は、
入口側空間12と出口側空間14とを繋ぐ円筒状空間16と、流量計本体1の入口側上部にてその前面から円筒状空間16の入口側に連通する芯材装着孔2に挿脱可能に嵌り込み、円筒状空間16に対してその先端の芯材部分18bが挿入されることによって円筒状空間16との間の円環状の通流用間隙Xに被測定流体Fを通流させる円柱状部材18とで構成されたことを特徴とする。
The differential pressure flow meter A according to claim 1 is:
A flow meter body 1 through which the fluid F to be measured flows;
A differential pressure generator 10 that is built into the flow meter body 1 and provides resistance to the flow of the fluid F to be measured;
The inlet side space 12 provided on both sides of the differential pressure generating unit 10 and into which the fluid F to be measured flowing toward the differential pressure generating unit 10 flows, and the fluid F to be measured from the differential pressure generating unit 10 toward the outside. An outlet side space 14 that flows out;
An inlet side pressure sensor PG1 for detecting the pressure P1 of the inlet side space 12, and an outlet side pressure sensor PG2 for detecting the pressure P2 of the outlet side space 14,
And an arithmetic processing unit 5 for obtaining a flow rate of the fluid F to be measured from a pressure difference (P1-P2) which is a difference between measured values of both sensors PG1, PG2.
The differential pressure generator 10
The cylindrical space 16 connecting the inlet side space 12 and the outlet side space 14 can be inserted into and removed from the core material mounting hole 2 communicating with the inlet side of the cylindrical space 16 from the front surface at the upper part of the inlet side of the flowmeter body 1. Is inserted into the cylindrical space 16, and the core portion 18 b at the tip thereof is inserted into the cylindrical space 16, so that the fluid F to be measured flows through the annular flow gap X between the cylindrical space 16 and the cylindrical space 16. It is characterized by comprising the member 18.

請求項2に記載の差圧流量計Aは、請求項1において、円柱状部材18が同心にて円筒状空間16に配設されていることを特徴とする。   A differential pressure flow meter A according to a second aspect is characterized in that the columnar member 18 is concentrically disposed in the cylindrical space 16 in the first aspect.

これによれば、円柱状部材18が円筒状空間16に挿脱可能に配設されているので、被測定流体Fが微少流量の場合は円柱状部材18の芯材部分18bの直径を太くして通流用間隙Xを狭くし、逆に被測定流体Fが大流量の場合は円柱状部材18の直径を細くして通流用間隙Xを広くすることで、微少流量から大流量まで対応することが出来る。即ち、流量変更は円柱状部材18の交換だけで足る。   According to this, since the columnar member 18 is detachably disposed in the cylindrical space 16, the diameter of the core portion 18b of the columnar member 18 is increased when the fluid F to be measured has a very small flow rate. The flow gap X is narrowed, and conversely, when the fluid F to be measured has a large flow rate, the diameter of the cylindrical member 18 is narrowed to widen the flow gap X so that the flow rate can be changed from a small flow rate to a large flow rate. I can do it. That is, the flow rate can be changed only by replacing the cylindrical member 18.

そして、円柱状部材18が円筒状空間16に同心に配設されておれば、「同心円管を流れる流体の差圧と流量の関係式」が良く当て嵌まり、精度よく測定できる。   If the columnar member 18 is concentrically disposed in the cylindrical space 16, the “relational expression of the differential pressure of the fluid flowing through the concentric circular pipe and the flow rate” is well applied and measurement can be performed with high accuracy.

本発明の1実施例の断面図である。It is sectional drawing of one Example of this invention. 図1に対して直角な方向の断面図である。It is sectional drawing of the direction orthogonal to FIG.

以下、本発明を図示実施例に従って詳述する。本発明の差圧流量計Aの流量計本体1は直方体の金属部材で、内部に被測定流体Fの通流路が形成されている。該通流路は、入口11、入口側空間12、差圧発生部10の一部を構成する円筒状空間16、出口側空間14及び出口15で構成されている。なお、図は本発明の差圧流量計Aを模式的に示したものである。   Hereinafter, the present invention will be described in detail according to illustrated embodiments. The flow meter main body 1 of the differential pressure flow meter A of the present invention is a rectangular parallelepiped metal member, in which a flow path for the fluid F to be measured is formed. The flow path includes an inlet 11, an inlet-side space 12, a cylindrical space 16 that forms part of the differential pressure generating unit 10, an outlet-side space 14, and an outlet 15. The figure schematically shows a differential pressure flow meter A of the present invention.

円筒状空間16は流量計本体1の内部中央にて図2に示すように断面円形の直洞窟状に抉られたの空間である。流量計本体1の前端部と後端部には入口11と出口15が形成されている。そして、流量計本体1の底部前端部には入口側空間12が、底部後端部には出口側空間14が凹設されており、それぞれに入口側圧力センサPG1、出口側圧力センサPG2が嵌め込まれ、それぞれのダイアフラムD1,D2が入口側空間12、出口側空間14内に面するように配置されている。   The cylindrical space 16 is a space formed in a straight cave shape with a circular cross section as shown in FIG. An inlet 11 and an outlet 15 are formed at the front end and the rear end of the flow meter main body 1. An inlet-side space 12 is recessed at the bottom front end of the flow meter main body 1 and an outlet-side space 14 is recessed at the bottom rear end, and the inlet-side pressure sensor PG1 and the outlet-side pressure sensor PG2 are fitted in each. The diaphragms D1 and D2 are disposed so as to face the inlet side space 12 and the outlet side space 14, respectively.

前記入口側空間12と出口側空間14には、入口11と出口15が繋がっており、更に入口側空間12は、その一部である入口側連絡通路17で円筒状空間16の入口側に、出口側空間14は、その一部である出口側連絡通路19で円筒状空間16の出口側に繋がり、一通の通流路を構成する。   An inlet 11 and an outlet 15 are connected to the inlet side space 12 and the outlet side space 14, and the inlet side space 12 is further connected to the inlet side of the cylindrical space 16 by an inlet side communication passage 17 that is a part of the inlet side space 12. The outlet side space 14 is connected to the outlet side of the cylindrical space 16 by an outlet side communication passage 19 which is a part of the outlet side space 14 and constitutes a single flow path.

また、流量計本体1の入口側上部にはその前面から円筒状空間16の入口側に連通する芯材装着孔2が穿設され、その孔縁に気密性又は液密性を確保するためにOリング8が嵌め込まれている。芯材装着孔2と円筒状空間16とは本実施例では同心(即ち、中心軸が一致すること。換言すれば、同軸である。)に設けられている。本実施例では芯材装着孔2の直径は円筒状空間16の直径より細く形成されている。   Further, a core material mounting hole 2 communicating from the front surface to the inlet side of the cylindrical space 16 is formed in the upper part on the inlet side of the flow meter main body 1, and in order to ensure airtightness or liquid tightness at the hole edge. An O-ring 8 is fitted. In the present embodiment, the core material mounting hole 2 and the cylindrical space 16 are provided concentrically (that is, the central axes coincide with each other, in other words, are coaxial). In the present embodiment, the diameter of the core material mounting hole 2 is smaller than the diameter of the cylindrical space 16.

円柱状部材18は、嵌着部分18aの基部に一回り直径が大なフランジ18cが設けられており、芯材装着孔2に本体部分が挿脱可能に形成されている。芯材装着孔2に挿脱可能に嵌まり込む嵌着部分18aは芯材装着孔2と同径に形成され、前記Oリング8により、内部の気密を保つようになっている。円筒状空間16に挿入される、円柱状部材18の芯材部分18bの直径は後述する円環状の通流用間隙Xを流れる被測定流体Fの流量に合わせて適宜設定される。円柱状部材18は、図の場合は芯材部分18bも含め全体が円柱状であるが、流量が多くなれば仮想線で示すように、円筒状空間16に挿入される芯材部分18bの直径が細く形成されたものが用いられることになり、この場合は、段付き状の円柱になる。従って、円柱状部材18は流量範囲によって多種類のものが用意されることになる。これによって微小流量から大流量まで広範囲の計測が可能となる。   The columnar member 18 is provided with a flange 18c having a large diameter at the base of the fitting portion 18a, and the main body portion is formed in the core material mounting hole 2 so that the main body portion can be inserted and removed. A fitting portion 18 a that is removably fitted into the core material mounting hole 2 is formed with the same diameter as the core material mounting hole 2, and the O-ring 8 keeps the inside airtight. The diameter of the core portion 18b of the columnar member 18 inserted into the cylindrical space 16 is appropriately set according to the flow rate of the fluid F to be measured flowing through the annular flow gap X described later. In the case of the figure, the entire cylindrical member 18 including the core part 18b is cylindrical, but as the flow rate increases, the diameter of the core part 18b inserted into the cylindrical space 16 is indicated by the phantom line. In this case, a stepped cylinder is formed. Therefore, many types of cylindrical members 18 are prepared depending on the flow rate range. This makes it possible to measure a wide range from minute flow rates to large flow rates.

被測定流体Fの計測に当たっては、被測定流体Fの流量を勘案して最も適切な円柱状部材18を選び、芯材装着孔2に挿入固定する。これにより、円柱状部材18の芯材部分18bの中心軸は円筒状空間16の中心軸に一致した状態(同心状態)で挿入される。そして、円筒状空間16に芯材部分18bが挿入され、両者の間に均等な間隔で円環状の隙間が形成される。この円環状の隙間が通流用間隙Xで、被測定流体Fに通流抵抗を与える差圧発生部10となる。そして、差圧発生部10の通路Lは通流用間隙Xの入口から出口までの長さである。なお、芯材部分18bと円筒状空間16とは同軸であることが好ましいが、測定に影響が出ない範囲内であれば少しのずれは実質的に同軸である。なお、同心円管(通流用間隙X)を流れる流体の差圧ΔPと流量Qの関係式を以下に示す。   In measuring the fluid F to be measured, the most appropriate columnar member 18 is selected in consideration of the flow rate of the fluid F to be measured, and is inserted and fixed in the core material mounting hole 2. Thereby, the central axis of the core portion 18 b of the columnar member 18 is inserted in a state (concentric state) that coincides with the central axis of the cylindrical space 16. And the core part 18b is inserted in the cylindrical space 16, and an annular | circular shaped clearance gap is formed at equal intervals between both. This annular gap is the flow gap X and serves as the differential pressure generator 10 that provides flow resistance to the fluid F to be measured. The passage L of the differential pressure generating unit 10 has a length from the inlet to the outlet of the flow gap X. The core portion 18b and the cylindrical space 16 are preferably coaxial, but a slight deviation is substantially coaxial as long as the measurement does not affect the measurement. A relational expression between the differential pressure ΔP of the fluid flowing through the concentric circular pipe (flow gap X) and the flow rate Q is shown below.

Q=ΔPπ[a4−b4−{(a2−b22/In(a/b)}]/8μL
Q =流量
ΔP=差圧
a =円筒状空間16の半径
b =円柱状部材18の半径
μ =流体の粘度
L =流路長さ
演算処理部5では入口側圧力センサPG1及び出口側圧力センサPG2からの圧力データの入力を受け、その差圧ΔPを計算し、流量Qを計算する。なお、各種流体の正確な流量を測定するためには、電子天秤などを用いて流量を計測し、校正する手法が取られる。
Q = ΔPπ [a 4 −b 4 − {(a 2 −b 2 ) 2 / In (a / b)}] / 8 μL
Q = flow rate ΔP = differential pressure a = radius of cylindrical space 16 b = radius of columnar member 18 μ = fluid viscosity L = flow path length In the arithmetic processing unit 5, the inlet side pressure sensor PG1 and the outlet side pressure sensor PG2 The pressure data is input, the differential pressure ΔP is calculated, and the flow rate Q is calculated. In order to measure the accurate flow rate of various fluids, a method of measuring and calibrating the flow rate using an electronic balance or the like is used.

本発明は、高温流体に対しても適用可能であり、その場合、高温に耐える圧力センサを使用すると共に、流量計全体(演算処理部を除く)を高温に加熱して温度調整する。   The present invention can also be applied to a high-temperature fluid. In this case, a pressure sensor that can withstand high temperatures is used, and the entire flowmeter (excluding the arithmetic processing unit) is heated to a high temperature to adjust the temperature.

A:差圧流量計、D1,D2:ダイヤフラム、F:被測定流体、P1:入口側圧力、P2:出口側圧力、PG1:入口側圧力センサ、PG2:出口側圧力センサ、X:通流用間隙、1:流量計本体、2:芯材装着孔、5:演算処理部、8:Oリング、10:差圧発生部、11:入口、12:入口側空間、14:出口側空間、15:出口、16:円筒状空間、17:入口側連絡通路、18:円柱状部材、18a:嵌着部分、18b:芯材部分、18c:フランジ、19:出口側連絡通路。   A: Differential pressure flow meter, D1, D2: Diaphragm, F: Fluid to be measured, P1: Inlet side pressure, P2: Outlet side pressure, PG1: Inlet side pressure sensor, PG2: Outlet side pressure sensor, X: Flow gap 1: flow meter main body, 2: core material mounting hole, 5: arithmetic processing unit, 8: O-ring, 10: differential pressure generating unit, 11: inlet, 12: inlet side space, 14: outlet side space, 15: Outlet, 16: cylindrical space, 17: inlet side communication passage, 18: columnar member, 18a: fitting portion, 18b: core material portion, 18c: flange, 19: outlet side communication passage.

Claims (2)

被測定流体が通流する流量計本体と、
前記流量計本体に内蔵され、被測定流体の流れに抵抗を与える差圧発生部と、
該差圧発生部の両側にそれぞれ設けられ、前記差圧発生部に向かう被測定流体が流れ込む入口側空間と、前記差圧発生部からの被測定流体が外部に向かって流出する出口側空間と、
前記入口側空間の圧力を検出する入口側圧力センサ及び前記出口側空間の圧力を検出する出口側圧力センサと、
両センサの測定値の差分である圧力差から被測定流体の流量を求める演算処理部とで構成され、
前記差圧発生部は、前記入口側空間と前記出口側空間とを繋ぐ円筒状空間と、前記流量計本体の入口側上部にてその前面から前記円筒状空間の入口側に連通する芯材装着孔に挿脱可能に嵌り込み、前記円筒状空間に対してその先端の芯材部分が挿入されることによって前記円筒状空間との間の円環状の通流用隙間に被測定流体を通流させる円柱状部材とで構成されたことを特徴とする差圧流量計。
A flow meter body through which the fluid to be measured flows;
A differential pressure generator that is built in the flow meter body and provides resistance to the flow of the fluid to be measured;
An inlet side space provided on both sides of the differential pressure generating unit, and into which the fluid to be measured flowing toward the differential pressure generating unit flows; and an outlet side space from which the fluid to be measured from the differential pressure generating unit flows out to the outside. ,
An outlet-side pressure sensor for detecting the pressure of the inlet-side pressure sensor and the outlet-side space for detecting the pressure of the inlet-side space,
An arithmetic processing unit that obtains the flow rate of the fluid to be measured from the pressure difference that is the difference between the measured values of both sensors,
The differential pressure generating portion, a cylindrical space connecting said outlet space and the inlet side space, the core communicating with the inlet side of the cylindrical space from the front at an inlet side upper portion of the meter body mounted A fluid to be measured is caused to flow through an annular flow gap between the cylindrical space by being inserted into the hole so as to be removably inserted and a core material portion at the tip thereof is inserted into the cylindrical space. A differential pressure flow meter comprising a cylindrical member.
前記円柱状部材が同心にて前記円筒状空間に配設されていることを特徴とする請求項1に記載の差圧流量計。 Differential pressure flow meter according to claim 1, wherein said cylindrical member is disposed in the cylindrical space at concentric.
JP2014250950A 2014-12-11 2014-12-11 Differential pressure flow meter Active JP6249934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250950A JP6249934B2 (en) 2014-12-11 2014-12-11 Differential pressure flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250950A JP6249934B2 (en) 2014-12-11 2014-12-11 Differential pressure flow meter

Publications (2)

Publication Number Publication Date
JP2016114380A JP2016114380A (en) 2016-06-23
JP6249934B2 true JP6249934B2 (en) 2017-12-20

Family

ID=56141516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250950A Active JP6249934B2 (en) 2014-12-11 2014-12-11 Differential pressure flow meter

Country Status (1)

Country Link
JP (1) JP6249934B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972514U (en) * 1982-11-05 1984-05-17 大倉電気株式会社 Diversion mechanism
DE69212129T2 (en) * 1991-12-18 1997-01-23 Pierre Delajoud Mass flow meter with constricting element
JP2005274265A (en) * 2004-03-24 2005-10-06 Nippon M K S Kk Flow meter

Also Published As

Publication number Publication date
JP2016114380A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
US10969263B2 (en) Fluid meter
JP6078202B2 (en) Measurement of process variables using a primary element connection platform.
JP2008026153A (en) Mass flowmeter
CN105021236B (en) Flow meter
US11499855B2 (en) Apparatus for measuring a fluid flow through a pipe of a semiconductor manufacturing device
EP1355132A2 (en) Adaptable fluid mass flow meter device
JP2009524058A (en) A reduced-bore vortex flowmeter with a stepped inlet.
US9500503B2 (en) Differential pressure type flowmeter and flow controller provided with the same
KR101178038B1 (en) Differential pressure-type mass flow meter with double nozzles
US6732596B2 (en) Critical gas flow measurement apparatus and method
JP6249934B2 (en) Differential pressure flow meter
CN103196502A (en) High-temperature Bi Toba flowmeter
JP2018081025A (en) Pressure type flowmeter
WO2019031056A1 (en) Flowmeter
KR101958289B1 (en) Valve assembled flowmeter
US20050211000A1 (en) Flowmeter
EP3198237B1 (en) A flow-rate measuring system for drilling muds and/or for multiphase mixtures
JP5119208B2 (en) Differential pressure flow meter
KR200259846Y1 (en) Flow measuring element
CN113405729B (en) Leakage-quantity-adjustable leakage hole based on laminar flow principle
JP4825254B2 (en) Differential pressure flow meter
CN204128604U (en) A kind of Ovshinsky T clings to flowmeter
JPH0777536A (en) Micro-differential pressure generator
KR200259845Y1 (en) Flow measuring element
WO2020208697A1 (en) Flow rate sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250