JP6246058B2 - Discharge detection device and discharge detection method for vacuum switchgear - Google Patents

Discharge detection device and discharge detection method for vacuum switchgear Download PDF

Info

Publication number
JP6246058B2
JP6246058B2 JP2014089720A JP2014089720A JP6246058B2 JP 6246058 B2 JP6246058 B2 JP 6246058B2 JP 2014089720 A JP2014089720 A JP 2014089720A JP 2014089720 A JP2014089720 A JP 2014089720A JP 6246058 B2 JP6246058 B2 JP 6246058B2
Authority
JP
Japan
Prior art keywords
vacuum
discharge
electromagnetic wave
vacuum valve
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014089720A
Other languages
Japanese (ja)
Other versions
JP2015210851A (en
Inventor
安部 淳一
淳一 安部
知孝 矢野
知孝 矢野
智子 田辺
智子 田辺
吉村 学
学 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014089720A priority Critical patent/JP6246058B2/en
Publication of JP2015210851A publication Critical patent/JP2015210851A/en
Application granted granted Critical
Publication of JP6246058B2 publication Critical patent/JP6246058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空開閉装置の放電検出装置及び放電検出方法に関する。   The present invention relates to a discharge detection device and a discharge detection method for a vacuum switchgear.

真空バルブは、固定接点とこの固定接点に対向して配置された可動接点との一対の接点を備え、一対の接点は、接点の周囲が真空に保たれた真空容器の中に配置されている。真空バルブの接点が投入されて主回路導体に電流が流れている状態から真空バルブの接点を開極して主回路に流れる電流を遮断する場合、真空容器内の真空度が高ければ真空の高い消弧能力により電流は遮断される。しかし、真空容器の亀裂発生や、金属・絶縁物に吸着していた気体分子の放出、さらには雰囲気ガスの透過などの要因によって真空容器内の真空度が低下すると、接点を開極する際に絶縁破壊が生じて電流を遮断できず、最悪の場合機器が破損する。そこで、真空バルブを用いた遮断器およびその周辺機器を破損させることなく真空バルブの状態を把握するため、真空容器内の真空度が劣化しているかを判定する真空度劣化監視装置が検討されてきた。   The vacuum valve includes a pair of contacts, which are a fixed contact and a movable contact disposed so as to face the fixed contact, and the pair of contacts are disposed in a vacuum container in which the periphery of the contact is kept in a vacuum. . When the contact of the vacuum valve is turned on and the current flowing through the main circuit conductor is opened, the contact of the vacuum valve is opened to cut off the current flowing through the main circuit. The current is interrupted by the arc extinguishing capability. However, when the degree of vacuum in the vacuum vessel decreases due to the occurrence of cracks in the vacuum vessel, the release of gas molecules adsorbed on metals and insulators, and the permeation of atmospheric gas, the contacts are opened. Insulation breakdown occurs and the current cannot be cut off, and in the worst case, the equipment is damaged. Therefore, in order to grasp the state of the vacuum valve without damaging the circuit breaker using the vacuum valve and its peripheral devices, a vacuum degree deterioration monitoring device for determining whether the degree of vacuum in the vacuum vessel is deteriorated has been studied. It was.

例えば、従来の真空開閉装置の放電検出装置としての真空度監視装置は、真空バルブとしての真空遮断器の真空度が劣化し、耐電圧性能が低下することで放電が起き、放電に伴う電磁波をプローブ又はアンテナによって検出することによって真空度の良否の判定を行う(例えば、特許文献1参照)。また、他の従来の真空開閉装置の放電検出装置としての絶縁診断装置は、放電時の音波を測定し、一定の時間帯において受信される放電回数を計数することを経時的に繰り返して実行し、得られたデータを統計処理して累積頻度分布から絶縁劣化診断を実施する(例えば、特許文献2参照)。さらに、他の従来の真空開閉装置の放電検出装置としての真空不良検出装置として、真空バルブの外沿面、遮断器内の絶縁部材等が経年劣化により放電が発生する可能性があり、この放電と真空度劣化による放電とを判別するため、0.1−0.2Torrでは半サイクルに1回放電が発生し、0.2−0.5Torrでは半サイクルに2回以上放電が発生し、絶縁劣化の場合は間欠的に放電が発生することから、真空度低下なのか絶縁劣化なのかを判断するものがある(例えば、特許文献3参照)。   For example, a vacuum degree monitoring device as a discharge detection device of a conventional vacuum switchgear is caused by the deterioration of the vacuum degree of a vacuum circuit breaker as a vacuum valve and the breakdown voltage performance is lowered, so that discharge occurs, and electromagnetic waves accompanying the discharge are generated. The degree of vacuum is determined by detecting with a probe or an antenna (for example, see Patent Document 1). In addition, an insulation diagnosis device as a discharge detection device of another conventional vacuum switchgear repeatedly measures the sound wave at the time of discharge and counts the number of discharges received in a certain period of time repeatedly. Then, the obtained data is statistically processed and insulation deterioration diagnosis is performed from the cumulative frequency distribution (see, for example, Patent Document 2). Further, as a vacuum failure detection device as a discharge detection device of other conventional vacuum switchgears, there is a possibility that discharge will occur due to aging deterioration of the outer surface of the vacuum valve, the insulating member in the circuit breaker, etc. In order to discriminate from discharge due to deterioration of the degree of vacuum, discharge occurs once in half cycle at 0.1-0.2 Torr, and discharge occurs more than twice in half cycle at 0.2-0.5 Torr, resulting in insulation deterioration In this case, since discharge is intermittently generated, it is determined whether the degree of vacuum is reduced or the insulation is deteriorated (for example, see Patent Document 3).

特開昭59−160924号公報(第4頁第13行〜第30行及び第13図)JP 59-160924 A (page 4, lines 13 to 30 and FIG. 13) 特開昭60−010184号公報(第2頁左上欄第17行〜第3頁左下欄第13行及び第1図〜第4図)JP-A-60-010184 (page 2, upper left column, line 17 to page 3, lower left column, line 13 and FIGS. 1 to 4) 特開平02−044624号公報(第3頁右下欄第5行〜第5頁左上欄第2行、第1図及び第2図)JP-A-02-044624 (page 3, lower right column, line 5 to page 5, upper left column, second line, FIGS. 1 and 2)

特許文献1に記載された真空度監視装置においては、真空バルブ(真空遮断器)の真空度の良否の判定について記載されているが、絶縁劣化にともなう放電の検出方法や真空度劣化による放電との識別方法については考慮されていないという問題点があった。特許文献2に記載された絶縁診断装置では電気機器の固体絶縁物の絶縁診断について記載されているが、真空バルブ内の真空度低下の検知や真空バルブの絶縁物の絶縁劣化の検知については触れられていない。また、特許文献3に記載された真空不良検出装置においては、半サイクルに発生する放電回数で判別する場合、真空度低下時に発生する放電は必ずしも半サイクルに1回とは限らず、また0.1−0.5Torrの範囲でしか判別できず、0.1Torr以下もしくは0.5Torr以上の場合は、真空度低下か絶縁劣化なのか確認作業を行う必要があり、確認作業に時間がかかるという問題点があった。   In the vacuum degree monitoring device described in Patent Document 1, although the determination of the quality of the vacuum degree of the vacuum valve (vacuum circuit breaker) is described, the detection method of discharge due to insulation deterioration and the discharge due to vacuum degree deterioration are described. There was a problem that the identification method was not considered. The insulation diagnostic device described in Patent Document 2 describes insulation diagnosis of a solid insulator of an electric device, but touches on detection of a decrease in the degree of vacuum in a vacuum valve and detection of insulation deterioration of the insulator of a vacuum valve. It is not done. Further, in the vacuum defect detection device described in Patent Document 3, when the determination is made based on the number of discharges that occur in a half cycle, the discharge that occurs when the degree of vacuum is reduced is not necessarily once in a half cycle. It can be determined only in the range of 1-0.5 Torr, and if it is 0.1 Torr or less or 0.5 Torr or more, it is necessary to check whether the degree of vacuum is low or insulation is deteriorated, and the check work takes time. There was a point.

この発明は前記のような問題点を解決するためになされたものであり、真空バルブの真空度低下や真空バルブの絶縁部材や真空バルブに接触して配置された接触絶縁部材の絶縁劣化を判定することができる真空開閉装置の放電検出装置を得ること及び放電検出方法を提供することを目的とする。さらに、真空度低下であれば真空バルブ内の真空度を求めることができ、絶縁劣化によるものであれば放電電荷量を求めることができる真空開閉装置の放電検出装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and determines the deterioration of the vacuum degree of the vacuum valve or the insulation deterioration of the insulating member of the vacuum valve or the contact insulating member arranged in contact with the vacuum valve. An object of the present invention is to obtain a discharge detection device for a vacuum switchgear that can be performed and to provide a discharge detection method. It is another object of the present invention to provide a discharge detection device for a vacuum switchgear that can determine the degree of vacuum in a vacuum bulb if the degree of vacuum is reduced, and can determine the amount of discharge charge if it is caused by insulation deterioration.

この発明に係る真空開閉装置の放電検出装置においては、
主回路を開閉する真空バルブと前記真空バルブに接触して設けられた接触絶縁部材とを有する真空開閉装置の放電を検出するものであって、電磁波検出部と計数部と判定部とを有し、
前記電磁波検出部は、前記真空開閉装置における放電による電磁波の大きさを検出するものであり、
前記計数部は、前記電磁波の大きさが所定時間の間に予め設定された閾値を越えた数である超過数Nを計数する動作を所定回数M回繰り返しM個の超過数データを得、前記M個の超過数データのうちその超過数Nが所定値を越える超過数データのデータ数Dを求めるものであり、
前記判定部は、前記所定回数M回に対する前記データ数Dの割合γ=D/Mが所定値を越えるときは前記真空バルブの真空度低下と判定し、前記割合γが所定値以下のときは前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定するものである。
In the discharge detection device of the vacuum switchgear according to the present invention,
Detecting discharge of a vacuum switching device having a vacuum valve that opens and closes a main circuit and a contact insulating member provided in contact with the vacuum valve, and includes an electromagnetic wave detection unit, a counting unit, and a determination unit ,
The electromagnetic wave detection unit detects the magnitude of an electromagnetic wave due to discharge in the vacuum switchgear,
The counting unit repeats the operation of counting the excess number N, which is the number that the magnitude of the electromagnetic wave exceeds a preset threshold value during a predetermined time, to obtain M excess number data by repeating the operation a predetermined number of times M, The data number D of the excess number data in which the excess number N exceeds the predetermined value among the M excess number data is obtained.
The determination unit determines that the vacuum valve has a reduced degree of vacuum when the ratio γ = D / M of the number of data D with respect to the predetermined number of times M exceeds a predetermined value, and when the ratio γ is equal to or less than a predetermined value. It is determined that the insulating member of the vacuum valve or the contact insulating member is deteriorated in insulation.

この発明に係る真空開閉装置の放電検出方法においては、主回路を開閉する真空バルブと前記真空バルブに接触して設けられた接触絶縁部材とを有する真空開閉装置の放電を検出する方法であって、次の工程を有するものである。
ア.前記真空バルブにおける放電による電磁波の大きさを検出する工程。
イ.前記電磁波の大きさが所定時間の間に予め設定された閾値を越えた数である超過数Nを計数する動作を所定回数M回繰り返しM個の超過数データを得、前記M個の超過数データのうちその超過数Nが所定値を越える超過数データのデータ数Dを求める工程。
ウ.前記所定回数M回に対する前記データ数Dの割合γ=D/Mが所定値を越えるときは前記真空バルブの真空度低下と判定し、前記割合γが所定値以下のときは前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定する工程。
The discharge detection method for a vacuum switchgear according to the present invention is a method for detecting discharge of a vacuum switchgear having a vacuum valve that opens and closes a main circuit and a contact insulating member provided in contact with the vacuum valve. And having the following steps.
A. Detecting a magnitude of an electromagnetic wave caused by discharge in the vacuum bulb.
A. The operation of counting the excess number N, the magnitude of the electromagnetic wave exceeding a preset threshold during a predetermined time, is repeated M times a predetermined number of times to obtain M excess number data, and the M excess number A step of obtaining the data number D of the excess number data in which the excess number N exceeds a predetermined value.
C. When the ratio γ = D / M of the number of data D with respect to the predetermined number of times M exceeds a predetermined value, it is determined that the vacuum degree of the vacuum valve is lowered, and when the ratio γ is equal to or lower than the predetermined value, the vacuum valve is insulated. The process of determining with the insulation deterioration of a member or the said contact insulation member.

この発明に係る真空開閉装置の放電検出装置は、以上のように構成されているので、真空バルブの真空度低下及び真空バルブの絶縁材料や真空バルブに接触して設けられた接触絶縁部材の絶縁劣化を判定することができる。   Since the discharge detecting device of the vacuum switchgear according to the present invention is configured as described above, the vacuum degree of the vacuum valve is reduced and the insulating material of the vacuum valve or the insulation of the contact insulating member provided in contact with the vacuum valve is insulated. Degradation can be determined.

この発明に係る真空開閉装置の放電検出方法は、以上のような工程を有するので、真空バルブの真空度低下及び真空バルブの絶縁材料や真空バルブに接触して設けられた接触絶縁部材の絶縁劣化を判定することができる。   Since the discharge detection method for a vacuum switchgear according to the present invention includes the steps as described above, the vacuum degree of the vacuum valve is lowered and the insulation deterioration of the contact insulating member provided in contact with the insulating material of the vacuum valve or the vacuum valve is provided. Can be determined.

この発明の実施の形態1である真空開閉装置の放電検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the discharge detection apparatus of the vacuum switchgear which is Embodiment 1 of this invention. 図2(a)は図1の真空開閉装置の放電検出装置を遮断器へ取り付けた状態を示す斜視図、図2(b)は真空バルブの支持状態の詳細を示す断面図である。2A is a perspective view showing a state in which the discharge detection device of the vacuum switching device of FIG. 1 is attached to the circuit breaker, and FIG. 2B is a cross-sectional view showing details of the support state of the vacuum valve. 真空開閉装置の放電検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the discharge detection apparatus of a vacuum switchgear. 真空度低下時の超過数データを示す図である。It is a figure which shows the excess data at the time of a vacuum degree fall. 絶縁劣化時の超過数データを示す図である。It is a figure which shows the excess data at the time of insulation degradation. 実施の形態2による真空開閉装置の放電検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the discharge detection apparatus of the vacuum switching device by Embodiment 2. 図6の真空度算出部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the vacuum degree calculation part of FIG. 電磁波のピーク値と真空バルブの真空度との関係を示す特性図である。It is a characteristic view which shows the relationship between the peak value of electromagnetic waves, and the vacuum degree of a vacuum valve. 実施の形態3による真空開閉装置の放電検出装置の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a discharge detection device of a vacuum switching device according to a third embodiment. 図9の放電電荷量算出部の動作を示すフローチャートである。10 is a flowchart illustrating an operation of a discharge charge amount calculation unit in FIG. 9. 電磁波のピーク値と絶縁部材の劣化による放電電荷量との関係を示す特性図である。It is a characteristic view which shows the relationship between the peak value of electromagnetic waves, and the amount of discharge charges by deterioration of an insulating member. 実施の形態4による真空開閉装置の放電検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the discharge detection apparatus of the vacuum switching device by Embodiment 4. 図12の真空開閉装置の放電検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the discharge detection apparatus of the vacuum switchgear of FIG. 図13のステップS40の詳細を示すフローチャートである。It is a flowchart which shows the detail of step S40 of FIG.

実施の形態1.
図1〜図5は、この発明を実施するための実施の形態1を示すものであり、図1は真空開閉装置の放電検出装置の構成を示すブロック図、図2(a)は図1の真空開閉装置の放電検出装置を遮断器へ取り付けた状態を示す斜視図、図2(b)は真空バルブの支持状態の詳細を示す断面図である。図3は真空開閉装置の放電検出装置の動作を示すフローチャート、図4は真空度低下時の超過数データを示す図、図5は絶縁劣化時の超過数データを示す図である。図1及び図2において、真空開閉装置としての遮断器1は、ブッシング10、容器13、真空バルブ16、駆動装置17を有する。ブッシング10は、碍管11とこの碍管11を貫通するブッシング導体12と電界緩和シールド14とを有する。接地電位である鋼板やアルミニウムなどの導体製の円筒状の容器13に主回路電流や事故電流を遮断する真空バルブ16が収容されている。容器13は、気密性を有し、絶縁ガスが封入されている。
Embodiment 1 FIG.
1 to 5 show a first embodiment for carrying out the present invention. FIG. 1 is a block diagram showing a configuration of a discharge detection device of a vacuum switchgear, and FIG. 2 (a) is a diagram of FIG. FIG. 2B is a perspective view showing a state in which the discharge detection device of the vacuum switchgear is attached to the circuit breaker, and FIG. FIG. 3 is a flowchart showing the operation of the discharge detecting device of the vacuum switching device, FIG. 4 is a diagram showing excess number data when the degree of vacuum is lowered, and FIG. 5 is a diagram showing excess number data when insulation is deteriorated. 1 and 2, the circuit breaker 1 as a vacuum switching device includes a bushing 10, a container 13, a vacuum valve 16, and a driving device 17. The bushing 10 includes a soot tube 11, a bushing conductor 12 that penetrates the soot tube 11, and an electric field relaxation shield 14. A vacuum vessel 16 that cuts off a main circuit current and an accident current is accommodated in a cylindrical container 13 made of a conductor such as a steel plate or aluminum having a ground potential. The container 13 has airtightness and is filled with an insulating gas.

真空バルブ16は、図2(b)に示すように、円筒形の絶縁筒16a、左右の端板16b,16c、固定電極16d、可動電極16e、ベローズ16fを有する。絶縁筒16aの軸方向両端に金属製の端板16b,16cが蝋付けされ、固定電極16dは左方の端板16bを気密に貫通して設けられており、可動電極16eは固定電極16dと対向配置されるとともに、右方の端板16cとの間に設けられた金属製のベローズに気密にかつ軸方向に移動可能に蝋付けされ、絶縁筒16aの内部は真空にされている。真空バルブ16は、図2(b)に示すように固定電極16d側が絶縁支持部材19を介して容器13の左方の内側面に固定支持されている。真空バルブ16の固定電極16d及び可動電極16eは、それぞれブッシング導体12に接続されている。なお、可動電極16eはブッシング導体12に対して摺動しながら軸方向に移動するようにされており,両者間の通電が可能となっている。   As shown in FIG. 2B, the vacuum valve 16 includes a cylindrical insulating tube 16a, left and right end plates 16b and 16c, a fixed electrode 16d, a movable electrode 16e, and a bellows 16f. Metal end plates 16b and 16c are brazed to both ends of the insulating cylinder 16a in the axial direction, the fixed electrode 16d is provided airtightly through the left end plate 16b, and the movable electrode 16e is connected to the fixed electrode 16d. The insulating cylinder 16a is evacuated by being brazed so as to be airtight and axially movable to a metal bellows disposed opposite to the right end plate 16c. As shown in FIG. 2B, the vacuum electrode 16 is fixedly supported on the left inner surface of the container 13 through the insulating support member 19 on the fixed electrode 16 d side. The fixed electrode 16 d and the movable electrode 16 e of the vacuum valve 16 are each connected to the bushing conductor 12. The movable electrode 16e is moved in the axial direction while sliding with respect to the bushing conductor 12, and energization between both is possible.

駆動装置17は、駆動装置本体17aと絶縁ロッド17bを有する。駆動装置本体17aは容器13の右方の端部の外側面(図2(a)参照)に固定され、絶縁ロッド17bを介して真空バルブ16の可動電極16eに結合され、可動電極16eを真空バルブ16の軸方向に駆動して固定電極16dと接離することにより開閉操作する。以上のように、真空バルブ16は、真空バルブ16に接触して設けられた接触絶縁部材としての絶縁支持部材19並びに絶縁ロッド17bにより対地電位の部材としての容器13及び駆動装置本体17aと絶縁されている。   The drive device 17 includes a drive device main body 17a and an insulating rod 17b. The driving device main body 17a is fixed to the outer side surface (see FIG. 2A) of the right end of the container 13, and is coupled to the movable electrode 16e of the vacuum valve 16 via the insulating rod 17b. The valve 16 is opened / closed by driving in the axial direction of the valve 16 to make contact with / separate from the fixed electrode 16d. As described above, the vacuum valve 16 is insulated from the container 13 and the drive device main body 17a as a ground potential member by the insulating support member 19 as a contact insulating member provided in contact with the vacuum valve 16 and the insulating rod 17b. ing.

また、容器13には外部と接続するためのブッシング10が取り付けられている。ブッシング導体12にその外周を一部覆う円筒形状の電界緩和シールド14が設けられている。電界緩和シールド14はブッシング導体12との間に容量成分をもつことから、ローパスフィルタとして働く。放電検出装置は、電磁波検出部としてのアンテナ2と放電検出装置本体110とを有する。アンテナ2は容器13の内部に設置されている。アンテナ2の受信感度の良い帯域を、前記電界緩和シールド(ローパスフィルタ)14のカットオフ周波数以下で、放電による電磁波の周波数帯域に設定する。放電検出装置本体110は、分波部4、検波部5、計数部6、判定部7、表示部8を有する。アンテナ2の出力側は信号線18により放電検出装置本体110の分波部4に接続されている。   Further, a bushing 10 for connecting to the outside is attached to the container 13. The bushing conductor 12 is provided with a cylindrical electric field relaxation shield 14 that partially covers the outer periphery thereof. Since the electric field relaxation shield 14 has a capacitive component with the bushing conductor 12, it acts as a low-pass filter. The discharge detection device includes an antenna 2 as an electromagnetic wave detection unit and a discharge detection device main body 110. The antenna 2 is installed inside the container 13. A band with good reception sensitivity of the antenna 2 is set to a frequency band of electromagnetic waves due to discharge, which is equal to or lower than the cutoff frequency of the electric field relaxation shield (low-pass filter) 14. The discharge detection device main body 110 includes a demultiplexing unit 4, a detection unit 5, a counting unit 6, a determination unit 7, and a display unit 8. The output side of the antenna 2 is connected to the demultiplexing unit 4 of the discharge detection device main body 110 by a signal line 18.

次に、動作を説明する。容器13内で絶縁上の問題が生じた場合、例えば真空バルブ16における高電界部への金属異物の付着や、真空バルブ16周辺の固体絶縁部材(例えば可動電極を駆動する絶縁ロッド、セラミック製の真空容器等)の絶縁不良、真空バルブ16内での真空度劣化等が発生した場合、容器13内部で部分放電が発生し電磁波が放射される。この時、放電による電磁波はアンテナ2に伝播する。アンテナ2で受信された電磁波は、信号線18を介して、分波部4へ電磁波S1として入力される。分波部4によって、電界緩和シールド(ローパスフィルタ)14のカットオフ周波数以下の電磁波S2を取り出し、取り出された電磁波S2(例えば、周波数200〜300MHz)のピーク値(電圧)S3を検波部5によって取り出す。   Next, the operation will be described. When an insulation problem occurs in the container 13, for example, metal foreign matter adheres to a high electric field portion in the vacuum valve 16, or a solid insulating member around the vacuum valve 16 (for example, an insulating rod for driving a movable electrode, a ceramic product) In the case of poor insulation of the vacuum container or the like, or deterioration of the vacuum degree in the vacuum valve 16, partial discharge occurs in the container 13 and electromagnetic waves are emitted. At this time, an electromagnetic wave due to discharge propagates to the antenna 2. The electromagnetic wave received by the antenna 2 is input as the electromagnetic wave S <b> 1 to the demultiplexing unit 4 through the signal line 18. The demultiplexing unit 4 extracts an electromagnetic wave S2 having a frequency equal to or lower than the cutoff frequency of the electric field relaxation shield (low-pass filter) 14, and the peak value (voltage) S3 of the extracted electromagnetic wave S2 (for example, frequency 200 to 300 MHz) is detected by the detection unit 5. Take out.

以下、検波して取り出した電磁波S2のピーク値S3に基づいて真空バルブ16の放電検出を行う方法を図3のフローチャートにより説明する。図3において、初期化(測定回数n=1とおく)を行い(ステップS1)、計数部6により予め決められた時間である所定時間Δtを1回当たりの測定時間とし、所定時間Δt内にピーク値S3の大きさが予め設定した所定の閾値Kを越えた超過数Nnを計測し超過数データXn(Xn=Nn)を得る(ステップS2)。得られた超過数データXnは計数部6に記録される(ステップS3)。次にnに1を加え(ステップS4)、ステップS5からステップS2へ戻り、次の所定時間Δt内にピーク値S3の大きさが設定した閾値Kを越えた数を計測し超過数データXn+1を得る。この動作を予め決められた回数であるM回繰り返す(ステップS5)。   Hereinafter, a method of detecting the discharge of the vacuum bulb 16 based on the peak value S3 of the electromagnetic wave S2 detected and extracted will be described with reference to the flowchart of FIG. In FIG. 3, initialization (measurement number n = 1) is performed (step S1), and a predetermined time Δt, which is a time predetermined by the counting unit 6, is set as a measurement time per time, and within the predetermined time Δt. An excess number Nn in which the magnitude of the peak value S3 exceeds a predetermined threshold value K set in advance is measured to obtain excess number data Xn (Xn = Nn) (step S2). The obtained excess number data Xn is recorded in the counting unit 6 (step S3). Next, 1 is added to n (step S4), the process returns from step S5 to step S2, and the number of times the magnitude of the peak value S3 exceeds the set threshold value K within the next predetermined time Δt is measured, and the excess number data Xn + 1 is obtained. obtain. This operation is repeated M times that is a predetermined number of times (step S5).

M回分の超過数データX1〜XMが得られると(ステップS5)、判定部7は超過数データX1〜XMのうちその超過数N1〜NMが閾値Cを越えるデータ数Dを求める(ステップS6)。次に、繰り返し回数Mに対するデータ数Dの割合γ=D/Mを求める(ステップS7)。割合γが予め決められた値である所定値G以上となる場合は放電が継続して発生していることから、真空バルブ16の真空度低下と判定する(ステップS9)。そうでない場合は、放電が間欠的に発生していることから、真空バルブ16の絶縁部材の絶縁劣化によるものと判定する。そして、判定結果を表示部8に表示する(ステップS11)。なお、以上のような判定に要する1サイクルの時間Tは、T=Δt×Mとなる。   When the excess number data X1 to XM for M times are obtained (step S5), the determination unit 7 obtains the data number D in which the excess numbers N1 to NM exceed the threshold C among the excess number data X1 to XM (step S6). . Next, a ratio γ = D / M of the number of data D to the number of repetitions M is obtained (step S7). When the ratio γ is equal to or greater than a predetermined value G, which is a predetermined value, since the discharge is continuously generated, it is determined that the vacuum degree of the vacuum bulb 16 is reduced (step S9). Otherwise, since the discharge is intermittently generated, it is determined that the insulation member of the vacuum bulb 16 is deteriorated. Then, the determination result is displayed on the display unit 8 (step S11). The time T of one cycle required for the above determination is T = Δt × M.

次に、上記のようにして放電源すなわち放電の原因が真空度低下によるものか絶縁部材の絶縁劣化によるものか判定できる理由について以下に説明する。図4は、真空度低下時の実測した超過数データX1〜XMの超過数N1〜NM(M=60)を示す特性図であり、図5は絶縁劣化時の実測した超過数データX1〜XMの超過数N1〜NM(M=60)を示す特性図である。図4,5から真空度低下時は超過数Nn(n=1〜M)の値が大きい超過数データXnが継続して発生しているのに対して、絶縁劣化時は超過数Nnの値が零である超過数データXnが連続する区間や、超過数Nnの値が比較的小さい超過数データXnが連続する区間があることが分かる。この結果から、超過数データXnの超過数Nnが閾値Cを越えるデータ数Dを計数し、全体の繰り返し回数Mに対するデータ数Dの割合γから、放電源を判定することが可能となる。なお、図5においては、割合γが約0.87、図6においては割合γが約0.55である。   Next, the reason why it is possible to determine whether the discharge source, that is, the cause of the discharge is due to a decrease in the degree of vacuum or the insulation deterioration of the insulating member as described above will be described below. FIG. 4 is a characteristic diagram showing the excess numbers N1 to NM (M = 60) of the measured excess number data X1 to XM when the degree of vacuum is lowered, and FIG. 5 is the measured excess number data X1 to XM when the insulation is deteriorated. It is a characteristic view which shows the excess numbers N1-NM (M = 60). 4 and 5, the excess number data Xn having a large excess number Nn (n = 1 to M) is continuously generated when the degree of vacuum is lowered, whereas the excess number Nn is a value when insulation is deteriorated. It can be seen that there are sections in which the excess number data Xn having zero is continuous and sections in which the excess number data Xn having a relatively small value of the excess number Nn are continuous. From this result, it is possible to count the number of data D where the excess number Nn of the excess number data Xn exceeds the threshold C, and to determine the discharge source from the ratio γ of the data number D to the total number of repetitions M. In FIG. 5, the ratio γ is about 0.87, and in FIG. 6, the ratio γ is about 0.55.

実施の形態2.
図6〜図8は実施の形態2を示すものであり、図6は真空開閉装置の放電検出装置の構成を示すブロック図、図7は真空度算出部の動作を示すフローチャート、図8は電磁波のピーク値と真空バルブ16の真空度との関係を示す特性図である。図6において、放電検出装置本体210は記憶部21と真空度算出部22とを有する。その他の構成については、図1に示す実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 2. FIG.
6 to 8 show the second embodiment, FIG. 6 is a block diagram showing the configuration of the discharge detection device of the vacuum switchgear, FIG. 7 is a flowchart showing the operation of the vacuum degree calculation unit, and FIG. FIG. 6 is a characteristic diagram showing the relationship between the peak value of and the vacuum degree of the vacuum valve 16. In FIG. 6, the discharge detection device main body 210 includes a storage unit 21 and a vacuum degree calculation unit 22. Since other configurations are the same as those in the first embodiment shown in FIG. 1, the corresponding components are denoted by the same reference numerals and description thereof is omitted.

次に、動作について図7により説明する。図7のフローチャートは、実施の形態1の図3のフローチャートのステップS9とステップS11との間に挿入されるものである。なお、記憶部21は、電磁波S2のピーク値(電圧)S3を常時記憶する。図3のステップS8においてγ(D/M)>Gか否か判定され、γ>Gであれば真空度低下と判定する(ステップS9)が、真空度低下と判定された場合、図7のステップS21において記憶部21に記憶された電磁波S2のピーク値S3に基づいて真空バルブ16の真空度を求める(詳細後述)。そして、求めた真空度を表示部8に表示する(ステップS22)。なお、ステップS21における真空度は図8に示す特性に基づいて求める。図8は容器13内に真空度を変更可能な真空バルブを設置し、真空度を変更しつつ、開極した状態の主電極(固定電極と可動電極)間に電圧を印加して放電させ、その際に容器13内に設置したアンテナ2で取得した電磁波S1を分波部4、検波部5を介して電磁波S2のピーク値S3(電圧)と真空バルブの真空度Pとの関係を求めた特性図である。両者の関係は、例えば最小二乗法等により回帰直線を算出し、この真空度Pと電磁波S2のピーク値S3との関係を真空度算出部22に記憶しておき、この回帰直線に基づき真空度Pを求める。   Next, the operation will be described with reference to FIG. The flowchart of FIG. 7 is inserted between step S9 and step S11 of the flowchart of FIG. 3 of the first embodiment. The storage unit 21 always stores the peak value (voltage) S3 of the electromagnetic wave S2. In step S8 of FIG. 3, it is determined whether or not γ (D / M)> G. If γ> G, it is determined that the degree of vacuum is reduced (step S9). In step S21, the degree of vacuum of the vacuum valve 16 is obtained based on the peak value S3 of the electromagnetic wave S2 stored in the storage unit 21 (details will be described later). Then, the obtained degree of vacuum is displayed on the display unit 8 (step S22). The degree of vacuum in step S21 is obtained based on the characteristics shown in FIG. FIG. 8 shows that a vacuum valve capable of changing the degree of vacuum is installed in the container 13, and a voltage is applied between the main electrodes (fixed electrode and movable electrode) in an open state while changing the degree of vacuum, and then discharged. At that time, the relationship between the electromagnetic wave S1 acquired by the antenna 2 installed in the container 13 and the peak value S3 (voltage) of the electromagnetic wave S2 and the vacuum degree P of the vacuum valve was obtained via the demultiplexing unit 4 and the detection unit 5. FIG. For example, a regression line is calculated by the least square method or the like, and the relationship between the degree of vacuum P and the peak value S3 of the electromagnetic wave S2 is stored in the vacuum degree calculation unit 22, and the degree of vacuum is calculated based on the regression line. Find P.

図8に示すようにアンテナからの電磁波のピーク値はほぼ真空度に比例する傾向にある。本形態により、アンテナからの電磁波のピーク値(大きさ)から真空バルブ内の真空度が判明するので、真空バルブの開閉が可能かすなわち主回路電流の遮断が可能か、真空バルブの交換が必要か等の判断が直ちに可能となり、放電発生時にその発生源を判定するための作業工程を削減し、作業時間を低減することができる。   As shown in FIG. 8, the peak value of the electromagnetic wave from the antenna tends to be substantially proportional to the degree of vacuum. With this configuration, the degree of vacuum in the vacuum valve can be determined from the peak value (magnitude) of the electromagnetic wave from the antenna, so that the vacuum valve can be opened or closed, that is, the main circuit current can be interrupted, or the vacuum valve needs to be replaced. Such a determination can be made immediately, and a work process for determining the generation source when a discharge occurs can be reduced, and the work time can be reduced.

実施の形態3.
図9〜図11は実施の形態3を示すものであり、図9は真空開閉装置の放電検出装置の構成を示すブロック図、図10は放電電荷量算出部の動作を示すフローチャート、図11は電磁波のピーク値と放電電荷量との関係を示す特性図である。図9において、放電検出装置本体310は真空度算出部22の代わりに放電電荷量算出部31とを有する。その他の構成については、図6に示す実施の形態2と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 3 FIG.
9 to 11 show the third embodiment, FIG. 9 is a block diagram showing the configuration of the discharge detection device of the vacuum switchgear, FIG. 10 is a flowchart showing the operation of the discharge charge amount calculation unit, and FIG. It is a characteristic view which shows the relationship between the peak value of electromagnetic waves, and the amount of discharge charges. In FIG. 9, the discharge detection device main body 310 includes a discharge charge amount calculation unit 31 instead of the degree of vacuum calculation unit 22. Since other configurations are the same as those of the second embodiment shown in FIG. 6, the corresponding components are denoted by the same reference numerals and description thereof is omitted.

次に、動作について図10により説明する。図10のフローチャートは、実施の形態1の図3のフローチャートのステップS10とステップS11との間に挿入されるものである。図3のステップS8においてγ(D/M)>G(Gは所定値)か否か判定され、γ>Gでなければ絶縁劣化と判定する(ステップS10)が、絶縁劣化と判定された場合、図10のステップS31において、記憶部21に記憶された電磁波S2のピーク値S3に基づいて放電の放電電荷量を求める(詳細後述)。求めた放電電荷量が問題ないレベルであれば(ステップS32)そのまま求めた放電電荷量を表示部8に表示し終了する(ステップS34)。そのレベルに問題があれば絶縁劣化の警報を発し(ステップS33)、求めた放電電荷量を表示部8に表示する(ステップS34)。絶縁劣化の可能性の高い絶縁部材として、真空バルブ16の絶縁筒16a、真空バルブ16に接触して設けられた接触絶縁部材としての絶縁支持部材19、絶縁ロッド17bが考えられるが、本実施の形態によればこれらのいずれが絶縁劣化しても検出が可能である。   Next, the operation will be described with reference to FIG. The flowchart of FIG. 10 is inserted between step S10 and step S11 of the flowchart of FIG. 3 of the first embodiment. When it is determined whether or not γ (D / M)> G (G is a predetermined value) in step S8 of FIG. 3, and if γ> G is not determined, the insulation deterioration is determined (step S10). In step S31 of FIG. 10, the discharge charge amount of the discharge is obtained based on the peak value S3 of the electromagnetic wave S2 stored in the storage unit 21 (details will be described later). If the obtained discharge charge amount is at a level that does not cause a problem (step S32), the obtained discharge charge amount is displayed on the display unit 8 and the process is terminated (step S34). If there is a problem in the level, an alarm for insulation deterioration is issued (step S33), and the obtained discharge charge amount is displayed on the display unit 8 (step S34). Insulating members having a high possibility of deterioration of insulation include an insulating cylinder 16a of the vacuum valve 16, an insulating support member 19 as a contact insulating member provided in contact with the vacuum valve 16, and an insulating rod 17b. According to the form, detection is possible even if any of these is deteriorated in insulation.

図11は容器13内に予め絶縁劣化させた絶縁部材を設置し、課電電圧等を変更することで放電電荷量を変更しつつ、容器13内に設置されたアンテナ2で受信した電磁波の大きさ(ピーク値S3)と放電電荷量Qとの関係を測定した結果を示す特性図である。図11によれば、アンテナ2からの電磁波(ピーク値S3)は放電電荷量Qが大きいほど高くなる傾向がある。この測定結果を基に、実施の形態2で説明した真空度計算と同様に最小二乗法等により放電電荷量Qとアンテナ2からの電磁波のピーク値S3との関係を示す回帰直線を求めて放電電荷量算出部31に記憶しておき、この回帰直線を用いてピーク値S3から放電電荷量Qを求める。   FIG. 11 shows the magnitude of the electromagnetic wave received by the antenna 2 installed in the container 13 while an insulating member whose insulation has been deteriorated in advance is installed in the container 13 and the discharge charge amount is changed by changing the applied voltage or the like. It is a characteristic view which shows the result of having measured the relationship between length (peak value S3) and the amount Q of discharge charges. According to FIG. 11, the electromagnetic wave (peak value S3) from the antenna 2 tends to increase as the discharge charge amount Q increases. Based on this measurement result, a regression line indicating the relationship between the discharge charge amount Q and the peak value S3 of the electromagnetic wave from the antenna 2 is obtained by the least square method or the like, similar to the vacuum degree calculation described in the second embodiment. It is stored in the charge amount calculation unit 31, and the discharge charge amount Q is obtained from the peak value S3 using this regression line.

以上のように、この実施の形態によれば放電電荷量Qが判明するので、絶縁部材がどの程度劣化しているのか、絶縁部材の交換が必要か等の判断が即時に可能となり、放電発生時の原因究明等の作業工程を削減することができる。   As described above, according to this embodiment, since the discharge charge amount Q is found, it is possible to immediately determine how much the insulating member has deteriorated, whether the insulating member needs to be replaced, etc. It is possible to reduce work processes such as time investigation.

実施の形態4.
図12〜図14は、実施の形態4を示すものであり、図12は真空開閉装置の放電検出装置の構成を示すブロック図、図13は真空開閉装置の放電検出装置の動作を示すフローチャート、図14は図13のステップS40の詳細を示すフローチャートである。図12において、放電検出装置本体410は真空度算出部22と放電電荷量算出部31と開閉動作禁止部としてのロック部41とを有する。その他の構成については、図6に示す実施の形態2あるいは図9に示す実施の形態3と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 4 FIG.
FIGS. 12 to 14 show the fourth embodiment, FIG. 12 is a block diagram showing the configuration of the discharge detection device of the vacuum switchgear, and FIG. 13 is a flowchart showing the operation of the discharge detection device of the vacuum switchgear. FIG. 14 is a flowchart showing details of step S40 in FIG. In FIG. 12, the discharge detection device main body 410 includes a vacuum degree calculation unit 22, a discharge charge amount calculation unit 31, and a lock unit 41 as an opening / closing operation prohibition unit. Since other configurations are the same as those in the second embodiment shown in FIG. 6 or the third embodiment shown in FIG. 9, the same components are denoted by the same reference numerals and description thereof is omitted.

この実施の形態は、実施の形態2と実施の形態3とを組み合わせるとともに、ロック部41を設けて必要なときに真空バルブ16の開閉動作を禁止するようにしたものである。図13のフローチャートにおいて、ステップS1〜S7までは、実施の形態1と同様であるが、その後のステップS40における動作が異なる。ステップS40の詳細を示す図14において、ステップS8からステップS34までは実施の形態1〜3と同様のステップである。図14において、真空度算出部22で得られた真空度の計算結果が、所定の電流例えば遮断器1の定格電流を遮断可能な真空度でない、すなわち開極可能な真空度でない場合は(ステップS41)、ロック部41により駆動装置17が動作しないように図示しない開閉回路をロックして開閉動作を禁止し(ステップS42)、ロックした旨及び真空度低下の警報を発する(ステップS43)とともに、ロックした旨及び真空度を表示部8に表示する(ステップS45)。開極可能な真空度すなわち主回路電流は遮断可能であるが事故電流等定格電流を越える大きな電流は遮断できないおそれのある真空度であれば(ステップS41)、真空度低下の警報を発し(ステップS44)、真空度が低下し事故電流は遮断できないおそれのある旨及び真空度を表示部8に表示する(ステップS45)。   In this embodiment, the second embodiment and the third embodiment are combined, and a lock portion 41 is provided to prohibit the opening / closing operation of the vacuum valve 16 when necessary. In the flowchart of FIG. 13, steps S1 to S7 are the same as in the first embodiment, but the subsequent operation in step S40 is different. In FIG. 14 showing the details of step S40, steps S8 to S34 are the same steps as in the first to third embodiments. In FIG. 14, when the calculation result of the degree of vacuum obtained by the degree-of-vacuum calculation unit 22 is not a degree of vacuum that can interrupt a predetermined current, for example, the rated current of the circuit breaker 1, that is, a degree of vacuum that cannot be opened (step). S41), an opening / closing circuit (not shown) is locked by the lock unit 41 so that the driving device 17 does not operate, and the opening / closing operation is prohibited (step S42). The lock and the degree of vacuum are displayed on the display unit 8 (step S45). If the degree of vacuum that can be opened, that is, the main circuit current can be interrupted but a large current exceeding the rated current, such as an accident current, may not be interrupted (step S41), an alarm for lowering the degree of vacuum is issued (step S41). S44) The fact that the degree of vacuum is reduced and the accident current cannot be interrupted and the degree of vacuum are displayed on the display unit 8 (step S45).

なお、前記各実施の形態では、電磁波S1のピーク値S3に基づいて真空バルブの放電の監視及び真空度や放電電荷量を求めるものを示したが、ピーク値S3から求めるものに限られるものではなく、電磁波S1を適宜処理して得られた別の形の電磁波の大きさに基づいて求めることもできる。   In each of the above-described embodiments, the monitoring of the discharge of the vacuum bulb and the determination of the degree of vacuum and the discharge charge amount based on the peak value S3 of the electromagnetic wave S1 are shown. However, the embodiments are not limited to those obtained from the peak value S3. Alternatively, it can be obtained based on the magnitude of another form of electromagnetic wave obtained by appropriately processing the electromagnetic wave S1.

以上のように、この実施の形態によれば真空バルブの真空度が劣化して、負荷電流を遮断できないレベルすなわち開極した瞬間に閃絡するレベルになっている場合に、誤って開極することを防止できるので、より安全性を向上させることができる。また、負荷電流は遮断できるが事故電流等負荷電流を越える大きな電流は遮断できないおそれのあるレベルに真空度が低下した場合は、真空度劣化の警報を発してその旨報知するので、前広に対策が可能である。   As described above, according to this embodiment, when the degree of vacuum of the vacuum valve is deteriorated and the load current cannot be cut off, that is, the level at which the flashing occurs at the moment of opening, the contact is erroneously opened. Since this can be prevented, safety can be further improved. Also, if the vacuum level drops to a level where the load current can be cut off but a large current exceeding the load current such as an accident current cannot be cut off, an alarm is given to notify the vacuum degree deterioration. Countermeasures are possible.

なお、以上では、真空バルブ16が導体製の容器13に収容されているので容器13内に設置されたアンテナ2は、外部から電磁波ノイズが入らないので電磁波ノイズ対策が容易であるが、容器13に収容されていない場合であっても適用できる。また、以上では真空開閉装置が真空遮断器の場合について説明したが、真空電磁接触器等他の真空開閉装置であっても同様の効果を奏する。
また、本発明は、その発明の範囲内において、上述した各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変更、省略したりすることが可能である。
In the above description, since the vacuum valve 16 is accommodated in the conductive container 13, the antenna 2 installed in the container 13 does not receive electromagnetic noise from the outside, so that countermeasures against electromagnetic noise are easy. Even if it is not housed, it can be applied. Further, the case where the vacuum switch is a vacuum circuit breaker has been described above, but the same effect can be obtained even with other vacuum switches such as a vacuum electromagnetic contactor.
In the present invention, the above-described embodiments can be freely combined within the scope of the invention, or each embodiment can be appropriately changed or omitted.

1 遮断器、2 アンテナ、6 計数部、7 判定部、8 表示部、13 容器、
16 真空バルブ、16a 絶縁筒、17 駆動装置、17b 絶縁ロッド、
19 絶縁支持部材、21 記憶部、22 真空度算出部、31 放電電荷量算出部、
41 ロック部、110,210,310,410 放電検出装置本体。
1 circuit breaker, 2 antenna, 6 counting unit, 7 judging unit, 8 display unit, 13 container,
16 vacuum valve, 16a insulating cylinder, 17 driving device, 17b insulating rod,
19 insulating support member, 21 storage unit, 22 vacuum degree calculation unit, 31 discharge charge amount calculation unit,
41 Lock part, 110, 210, 310, 410 Discharge detection device body.

Claims (8)

主回路を開閉する真空バルブと前記真空バルブに接触して設けられた接触絶縁部材とを有する真空開閉装置の放電を検出するものであって、電磁波検出部と計数部と判定部とを有し、
前記電磁波検出部は、前記真空開閉装置における放電による電磁波の大きさを検出するものであり、
前記計数部は、前記電磁波の大きさが所定時間の間に予め設定された閾値を越えた数である超過数Nを計数する動作を所定回数M回繰り返しM個の超過数データを得、前記M個の超過数データのうちその超過数Nが所定値を越える超過数データのデータ数Dを求めるものであり、
前記判定部は、前記所定回数M回に対する前記データ数Dの割合γ=D/Mが所定値を越えるときは前記真空バルブの真空度低下と判定し、前記割合γが所定値以下のときは前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定するものである
真空開閉装置の放電検出装置。
Detecting discharge of a vacuum switching device having a vacuum valve that opens and closes a main circuit and a contact insulating member provided in contact with the vacuum valve, and includes an electromagnetic wave detection unit, a counting unit, and a determination unit ,
The electromagnetic wave detection unit detects the magnitude of an electromagnetic wave due to discharge in the vacuum switchgear,
The counting unit repeats the operation of counting the excess number N, which is the number that the magnitude of the electromagnetic wave exceeds a preset threshold value during a predetermined time, to obtain M excess number data by repeating the operation a predetermined number of times M, The data number D of the excess number data in which the excess number N exceeds the predetermined value among the M excess number data is obtained.
The determination unit determines that the vacuum valve has a reduced degree of vacuum when the ratio γ = D / M of the number of data D with respect to the predetermined number of times M exceeds a predetermined value, and when the ratio γ is equal to or less than a predetermined value. A discharge detection device for a vacuum switchgear that determines an insulation deterioration of the insulating member of the vacuum valve or the contact insulating member.
記憶部と真空度算出部とを有し、
前記記憶部は、前記所定時間の間の前記電磁波の大きさを記憶する動作を前記所定回数M回繰り返すものであり、
前記真空度算出部は、前記判定部が前記真空バルブの真空度低下と判定した場合に、前記記憶部に記憶された前記電磁波の大きさに基づいて前記真空バルブの真空度を求めるものである
請求項1に記載の真空開閉装置の放電検出装置。
A storage unit and a vacuum degree calculation unit;
The storage unit repeats the operation of storing the magnitude of the electromagnetic wave during the predetermined time M times the predetermined number of times,
The vacuum degree calculation unit obtains the vacuum degree of the vacuum valve based on the magnitude of the electromagnetic wave stored in the storage unit when the determination unit determines that the vacuum degree of the vacuum valve is reduced. The discharge detection device of the vacuum switchgear according to claim 1.
記憶部と放電電荷量算出部とを有し、
前記記憶部は、前記所定時間の間の前記電磁波の大きさを記憶する動作を前記所定回数M回繰り返すものであり、
前記放電電荷量算出部は、前記判定部が前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定した場合に、前記記憶部に記憶された前記電磁波の大きさに基づいて放電電荷量を求めるものである
請求項1に記載の真空開閉装置の放電検出装置。
A storage unit and a discharge charge amount calculation unit;
The storage unit repeats the operation of storing the magnitude of the electromagnetic wave during the predetermined time M times the predetermined number of times,
The discharge charge amount calculation unit is configured to determine a discharge charge amount based on the magnitude of the electromagnetic wave stored in the storage unit when the determination unit determines that the insulation deterioration of the insulating member of the vacuum valve or the contact insulating member. The discharge detection device for a vacuum switchgear according to claim 1, wherein:
記憶部と真空度算出部と放電電荷量算出部とを有し、
前記記憶部は、前記所定時間の間の前記電磁波の大きさを記憶する動作を前記所定回数M回繰り返すものであり、
前記真空度算出部は、前記判定部が前記真空バルブの真空度低下と判定した場合に、前記記憶部に記憶された前記電磁波の大きさに基づいて前記真空バルブの真空度を求めるものである
前記放電電荷量算出部は、前記判定部が前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定した場合に、前記記憶部に記憶された前記電磁波の大きさに基づいて放電電荷量を求めるものである
請求項1に記載の真空開閉装置の放電検出装置。
A storage unit, a degree of vacuum calculation unit, and a discharge charge amount calculation unit;
The storage unit repeats the operation of storing the magnitude of the electromagnetic wave during the predetermined time M times the predetermined number of times,
The vacuum degree calculation unit obtains the vacuum degree of the vacuum valve based on the magnitude of the electromagnetic wave stored in the storage unit when the determination unit determines that the vacuum degree of the vacuum valve is reduced. The discharge charge amount calculation unit is configured to determine a discharge charge amount based on the magnitude of the electromagnetic wave stored in the storage unit when the determination unit determines that the insulation deterioration of the insulating member of the vacuum valve or the contact insulating member. The discharge detection device for a vacuum switchgear according to claim 1, wherein:
開閉禁止部を有するものであって、
前記開閉禁止部は、前記真空度に基づいて前記真空バルブの開閉動作を禁止するものである
請求項2または請求項4に記載の真空開閉装置の放電検出装置。
It has an open / close prohibited part,
The discharge detection device of a vacuum switching device according to claim 2 or 4, wherein the opening / closing prohibiting unit prohibits an opening / closing operation of the vacuum valve based on the degree of vacuum.
前記真空開閉装置は、前記真空バルブを支持する絶縁支持部材及び前記真空バルブを駆動装置により開閉操作するための絶縁ロッドのうちの少なくとも一方を有するものであり、
前記接触絶縁部材は、前記絶縁支持部材及び前記絶縁ロッドのうちの少なくとも一方である
請求項1または請求項3または請求項4に記載の真空開閉装置の放電検出装置。
The vacuum opening and closing device has at least one of an insulating support member for supporting the vacuum valve and an insulating rod for opening and closing the vacuum valve by a driving device,
The discharge detection device for a vacuum switchgear according to claim 1, wherein the contact insulating member is at least one of the insulating support member and the insulating rod.
前記真空バルブは、絶縁性のガスが封入された容器に収容されたものであり、
前記電磁波検出部は、前記容器内に設置されたものである
請求項1から請求項6のいずれか1項に記載の真空開閉装置の放電検出装置。
The vacuum valve is housed in a container filled with an insulating gas,
The discharge detection device for a vacuum switchgear according to any one of claims 1 to 6, wherein the electromagnetic wave detection unit is installed in the container.
主回路を開閉する真空バルブと前記真空バルブに接触して設けられた接触絶縁部材とを有する真空開閉装置の放電を検出する方法であって、次の工程を有する真空開閉装置の放電検出方法。
ア.前記真空バルブにおける放電による電磁波の大きさを検出する工程。
イ.前記電磁波の大きさが所定時間の間に予め設定された閾値を越えた数である超過数Nを計数する動作を所定回数M回繰り返しM個の超過数データを得、前記M個の超過数データのうちその超過数Nが所定値を越える超過数データのデータ数Dを求める工程。
ウ.前記所定回数M回に対する前記データ数Dの割合γ=D/Mが所定値を越えるときは前記真空バルブの真空度低下と判定し、前記割合γが所定値以下のときは前記真空バルブの絶縁部材または前記接触絶縁部材の絶縁劣化と判定する工程。
A method for detecting discharge of a vacuum switchgear having a vacuum valve for opening and closing a main circuit and a contact insulating member provided in contact with the vacuum valve, the method comprising:
A. Detecting a magnitude of an electromagnetic wave caused by discharge in the vacuum bulb.
A. The operation of counting the excess number N, the magnitude of the electromagnetic wave exceeding a preset threshold during a predetermined time, is repeated M times a predetermined number of times to obtain M excess number data, and the M excess number A step of obtaining the data number D of the excess number data in which the excess number N exceeds a predetermined value.
C. When the ratio γ = D / M of the number of data D with respect to the predetermined number of times M exceeds a predetermined value, it is determined that the vacuum degree of the vacuum valve is lowered, and when the ratio γ is equal to or lower than the predetermined value, the vacuum valve is insulated. The process of determining with the insulation deterioration of a member or the said contact insulation member.
JP2014089720A 2014-04-24 2014-04-24 Discharge detection device and discharge detection method for vacuum switchgear Active JP6246058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089720A JP6246058B2 (en) 2014-04-24 2014-04-24 Discharge detection device and discharge detection method for vacuum switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014089720A JP6246058B2 (en) 2014-04-24 2014-04-24 Discharge detection device and discharge detection method for vacuum switchgear

Publications (2)

Publication Number Publication Date
JP2015210851A JP2015210851A (en) 2015-11-24
JP6246058B2 true JP6246058B2 (en) 2017-12-13

Family

ID=54612918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089720A Active JP6246058B2 (en) 2014-04-24 2014-04-24 Discharge detection device and discharge detection method for vacuum switchgear

Country Status (1)

Country Link
JP (1) JP6246058B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359150B1 (en) * 2020-05-22 2022-02-08 한국전력공사 Gas Insulated swatchgear having embedded collecting panel for partial discharge
KR102411742B1 (en) * 2020-05-27 2022-06-23 한국전력공사 Voltage detector of vacuum interrupter switchgears

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104514A (en) * 1984-10-26 1986-05-22 株式会社東芝 Vacuum deterioration detector for vacuum breaker
JPH02114413A (en) * 1988-10-24 1990-04-26 Toshiba Corp Poor vacuum sensing device for vacuum breaker
JP2002184275A (en) * 2000-12-12 2002-06-28 Meidensha Corp Degree of vacuum monitoring method and device for vacuum circuit-breaker

Also Published As

Publication number Publication date
JP2015210851A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP4169024B2 (en) Vacuum switchgear
JP3168751B2 (en) Method and apparatus for detecting vacuum leak of vacuum valve
JP6482632B2 (en) Partial discharge detection method and partial discharge detection apparatus for electric power equipment
JP5819012B2 (en) Vacuum deterioration monitoring device
KR101559725B1 (en) Prediagnosis prevention device for switchgear
JP6246058B2 (en) Discharge detection device and discharge detection method for vacuum switchgear
JP5224825B2 (en) Insulation monitoring device
JP5597311B2 (en) Tank breaker
JP2017524241A (en) Vacuum insulated switch, switch assembly and test method enabling vacuum testing
JP2010093968A (en) Gas-insulated switchgear
Merck et al. Methods for estimation of the vacuum status in vacuum circuit breakers
JP2011222515A (en) Plasma generation apparatus
JP5518259B2 (en) Tank type switchgear
KR101723198B1 (en) Insulation breakdown test equipment using paschens law and method thereof
JP6397700B2 (en) Vacuum valve pressure diagnostic device or vacuum valve device
Schellekens Continuous vacuum monitoring in vacuum circuit breakers
JP4728797B2 (en) Gas insulated power equipment
Nakaoka et al. Development of partial discharge detection and diagnostic methods of vacuum circuit breaker
Caesario et al. Partial discharge diagnosis of Gas Insulated Station (GIS) using acoustic method
JP2012150970A (en) Vacuum valve and tank type vacuum breaker
KR101212564B1 (en) Vacuum switch, and vacuum insulated switch gear
JP6560928B2 (en) Vacuum valve pressure diagnostic device and vacuum valve device
KR860001784B1 (en) Vacuum rate monitor for vacuum circuit breaker
JP6269556B2 (en) Sensor and partial discharge detection device
JPH1164432A (en) Insulation abnormality monitoring device for electric equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171114

R150 Certificate of patent or registration of utility model

Ref document number: 6246058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250