JP6245679B2 - Method for producing polyethylene resin composition, method for producing packaging container - Google Patents

Method for producing polyethylene resin composition, method for producing packaging container Download PDF

Info

Publication number
JP6245679B2
JP6245679B2 JP2013075565A JP2013075565A JP6245679B2 JP 6245679 B2 JP6245679 B2 JP 6245679B2 JP 2013075565 A JP2013075565 A JP 2013075565A JP 2013075565 A JP2013075565 A JP 2013075565A JP 6245679 B2 JP6245679 B2 JP 6245679B2
Authority
JP
Japan
Prior art keywords
polyethylene
silica fine
fine particles
resin composition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075565A
Other languages
Japanese (ja)
Other versions
JP2014201309A (en
Inventor
小野 和也
和也 小野
愛美 新井
愛美 新井
匡仁 豊永
匡仁 豊永
俊明 谷池
俊明 谷池
稔 寺野
稔 寺野
Original Assignee
日本テトラパック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テトラパック株式会社 filed Critical 日本テトラパック株式会社
Priority to JP2013075565A priority Critical patent/JP6245679B2/en
Publication of JP2014201309A publication Critical patent/JP2014201309A/en
Application granted granted Critical
Publication of JP6245679B2 publication Critical patent/JP6245679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、優れた性能を持つ結晶核剤、その結晶核剤を添加して得られた酸素バリア性に優れ、良好な機械的特性を備えたポリエチレン樹脂組成物、その組成物を用いた包装材料及び、その材料による包装容器に関する。 The present invention relates to a crystal nucleating agent having excellent performance, a polyethylene resin composition excellent in oxygen barrier properties obtained by adding the crystal nucleating agent and having good mechanical properties, and a packaging using the composition The present invention relates to a material and a packaging container made of the material.

柔軟性に富んだ紙製包装材料は多年にわたって液体食品を包装するために用いられてきた。牛乳、果汁ジュース、野菜ジュース、豆乳、ワイン、清酒、焼酎、ミネラルウォーター、スープ及びその他飲料のための包装容器は、例えば、繊維質基材(例えば、紙など)/プラスチック積層体に折目線が付けられたウェブ状包装材料を、その長手方向の縦線シールによりチューブ状に成形し、チューブ状に成形された包装材料内に液体食品を充填し、チューブ状包装材料を横断方向に横線シールし、枕状の包装体(一次形状容器)に成形する。
枕状の包装体を横シール部分で容器1個分ごとに切断し、最終成形工程で、折目線に沿って山折り若しくは谷折に、フィン及びフラップを折畳んで、レンガ状の容器が成形される。
Flexible paper packaging materials have been used for many years to package liquid foods. Packaging containers for milk, fruit juice, vegetable juice, soy milk, wine, sake, shochu, mineral water, soup and other beverages have, for example, a fiber substrate (eg, paper, etc.) / Plastic laminate with crease lines The attached web-shaped packaging material is formed into a tube shape by a longitudinal line seal in the longitudinal direction, liquid food is filled into the tube-shaped packaging material, and the tube-shaped packaging material is laterally sealed in the transverse direction. Then, it is molded into a pillow-shaped package (primary shape container).
A pillow-shaped package is formed by cutting the pillow-shaped package into one container at the horizontal seal portion and folding the fins and flaps into a mountain fold or a valley fold along the crease line in the final forming step. Is done.

紙包装容器に用いられる包装材料は、少なくとも、紙基材、及び紙基材の両面にポリエチレンが積層された可撓性の積層体から成り、必要に応じて、紙基材とポリエチレンとの間にアルミニウム箔などのバリア層が形成され、包装容器の表面に相当する部分に模様や文字が印刷される。
成形され得られたレンガ状、円筒状、6角柱状、8角柱状の紙包装容器の包装材料は、通常、ポリエチレンを溶融押出して積層される。
The packaging material used for paper packaging containers consists of at least a paper substrate and a flexible laminate in which polyethylene is laminated on both sides of the paper substrate, and if necessary, between the paper substrate and polyethylene. In addition, a barrier layer such as an aluminum foil is formed, and a pattern or characters are printed on a portion corresponding to the surface of the packaging container.
The brick, cylindrical, hexagonal columnar, and octagonal columnar packaging materials obtained by molding are usually laminated by melt extrusion of polyethylene.

ポリオレフィンに分類されるポリエチレンやポリプロピレンは、汎用樹脂である。これらの汎用樹脂は、射出成形などの成形方法で種々の用途に多く利用される。また、ポリエチレンなどは、その結晶化度に依存して、機械的強度やガスバリア性が変化し、通常、結晶化が進むと、ポリエチレンなどの機械的強度やガスバリア性が向上する。
ポリエチレンなどの射出成形では、サイクルタイムを短縮させるため、成形後の樹脂は急速冷却により固化される。しかし、急速冷却による固化では、樹脂の結晶化度が十分でないために機械的強度やガスバリア性に劣る。
Polyethylene and polypropylene classified as polyolefin are general-purpose resins. These general-purpose resins are often used for various purposes by molding methods such as injection molding. In addition, the mechanical strength and gas barrier properties of polyethylene and the like vary depending on the degree of crystallinity, and the mechanical strength and gas barrier properties of polyethylene and the like usually improve as crystallization progresses.
In the injection molding of polyethylene or the like, the resin after molding is solidified by rapid cooling in order to shorten the cycle time. However, solidification by rapid cooling is inferior in mechanical strength and gas barrier properties because the crystallinity of the resin is not sufficient.

溶融状態からの高分子の結晶化は、融点よりやや低い過冷却温度で結晶核が生成し、その結晶核を中心に結晶が成長していくことで進行する。したがって、結晶化速度は、結晶核の生成速度を高めることか成長速度を高めることのいずれかで速くなる。これらに有効な添加剤が結晶核剤又は結晶化促進剤である。 Crystallization of a polymer from a molten state proceeds by generating crystal nuclei at a supercooling temperature slightly lower than the melting point and growing crystals around the crystal nuclei. Therefore, the crystallization rate is increased by either increasing the generation rate of crystal nuclei or increasing the growth rate. An effective additive for these is a crystal nucleating agent or a crystallization accelerator.

ポリオレフィンの結晶化を促進させる結晶核剤として、低分子量のカルボン酸の金属塩、リン酸エステルの金属塩、ソルビトールなどが添加されることがある。結晶化の進行により物性やガスバリア性は改良されることが知られている。
ポリエチレンに、上記の低分子量の結晶核剤を添加して包装材料が得られている。(例えば、特許文献1及び2参照)
As a crystal nucleating agent that promotes crystallization of polyolefin, a metal salt of a low molecular weight carboxylic acid, a metal salt of a phosphate ester, or sorbitol may be added. It is known that physical properties and gas barrier properties are improved by the progress of crystallization.
A packaging material is obtained by adding the above-described low molecular weight crystal nucleating agent to polyethylene. (For example, see Patent Documents 1 and 2)

特開2012−139854号公報JP 2012-139854 A 特開2012−081615号公報JP 2012-081615 A

ポリエチレンに、低分子量の結晶核剤を添加して物性やガスバリア性は改良された包装材料や成形品が、食品用途に用いられる場合、添加剤を溶出する懸念がある。本発明の目的は、ポリエチレンに結晶核剤を添加して物性やガスバリア性は改良された包装材料が、食品用途に用いられても、添加剤を溶出する恐れの無い、結晶核剤、ポリエチレン樹脂組成物、包装材料及び包装容器を提供することである。 When a packaging material or molded product whose physical properties and gas barrier properties are improved by adding a low molecular weight crystal nucleating agent to polyethylene is used for food, there is a concern that the additive may be eluted. An object of the present invention is to provide a crystal nucleating agent and a polyethylene resin, in which a packaging material whose physical properties and gas barrier properties are improved by adding a crystal nucleating agent to polyethylene does not cause the additive to elute even when used for food applications. It is to provide a composition, packaging material and packaging container.

本発明のポリエチレン樹脂組成物の製造方法は、急冷して溶融押出成形して食品用途の包装容器を作製する際に用いるポリエチレン樹脂組成物の製造方法であって、メタロセン触媒を用いてポリエチレンを重合し、連鎖移動反応、酸化・加水分解により、前記ポリエチレンの一方の末端に水酸基が結合した水酸基末端ポリエチレンを作製し、シリカ微粒子表面のシラノール基と前記水酸基末端ポリエチレンを脱水縮合反応させて、前記シリカ微粒子の表面に前記水酸基末端ポリエチレンをグラフトしてポリエチレングラフトシリカ微粒子を作製し、前記ポリエチレングラフトシリカ微粒子が、ポリエチレンに対して、0.1〜10重量%添加される、
ことを特徴とする。
The method for producing a polyethylene resin composition of the present invention is a method for producing a polyethylene resin composition that is used for preparing a packaging container for food use by rapid cooling and melt extrusion molding, and polymerizing polyethylene using a metallocene catalyst. Then, a hydroxyl group-terminated polyethylene in which a hydroxyl group is bonded to one end of the polyethylene is prepared by chain transfer reaction, oxidation / hydrolysis, and a silanol group on the surface of the silica fine particles and the hydroxyl group-terminated polyethylene are subjected to a dehydration condensation reaction. Grafting the hydroxyl-terminated polyethylene on the surface of the fine particles to produce polyethylene grafted silica fine particles, the polyethylene grafted silica fine particles are added in an amount of 0.1 to 10% by weight based on polyethylene.
It is characterized by that.

この発明の好ましい態様において、水酸基末端ポリエチレンの数平均分子量Mが、2500〜8500であり、シリカ粒子が平均粒径23nm〜30nmの球形粒子であり、グラフト量が、シリカ微粒子1個あたりポリエチレン鎖数で平均360本〜400本である。 In favorable preferable embodiment of the invention, the number-average molecular weight M n of hydroxyl-terminated polyethylene is 2500 to 8500, the silica fine particles are spherical particles having an average particle size 23Nm~30nm, graft amount, one silica fine particles The average number of polyethylene chains per unit is 360 to 400.

この発明の好ましい態様において、前記ポリエチレングラフトシリカ微粒子が、ポリエチレンに対して、0.1〜10重量%、好ましくは、0.5〜5重量%、より好ましくは、1〜3重量%添加される、
ことを特徴とする。
In a preferred embodiment of the present invention, the polyethylene graft silica fine particles are added in an amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, based on polyethylene. ,
It is characterized by that.

この発明の好ましい態様において、ポリエチレンが高密度ポリエチレンであり、ポリエチレングラフトシリカ微粒子が、高密度ポリエチレンに溶融ブレンドされる、
ことを特徴とする。
In favorable preferable embodiment of the invention, the polyethylene is high density polyethylene, polyethylene graft silica fine particles are melt blended high density polyethylene,
It is characterized by that.

この発明の包装容器の製造方法は、メタロセン触媒を用いてポリエチレンを重合し、連鎖移動反応、酸化・加水分解により、前記ポリエチレンの一方の末端に水酸基が結合した水酸基末端ポリエチレンを作製し、シリカ微粒子表面のシラノール基と前記水酸基末端ポリエチレンを脱水縮合反応させて、前記シリカ微粒子の表面に前記水酸基末端ポリエチレンをグラフトしてポリエチレングラフトシリカ微粒子を作製し、
ポリエチレンに対して、0.1〜10重量%の前記ポリエチレングラフトシリカ微粒子を添加してポリエチレン樹脂組成物を作製し、前記ポリエチレン樹脂組成物を急冷して溶融押出成形して包装容器を作製する
ことを特徴とする。
The method for producing a packaging container according to the present invention comprises polymerizing polyethylene using a metallocene catalyst, and producing a hydroxyl-terminated polyethylene having a hydroxyl group bonded to one end of the polyethylene by chain transfer reaction, oxidation / hydrolysis, and silica fine particles A silanol group on the surface and the hydroxyl-terminated polyethylene are subjected to a dehydration condensation reaction, and the hydroxyl-terminated polyethylene is grafted on the surface of the silica fine particles to produce polyethylene-grafted silica fine particles.
A polyethylene resin composition is prepared by adding 0.1 to 10% by weight of the polyethylene graft silica fine particles to polyethylene, and the polyethylene resin composition is quenched and melt-extruded to prepare a packaging container .
It is characterized by that.

上記構成の本発明によれば、以下の作用機能を発揮し、有利な効果が得られる。
この発明の包装容器は、シリカ微粒子からなるポリエチレン用結晶核剤とポリエチレンとからなる溶融樹脂組成物を急冷して溶融押出成形された積層包装材料による包装容器である。
溶融押出成形された積層包装材料から容器に成形するので、ウェブ状紙包装材料を長手方向の縦線シールによりチューブ状に成形し、チューブ状に成形された包装材料内に液体食品を充填し、チューブ状包装材料を横断方向に横線シールし、枕状の包装体に成形し、容器1個分ごとに切断し、最終に折畳んでレンガ状の容器に成形することができる。
According to the present invention having the above configuration, the following functions are exhibited and advantageous effects are obtained.
The packaging container according to the present invention is a packaging container made of a laminated packaging material obtained by quenching and melt-extrusion a molten resin composition composed of polyethylene crystal nucleating agent composed of silica fine particles and polyethylene.
Since it is molded into a container from the laminated packaging material that has been melt-extruded, the web-shaped paper packaging material is molded into a tube shape by a longitudinal line seal in the longitudinal direction, and the liquid food is filled into the packaging material molded into a tube shape, The tube-shaped packaging material can be sealed horizontally in the transverse direction, formed into a pillow-shaped package, cut into containers, and finally folded into a brick-shaped container.

この発明においては、シリカ微粒子からなるポリエチレン用結晶核剤が、シリカ微粒子表面にグラフトしてポリエチレングラフトシリカ微粒子である。
添加される結晶核剤が、微粒子、具体的には、ナノ粒子なので、ポリエチレン樹脂の機械的強度などの物性を改善させることができる。
In the present invention, the polyethylene crystal nucleating agent composed of silica fine particles is polyethylene grafted silica fine particles grafted onto the surface of the silica fine particles.
Since the added crystal nucleating agent is a fine particle, specifically, a nanoparticle, physical properties such as mechanical strength of the polyethylene resin can be improved.

この発明に係る結晶核剤は、ポリエチレンがグラフトした高分子である。これらの高分子は、成形された容器や包装材料の内部で化学的に且つ物理的に結合し、留まる。その内部から外部に溶出することが無い。包装材料や成形品が、食品用途に用いられる場合でも、この添加剤を溶出する懸念がない。 The crystal nucleating agent according to the present invention is a polymer grafted with polyethylene. These polymers remain chemically bound and retained inside the molded container or packaging material. There is no elution from the inside to the outside. Even when a packaging material or a molded product is used for food, there is no concern of eluting this additive.

この発明においては、シリカ微粒子からなるポリエチレン用結晶核剤が、メタロセン触媒を用いて重合したポリエチレンの一方の末端に水酸基が結合した水酸基末端ポリエチレンと、シリカ微粒子表面のシラノール基との脱水縮合反応により得られる。
メタロセン触媒を用いて合成されるポリエチレンの分子量分布は狭く、熱的特性などを改善することができる。
In this invention, the crystal nucleating agent for polyethylene comprising silica fine particles is obtained by a dehydration condensation reaction between a hydroxyl-terminated polyethylene having a hydroxyl group bonded to one end of polyethylene polymerized using a metallocene catalyst and a silanol group on the surface of the silica fine particles. can get.
Polyethylene synthesized using a metallocene catalyst has a narrow molecular weight distribution and can improve thermal characteristics and the like.

この発明におけるポリエチレン用結晶核剤が、ポリエチレンに対して、0.1〜10重量%、好ましくは、0.5〜5重量%、より好ましくは、1〜3重量%添加される。
この添加によって、ポリエチレン鎖で表面が修飾されているシリカ粒子が結晶核剤として機能する。樹脂組成物を軟化溶融し、成形する際に、成型品、シート、フィルム、ラミネート層に成形する際に、ポリエチレンの結晶化速度が上昇し、結晶化度が上昇する。この効果は、成形後に急冷されても、発揮される。そのため、徐冷を待つこと無く、成形工程を終えることができ、生産性を大幅に向上させることができる。
この作用効果は、シリカ中に固定されているポリエチレン鎖が結晶核として作用するためである。更に、結晶化度の上昇するので、成型品、その包装材料、その包装容器の酸素バリア性も改良される。
上記の添加量は、その上限を超えると、添加量に比例した結晶化特性改善が見られない、また、その下限に満たないと結晶化の改善が見られないからである。
The crystal nucleating agent for polyethylene in the present invention is added in an amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight based on polyethylene.
By this addition, silica particles whose surfaces are modified with polyethylene chains function as crystal nucleating agents. When the resin composition is softened and melted and molded, when it is molded into a molded article, sheet, film, or laminate layer, the crystallization rate of polyethylene increases and the crystallinity increases. This effect is exhibited even if it is cooled rapidly after molding. Therefore, the molding process can be completed without waiting for slow cooling, and the productivity can be greatly improved.
This effect is because the polyethylene chain fixed in silica acts as a crystal nucleus. Furthermore, since the degree of crystallinity increases, the oxygen barrier property of the molded product, its packaging material, and its packaging container is also improved.
This is because if the amount exceeds the upper limit, improvement in crystallization characteristics proportional to the amount added is not observed, and if the amount is less than the lower limit, improvement in crystallization is not observed.

この発明の好ましい態様において、水酸基末端ポリエチレンの数平均分子量Mが、2500〜8500であり、シリカ粒子が平均粒径23nm〜30nmの球形粒子であり、グラフト量が、シリカ微粒子1個あたりポリエチレン鎖数で平均360本〜400本である。
シリカ粒子がナノレベルの平均粒径を持つので、ナノ粒子の補強効果により、添加された樹脂、その樹脂を用いた包装材料や包装容器の機械特性が改良される。
In a preferred embodiment of the present invention, the number average molecular weight Mn of the hydroxyl-terminated polyethylene is 2500 to 8500, the silica particles are spherical particles having an average particle size of 23 nm to 30 nm, and the graft amount is a polyethylene chain per silica fine particle. The average number is 360 to 400.
Since the silica particles have an average particle size of nano level, the mechanical properties of the added resin, the packaging material using the resin, and the packaging container are improved by the reinforcing effect of the nanoparticles.

この発明の好ましい態様において、ポリエチレンが高密度ポリエチレンであり、シリカ微粒子からなるポリエチレン用結晶核剤が、高密度ポリエチレンに溶融ブレンドされる、
溶融ブレンドによって、結晶核剤が、高密度ポリエチレン内に良好に分散させることができる。
In a preferred embodiment of the present invention, the polyethylene is high-density polyethylene, and a polyethylene crystal nucleating agent comprising fine silica particles is melt-blended with the high-density polyethylene.
By melt blending, the crystal nucleating agent can be well dispersed in the high density polyethylene.

この発明の包装材料の好ましい態様において、溶融樹脂組成物を急冷して射出成形された成型品である。
この発明による結晶核剤によって、射出成形で、成形後の樹脂を急速冷却により固化され、サイクルタイムを短縮させることができ、しかも、急冷しても、結晶化を維持することができる。
In a preferred embodiment of the packaging material of the present invention, it is a molded article that is injection-molded by quenching the molten resin composition.
With the crystal nucleating agent according to the present invention, the resin after molding can be solidified by rapid cooling in injection molding, and the cycle time can be shortened. Furthermore, crystallization can be maintained even when rapidly cooled.

上述のように、ポリエチレンに結晶核剤を添加して物性やガスバリア性は改良された包装材料が、食品用途に用いられても、添加剤を溶出する恐れの無い、結晶核剤、ポリエチレン樹脂組成物、包装材料及び包装容器を提供することができる。 As described above, a crystal nucleating agent and a polyethylene resin composition in which a packaging material whose physical properties and gas barrier properties are improved by adding a crystal nucleating agent to polyethylene does not cause the additive to elute even when used for food applications. Products, packaging materials and packaging containers can be provided.

124℃での等温結晶化における結晶化速度t1/2のPE−g−SiO添加量依存性について示す線図である。Is a graph showing the PE-g-SiO 2 amount dependency of the crystallization speed t 1/2 in isothermal crystallization at 124 ° C.. PEk−g−SiO添加のHDPE樹脂のヤング率(添え字“q.”及び“r.t.”は急冷および室温での徐冷)を示す線図である。PE 3 Young's modulus of HDPE resin k-g-SiO 2 addition (subscript "q." And "r.t." slow cooling at quenching and room temperature) is a diagram showing a. PEk−g−SiO添加のHDPE樹脂の引張強度(添え字は図2に同じ)を示す線図である。It is a diagram which shows the tensile strength (subscript is the same as FIG. 2) of HDPE resin to which PE 3 kg-SiO 2 is added.

以下、本発明の実施の形態について実施例を参照しながら詳細に説明する。
<実施例1>
以下のように、ポリエチレン用結晶核剤として、ポリエチレン鎖を表面に固定したシリカ微粒子を作製した。
メタロセン触媒を用いてポリエチレンを重合し、さらに連鎖移動反応、酸化・加水分解により、その一方の末端に水酸基(−OH)を導入し、水酸基末端ポリエチレン(PE−OH)を作製した。
平均粒径26nmの球形粒子のシリカ粒子を準備し、シリカ表面のシラノール基との脱水縮合反応によりPE−OHをSiO表面にグラフトしてポリエチレングラフトシリカ粒子(PE−g−SiO)を得た。
Hereinafter, embodiments of the present invention will be described in detail with reference to examples.
<Example 1>
As described below, silica fine particles having polyethylene chains fixed on the surface were prepared as polyethylene nucleating agents.
Polyethylene was polymerized using a metallocene catalyst, and a hydroxyl group (—OH) was introduced into one end thereof by chain transfer reaction, oxidation / hydrolysis to produce a hydroxyl group-terminated polyethylene (PE-OH).
A spherical silica particle having an average particle size of 26 nm is prepared, and PE-OH is grafted onto the SiO 2 surface by a dehydration condensation reaction with a silanol group on the silica surface to obtain a polyethylene graft silica particle (PE-g-SiO 2 ). It was.

水酸基末端ポリエチレン(PE−OH)について、13CMR測定から求めた数平均分子量Mは3,000であった。メタロセン触媒を用いて合成されるポリエチレンの分子量分布は狭く、その分散性はM/M=2程度である。したがって、重量平均分子量Mは6,000程度であった。PE−OHをグラフトしたシリカ粒子は、平均粒径26nmの球形粒子であった。熱重量分析から得られたポリエチレンのグラフト量は、ポリエチレンの鎖数としては、シリカ粒子あたり平均380本であった。 For the hydroxyl-terminated polyethylene (PE-OH), the number average molecular weight M n determined from 13 CMR measurement was 3,000. Polyethylene synthesized using a metallocene catalyst has a narrow molecular weight distribution, and its dispersibility is about M w / M n = 2. Therefore, the weight average molecular weight Mw was about 6,000. The silica particles grafted with PE-OH were spherical particles having an average particle diameter of 26 nm. The graft amount of polyethylene obtained from thermogravimetric analysis was an average of 380 polyethylene particles per silica particle.

<実施例2>
数平均分子量M=8,000の水酸基末端ポリエチレン(PE−OH)を用いたこと以外、実施例1と同様に、ポリエチレン用結晶核剤として、ポリエチレン鎖を表面に固定したシリカ微粒子を作製した。
水酸基末端ポリエチレン(PE−OH)の重量平均分子量Mは8,000程度であった。得られたポリエチレングラフトシリカ粒子(PE−g−SiO)中のグラフト量は、シリカ粒子あたり390本であった。
<Example 2>
In the same manner as in Example 1 except that hydroxyl group-terminated polyethylene (PE-OH) having a number average molecular weight M n = 8,000 was used, silica fine particles having polyethylene chains fixed on the surface were produced as crystal nucleating agents for polyethylene. .
The weight average molecular weight Mw of the hydroxyl-terminated polyethylene (PE-OH) was about 8,000. The amount of grafts in the obtained polyethylene grafted silica particles (PE-g-SiO 2 ) was 390 per silica particle.

<実施例3>
実施例1で得られたポリエチレン用結晶核剤を、以下のようにポリエチレンに添加して、ポリエチレン樹脂組成物を得た。
ポリエチレングラフトシリカ粒子(PE−g−SiO)を高密度ポリエチレン(HDPE)へ溶融ブレンドにより分散した。PE−g−SiOの添加量は1重量%とした。HDPE樹脂(市販のHDPE樹脂である旭化成ケミカルズ社製のQT701A、添加剤を含まないHDPE、MFR;12g/10min、密度;965kg/m)。溶融ブレンドは東洋精機社製のバッチ式ミキサーで、温度157℃で行った。結晶核剤のHDPEへの分散は良好であった。なお、ブレンド中の熱劣化を防止するため、市販の酸化防止剤(アデカスタブAO−50)を0.2重量%添加した。
<Example 3>
The polyethylene crystal nucleating agent obtained in Example 1 was added to polyethylene as follows to obtain a polyethylene resin composition.
They were dispersed by melt blending polyethylene grafted silica particles (PE-g-SiO 2) to a high density polyethylene (HDPE). The amount of PE-g-SiO 2 added was 1% by weight. HDPE resin (QT701A manufactured by Asahi Kasei Chemicals, which is a commercially available HDPE resin, HDPE without additives, MFR; 12 g / 10 min, density: 965 kg / m 3 ). The melt blending was performed at a temperature of 157 ° C. using a batch mixer manufactured by Toyo Seiki Co., Ltd. The dispersion of the crystal nucleating agent in HDPE was good. In order to prevent thermal deterioration during blending, 0.2 wt% of a commercially available antioxidant (ADK STAB AO-50) was added.

<実施例4>
PE−g−SiOの添加量は3重量%としたこと以外、実施例3と同様にポリエチレン樹脂組成物を得た。
<Example 4>
A polyethylene resin composition was obtained in the same manner as in Example 3 except that the amount of PE-g-SiO 2 added was 3% by weight.

<実施例5>
PE−g−SiOの添加量は5重量%としたこと以外、実施例3と同様にポリエチレン樹脂組成物を得た。
<Example 5>
A polyethylene resin composition was obtained in the same manner as in Example 3 except that the amount of PE-g-SiO 2 added was 5% by weight.

<比較例6>
PE−g−SiOの添加量は0重量%としたこと以外、実施例3と同様にポリエチレン樹脂組成物を得た。
<Comparative Example 6>
A polyethylene resin composition was obtained in the same manner as in Example 3 except that the amount of PE-g-SiO 2 added was 0% by weight.

<実施例7>
実施例2で得られたポリエチレン用結晶核剤を用いたこと以下、実施例3と同様にポリエチレン樹脂組成物を得た。
<Example 7>
Using the polyethylene crystal nucleating agent obtained in Example 2, a polyethylene resin composition was obtained in the same manner as in Example 3.

<実施例8>
PE−g−SiOの添加量は3重量%としたこと以外、実施例7と同様にポリエチレン樹脂組成物を得た。
<Example 8>
A polyethylene resin composition was obtained in the same manner as in Example 7 except that the amount of PE-g-SiO 2 added was 3% by weight.

<実施例9>
PE−g−SiOの添加量は5重量%としたこと以外、実施例7と同様にポリエチレン樹脂組成物を得た。
<Example 9>
A polyethylene resin composition was obtained in the same manner as in Example 7 except that the amount of PE-g-SiO 2 added was 5% by weight.

<比較例10>
PE−g−SiOの添加量は0重量%としたこと以外、実施例7と同様にポリエチレン樹脂組成物を得た。
<Comparative Example 10>
A polyethylene resin composition was obtained in the same manner as in Example 7 except that the amount of PE-g-SiO 2 added was 0% by weight.

<評価例>
以下のように、実施例及び比較例で得られたポリエチレン樹脂組成物及びそれから得られた成型品を評価した。
成形温度は170℃とし、成形直後に氷水に投入して急冷させた熱プレス法により、実施例及び比較例の結晶核剤を含むHDPE樹脂組成物の0.4mmのシートを得た。
<Evaluation example>
The polyethylene resin compositions obtained in Examples and Comparative Examples and molded articles obtained therefrom were evaluated as follows.
The molding temperature was set to 170 ° C., and a 0.4 mm sheet of HDPE resin compositions containing the crystal nucleating agents of Examples and Comparative Examples was obtained by a hot press method in which ice was poured into ice water immediately after molding and rapidly cooled.

得られた成形品について、DSC測定による熱特性の評価、および酸素透過率測定装置Oxtran2/21(モコン社製)による酸素透過率(OTR)測定を行った。測定条件は23℃、50%RHとした。またDSCにて、124℃での等温結晶化を行い、結晶化速度についても評価を行った。
さらに160℃で熱プレスして得た厚み200μmのフィルム状試料からダンベル状試料を打ち抜き引張り試験を行い、機械特性についても評価した。プレス後、成形品をただちに−17℃フリーザーで冷却したステンレス板で挟んで冷却した急冷品と、室温放置による徐冷品とで物性の比較を行った。
About the obtained molded article, evaluation of thermal characteristics by DSC measurement and oxygen transmission rate (OTR) measurement by an oxygen transmission rate measurement device Oxtran 2/21 (manufactured by Mocon) were performed. The measurement conditions were 23 ° C. and 50% RH. Further, isothermal crystallization at 124 ° C. was performed by DSC, and the crystallization rate was also evaluated.
Further, a dumbbell-shaped sample was punched out from a film-shaped sample having a thickness of 200 μm obtained by hot pressing at 160 ° C., and a mechanical test was also performed. After pressing, the physical properties were compared between a rapidly cooled product immediately cooled by sandwiching a molded product with a stainless steel plate cooled with a −17 ° C. freezer and a slowly cooled product left at room temperature.

0.4mmシート急冷品の熱分析結果を下記の表1に示す。20℃から190℃までの昇降温を10℃/minにて2回繰り返した。1回目は急冷状態の融点および結晶化度を示し、2回目は10℃/minで冷却したときの結果である。PE−g−SiOのPE分子鎖長さにかかわらず、結晶化温度はPE−g−SiOの添加量にともない増加する。一方、融点はPE−g−SiOの添加量によらず一定であった。またPE−g−SiOを5重量%すると結晶化度は減少した。 The thermal analysis results of the 0.4 mm sheet rapidly cooled product are shown in Table 1 below. The temperature elevation from 20 ° C. to 190 ° C. was repeated twice at 10 ° C./min. The first time shows the melting point and crystallinity in the rapidly cooled state, and the second time is the result when cooled at 10 ° C./min. PE molecular chains of PE-g-SiO 2 regardless of the length, the crystallization temperature increases with the amount of PE-g-SiO 2. On the other hand, the melting point was constant regardless of the amount of PE-g-SiO 2 added. Further, when PE-g-SiO 2 was 5% by weight, the crystallinity decreased.

表1 0.4mmシート急冷品の熱分析結果 Table 1 Thermal analysis results of 0.4mm sheet rapid cooling products

図1に124℃での等温結晶化における結晶化速度t1/2のPE−g−SiO添加量依存性について示す。結晶化速度はPE−g−SiO添加にともない上昇し、グラフトPE鎖の分子量によらず同一の添加量ではほぼ同じ結晶化速度となる。
図1では、124℃での等温結晶化における結晶化速度t1/2のPE−g−SiO添加量依存性を示し、PEK−g−SiO 、PEK−g−SiOEはぞれぞれMが3,000、8,000のPE分子鎖を示す。
FIG. 1 shows the dependence of the crystallization rate t 1/2 on the addition amount of PE-g-SiO 2 in isothermal crystallization at 124 ° C. The crystallization rate increases as PE-g-SiO 2 is added, and the crystallization rate is almost the same at the same addition amount regardless of the molecular weight of the grafted PE chain.
FIG. 1 shows the dependence of the crystallization rate t 1/2 on the addition amount of PE-g-SiO 2 in isothermal crystallization at 124 ° C., and PE 3 Kg-SiO 2 , PE 8 K-g-SiO 2. E represents PE molecular chains having Mn of 3,000 and 8,000, respectively.

以下に、PE−g−SiO添加のHDPE樹脂の引張特性の評価結果を示す。
PE鎖分子量3,000のPE−g−SiOを添加したHDPEについて、急冷および徐冷でのヤング率および引張強さをそれぞれ図2および図3に示す。
すべての試料にて、ヤング率および引張強さは徐冷品で高くなっていた。これは表2から、徐冷品では急冷品にくらべて結晶化度が高いためである。ヤング率や引張強さは、PE−g−SiOの添加量依存性を示し、とくにヤング率で顕著である。シリカ微粒子のナノ粒子を添加することで高分子の弾性率は増加する。したがって、PE−g−SiOの添加によるヤング率の増加は、シリカ粒子による補強効果である。
なお、結晶化度には、添加量依存性は認められない。
Below, the evaluation result of the tensile characteristic of HDPE resin to which PE-g-SiO 2 is added is shown.
FIG. 2 and FIG. 3 show Young's modulus and tensile strength in quenching and slow cooling, respectively, for HDPE to which PE chain molecular weight 3,000 PE-g-SiO 2 is added.
In all samples, Young's modulus and tensile strength were high in the slowly cooled product. This is because, from Table 2, the slowly cooled product has a higher degree of crystallinity than the rapidly cooled product. The Young's modulus and tensile strength are dependent on the addition amount of PE-g-SiO 2 , and are particularly remarkable in Young's modulus. Addition of silica fine particles increases the elastic modulus of the polymer. Therefore, the increase in Young's modulus due to the addition of PE-g-SiO 2 is a reinforcing effect by the silica particles.
The crystallinity does not depend on the amount added.

表2 PEk−g−SiO添加のHDPE樹脂の融点及び結晶化度。 Table 2 Melting point and crystallinity of HDPE resin with PE 3 k-g-SiO 2 added.

HDPE樹脂組成物からの急冷成形品の酸素透過量(OTR)を以下のように評価し、その結果を示す。
表3にPE−g−SiO添加のHDPE樹脂成形品、0.4mmシートのOTRを示す。添加したPE−g−SiOのPE鎖分子量は3,000であった。PE−g−SiO添加によりOTRは減少し、バリア性が改良されることがわかる。
The oxygen permeation amount (OTR) of the quenched molded product from the HDPE resin composition is evaluated as follows, and the result is shown.
Table 3 shows HDPE resin molded products with PE-g-SiO 2 added and OTR of 0.4 mm sheets. The PE chain molecular weight of the added PE-g-SiO 2 was 3,000. It can be seen that the addition of PE-g-SiO 2 reduces the OTR and improves the barrier properties.

表3 PE−g−SiO添加の急冷成型品0.4mmHDPEシートのOTR。 Table 3 OTR of quenched molded product 0.4 mm HDPE sheet with PE-g-SiO 2 added.

上記に実証されるように、本発明によって、ポリエチレンに結晶核剤を添加して物性やガスバリア性は改良されたポリエチレン樹脂組成物、包装材料を提供することができる。 As demonstrated above, according to the present invention, a polyethylene resin composition and a packaging material having improved physical properties and gas barrier properties can be provided by adding a crystal nucleating agent to polyethylene.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形させることが可能であり、それらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said embodiment, It can change variously based on the meaning of this invention, and does not exclude them from the scope of the present invention.

この発明は、液体食品の包装充填の製造に適用することができる。 The present invention can be applied to the manufacture of liquid food packaging.

Claims (6)

急冷して溶融押出成形して食品用途の包装容器を作製する際に用いるポリエチレン樹脂組成物の製造方法であって、
メタロセン触媒を用いてポリエチレンを重合し、連鎖移動反応、酸化・加水分解により、前記ポリエチレンの一方の末端に水酸基が結合した水酸基末端ポリエチレンを作製し、
シリカ微粒子表面のシラノール基と前記水酸基末端ポリエチレンを脱水縮合反応させて、前記シリカ微粒子の表面に前記水酸基末端ポリエチレンをグラフトしてポリエチレングラフトシリカ微粒子を作製し、
前記ポリエチレングラフトシリカ微粒子が、ポリエチレンに対して、0.1〜10重量%添加される、
ポリエチレン樹脂組成物の製造方法。
A method for producing a polyethylene resin composition for use in preparing a packaging container for food use by rapid cooling and melt extrusion molding,
Polyethylene is polymerized using a metallocene catalyst, and a hydroxyl group-terminated polyethylene having a hydroxyl group bonded to one end of the polyethylene is produced by chain transfer reaction, oxidation / hydrolysis,
Silanol groups on the surface of the silica fine particles and the hydroxyl-terminated polyethylene are subjected to a dehydration condensation reaction, and the hydroxyl-terminated polyethylene is grafted on the surface of the silica fine particles to produce polyethylene-grafted silica fine particles.
The polyethylene graft silica fine particles are added in an amount of 0.1 to 10% by weight based on polyethylene.
A method for producing a polyethylene resin composition.
前記水酸基末端ポリエチレンの数平均分子量Mが、2500〜8500であり、前記シリカ微粒子が平均粒径23nm〜30nmの球形粒子であり、グラフト量が、シリカ微粒子1個あたりポリエチレン鎖数で平均360本〜400本である、請求項1記載のポリエチレン樹脂組成物の製造方法。 The number average molecular weight M n of the hydroxyl group-terminated polyethylene is 2500 to 8500, the silica fine particles are spherical particles having an average particle diameter of 23 nm to 30 nm, and the graft amount is an average of 360 polyethylene chains per silica fine particle. The manufacturing method of the polyethylene resin composition of Claim 1 which is -400 pieces. 前記ポリエチレングラフトシリカ微粒子が、ポリエチレンに対して、0.5〜5重量%添加される、請求項1記載のポリエチレン樹脂組成物の製造方法。   The method for producing a polyethylene resin composition according to claim 1, wherein the polyethylene graft silica fine particles are added in an amount of 0.5 to 5% by weight based on polyethylene. 前記ポリエチレングラフトシリカ微粒子が、ポリエチレンに対して、1〜3重量%添加される、請求項1記載のポリエチレン樹脂組成物の製造方法。   The method for producing a polyethylene resin composition according to claim 1, wherein the polyethylene graft silica fine particles are added in an amount of 1 to 3% by weight based on polyethylene. 前記ポリエチレンが高密度ポリエチレンであり、前記ポリエチレングラフトシリカ微粒子が、前記高密度ポリエチレンに溶融ブレンドされる、請求項1記載のポリエチレン樹脂組成物の製造方法。   The method for producing a polyethylene resin composition according to claim 1, wherein the polyethylene is high-density polyethylene, and the polyethylene-grafted silica fine particles are melt-blended with the high-density polyethylene. メタロセン触媒を用いてポリエチレンを重合し、連鎖移動反応、酸化・加水分解により、前記ポリエチレンの一方の末端に水酸基が結合した水酸基末端ポリエチレンを作製し、
シリカ微粒子表面のシラノール基と前記水酸基末端ポリエチレンを脱水縮合反応させて、前記シリカ微粒子の表面に前記水酸基末端ポリエチレンをグラフトしてポリエチレングラフトシリカ微粒子を作製し、
ポリエチレンに対して、0.1〜10重量%の前記ポリエチレングラフトシリカ微粒子を添加してポリエチレン樹脂組成物を作製し、
前記ポリエチレン樹脂組成物を急冷して溶融押出成形して包装容器を作製する、
包装容器の製造方法。
Polyethylene is polymerized using a metallocene catalyst, and a hydroxyl group-terminated polyethylene having a hydroxyl group bonded to one end of the polyethylene is produced by chain transfer reaction, oxidation / hydrolysis,
Silanol groups on the surface of the silica fine particles and the hydroxyl-terminated polyethylene are subjected to a dehydration condensation reaction, and the hydroxyl-terminated polyethylene is grafted on the surface of the silica fine particles to produce polyethylene-grafted silica fine particles.
A polyethylene resin composition is prepared by adding 0.1 to 10% by weight of the polyethylene graft silica fine particles to polyethylene,
Quenching the polyethylene resin composition and melt extrusion molding to produce a packaging container,
A method for manufacturing a packaging container.
JP2013075565A 2013-03-31 2013-03-31 Method for producing polyethylene resin composition, method for producing packaging container Active JP6245679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075565A JP6245679B2 (en) 2013-03-31 2013-03-31 Method for producing polyethylene resin composition, method for producing packaging container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075565A JP6245679B2 (en) 2013-03-31 2013-03-31 Method for producing polyethylene resin composition, method for producing packaging container

Publications (2)

Publication Number Publication Date
JP2014201309A JP2014201309A (en) 2014-10-27
JP6245679B2 true JP6245679B2 (en) 2017-12-13

Family

ID=52352117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075565A Active JP6245679B2 (en) 2013-03-31 2013-03-31 Method for producing polyethylene resin composition, method for producing packaging container

Country Status (1)

Country Link
JP (1) JP6245679B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960029B2 (en) * 2001-12-06 2007-08-15 東洋インキ製造株式会社 High heat resistance, water repellency, lipophilic surface-treated inorganic oxide, method for producing the same, and resin composition
JP5727747B2 (en) * 2010-10-01 2015-06-03 三菱樹脂株式会社 Laminated porous film, battery separator and battery

Also Published As

Publication number Publication date
JP2014201309A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
CN103878997B (en) For forming method, composition and blend with the product for improving environmental stress crack resistance
Yu et al. Plasticizing effect of poly (ethylene glycol) s with different molecular weights in poly (lactic acid)/starch blends
Arunvisut et al. Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites
JP4334345B2 (en) Biodegradable resin composition for molded body and molded body formed by molding the same
Bagheriasl et al. Enhanced properties of polylactide by incorporating cellulose nanocrystals
Artzi et al. Melt blending of ethylene‐vinyl alcohol copolymer/clay nanocomposites: Effect of the clay type and processing conditions
KR20100117566A (en) Surface treated inorganic particle additive for increasing the toughness of polymers
CN104479205A (en) Injection molding method of graphene-modified polyethylene high-strength composite thin product
Luna et al. Polymer nanocomposites for food packaging
Zehetmeyer et al. Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material
JPWO2013088728A1 (en) Heat resistant food container and manufacturing method thereof
JPWO2017204272A1 (en) Resin composition, molding using the same, and multilayer structure
JP2015514819A (en) Basically thermoformable composition of biological origin and container formed therefrom
CN104448491A (en) Extrusion molding method of graphene modified polyethylene high-strength composite thin products
Ma et al. Biodegradable PBAT/PLA/CaCO3 blowing films with enhanced mechanical and barrier properties: investigation of size and content of CaCO3 particles
CN108384204A (en) A kind of 3D printing porous material and preparation method thereof of expansion drilling
Rastin et al. Mechanical, rheological, and thermal behavior assessments in HDPE/PA-6/EVOH ternary blends with variable morphology
JP7384417B2 (en) Improved filament for 3D printing
CN108250693A (en) A kind of 3D printing material
Mnif et al. New (PP/EPR)/nano‐CaCO3 based formulations in the perspective of polymer recycling. Effect of nanoparticles properties and compatibilizers
JP6245679B2 (en) Method for producing polyethylene resin composition, method for producing packaging container
Coskunses et al. Preparation and characterization of low density polyethylene/ethylene methyl acrylate glycidyl methacrylate/organoclay nanocomposites
JP2014159134A (en) Heat-resistant food container and method for manufacturing the same
JP4689361B2 (en) Stretched film
Madhukar et al. Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly (methyl methacrylate) blend system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6245679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250