JP6249818B2 - Cationic polymerizable resin composition, method for producing the same, and bonded structure - Google Patents

Cationic polymerizable resin composition, method for producing the same, and bonded structure Download PDF

Info

Publication number
JP6249818B2
JP6249818B2 JP2014035199A JP2014035199A JP6249818B2 JP 6249818 B2 JP6249818 B2 JP 6249818B2 JP 2014035199 A JP2014035199 A JP 2014035199A JP 2014035199 A JP2014035199 A JP 2014035199A JP 6249818 B2 JP6249818 B2 JP 6249818B2
Authority
JP
Japan
Prior art keywords
resin composition
quaternary phosphonium
polymerizable resin
phosphonium salt
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014035199A
Other languages
Japanese (ja)
Other versions
JP2015160861A (en
Inventor
洋平 水口
洋平 水口
阿部 真二
真二 阿部
亜季実 田中
亜季実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2014035199A priority Critical patent/JP6249818B2/en
Publication of JP2015160861A publication Critical patent/JP2015160861A/en
Application granted granted Critical
Publication of JP6249818B2 publication Critical patent/JP6249818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カチオン重合性樹脂組成物、その製造方法及び接着構造体に関する。   The present invention relates to a cationic polymerizable resin composition, a method for producing the same, and an adhesive structure.

従来、エポキシ基を有する化合物等を主成分とするカチオン重合性樹脂組成物が、回路基板や回路部品の接続用接着剤として用いられている。また、低温での硬化速度の上昇といった生産性の向上を目的として、カチオン重合性樹脂組成物に潜在性熱酸発生剤を添加することも提案されている(特許文献1及び2を参照)。   Conventionally, a cationic polymerizable resin composition mainly composed of an epoxy group-containing compound or the like has been used as an adhesive for connecting circuit boards and circuit components. In addition, for the purpose of improving productivity such as an increase in the curing rate at a low temperature, it has also been proposed to add a latent thermal acid generator to the cationic polymerizable resin composition (see Patent Documents 1 and 2).

しかしながら、潜在性熱酸発生剤を添加したカチオン重合性樹脂組成物は、低温であっても硬化が速いといった特徴がある一方で、硬化剤を添加した後は時間経過とともに粘性が高まる。そのため、従来のカチオン重合性樹脂組成物は、可使時間が非常に短く、作業性が悪いといった欠点があった。   However, the cationic polymerizable resin composition to which the latent thermal acid generator is added has a feature that the curing is quick even at a low temperature. On the other hand, the viscosity increases with the lapse of time after the addition of the curing agent. Therefore, the conventional cationic polymerizable resin composition has the drawbacks that the pot life is very short and the workability is poor.

特開2011−207948号公報JP 2011-207948 A 特開2011−032353号公報JP 2011-032353 A

本発明の目的は、潜在性熱酸発生剤を硬化剤とするカチオン重合性樹脂組成物において、硬化速度を阻害することなく、可使時間を延長した作業性の高いカチオン重合性樹脂組成物を提供することにある。   An object of the present invention is to provide a cationically polymerizable resin composition having a high workability with an extended pot life without inhibiting a curing rate in a cationically polymerizable resin composition having a latent thermal acid generator as a curing agent. It is to provide.

本発明者は、上記実情を鑑みて鋭意研究を重ねた結果、エポキシ基を有する化合物を含むカチオン重合性樹脂組成物において、特定の4級ホスホニウム塩と、4級ホスホニウム塩以外の潜在性熱酸発生剤とを特定の質量割合で併用することにより、硬化速度を阻害することなく、可使時間が延長できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above circumstances, the present inventor has obtained a specific quaternary phosphonium salt and a latent thermal acid other than the quaternary phosphonium salt in a cationic polymerizable resin composition containing a compound having an epoxy group. It has been found that the pot life can be extended without inhibiting the curing rate by using the generator in combination with a specific mass ratio, and the present invention has been completed.

即ち、本発明は、エポキシ基を有する化合物と、下記式(1)で表される4級ホスホニウム塩と、4級ホスホニウム塩以外の潜在性熱酸発生剤とを含むカチオン重合性樹脂組成物であって、前記4級ホスホニウム塩/前記4級ホスホニウム塩以外の潜在性熱酸発生剤の質量比が0.001〜1であることを特徴とするカチオン重合性樹脂組成物である。   That is, the present invention is a cationic polymerizable resin composition comprising a compound having an epoxy group, a quaternary phosphonium salt represented by the following formula (1), and a latent thermal acid generator other than the quaternary phosphonium salt. A cationically polymerizable resin composition having a mass ratio of the quaternary phosphonium salt / latent thermal acid generator other than the quaternary phosphonium salt of 0.001 to 1.

Figure 0006249818
Figure 0006249818

(式中、R、R、R及びRは、同一の基であっても異なる基であってもよく、それぞれ独立して、アルキル基又はフェニル基を表し、Xはアニオンを表す。)
また、本発明は、カチオン重合性樹脂組成物を接着剤として用いたことを特徴とする接着構造体である。
(Wherein R 1 , R 2 , R 3 and R 4 may be the same group or different groups, each independently represents an alkyl group or a phenyl group, and X represents an anion. Represents.)
In addition, the present invention is an adhesive structure characterized by using a cationically polymerizable resin composition as an adhesive.

本発明によれば、硬化速度を阻害することなく、可使時間を延長した作業性の高いカチオン重合性樹脂組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cationically polymerizable resin composition with the high workability | operativity which extended the pot life can be provided, without inhibiting a cure rate.

以下、本発明を詳細に説明する。
本発明のカチオン重合性樹脂組成物は、エポキシ基を有する化合物と、4級ホスホニウム塩と、4級ホスホニウム塩以外の潜在性熱酸発生剤とを必須成分として含むものである。
Hereinafter, the present invention will be described in detail.
The cationically polymerizable resin composition of the present invention contains an epoxy group-containing compound, a quaternary phosphonium salt, and a latent thermal acid generator other than the quaternary phosphonium salt as essential components.

本発明で使用するエポキシ基を有する化合物としては、電子部品の接続用接着剤に一般に使用されているものであればよく、通常、1分子中に2個以上のエポキシ基を有する化合物である。このような化合物の具体例としては、フェノールノボラック、クレゾールノボラック等のノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD、レゾルシン、ビスヒドロキシジフェニルエーテル等の多価フェノール類、エチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ポリプロピレングリコール等の多価アルコール類、エチレンジアミン、トリエチレンテトラミン、アニリン等のポリアミノ化合物、アジピン酸、フタル酸、イソフタル酸等の多価カルボキシ化合物等とエピクロルヒドリン又は2−メチルエピクロルヒドリンを反応させて得られるグリシジル型のエポキシ樹脂、ジシクロペンタジエンエポキサイド、ブタジエンダイマージエポキサイド等の脂肪族エポキシ樹脂、3’,4’−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート等の脂環式エポキシ樹脂が挙げられる。これらのエポキシ樹脂は、単独で使用してもよいし、2種以上を混合して使用してもよい。なお、これらのエポキシ樹脂は、不純物イオン(NaやCl等)や加水分解性塩素などを低減した高純度品を用いることが、回路接続材料に用いる場合、イオンマイグレーションの防止のため好ましい。接着力が高く、耐熱性及び電気絶縁性に優れ、溶融粘度が低く、低圧力で接続が可能であるという点から、脂環式エポキシ樹脂が好ましい。更に、脂環式エポキシ樹脂を単独で用いてカチオン重合させた場合、稀に反応による発熱量が大きいため樹脂自体が熱により変質する恐れがあるいう点から、脂環式エポキシ樹脂とグリシジル型のエポキシ樹脂とを併用することがより好ましい。この場合、グリシジル型エポキシ樹脂の含有量が多くなると硬化速度が遅くなるという点から、脂環式エポキシ樹脂とグリシジル型のエポキシ樹脂とは質量比で99:1〜25:75であることが好ましい。   The compound having an epoxy group used in the present invention is not particularly limited as long as it is generally used in an adhesive for connecting electronic components, and is usually a compound having two or more epoxy groups in one molecule. Specific examples of such compounds include novolak resins such as phenol novolak and cresol novolak, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcin, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, Reaction of polychlorohydric alcohols such as trimethylolpropane and polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine and aniline, polyhydric carboxy compounds such as adipic acid, phthalic acid and isophthalic acid, and epichlorohydrin or 2-methylepichlorohydrin. Aliphatic epoxy resins such as glycidyl type epoxy resin, dicyclopentadiene epoxide, butadiene dimer epoxide obtained by ', Alicyclic epoxy resins such as 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate. These epoxy resins may be used alone or in combination of two or more. For these epoxy resins, it is preferable to use a high-purity product in which impurity ions (Na, Cl, etc.), hydrolyzable chlorine, etc. are reduced, in order to prevent ion migration. An alicyclic epoxy resin is preferable from the viewpoints of high adhesive strength, excellent heat resistance and electrical insulation, low melt viscosity, and connection at low pressure. Furthermore, when the alicyclic epoxy resin is used alone and cationically polymerized, the heat generated by the reaction is rarely large and the resin itself may be altered by heat. It is more preferable to use an epoxy resin in combination. In this case, it is preferable that the alicyclic epoxy resin and the glycidyl type epoxy resin have a mass ratio of 99: 1 to 25:75 from the viewpoint that the curing rate becomes slow as the content of the glycidyl type epoxy resin increases. .

粘度が高いエポキシ樹脂や固形のエポキシ樹脂を使用する場合、反応性希釈剤を用いて粘度を低下させてもよい。反応性希釈剤とは、エポキシ樹脂の開環重合に対して反応性を備えたものであり、粘度を低下させることができるものであれば特に限定されない。反応性希釈剤の具体例としては、n−ブチルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p−sec−ブチルフェニルグリシジルエーテル、グリシジルメタクリレート、t−ブチルフェニルグリシジルエーテル、ジグリシジルエーテル、(ポリ)エチレングリコールグリシジルエーテル、ブタンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル等が挙げられる。これらの反応性希釈剤は、単独で使用してもよいし、2種以上を混合して使用してもよい。なお、これらの反応性希釈剤は、不純物イオン(NaやCl等)や加水分解性塩素などを低減した高純度品を用いることが、回路接続材料に用いる場合、イオンマイグレーションの防止のため好ましい。   When an epoxy resin having a high viscosity or a solid epoxy resin is used, the viscosity may be lowered using a reactive diluent. The reactive diluent is not particularly limited as long as it is reactive to the ring-opening polymerization of the epoxy resin and can reduce the viscosity. Specific examples of the reactive diluent include n-butyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, glycidyl methacrylate, Examples include t-butylphenyl glycidyl ether, diglycidyl ether, (poly) ethylene glycol glycidyl ether, butanediol glycidyl ether, trimethylolpropane triglycidyl ether, 1,6-hexanediol diglycidyl ether, and the like. These reactive diluents may be used alone or in combination of two or more. For these reactive diluents, it is preferable to use a high-purity product in which impurity ions (such as Na and Cl) and hydrolyzable chlorine are reduced, in order to prevent ion migration.

本発明で使用する4級ホスホニウム塩は、下記式(1)で表される。この4級ホスホニウム塩を、後述する4級ホスホニウム塩以外の潜在性熱酸発生剤と共に硬化触媒として用いることで、硬化速度を保持しつつ、可使時間を延長するという効果が得られる。   The quaternary phosphonium salt used in the present invention is represented by the following formula (1). By using this quaternary phosphonium salt as a curing catalyst together with a latent thermal acid generator other than the quaternary phosphonium salt described later, the effect of extending the pot life while maintaining the curing rate can be obtained.

Figure 0006249818
Figure 0006249818

式(1)において、R、R、R及びRは、同一の基であっても異なる基であってもよく、それぞれ独立して、アルキル基又はフェニル基(−C)を表す。式(1)におけるR〜Rがアルキル基である場合、炭素原子数1〜16のアルキル基が好ましい。
また、式(1)において、Xは、アニオンを表し、例えば、F、Cl、I、Br、SO 2−、BF 、PF 、SbF 、(OCP=O、(C等が挙げられる。
In the formula (1), R 1 , R 2 , R 3 and R 4 may be the same group or different groups, and each independently represents an alkyl group or a phenyl group (—C 6 H 5 ). When R < 1 > -R < 4 > in Formula (1) is an alkyl group, a C1-C16 alkyl group is preferable.
In Formula (1), X represents an anion, for example, F , Cl , I , Br , SO 4 2− , BF 4 , PF 4 , SbF 6 , (OC 2). H 5 ) 2 P═O , (C 6 H 5 ) 4 B — and the like.

本発明において、4級ホスホニウム塩は固体であっても液体であってもよい。また、4級ホスホニウム塩を一般的な有機溶剤により希釈又は溶解させて使用してもよい。有機溶剤としては、例えば、アルコール類、多価アルコール類及びその誘導体、芳香族炭化水素類、エステル類、ケトン類、グリコールエーテル類、塩素系有機溶剤、フロン系有機溶剤、石油系有機溶剤、その他の特殊有機溶剤等が挙げられる。これらの有機溶剤は、単独で使用してもよいし、2種類以上を混合して使用してもよい。なお、3級ホスフィンは、空気中で速やかに酸化され、自然発火性を有するなど取り扱いが危険である。また、4級ホスホニウム塩の代わりに一般的な硬化助剤であるイミダゾールを用いると、硬化時間の点で大きく劣ることとなる。   In the present invention, the quaternary phosphonium salt may be solid or liquid. Further, the quaternary phosphonium salt may be diluted or dissolved with a general organic solvent. Examples of organic solvents include alcohols, polyhydric alcohols and derivatives thereof, aromatic hydrocarbons, esters, ketones, glycol ethers, chlorinated organic solvents, chlorofluorocarbon organic solvents, petroleum organic solvents, and others. And special organic solvents. These organic solvents may be used alone or in combination of two or more. Tertiary phosphine is dangerous in handling because it is rapidly oxidized in the air and has pyrophoric properties. If imidazole, which is a general curing aid, is used instead of the quaternary phosphonium salt, the curing time is greatly inferior.

本発明における4級ホスホニウム塩は、3級ホスフィン化合物とアルキルハライドとの求核反応によって4級ホスホニウムハライドが得られ、この4級ホスホニウムハライドを、所望のアニオンに交換することによって合成することができる。   The quaternary phosphonium salt in the present invention can be synthesized by obtaining a quaternary phosphonium halide by a nucleophilic reaction between a tertiary phosphine compound and an alkyl halide, and exchanging the quaternary phosphonium halide with a desired anion. .

本発明における4級ホスホニウム塩として市販品を用いることができる。このような市販品としては、例えば、日本化学工業株式会社製の商品名:ヒシコーリン(登録商標)シリーズのグレード名:PX−2B(テトラエチルホスホニウムブロマイド(Tetraethylphosphoniumbromide))、グレード名:PX−2C(テトラエチルホスホニウムクロリド(Tetraethylphosphoniumchloride))、グレード名:PX−4B(テトラブチルホスホニウムブロマイド(Tetra-n-butylphosphoniumbromide))、グレード名:PX−4C(テトラブチルホスホニウムクロリド(Tetra-n-butylphosphoniumchloride))、グレード名:PX−4I(テトラブチルホスホニウムアイオダイド(Tetra-n-butylphosphoniumiodide))、グレード名:PX−48B(トリブチルオクチルホスホニウムブロマイド(n-Octyltri-n-butylphosphoniumbromide))、グレード名:PX−4ET(テトラブチルホスホニウムジエチルホスホジチオエート(Tetra-n-butylphosphonium o,o-diethylphosphorodithioate))、グレード名:PX−4BT(テトラブチルホスホニウムベンゾトリアゾレート(Tetra-n-butylphosphonium benzotriazolate))、グレード名:PX−4MI(トリブチルメチルホスホニウムアイオダイド(Methyltri-n-butylphosphoniumiodide))、グレード名:PX−2H(テトラエチルホスホニウムハイドロキサイド(Tetraethylphosphoniumhydroxide))、グレード名:THPS(テトラキスハイドロキシメチルホスホニウムサルフェート(Tetrakis(hydroxymethyl)phosphoniumsulfate))、グレード名:PX−4FB(テトラブチルホスホニウムテトラフルオロボレート(Tetra-n-butylphosphoniumtetrafluoroborate))、グレード名:PX−4PB(テトラブチルホスホニウムテトラフェニルボレート(Tetra-n-butylphosphoniumtetraphenylborate))、グレード名:PX−4FP(テトラブチルホスホニウムヘキサフルオロホスフェート(Tetra-n-butylphosphoniumhexafluorophosphate))、グレード名:PX−412B(ドデシルトリブチルホスホニウムブロマイド(n-Dodecyltri-n-butylphosphoniumbromide))、グレード名:PX−412C(ドデシルトリブチルホスホニウムクロライド(n-Dodecyltri-n-butylphosphoniumchloride))、グレード名:PX−416B(ヘキサデシルトリブチルホスホニウムブロマイド(n-Hexadecyltri-n-butylphosphoniumbromide))、グレード名:PX−416C(ヘキサデシルトリブチルホスホニウムクロライド(n-Hexadecyltri-n-butylphosphoniumchloride))、グレード名:MTPPBr(トリフェニルメチルホスホニウムブロマイド(Methyltriphenylphosphoniumbromide))、グレード名:ETPPBr(トリフェニルエチルホスホニウムブロマイド(Ethyltriphenylphosphoniumbromide))、グレード名:ETPPI(トリフェニルエチルホスホニウムアイオダイド(Ethyltriphenylphosphoniumiodide))、グレード名:BTPPBr(トリフェニルブチルホスホニウムブロマイド(n-Butyltriphenylphosphoniumbromide))、グレード名:BzTPPBr(トリフェニルベンジルホスホニウムブロマイド(Benzyltriphenylphosphoniumbromide))、グレード名:BzTPPCl(トリフェニルベンジルホスホニウムクロライド(Benzyltriphenylphosphoniumchloride))、グレード名:PX−23B(トリエチルプロピルホスホニウムブロマイド(Triethylpropylphosphoniumbromide))、グレード名:PX−25B(トリエチルペンチルホスホニウムブロマイド(Triethylpentylphosphoniumbromide))、グレード名:PX−2BZC(トリエチルベンジルホスホニウムクロライド(Triethylbenzylphosphoniumchloride))、グレード名:PX−4BZC(トリブチルベンジルホスホニウムクロライド(Tributylbenzylphosphoniumchloride))、グレード名:PX−4BZB(トリブチルベンジルホスホニウムブロマイド(Tributylbenzylphosphoniumbromide))、グレード名:PX−42B(トリブチルエチルホスホニウムブロマイド(Tributylethylphosphoniumbromide))、グレード名:PX−43B(トリブチルプロピルホスホニウムブロマイド(Tributylpropylphosphoniumbromide))、グレード名:PX−45B(トリブチルペンチルホスホニウムブロマイド(Tributylpentylphosphoniumbromide))、グレード名:PX−46B(トリブチルヘキシルホスホニウムブロマイド(Tributylhexylphosphoniumbromide))、グレード名:PX−48B(トリブチルオクチルホスホニウムブロマイド(Tributyloctylphosphoniumbromide))、グレード名:PX−48C(トリブチルオクチルホスホニウムクロライド(Tributyloctylphosphoniumchloride))、グレード名:PX−4AlC(トリブチルアリルホスホニウムクロライド(Tributylallylphosphoniumchloride))、グレード名:PX−4AlB(トリブチルアリルホスホニウムブロマイド(Tributylallylphosphoniumbromide))、グレード名:PX−4MP(メチルトリブチルホスホニウムジメチルホスフェート(Methyltri-n-butylphosphoniumdimethylphosphate))、グレード名:PX−8MP(メチルトリオクチルホスホニウムジメチルホスフェート(Methyltrioctylphosphoniumdimethylphosphate))等が挙げられる。これらの中でも、少量の添加で、潜在性熱酸発生剤の速硬化性を保持しつつ、可使時間を効果的に伸ばすことができるという点から、メチルトリブチルホスホニウムジメチルホスフェート及びメチルトリオクチルホスホニウムジメチルホスフェートが好ましい。   A commercial item can be used as the quaternary phosphonium salt in the present invention. As such a commercial item, for example, trade name: Hishicolin (registered trademark) series grade name: PX-2B (Tetraethylphosphonium bromide) manufactured by Nippon Chemical Industry Co., Ltd. Grade name: PX-2C (tetraethyl) Grade name: PX-4B (Tetra-n-butylphosphonium bromide), Grade name: PX-4C (Tetra-n-butylphosphonium chloride), Grade name: PX-4I (tetrabutylphosphonium iodide), grade name: PX-48B (n-Octyltri-n-butylphosphonium bromide), grade name: PX-4ET (tetrabutylphosphonium bromide) Tetra-n-butylphosphonium o, o-diethylphosphorodithioate), grade name: PX-4BT (Tetra-n-butylphosphonium benzotriazolate), grade name: PX-4MI (Methyltri-n-butylphosphoniumiodide), Grade name: PX-2H (Tetraethylphosphoniumhydroxide), Grade name: THPS (Tetrakis (hydroxymethyl) phosphoniumsulfate) , Grade name: PX-4FB (Tetrabutylphosphonium tetrafluoroborate), Grade name: PX-4PB (Tetrabutylphosphonium tetraphenylborate (Tetra) -n-butylphosphoniumtetraphenylborate)), Grade name: PX-4FP (Tetra-n-butylphosphoniumhexafluorophosphate), Grade name: PX-412B (n-Dodecyltri-n-butylphosphoniumbromide)) Grade name: PX-412C (n-Dodecyltri-n-butylphosphonium chloride), Grade name: PX-416B (Hexadecyltri-n-butylphosphonium bromide), Grade name: PX -416C (hexadecyltributylphosphonium chloride), grade name: MTPPBr (Methyltriphenylphosphonium bromide), grade name ETPPBr (Ethyltriphenylphosphonium bromide), Grade name: ETPPI (Ethyltriphenylphosphoniumiodide), Grade name: BTPPBr (Triphenylbutylphosphonium bromide), Grade name: BzTP Benzyltriphenylphosphonium bromide, grade name: BzTPPCCl (Benzyltriphenylphosphonium chloride), grade name: PX-23B (Triethylpropylphosphonium bromide), grade name: PX-25B (triethylpentyl) Phosphonium bromide (Triethylpentylphosphoniumbromide) Grade name: PX-2BZC (Triethylbenzylphosphonium chloride), Grade name: PX-4BZC (Tributylbenzylphosphonium chloride), Grade name: PX-4BZB (Tributylbenzylphosphonium bromide), Grade name : PX-42B (Tributylethylphosphonium bromide), Grade name: PX-43B (Tributylpropylphosphonium bromide), Grade name: PX-45B (Tributylpentylphosphonium bromide), Grade name: PX -46B (Tributylhexylphosphonium bromide ), Grade name: PX-48B (Tributyloctylphosphonium bromide), Grade name: PX-48C (Tributyloctylphosphonium chloride), Grade name: PX-4AlC (Tributylallylphosphonium chloride), Grade name: PX-4AlB (Tributylallylphosphonium bromide), Grade name: PX-4MP (Methyltri-n-butylphosphonium dimethylphosphate), Grade name: PX-8MP (Methyltrioctylphosphonium dimethyl phosphate) (Methyltrioctylphosphoniumdimethylphosphate)) and the like. Among these, methyltributylphosphonium dimethyl phosphate and methyltrioctylphosphonium dimethyl can be effectively extended with the addition of a small amount, while maintaining the rapid curability of the latent thermal acid generator. Phosphate is preferred.

本発明のカチオン重合性樹脂組成物における硬化触媒としての4級ホスホニウム塩の量は、後述する4級ホスホニウム塩以外の潜在性熱酸発生剤の量に対して決定され、4級ホスホニウム塩/4級ホスホニウム塩以外の潜在性熱酸発生剤の質量比が0.001〜1である。4級ホスホニウム塩/4級ホスホニウム塩以外の潜在性熱酸発生剤の質量比が0.001未満であると、可使時間の延長効果は得られない。一方、質量比が1を超えると、可使時間の延長効果が得られるものの、ゲル化時間が長くなり、硬化が起こりにくいといった問題が起こる。4級ホスホニウム塩/4級ホスホニウム塩以外の潜在性熱酸発生剤の質量比は、好ましくは0.005〜0.8であり、より好ましくは0.01〜0.7である。   The amount of the quaternary phosphonium salt as a curing catalyst in the cationic polymerizable resin composition of the present invention is determined with respect to the amount of the latent thermal acid generator other than the quaternary phosphonium salt described later, and the quaternary phosphonium salt / 4. The mass ratio of the latent thermal acid generator other than the secondary phosphonium salt is 0.001-1. When the mass ratio of the latent thermal acid generator other than the quaternary phosphonium salt / quaternary phosphonium salt is less than 0.001, the effect of extending the pot life cannot be obtained. On the other hand, when the mass ratio exceeds 1, although the effect of extending the pot life can be obtained, the gelation time becomes long, and there is a problem that curing is difficult to occur. The mass ratio of the latent thermal acid generator other than the quaternary phosphonium salt / quaternary phosphonium salt is preferably 0.005 to 0.8, more preferably 0.01 to 0.7.

本発明で使用するホスホニウム塩以外の潜在性熱酸発生剤としては、加熱によりカチオン種又はルイス酸を発生することのできる化合物であればよく、例えば、芳香族スルホニウム塩、チオフェニム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、アミンイミド等が挙げられる。これらの中でも、化合物が比較的安定であり、エポキシ樹脂と混ぜたときの硬化が速いという点から、芳香族スルホニウム塩が好ましい。   The latent thermal acid generator other than the phosphonium salt used in the present invention may be a compound that can generate a cationic species or a Lewis acid by heating, for example, an aromatic sulfonium salt, a thiophenim salt, a thiolanium salt, Examples include benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide. Of these, aromatic sulfonium salts are preferred because the compounds are relatively stable and cure quickly when mixed with an epoxy resin.

本発明におけるホスホニウム塩以外の潜在性熱酸発生剤として市販品を用いることができる。このような市販品としては、例えば、三新化学工業株式会社製のサンエイド(登録商標)シリーズのSI−L85、SI−L110、SI−L145、SI−L160、SI−H15、SI−H20、SI−H25、SI−H40、SI−H50、SI−60L、SI−80L、サンエイドSI−100L、サンエイドSI−80、サンエイドSI−100、サンアプロ株式会社製のTA−60、TA−100、TA−110、株式会社ADEKA製のアデカオプトンCP−66(対イオン:SbF)、アデカオプトンCP−77、KINGINDUSTRIESINC.製のTAG−2678、TAG−2713、TAG−2172、3M製のFC−520、日本曹達株式会社製のCI−2921、CI−2920、CI−2946、CI−3128、CI−2624、CI−2639、CI−2064等が挙げられる。なお、これらの潜在性熱酸発生剤は、単独で使用してもよいし、2種類以上を混合して使用してもよい。 Commercial products can be used as latent thermal acid generators other than phosphonium salts in the present invention. Examples of such commercially available products include San-Aid (registered trademark) series SI-L85, SI-L110, SI-L145, SI-L160, SI-H15, SI-H20, SI manufactured by Sanshin Chemical Industry Co., Ltd. -H25, SI-H40, SI-H50, SI-60L, SI-80L, Sun-Aid SI-100L, Sun-Aid SI-80, Sun-Aid SI-100, TA-60, TA-100, TA-110 manufactured by Sun Apro Co., Ltd. Adeka Opton CP-66 (counter ion: SbF 6 ), Adeka Opton CP-77, KINGINDUSTRISIN INC. Manufactured by ADEKA Corporation. TAG-2678, TAG-2713, TAG-2172, 3M FC-520 manufactured by Nippon Soda Co., Ltd., CI-2921, CI-2920, CI-2946, CI-3128, CI-2624, CI-2623 CI-2064 and the like. These latent thermal acid generators may be used alone or in combination of two or more.

本発明のカチオン重合性樹脂組成物における4級ホスホニウム塩以外の潜在性熱酸発生剤の量は、エポキシ樹脂に対して、好ましくは0.1質量%〜10質量%であり、より好ましくは0.2質量%〜5質量%である。4級ホスホニウム塩以外の潜在性熱酸発生剤の含有量がエポキシ樹脂に対して10質量%より多いと、可使時間が短くなる場合がある。一方、4級ホスホニウム塩以外の潜在性熱酸発生剤の含有量が0.1質量%より少ないと、硬化速度が遅くなってしまう場合がある。   The amount of the latent thermal acid generator other than the quaternary phosphonium salt in the cationic polymerizable resin composition of the present invention is preferably 0.1% by mass to 10% by mass, more preferably 0%, based on the epoxy resin. .2 mass% to 5 mass%. If the content of the latent thermal acid generator other than the quaternary phosphonium salt is more than 10% by mass relative to the epoxy resin, the pot life may be shortened. On the other hand, if the content of the latent thermal acid generator other than the quaternary phosphonium salt is less than 0.1% by mass, the curing rate may be slow.

本発明のカチオン重合性樹脂組成物には、可使時間や硬化速度に影響を及ぼさない限り、公知の添加剤を加えることができる。公知の添加剤としては、例えば、シランカップリング剤、有機溶剤、充填剤、チキソ付与剤、増粘剤、減粘剤、導電剤、レベリング剤、酸化防止剤、粘着付与剤、ワックス、熱安定剤、対抗安定剤、発泡剤、有機顔料、無機顔料、熱伝導剤、電気伝導剤、染料、帯電防止剤、透湿性工場剤、撥水剤、中空発泡体、難燃剤着色剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤等の他、有機水溶性化合物、無機水溶性化合物、熱可塑性樹脂、熱硬化性樹脂等のその他の樹脂を液状もしくは固体状で併用することができる。添加剤の代表的なものは、電気伝導剤、熱伝導剤及びチキソ付与剤である。   A known additive can be added to the cationic polymerizable resin composition of the present invention as long as the pot life and the curing rate are not affected. Known additives include, for example, silane coupling agents, organic solvents, fillers, thixotropic agents, thickeners, thickeners, conductive agents, leveling agents, antioxidants, tackifiers, waxes, and heat stabilizers. Agent, anti-stabilizer, foaming agent, organic pigment, inorganic pigment, thermal conductive agent, electrical conductive agent, dye, antistatic agent, moisture-permeable factory agent, water repellent, hollow foam, flame retardant colorant, water absorbing agent, In addition to hygroscopic agents, deodorants, foam stabilizers, antifoaming agents, antifungal agents, antiseptics, algaeproofing agents, pigment dispersants, antiblocking agents, hydrolysis inhibitors, etc., organic water-soluble compounds, inorganic water-soluble compounds Other resins such as compounds, thermoplastic resins, and thermosetting resins can be used in liquid or solid form. Representative of additives are electrical conductors, thermal conductors and thixotropic agents.

本発明においては、上記電気伝導剤として、ニッケル、金、銀、パラジウム、銅、ハンダ等の金属粒子、カーボン粒子のようなそれ自体で導電性を有するもの、或いは芯材粒子の表面に金属皮膜を形成した導電性粒子を用いることができる。   In the present invention, as the electrical conductive agent, metal particles such as nickel, gold, silver, palladium, copper, and solder, those having conductivity by themselves such as carbon particles, or a metal film on the surface of the core material particles Conductive particles having formed thereon can be used.

前記導電性粒子の粒径は、本発明のカチオン重合性樹脂組成物の具体的な用途に応じて適切に選択されるが、本発明においてカチオン重合性樹脂組成物を電子回路接続用の接着剤として用いる場合には、粒径が小さすぎると、対向電極間での導通ができなくなり、一方、導電性粒子の粒径が大きすぎると、隣接電極間の短絡が発生するため、導電性粒子の平均粒径は電気抵抗法を用いて測定された値で0.1μm〜1000μmであることが好ましく、0.5〜100μmであることがより好ましい。   The particle size of the conductive particles is appropriately selected according to the specific use of the cationic polymerizable resin composition of the present invention. In the present invention, the cationic polymerizable resin composition is used as an adhesive for electronic circuit connection. When the particle size is too small, conduction between the counter electrodes cannot be performed. On the other hand, when the particle size of the conductive particles is too large, a short circuit occurs between adjacent electrodes. The average particle size is preferably 0.1 μm to 1000 μm, more preferably 0.5 to 100 μm, as a value measured using an electric resistance method.

導電性粒子の形状は特に制限はない。一般に導電性粒子は粉粒状であり得るが、それ以外の形状、例えば繊維状、中空状、板状或いは針状であってもよく、粒子表面に多数の突起を有するもの、或いは不定形のものであってもよい。これらの中でも、球状の導電性粒子が充填性に優れるという点で特に好ましい。   The shape of the conductive particles is not particularly limited. In general, the conductive particles may be in the form of powder, but may have other shapes, for example, a fiber shape, a hollow shape, a plate shape, or a needle shape, and have a large number of protrusions on the particle surface, or an irregular shape. It may be. Among these, spherical conductive particles are particularly preferable in terms of excellent filling properties.

芯材粒子の表面に金属皮膜を形成した導電性粒子について更に説明する。使用できる芯材粒子としては、無機物であっても有機物であっても特に制限はなく用いることができる。無機物の芯材粒子としては、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、合金、ガラス、セラミックス、シリカ、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素等が挙げられる。有機物の芯材粒子としては、例えば、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリル二トリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂、ジアリルフタレート樹脂等が挙げられる。   The conductive particles having a metal film formed on the surface of the core material particles will be further described. There are no particular limitations on the core particles that can be used, regardless of whether they are inorganic or organic. Inorganic core particles include metal particles such as gold, silver, copper, nickel, palladium, solder, alloys, glass, ceramics, silica, metal or non-metal oxides (including hydrates), and aluminosilicates. Examples thereof include metal silicate, metal carbide, metal nitride, metal carbonate, metal sulfate, metal phosphate, metal sulfide, metal acid salt, metal halide and carbon. Examples of organic core material particles include thermoplastic resins such as natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic ester, polyacryl nitrile, polyacetal, ionomer, and polyester. Alkyd resin, phenol resin, urea resin, benzoguanamine resin, melamine resin, xylene resin, silicone resin, epoxy resin, diallyl phthalate resin and the like.

芯材粒子の形状は特に制限はない。一般に芯材粒子は粉粒状であり得るが、それ以外の形状、例えば繊維状、中空状、板状あるいは針状であってもよく、粒子表面に多数の突起を有するもの、或いは不定形のものであってもよい。これらの中でも、球状の芯材粒子が導電性粒子とした場合に充填性に優れるという点で特に好ましい。   The shape of the core material particles is not particularly limited. In general, the core particles may be in the form of powder, but may have other shapes, for example, a fiber shape, a hollow shape, a plate shape, or a needle shape, have a large number of protrusions on the particle surface, or have an irregular shape. It may be. Among these, when the spherical core material particles are conductive particles, it is particularly preferable in that the filling property is excellent.

前記芯材粒子の平均粒径は0.1μm〜1000μmであることが好ましく、0.5μm〜100μmであることがより好ましい。芯材粒子の平均粒径が小さすぎると、金属皮膜を形成した導電性粒子であっても対向電極間での導通ができなくなる場合がある。一方、芯材粒子の平均粒径が大きすぎると、隣接電極間の短絡が発生する場合がある。なお、芯材粒子の平均粒径は電気抵抗法を用いて測定された値を示す。   The average particle size of the core particles is preferably 0.1 μm to 1000 μm, and more preferably 0.5 μm to 100 μm. If the average particle size of the core particles is too small, there may be cases where conduction between the counter electrodes cannot be performed even with conductive particles having a metal film formed thereon. On the other hand, if the average particle size of the core particles is too large, a short circuit between adjacent electrodes may occur. In addition, the average particle diameter of core material particle | grains shows the value measured using the electrical resistance method.

更に、前述の方法によって測定された芯材粒子の粒度分布には幅がある。一般に、粉体の粒度分布の幅は、下記計算式(1)で示される変動係数により表わされる。
変動係数(%)=(標準偏差/平均粒径)×100 ・・・(1)
この変動係数が大きいことは分布に幅があることを示し、一方、変動係数が小さいことは粒度分布がシャープであることを示す。この変動係数が50%以下、好ましくは30%以下、特に好ましくは20%以下の芯材粒子を使用することが好ましい。この理由は、異方性導電膜中の導電性粒子として用いた場合に、接続に有効な寄与割合が高くなるという利点があるからである。
Furthermore, there is a range in the particle size distribution of the core particles measured by the method described above. In general, the width of the particle size distribution of the powder is represented by a coefficient of variation represented by the following calculation formula (1).
Coefficient of variation (%) = (standard deviation / average particle size) × 100 (1)
A large coefficient of variation indicates that the distribution is wide, while a small coefficient of variation indicates that the particle size distribution is sharp. It is preferable to use core particles having a coefficient of variation of 50% or less, preferably 30% or less, particularly preferably 20% or less. This is because, when used as conductive particles in an anisotropic conductive film, there is an advantage that the effective contribution ratio for connection is increased.

また、芯材粒子のその他の物性は、特に制限されるものではないが、樹脂材料からなる芯材粒子の場合は、下記計算式(2):
K(kgf/mm)=(3/√2)×F×S−3/2×R−1/2 ・・・(2)
〔式(2)中、F及びSはそれぞれ、微小圧縮試験機(MCTM−500島津製作所製)で測定したときの、芯材粒子の10%圧縮変形における荷重値(kgf)及び圧縮変位(mm)であり、Rは、微小圧縮試験機(MCTM−500島津製作所製)で測定した芯材粒子の半径(mm)である〕で定義されるKの値が、20℃において10kgf/mm〜10000kgf/mmの範囲であり、且つ10%圧縮変形後の回復率が20℃において1%〜100%の範囲であるものが、電極同士を圧着する際に電極を傷つけることがなく、電極と十分に接触させることができる点で好ましい。
Further, the other physical properties of the core material particles are not particularly limited, but in the case of the core material particles made of a resin material, the following calculation formula (2):
K (kgf / mm 2 ) = (3 / √2) × F × S−3 / 2 × R−1 / 2 (2)
[In Formula (2), F and S are respectively the load value (kgf) and the compression displacement (mm in 10% compression deformation of the core particles when measured with a micro compression tester (MCTM-500 manufactured by Shimadzu Corporation). R is the radius (mm) of the core material particles measured with a micro compression tester (MCTM-500 manufactured by Shimadzu Corporation)] and the value of K defined by 10 kgf / mm 2 at 20 ° C. What is in the range of 10,000 kgf / mm 2 and the recovery rate after 10% compression deformation is in the range of 1% to 100% at 20 ° C. does not damage the electrodes when crimping the electrodes, It is preferable at the point which can fully contact.

芯材粒子の表面に金属皮膜を形成する方法としては、蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション法等を利用する乾式法、電解めっき法、無電解めっき法等を利用する湿式法が挙げられる。また、これらの方法を組み合わせて芯材粒子の表面に金属皮膜を形成してもよい。芯材粒子の表面に金属皮膜を形成する方法としては、蒸着法、スパッタ法、メカノケミカル法、ハイブリダイゼーション処理を利用する等の乾式法、電解めっき法、無電解めっき法等の湿式法、或いはこれらを組み合わせた方法を用いることができる。   As a method of forming a metal film on the surface of the core particle, there are a dry method using a vapor deposition method, a sputtering method, a mechanochemical method, a hybridization method, a wet method using an electroplating method, an electroless plating method, etc. Can be mentioned. Moreover, you may form a metal membrane | film | coat on the surface of core material particle | grains combining these methods. As a method of forming a metal film on the surface of the core particles, a vapor deposition method, a sputtering method, a mechanochemical method, a dry method using a hybridization process, a wet method such as an electrolytic plating method, an electroless plating method, or the like A method combining these can be used.

本発明において、前記導電性粒子は、金、銀、銅、ニッケル、パラジウム、ハンダ等の金属粒子、或いは芯材粒子の表面に金、銀、銅、ニッケル、パラジウム、ハンダ等の1種又は2種以上の金属皮膜を形成した導電性粒子を用いることが好ましく、特に無電解めっき法により芯材粒子の表面に金属皮膜を形成した導電性めっき粒子が、粒子表面が均一且つ濃密に金属皮膜で被覆されているという点で好ましく、とりわけ芯材粒子として樹脂を用いたものは金属粉に比べて比重が軽いために沈降しにくく、分散安定性が増し、樹脂の弾性による電気接続の維持ができるなどの点で好ましい。なお、前記金属皮膜の合金(例えばニッケル−リン合金やニッケル−ホウ素合金)も含まれる。   In the present invention, the conductive particles may be one or two of metal particles such as gold, silver, copper, nickel, palladium and solder, or gold, silver, copper, nickel, palladium and solder on the surface of the core particles. It is preferable to use conductive particles formed with a metal film of more than one kind. In particular, the conductive plated particles in which the metal film is formed on the surface of the core material particles by the electroless plating method have a uniform and dense metal film surface. It is preferable in that it is coated. Particularly, those using resin as core material particles are less likely to settle due to their lower specific gravity than metal powder, increase dispersion stability, and maintain electrical connection due to the elasticity of the resin. It is preferable at such points. The metal film alloy (for example, nickel-phosphorus alloy or nickel-boron alloy) is also included.

導電性粒子として、導電性粒子の表面を絶縁体で被覆した被覆導電性粒子を用いることができる。導電性粉体の粒子表面を絶縁性無機質微粒子で被覆処理することにより、粒子同士の凝集を抑制し、また、保存安定性に優れたものにすることができる。   As the conductive particles, coated conductive particles obtained by coating the surfaces of the conductive particles with an insulator can be used. By coating the particle surface of the conductive powder with insulating inorganic fine particles, aggregation of the particles can be suppressed and storage stability can be improved.

熱伝導剤としては、窒化ホウ素、酸化アルミ、酸化チタン、シリカ等が挙げられる。これらは、単独で使用してもよいし、2種類以上を混合して使用してもよい。また粒子形状、大きさ、添加量は特に限定されない。   Examples of the thermal conductive agent include boron nitride, aluminum oxide, titanium oxide, and silica. These may be used singly or in combination of two or more. Further, the particle shape, size, and addition amount are not particularly limited.

本発明のカチオン重合性組成物は、上記した成分を一般的な装置を用いて混合することにより得ることができる。このような装置としては、例えば、プラネタリーミキサー、2本ロール、3本ロール、ビーズミル、ボールミル等が挙げられるが、1液均一化せしめるものであれば特に限定はしない。短時間に混練かつペースト中の気泡を取り除く作業が同時にできることから、自公転式真空脱泡攪拌機が適している。   The cationically polymerizable composition of the present invention can be obtained by mixing the above-described components using a general apparatus. Examples of such an apparatus include a planetary mixer, two rolls, three rolls, a bead mill, a ball mill, and the like, but are not particularly limited as long as they can make one liquid uniform. A self-revolving vacuum degassing stirrer is suitable because it can simultaneously knead and remove bubbles in the paste in a short time.

混練時に各構成成分を投入する順番は特に限定はしないが、4級ホスホニウム塩以外の潜在性熱酸発生剤をエポキシ樹脂に直接添加すると、4級ホスホニウム塩以外の潜在性熱酸発生剤とエポキシ樹脂とが接触した瞬間に反応が開始してしまうことがある。そのため、4級ホスホニウム塩以外の潜在性熱酸発生剤の投入は、予め可使時間延長剤である4級ホスホニウム塩が含まれているエポキシ樹脂に4級ホスホニウム塩以外の潜在性熱酸発生剤を投入するか、又は予め4級ホスホニウム塩以外の潜在性熱酸発生剤と4級ホスホニウム塩とを均一な溶液にしておくことが好ましい。このとき、4級ホスホニウム塩以外の潜在性熱酸発生剤や可使時間延長剤としての4級ホスホニウム塩に影響を及ぼさない限り、一般的な有機溶剤、例えば、アルコール類、多価アルコール類及びその誘導体、芳香族炭化水素類、エステル類、ケトン類、グリコールエーテル類、塩素系有機溶剤、フロン系有機溶剤、石油系有機溶剤、その他の特殊有機溶剤などを用いてもよい。これらの有機溶剤は、単独で使用してもよいし、2種類以上を混合して使用してもよい。   The order in which the components are added during the kneading is not particularly limited, but when a latent thermal acid generator other than the quaternary phosphonium salt is added directly to the epoxy resin, the latent thermal acid generator other than the quaternary phosphonium salt and the epoxy are added. The reaction may start at the moment of contact with the resin. Therefore, when the latent thermal acid generator other than the quaternary phosphonium salt is added, the latent thermal acid generator other than the quaternary phosphonium salt is added to the epoxy resin in which the quaternary phosphonium salt which is a pot life extender is previously contained. It is preferable that a latent thermal acid generator other than the quaternary phosphonium salt and the quaternary phosphonium salt are made into a uniform solution in advance. At this time, as long as the latent thermal acid generator other than the quaternary phosphonium salt and the quaternary phosphonium salt as the pot life extender are not affected, common organic solvents such as alcohols, polyhydric alcohols and the like Derivatives thereof, aromatic hydrocarbons, esters, ketones, glycol ethers, chlorinated organic solvents, chlorofluorocarbon organic solvents, petroleum organic solvents, and other special organic solvents may be used. These organic solvents may be used alone or in combination of two or more.

このようにして得られたカチオン重合性樹脂組成物は、例えば、60℃〜150℃で数秒間で接着させたいものにおいて、可使時間を気にすることなく使用することが可能であるため、接着構造体を製造するのに有用である。また、本発明のカチオン重合性樹脂組成物に電気伝導性粒子を添加した場合は、異方導電接着剤となり、特に回路基板や回路部品を電気的に相互に接続するために用いる電子材料用接着剤として適している。   The cationically polymerizable resin composition thus obtained can be used without worrying about the pot life, for example, in what is desired to be bonded at 60 ° C. to 150 ° C. for several seconds. Useful for making adhesive structures. Further, when electrically conductive particles are added to the cationic polymerizable resin composition of the present invention, it becomes an anisotropic conductive adhesive, and particularly an adhesive for electronic materials used to electrically connect circuit boards and circuit components to each other. Suitable as an agent.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

<メチルトリブチルホスホニウムジメチルホスフェートの合成>
窒素環境下で、3級ホスフィンであるトリブチルホスフィン100gを60℃に加熱し、30℃のトリメチルホスフェート液を12時間かけて45g滴下した。滴下終了後、60℃で24時間熟成した。熟成後、イオンクロマトグラフで測定し、トリブチルホスフィンが反応で完全に消費されたのを確認した後、得られた透明液体をヘキサンで2回洗浄し、真空加熱しながら乾燥させ、メチルトリブチルホスホニウムジメチルホスフェート90gを得た。
<Synthesis of methyltributylphosphonium dimethyl phosphate>
Under a nitrogen environment, 100 g of tributylphosphine as a tertiary phosphine was heated to 60 ° C., and 45 g of a 30 ° C. trimethyl phosphate solution was dropped over 12 hours. After completion of dropping, the mixture was aged at 60 ° C. for 24 hours. After aging, measurement was performed by ion chromatography, and after confirming that tributylphosphine was completely consumed by the reaction, the obtained transparent liquid was washed twice with hexane, dried while heating under vacuum, and methyltributylphosphonium dimethyl. 90 g of phosphate was obtained.

<メチルトリオクチルホスホニウムジメチルホスフェートの合成>
窒素環境下で、3級ホスフィンであるトリオクチルホスフィン100gを60℃に加熱し、30℃のトリメチルホスフェート液を12時間かけて45g滴下した。滴下終了後、60℃で24時間熟成した。熟成後、イオンクロマトグラフで測定し、トリブチルホスフィンが反応で完全に消費されたのを確認した後、得られた透明液体をヘキサンで2回洗浄し、真空加熱しながら乾燥させ、メチルトリオクチルホスホニウムジメチルホスフェート90gを得た。
<Synthesis of methyltrioctylphosphonium dimethyl phosphate>
Under a nitrogen environment, 100 g of trioctylphosphine, which is a tertiary phosphine, was heated to 60 ° C., and 45 g of a 30 ° C. trimethyl phosphate solution was added dropwise over 12 hours. After completion of dropping, the mixture was aged at 60 ° C. for 24 hours. After aging, it was measured with an ion chromatograph, and after confirming that tributylphosphine was completely consumed by the reaction, the obtained transparent liquid was washed twice with hexane, dried while heating under vacuum, and methyltrioctylphosphonium. 90 g of dimethyl phosphate was obtained.

<実施例1〜9>
表1に示した量のエポキシ樹脂、粘度調整剤及び4級ホスホニウム塩を、自公転式真空脱泡攪拌機で2000rpm、15分混練して混合液とした。その後、得られた混合液に表1に示した量の潜在性熱酸発生剤を加え、更に、自公転式真空脱泡攪拌機で2000rpm、15分混練して、カチオン重合性樹脂組成物を得た。得られた樹脂組成物は透明で且つ粘稠な液体であった。
<Examples 1-9>
The amounts of epoxy resin, viscosity modifier and quaternary phosphonium salt shown in Table 1 were kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum defoaming stirrer to give a mixed solution. Thereafter, the latent thermal acid generator of the amount shown in Table 1 was added to the obtained mixed liquid, and further kneaded with a self-revolving vacuum defoaming stirrer at 2000 rpm for 15 minutes to obtain a cationic polymerizable resin composition. It was. The obtained resin composition was a transparent and viscous liquid.

<実施例10>
表1に示した量の潜在性熱酸発生剤及び4級ホスホニウム塩を、自公転式真空脱泡攪拌機で2000rpm、15分混練して混合液とした。その後、得られた混合液に表1に示した量のエポキシ樹脂及び粘度調整剤を加え、更に、自公転式真空脱泡攪拌機で2000rpm、15分混練して、カチオン重合性樹脂組成物を得た。得られた樹脂組成物は透明で且つ粘稠な液体であった。
<Example 10>
The latent thermal acid generator and quaternary phosphonium salt in the amounts shown in Table 1 were kneaded with a self-revolving vacuum degassing stirrer at 2000 rpm for 15 minutes to obtain a mixed solution. Thereafter, the epoxy resin and the viscosity modifier in the amounts shown in Table 1 were added to the obtained mixed liquid, and further kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum defoaming stirrer to obtain a cationic polymerizable resin composition. It was. The obtained resin composition was a transparent and viscous liquid.

なお、表1及び2において、エポキシ樹脂Aは、脂環式エポキシ樹脂(株式会社ダイセル社製、商品名:セロキサイド(登録商標)CEL2012P)、エポキシ樹脂Bは、ビスフェノールA型エポキシ樹脂(三菱化学株式会社社製、商品名:jER828)、粘度調整剤は、日本アエロジル株式会社社製、商品名;アエロジル(登録商標)200、潜在性熱酸発生剤Aは、芳香族スルホニウム塩(三新化学株式会社社製、商品名:サンエイド(登録商標)SI-60L)、潜在性熱酸発生剤Bは、芳香族スルホニウム塩(三新化学株式会社社製、商品名:サンエイド(登録商標)SI-80L)、4級ホスホニウム塩Aは、上記で合成したメチルトリブチルホスホニウムジメチルホスフェート、4級ホスホニウム塩Bは、上記で合成したメチルトリオクチルホスホニウムジメチルホスフェート、イミダゾールは、四国化成株式会社社製、商品名:キュアゾール(登録商標)2E4MZである。   In Tables 1 and 2, epoxy resin A is an alicyclic epoxy resin (manufactured by Daicel Corporation, trade name: Celoxide (registered trademark) CEL2012P), and epoxy resin B is a bisphenol A type epoxy resin (Mitsubishi Chemical Corporation). Company name, product name: jER828), viscosity modifier manufactured by Nippon Aerosil Co., Ltd., product name: Aerosil (registered trademark) 200, latent thermal acid generator A is aromatic sulfonium salt (Sanshin Chemical Co., Ltd.) Product name: Sun-Aid (registered trademark) SI-60L), latent thermal acid generator B is an aromatic sulfonium salt (manufactured by Sanshin Chemical Co., Ltd., product name: Sun-Aid (registered trademark) SI-80L). ) The quaternary phosphonium salt A is methyltributylphosphonium dimethyl phosphate synthesized above, and the quaternary phosphonium salt B is methyl synthesized above. Trioctylphosphonium dimethyl phosphate, imidazole, Shikoku Chemicals Co., Ltd., product name: Curezol (registered trademark), which is a 2E4MZ.

Figure 0006249818
Figure 0006249818

<比較例1及び2>
表2に示した量のエポキシ樹脂及び粘度調整剤を、自公転式真空脱泡攪拌機で2000rpm、15分混練して混合液とした。その後、得られた混合液に表2に示した量の潜在性熱酸発生剤を加え、更に、自公転式真空脱泡攪拌機で2000rpm、15分混練して、カチオン重合性樹脂組成物を得た。得られた樹脂組成物は透明で且つ粘稠な液体であった。
<Comparative Examples 1 and 2>
The epoxy resin and viscosity modifier in the amounts shown in Table 2 were kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum defoaming stirrer to give a mixed solution. Thereafter, the latent thermal acid generator of the amount shown in Table 2 was added to the obtained mixed liquid, and further kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum degassing stirrer to obtain a cationically polymerizable resin composition. It was. The obtained resin composition was a transparent and viscous liquid.

<比較例3>
表2に示した量のエポキシ樹脂、粘度調整剤及び4級ホスホニウム塩を、自公転式真空脱泡攪拌機で2000rpm、15分混練して混合液とした。その後、得られた混合液に表2に示した量の潜在性熱酸発生剤を加え、更に、自公転式真空脱泡攪拌機で2000rpm、15分混練して、カチオン重合性樹脂組成物を得た。得られた樹脂組成物は透明〜白色の液体であった。
<Comparative Example 3>
The amounts of epoxy resin, viscosity modifier and quaternary phosphonium salt shown in Table 2 were kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum defoaming stirrer to give a mixed solution. Thereafter, the latent thermal acid generator of the amount shown in Table 2 was added to the obtained mixed liquid, and further kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum degassing stirrer to obtain a cationically polymerizable resin composition. It was. The obtained resin composition was a transparent to white liquid.

<比較例4>
表2に示した量のエポキシ樹脂、粘度調整剤及び硬化助剤としてのイミダゾールを、自公転式真空脱泡攪拌機で2000rpm、15分混練して混合液とした。その後、得られた混合液に表2に示した量の潜在性熱酸発生剤を加え、更に、自公転式真空脱泡攪拌機で2000rpm、15分混練して、カチオン重合性樹脂組成物を得た。得られた樹脂組成物は透明で且つ粘稠な液体であった。
<Comparative Example 4>
The amount of epoxy resin shown in Table 2, the viscosity modifier, and imidazole as a curing aid were kneaded with a self-revolving vacuum degassing stirrer at 2000 rpm for 15 minutes to obtain a mixed solution. Thereafter, the latent thermal acid generator of the amount shown in Table 2 was added to the obtained mixed liquid, and further kneaded at 2000 rpm for 15 minutes with a self-revolving vacuum degassing stirrer to obtain a cationically polymerizable resin composition. It was. The obtained resin composition was a transparent and viscous liquid.

Figure 0006249818
Figure 0006249818

<可使時間測定>
実施例1〜10及び比較例1〜4のカチオン重合性樹脂組成物について、サーモフィッシャーサイエンティフィック株式会社製レオメーターMARS IIを用い、せん断速度1[1/s]、25℃での粘度を測定した。
この樹脂組成物を35℃の恒温で保持し、24時間毎に粘度測定を行った。粘度が樹脂組成物調製直後と比較して2倍の粘度になるまでの時間を可使時間とし、その結果を表3に示す。
<Measurement of pot life>
About the cationically polymerizable resin compositions of Examples 1 to 10 and Comparative Examples 1 to 4, the viscosity at 25 ° C. was measured using a rheometer MARS II manufactured by Thermo Fisher Scientific Co., Ltd. It was measured.
This resin composition was kept at a constant temperature of 35 ° C., and the viscosity was measured every 24 hours. The time until the viscosity reaches twice the viscosity immediately after preparation of the resin composition was defined as the pot life, and the results are shown in Table 3.

<ゲル化時間測定>
実施例1〜10及び比較例1〜4のカチオン重合性樹脂組成物について、150℃の熱板上に樹脂組成物を0.2g載せ、かき混ぜながらゲル化するまでの時間(秒)を測定した。結果を表3に示す。
<Measurement of gelation time>
For the cationic polymerizable resin compositions of Examples 1 to 10 and Comparative Examples 1 to 4, 0.2 g of the resin composition was placed on a hot plate at 150 ° C., and the time (seconds) until gelation was measured while stirring. . The results are shown in Table 3.

Figure 0006249818
Figure 0006249818

<剥離接着強さ(90度剥離試験)>
実施例1〜10及び比較例1〜4のカチオン重合性樹脂組成物について、150℃の熱板上に200mm×200mm×0.05μmのアルミニウム箔を置き、樹脂組成物2gと四隅に厚み0.2mmになるようにスペーサーを置き、200mm×200mm×2mmのステンレス板をその上から載せ、10分間保持し接着させた。常温まで放冷後アルミニウム箔側を25mmの幅にスリットし、毎分50mmの速度で90度方向にアルミニウム箔を引き上げた。その結果、実施例1〜10及び比較例1〜2のカチオン重合性樹脂組成物では、同等の剥離接着強さが得られた。一方、比較例3及び4のカチオン重合性樹脂組成物は硬化しないため測定できなかった。
<Peel adhesion strength (90 degree peel test)>
For the cationically polymerizable resin compositions of Examples 1 to 10 and Comparative Examples 1 to 4, an aluminum foil of 200 mm × 200 mm × 0.05 μm was placed on a hot plate at 150 ° C., and the resin composition 2 g and a thickness of 0. A spacer was placed so as to be 2 mm, and a stainless steel plate of 200 mm × 200 mm × 2 mm was placed thereon and held for 10 minutes for adhesion. After cooling to room temperature, the aluminum foil side was slit to a width of 25 mm, and the aluminum foil was pulled up in the direction of 90 degrees at a speed of 50 mm per minute. As a result, in the cationic polymerizable resin compositions of Examples 1 to 10 and Comparative Examples 1 and 2, equivalent peel adhesion strength was obtained. On the other hand, the cationic polymerizable resin compositions of Comparative Examples 3 and 4 could not be measured because they were not cured.

以上の結果より、4級ホスホニウム塩と4級ホスホニウム塩以外の潜在性熱酸発生剤とを特定の質量割合で配合した実施例1〜10のカチオン重合性樹脂組成物は、ゲル化時間は短いままで、35℃で保持したとしても48時間以上の可使時間を確保できることが確認された。   From the above results, the cationic polymerizable resin compositions of Examples 1 to 10 in which the quaternary phosphonium salt and the latent thermal acid generator other than the quaternary phosphonium salt were blended at a specific mass ratio have a short gel time. Until now, it was confirmed that a pot life of 48 hours or more could be secured even if kept at 35 ° C.

<実施例11〜20及び比較例5〜6の異方導電接着剤の調製>
実施例1〜10及び比較例1〜2で得られたカチオン重合性樹脂組成物95gに対し、金属被覆樹脂粒子(日本化学工業株式会社製、商品名:ブライト20GNR4.6−EH)5gを添加し、自公転式真空脱泡攪拌機により2000rpm、15分混練して、異方導電接着剤を得た。
<Preparation of anisotropic conductive adhesives of Examples 11 to 20 and Comparative Examples 5 to 6>
5 g of metal-coated resin particles (manufactured by Nippon Chemical Industry Co., Ltd., trade name: Bright 20GNR4.6-EH) are added to 95 g of the cationic polymerizable resin composition obtained in Examples 1 to 10 and Comparative Examples 1 and 2. Then, the anisotropic conductive adhesive was obtained by kneading with a self-revolving vacuum degassing stirrer at 2000 rpm for 15 minutes.

<可使時間及びゲル化時間の測定>
得られた実施例11〜20及び比較例5〜6の異方導電接着剤について、上記した可使時間測定及びゲル化時間測定と同様の方法で可使時間及びゲル化時間を評価した。結果を表4に示す。
<Measurement of pot life and gelation time>
About the anisotropic conductive adhesive of obtained Examples 11-20 and Comparative Examples 5-6, the pot life and gelation time were evaluated by the method similar to an above-mentioned pot life measurement and gelation time measurement. The results are shown in Table 4.

<抵抗値の測定>
実施例11〜20及び比較例5〜6の異方導電接着剤を用い、Al配線基板上にダミーICを140℃、8秒、1.5Nで実装した。実装したIC付基板を2端子法で測定した。結果を表4に示す。
<Measurement of resistance value>
Using the anisotropic conductive adhesives of Examples 11 to 20 and Comparative Examples 5 to 6, dummy ICs were mounted on an Al wiring board at 140 ° C., 8 seconds, and 1.5 N. The mounted substrate with IC was measured by the two-terminal method. The results are shown in Table 4.

Figure 0006249818
Figure 0006249818

実施例11〜20の異方導電接着剤は、ゲル化時間は短いままで、35℃で保持したとしても48時間以上の可使時間を確保することができ、更に、接続抵抗値は低い値を示すことが確認された。   In the anisotropic conductive adhesives of Examples 11 to 20, the gelation time remains short, and even when kept at 35 ° C., a working time of 48 hours or more can be secured, and the connection resistance value is low. It was confirmed that

Claims (9)

エポキシ基を有する化合物と、下記式(1)で表される4級ホスホニウム塩と、芳香族スルホニウム塩とを含むカチオン重合性樹脂組成物であって、
前記4級ホスホニウム塩/前記芳香族スルホニウム塩の質量比が0.001〜1であることを特徴とするカチオン重合性樹脂組成物。
Figure 0006249818
(式中、R、R、R及びRは、同一の基であっても異なる基であってもよく、それぞれ独立して、アルキル基又はフェニル基を表し、Xはアニオンを表す。)
A cationically polymerizable resin composition comprising a compound having an epoxy group, a quaternary phosphonium salt represented by the following formula (1), and an aromatic sulfonium salt ,
A cationically polymerizable resin composition having a mass ratio of the quaternary phosphonium salt / the aromatic sulfonium salt of 0.001 to 1.
Figure 0006249818
(Wherein R 1 , R 2 , R 3 and R 4 may be the same group or different groups, each independently represents an alkyl group or a phenyl group, and X represents an anion. Represents.)
前記4級ホスホニウム塩が、メチルトリブチルホスホニウムジメチルホスフェート又はメチルトリオクチルホスホニウムジメチルホスフェートであることを特徴とする請求項1に記載のカチオン重合性樹脂組成物。   The cationically polymerizable resin composition according to claim 1, wherein the quaternary phosphonium salt is methyltributylphosphonium dimethyl phosphate or methyltrioctylphosphonium dimethyl phosphate. 前記エポキシ基を有する化合物が、脂環式エポキシ基を有する化合物を含むことを特徴とする請求項1又は2に記載のカチオン重合性樹脂組成物。   The cationic polymerizable resin composition according to claim 1, wherein the compound having an epoxy group includes a compound having an alicyclic epoxy group. 導電性粒子を更に含むことを特徴とする請求項1〜の何れか一項に記載のカチオン重合性樹脂組成物。 The cationically polymerizable resin composition according to any one of claims 1 to 3 , further comprising conductive particles. 前記導電性粒子が、ニッケル、金、銀、パラジウム、銅及びハンダからなる群から選択される金属粒子であることを特徴とする請求項に記載のカチオン重合性樹脂組成物。 5. The cationically polymerizable resin composition according to claim 4 , wherein the conductive particles are metal particles selected from the group consisting of nickel, gold, silver, palladium, copper, and solder. 前記導電性粒子が、無電解めっき法により芯材粒子の表面に金属皮膜を形成した粒子であることを特徴とする請求項に記載のカチオン重合性樹脂組成物。 The cationically conductive resin composition according to claim 4 , wherein the conductive particles are particles in which a metal film is formed on the surface of the core material particles by an electroless plating method. 前記エポキシ基を有する化合物と前記4級ホスホニウム塩とを含む混合液に、前記芳香族スルホニウム塩を添加して混合することを特徴とする請求項1〜の何れか一項に記載のカチオン重合性樹脂組成物の製造方法。 The cationic polymerization according to any one of claims 1 to 3 , wherein the aromatic sulfonium salt is added to and mixed with a mixed solution containing the compound having an epoxy group and the quaternary phosphonium salt. For producing a conductive resin composition. 前記4級ホスホニウム塩と前記芳香族スルホニウム塩とを含む混合液に、前記エポキシ基を有する化合物を添加して混合することを特徴とする請求項1〜の何れか一項に記載のカチオン重合性樹脂組成物の製造方法。 The cationic polymerization according to any one of claims 1 to 3 , wherein the compound having the epoxy group is added to and mixed with a mixed solution containing the quaternary phosphonium salt and the aromatic sulfonium salt. For producing a conductive resin composition. 請求項1〜の何れか一項に記載のカチオン重合性樹脂組成物を接着剤として用いたことを特徴とする接着構造体。 An adhesive structure using the cationic polymerizable resin composition according to any one of claims 1 to 6 as an adhesive.
JP2014035199A 2014-02-26 2014-02-26 Cationic polymerizable resin composition, method for producing the same, and bonded structure Active JP6249818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035199A JP6249818B2 (en) 2014-02-26 2014-02-26 Cationic polymerizable resin composition, method for producing the same, and bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035199A JP6249818B2 (en) 2014-02-26 2014-02-26 Cationic polymerizable resin composition, method for producing the same, and bonded structure

Publications (2)

Publication Number Publication Date
JP2015160861A JP2015160861A (en) 2015-09-07
JP6249818B2 true JP6249818B2 (en) 2017-12-20

Family

ID=54184201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035199A Active JP6249818B2 (en) 2014-02-26 2014-02-26 Cationic polymerizable resin composition, method for producing the same, and bonded structure

Country Status (1)

Country Link
JP (1) JP6249818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777973B (en) * 2016-09-06 2022-09-21 日商住友化學股份有限公司 Polarizing plate and manufacturing method thereof
JP2018145418A (en) * 2017-03-06 2018-09-20 デクセリアルズ株式会社 Resin composition, production method of resin composition, and structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070193A (en) * 2004-09-03 2006-03-16 Three Bond Co Ltd One-pack curable resin composition for sealing organic el element
JP4887746B2 (en) * 2005-11-11 2012-02-29 三菱化学株式会社 Hydrogenated epoxy resin, method for producing the same, epoxy resin composition, and epoxy resin composition for light emitting device sealing material
JP5683073B2 (en) * 2009-01-20 2015-03-11 三菱化学株式会社 Epoxy resin composition for solar cell encapsulant and solar cell

Also Published As

Publication number Publication date
JP2015160861A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
KR101984450B1 (en) Filler composition for space between layers of three-dimensional integrated circuit, coating fluid, and process for producing three-dimensional integrated circuit
CN104968746A (en) Thermally-conductive, electrically-conductive adhesive composition
JP5662104B2 (en) Conductive resin composition and semiconductor device using the same
WO2013150907A1 (en) Electroconductive composition
JP2011187194A (en) Conductive paste
JP6249818B2 (en) Cationic polymerizable resin composition, method for producing the same, and bonded structure
CN104140780B (en) Conductive adhesive
JP6891876B2 (en) Polyester-based polymer composition
JP6383183B2 (en) Conductive adhesive and electronic component using the same
JP6891875B2 (en) Polyester-based polymer compositions and sheets
JP6852846B2 (en) Electrode paste and laminated ceramic electronic components
JP6636874B2 (en) Resin composition for bonding electronic components, bonding method for electronic components, and electronic component mounting substrate
JP6089510B2 (en) Interlayer filler composition for three-dimensional stacked semiconductor device, three-dimensional stacked semiconductor device, and method for manufacturing three-dimensional stacked semiconductor device
JP2017050119A (en) Manufacturing method of electric conductive paste and electric conductive paste
JP6473322B2 (en) Curable resin composition, dispensing die attach material, and semiconductor device
KR102483123B1 (en) Thermally conductive resin composition
JP6092754B2 (en) Conductive epoxy resin composition, solar cell using the composition, and method for producing the solar cell
EP3227355A1 (en) Conductive adhesive composition
JP2013006981A (en) Interlayer filling material composition and coating liquid thereof for three-dimensional multi-layer semiconductor device
CN102079958A (en) Diamond-filled isotropical high-performance heat-conductive adhesive and preparation method thereof
JP7430892B2 (en) Epoxy resin composition and conductive adhesive containing the same
JP5744010B2 (en) Epoxy resin composition and cured product thereof
JP5855420B2 (en) Conductive resin composition and printed wiring board using conductive resin composition
KR20210091972A (en) Fast curing type silver paste for solar cell
JPWO2020080158A1 (en) Thermally conductive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250