JP6242299B2 - Method for measuring puncture strength of stretched film - Google Patents

Method for measuring puncture strength of stretched film Download PDF

Info

Publication number
JP6242299B2
JP6242299B2 JP2014125904A JP2014125904A JP6242299B2 JP 6242299 B2 JP6242299 B2 JP 6242299B2 JP 2014125904 A JP2014125904 A JP 2014125904A JP 2014125904 A JP2014125904 A JP 2014125904A JP 6242299 B2 JP6242299 B2 JP 6242299B2
Authority
JP
Japan
Prior art keywords
stretched film
film
stretched
piercing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014125904A
Other languages
Japanese (ja)
Other versions
JP2016004218A (en
Inventor
亘 大橋
亘 大橋
勝啓 高藤
勝啓 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2014125904A priority Critical patent/JP6242299B2/en
Publication of JP2016004218A publication Critical patent/JP2016004218A/en
Application granted granted Critical
Publication of JP6242299B2 publication Critical patent/JP6242299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、延伸フィルムの突き刺し強度を延伸フィルムの厚みに応じて精度よく測定するための方法に関する。   The present invention relates to a method for accurately measuring the puncture strength of a stretched film according to the thickness of the stretched film.

プラスチックフィルムは延伸されることで様々な機能を有する延伸フィルムに加工され、光学用途や食品包装用途など広範な分野で使用されている。ところで、プラスチックフィルムを延伸フィルムに加工する際に延伸フィルムに裂けが生じ、製品収率が低下することがある。   Plastic films are processed into stretched films having various functions by being stretched, and are used in a wide range of fields such as optical applications and food packaging applications. By the way, when a plastic film is processed into a stretched film, the stretched film may tear and the product yield may be reduced.

例えば、光学用途で利用される偏光フィルムは一般にポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記することがある)を一軸延伸するなどして製造されるが、製造された偏光フィルムに延伸方向への裂けが生じることがある。この原因の1つとしては偏光フィルムにかかる張力が考えられ、具体的には、偏光フィルムの搬送時などにおいて、搬送用のガイドロール等が偏光フィルムに押し付けられて、偏光フィルムに延伸方向と垂直な方向への張力が発生することが考えられる。   For example, a polarizing film used for optical applications is generally manufactured by uniaxially stretching a polyvinyl alcohol film (hereinafter, “polyvinyl alcohol” may be abbreviated as “PVA”). May tear in the stretching direction. One cause of this is thought to be the tension applied to the polarizing film. Specifically, when the polarizing film is transported, a conveying guide roll or the like is pressed against the polarizing film, and the polarizing film is perpendicular to the stretching direction. It is conceivable that tension is generated in any direction.

そのため、プラスチックフィルムの材料開発や延伸フィルムの製造条件検討を行う際などにおいて、延伸フィルムの裂けやすさを精度よく定量的に評価することが重要となる。   Therefore, it is important to accurately and quantitatively evaluate the ease of tearing of a stretched film when developing plastic film materials or studying the production conditions of stretched films.

プラスチックフィルムの裂けやすさを評価することのできる尺度として引き裂き強度が知られており、例えば、延伸フィルムの延伸方向と平行に切れ目を入れ、この切れ目の基点から延伸フィルムを引き裂き、そのときの引き裂き強度を引っ張り試験機を用いて測定する方法が知られている(例えば特許文献1等を参照)。   The tear strength is known as a measure for evaluating the ease of tearing of a plastic film.For example, a cut is made parallel to the stretch direction of the stretched film, the stretched film is torn from the base point of the break, and the tear at that time A method of measuring the strength using a tensile tester is known (see, for example, Patent Document 1).

特開2011−248293号公報JP 2011-248293 A 国際公開第2012/043192号International Publication No. 2012/043192

しかしながら、延伸フィルムの裂けは基点となる切れ目がないかまたは明確でない状態から生じることも多く、引き裂き強度では延伸フィルムの実際の裂けやすさを充分には評価することができない場合がある。一方、くぎをフィルムに突き刺した際の最大荷重として測定される貫通抵抗力を評価する方法も知られているが(例えば特許文献2等を参照)、特により高い延伸倍率で延伸された延伸フィルムの場合において、その測定精度にはさらなる改善の余地があった。そこで本発明は、延伸フィルムの突き刺し強度を精度よく測定することのできる方法を提供することを目的とする。   However, tearing of the stretched film often occurs from a state in which there is no break as a starting point or is unclear, and the actual tearability of the stretched film may not be sufficiently evaluated by the tear strength. On the other hand, a method for evaluating penetration resistance measured as the maximum load when a nail is pierced into a film is also known (see, for example, Patent Document 2), but a stretched film stretched at a particularly high stretch ratio. In this case, there was room for further improvement in the measurement accuracy. Then, an object of this invention is to provide the method which can measure the puncture strength of a stretched film accurately.

本発明者らは上記の目的を達成すべく鋭意検討した結果、測定対象となる延伸フィルムに突き刺し具を突き刺すことによってその突き刺し強度を測定するにあたり、突き刺し具の先端形状を矩形にし、且つ、延伸フィルムに対する先端形状の向きを特定のものとすることにより、延伸フィルムの突き刺し強度を精度よく測定することができて、延伸フィルムの裂けやすさを精度よく定量的に評価することができることを見出した。さらにまた、当該測定方法によれば、延伸フィルムの厚みへの依存性の高い突き刺し強度を得ることができ、例えば延伸フィルムの厚みを変更した場合などにおいて、変更前の突き刺し強度の値から変更後の突き刺し強度の値を予測するのが容易となることを見出した。本発明者らはこれらの知見に基づいてさらに検討を重ねて本発明を完成させた。   As a result of intensive studies to achieve the above object, the inventors of the present invention measured the puncture strength by piercing the piercing tool into the stretched film to be measured. It was found that by setting the direction of the tip shape relative to the film to be specific, the puncture strength of the stretched film can be accurately measured, and the ease of tearing of the stretched film can be accurately and quantitatively evaluated. . Furthermore, according to the measurement method, it is possible to obtain a piercing strength highly dependent on the thickness of the stretched film. For example, when the thickness of the stretched film is changed, the piercing strength value before the change is changed. It has been found that it is easy to predict the value of the piercing strength. The present inventors have further studied based on these findings and completed the present invention.

すなわち、本発明は、
[1]延伸フィルムの突き刺し強度を測定するための方法であって、先端形状が矩形の突き刺し具をその先端形状の長辺が延伸フィルムの延伸方向に略平行になるように延伸フィルムに突き刺す方法;
[2]延伸フィルムが偏光フィルムである[1]に記載の方法;
に関する。
That is, the present invention
[1] A method for measuring the piercing strength of a stretched film, the method of piercing a stretched film with a piercing tool having a rectangular tip shape so that the long side of the tip shape is substantially parallel to the stretching direction of the stretched film ;
[2] The method according to [1], wherein the stretched film is a polarizing film;
About.

本発明によれば、延伸フィルムの突き刺し強度を延伸フィルムの厚みに応じて精度よく測定することのできる方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method which can measure the puncture intensity | strength of a stretched film accurately according to the thickness of a stretched film is provided.

本発明の方法に従い突き刺し具を延伸フィルムに突き刺す際の一例を示す概略図である。It is the schematic which shows an example at the time of piercing a piercing tool in a stretched film according to the method of this invention.

以下に本発明について詳細に説明する。
本発明は、延伸フィルムの突き刺し強度を測定するための方法であって、先端形状が矩形の突き刺し具をその先端形状の長辺が延伸フィルムの延伸方向に略平行になるように延伸フィルムに突き刺す方法に関する。このような方法を採用することにより、延伸フィルムの突き刺し強度を延伸フィルムの厚みに応じて精度よく測定することができて、延伸フィルムの裂けやすさを精度よく定量的に評価することができる。
The present invention is described in detail below.
The present invention is a method for measuring the puncture strength of a stretched film, and a puncture tool having a rectangular tip shape is stabbed into a stretched film so that the long side of the tip shape is substantially parallel to the stretching direction of the stretched film. Regarding the method. By adopting such a method, the puncture strength of the stretched film can be accurately measured according to the thickness of the stretched film, and the ease of tearing of the stretched film can be accurately and quantitatively evaluated.

本発明の方法では、先端形状が矩形の突き刺し具を延伸フィルムに突き刺す。そして、この際に測定される最大荷重を測定対象となった延伸フィルムの突き刺し強度とすることができる。最大荷重の測定にあたっては、突き刺し具を静的材料試験機等の最大荷重を測定可能な装置に取り付けた状態で、当該突き刺し具を延伸フィルムに突き刺せばよい。   In the method of the present invention, a piercing tool having a rectangular tip shape is pierced into a stretched film. And the maximum load measured in this case can be made into the piercing strength of the stretched film used as the measuring object. In measuring the maximum load, the piercing tool may be pierced into the stretched film with the piercing tool attached to a device capable of measuring the maximum load such as a static material testing machine.

本発明の方法では、先端形状が矩形の突き刺し具が使用される。ここで先端形状とは、突き刺し具を先端側から見たときの先端部分の形状をいい、突き刺し強度の測定時にはこの先端部分を測定対象となるフィルム面に対向させて突き刺し具を延伸フィルムに突き刺せばよい。   In the method of the present invention, a piercing tool having a rectangular tip shape is used. Here, the tip shape refers to the shape of the tip portion when the piercing tool is viewed from the tip side. When measuring the piercing strength, the tip portion is opposed to the film surface to be measured and the piercing tool is pushed against the stretched film. Just stab it.

矩形の先端形状における長辺の長さは、本発明の効果がより顕著に奏されることから、0.3〜30mmの範囲内であることが好ましく、当該長さは、1mm以上であることがより好ましく、3mm以上であることがさらに好ましく、また、20mm以下であることがより好ましく、10mm以下であることがさらに好ましい。   The length of the long side in the rectangular tip shape is preferably in the range of 0.3 to 30 mm, since the effect of the present invention is more remarkably exhibited, and the length is 1 mm or more. Is more preferably 3 mm or more, more preferably 20 mm or less, and still more preferably 10 mm or less.

矩形の先端形状における短辺の長さは、本発明の効果がより顕著に奏されることから、0.2〜20mmの範囲内であることが好ましく、当該長さは、0.5mm以上であることがより好ましく、0.8mm以上であることがさらに好ましく、また、10mm以下であることがより好ましく、3mm以下であることがさらに好ましく、2mm以下であることが特に好ましい。   The length of the short side in the rectangular tip shape is preferably in the range of 0.2 to 20 mm, since the effect of the present invention is more remarkably exhibited, and the length is 0.5 mm or more. More preferably, it is 0.8 mm or more, more preferably 10 mm or less, further preferably 3 mm or less, and particularly preferably 2 mm or less.

突き刺し具の全体の形状としては、例えば、棒状とすることができる。また、突き刺し具の材質としては、例えば、鉄、ステンレス、真鍮、青銅、ニッケル鋼等の金属;セラミックス(窒化ケイ素等)などが挙げられ、金属が好ましく、ステンレスがより好ましい。   The overall shape of the piercing tool can be, for example, a rod shape. Examples of the material of the piercing tool include metals such as iron, stainless steel, brass, bronze, and nickel steel; ceramics (such as silicon nitride), and the like. Metal is preferable, and stainless steel is more preferable.

本発明の方法では、突き刺し具を延伸フィルムに突き刺すにあたり、突き刺し具の先端形状の長辺が延伸フィルムの延伸方向に略平行になるようにする。当該長辺の向きが延伸フィルムの延伸方向に対して略平行でないと、突き刺し強度を精度よく得ることが困難になる。なお、当該長辺が延伸フィルムの延伸方向に略平行になるとは、例えば、当該長辺と延伸フィルムの延伸方向とのなす角度(絶対値)が30°以下、好ましくは15°以下、より好ましくは10°以下、さらに好ましくは5°以下である場合を含み、最も好ましい態様として0°(平行)である場合も含む。   In the method of the present invention, when the piercing tool is pierced into the stretched film, the long side of the tip shape of the piercing tool is made substantially parallel to the stretching direction of the stretched film. If the direction of the long side is not substantially parallel to the stretching direction of the stretched film, it is difficult to obtain the puncture strength with high accuracy. In addition, the said long side becomes substantially parallel to the extending | stretching direction of a stretched film, for example, the angle (absolute value) which the said long side and the extending | stretching direction of a stretched film make is 30 degrees or less, Preferably it is 15 degrees or less, More preferably Includes the case of 10 ° or less, more preferably 5 ° or less, and the most preferable embodiment includes the case of 0 ° (parallel).

突き刺し具を延伸フィルムに突き刺す際の速度は、突き刺し強度をより精度よく得ることができることから、200mm/分以下であることが好ましく、150mm/分以下であることがより好ましく、120mm/分以下であることがさらに好ましい。一方、外乱の影響を小さくする観点から、当該速度は1mm/分以上であることが好ましく、10mm/分以上であることがより好ましく、50mm/分以上であることがさらに好ましい。   The speed at the time of piercing the piercing tool into the stretched film is preferably 200 mm / min or less, more preferably 150 mm / min or less, and 120 mm / min or less because the piercing strength can be obtained with higher accuracy. More preferably it is. On the other hand, from the viewpoint of reducing the influence of disturbance, the speed is preferably 1 mm / min or more, more preferably 10 mm / min or more, and further preferably 50 mm / min or more.

突き刺し具を延伸フィルムに突き刺すにあたっては、測定対象となる延伸フィルムをそれぞれ同じ位置に穴の開いた2枚の板で挟んで固定した状態で、当該穴の部分に位置する延伸フィルムに対して突き刺し具を突き刺すことにより行うことが、突き刺し強度をより精度よく得ることができることから好ましい。当該板の穴の形状としては、円形、多角形などが挙げられ、円形が好ましい。当該円形の穴の直径は、例えば5〜100mmとすることができる。   When the piercing tool is pierced into the stretched film, the stretched film to be measured is stabbed into the stretched film located at the hole in the state where the stretched film is sandwiched and fixed between the two plates with holes at the same position. It is preferable to pierce the tool because the piercing strength can be obtained with higher accuracy. Examples of the shape of the hole in the plate include a circle and a polygon, and a circle is preferable. The diameter of the circular hole can be set to 5 to 100 mm, for example.

本発明において測定対象となる延伸フィルムの種類に特に制限はないが、高い配向性を有していて配向方向の裂けを生じやすいフィルムであることが好ましく、特に偏光フィルム等の高度に延伸された一軸延伸フィルムであることが好ましい。偏光フィルムは、一般に特定の振動方向を有する直線偏光のみを透過する機能を有するフィルムであり、PVAフィルムなどを延伸して得られる、ヨウ素や二色性染料等で染色されたフィルムであることが一般的である。   Although there is no restriction | limiting in particular in the kind of stretched film used as a measuring object in this invention, It is preferable that it is a film which has high orientation and is easy to produce the tear of an orientation direction, especially highly stretched, such as a polarizing film. A uniaxially stretched film is preferred. The polarizing film is generally a film having a function of transmitting only linearly polarized light having a specific vibration direction, and is a film dyed with iodine or a dichroic dye obtained by stretching a PVA film or the like. It is common.

延伸フィルムの延伸方向は、延伸フィルムを製造する際の延伸方向であり、例えば複屈折測定装置などを用いて、その延伸フィルムの面内位相差値を測定することで把握することができる。なお、本発明においては、一軸延伸フィルムを測定対象とすることが好ましいが、二軸延伸フィルム等の多軸延伸フィルムにも適用することができる。この場合には、面内位相差値の絶対値が最大となる方向を延伸方向とみなせばよい。   The stretch direction of the stretched film is the stretch direction when the stretched film is produced, and can be grasped by measuring the in-plane retardation value of the stretched film using, for example, a birefringence measuring apparatus. In addition, in this invention, although it is preferable to make a uniaxially stretched film into a measuring object, it can apply also to multiaxially stretched films, such as a biaxially stretched film. In this case, the direction in which the absolute value of the in-plane retardation value is maximized may be regarded as the stretching direction.

測定対象となる延伸フィルムを製造する際における延伸倍率(総延伸倍率)に特に制限はないが、高い配向性を有していて配向方向の裂けを生じやすいフィルムにおいて本発明の効果がより顕著に奏されることから、当該延伸倍率は、3倍以上であることが好ましく、4倍以上であることがより好ましく、5倍以上であることがさらに好ましい。当該延伸倍率の上限としては、例えば、8倍が挙げられる。   Although there is no restriction | limiting in particular in the draw ratio (total draw ratio) at the time of manufacturing the stretched film used as a measuring object, The effect of this invention is more remarkable in the film which has high orientation and is easy to produce the tear of an orientation direction. Since it is played, the draw ratio is preferably 3 times or more, more preferably 4 times or more, and further preferably 5 times or more. An example of the upper limit of the draw ratio is 8 times.

測定対象となる延伸フィルムの厚みとしては、本発明の効果がより顕著に奏されることから、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましく、また、100μm以下であることが好ましく、50μm以下であることがより好ましく、40μm以下であることがさらに好ましい。   The thickness of the stretched film to be measured is preferably 1 μm or more, more preferably 3 μm or more, and even more preferably 5 μm or more, since the effects of the present invention are more remarkably exhibited. Moreover, it is preferable that it is 100 micrometers or less, It is more preferable that it is 50 micrometers or less, It is further more preferable that it is 40 micrometers or less.

本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

[製造例1]厚みが22μmの偏光フィルムの作製
厚みが60μmのPVAフィルムを、30℃の純水に浸漬しつつ2倍に長さ方向に一軸延伸した。続いて、ヨウ素を0.04質量%及びヨウ化カリウムを0.04質量%の割合で含有する水溶液(染色浴)(温度32℃)に140秒間浸漬しつつ、2.4倍に長さ方向に一軸延伸してヨウ素を吸着させた。次いで、ホウ酸を2.6質量%の割合で含有する水溶液(架橋浴)(温度32℃)に浸漬しつつ、2.6倍に長さ方向に一軸延伸した。さらに、ホウ酸を2.8質量%及びヨウ化カリウムを5質量%の割合で含有する水溶液(延伸浴)(温度58℃)に浸漬しつつ、6.3倍まで長さ方向に一軸延伸した。その後、ホウ酸を1.5質量%及びヨウ化カリウムを5質量%の割合で含有する水溶液(洗浄浴)(温度22℃)に、延伸せずに13秒間浸漬し、最後に60℃で4分間乾燥して厚みが22μmの偏光フィルムを作製した。なお、各段階での延伸倍率は、その時点までのフィルムの総延伸倍率を示している。
[Production Example 1] Production of polarizing film having a thickness of 22 µm A PVA film having a thickness of 60 µm was uniaxially stretched twice in the length direction while being immersed in pure water at 30 ° C. Subsequently, while being immersed in an aqueous solution (dyeing bath) (temperature 32 ° C.) containing 0.04% by mass of iodine and 0.04% by mass of potassium iodide for 140 seconds, the length direction is increased 2.4 times. The film was uniaxially stretched to adsorb iodine. Next, the film was uniaxially stretched 2.6 times in the length direction while being immersed in an aqueous solution (crosslinking bath) (temperature 32 ° C.) containing 2.6% by mass of boric acid. Further, the film was uniaxially stretched in the length direction up to 6.3 times while being immersed in an aqueous solution (stretching bath) containing 2.8% by mass of boric acid and 5% by mass of potassium iodide (temperature 58 ° C.). . Then, it was immersed in an aqueous solution (cleaning bath) (temperature 22 ° C.) containing 1.5% by mass of boric acid and 5% by mass of potassium iodide for 13 seconds without stretching, and finally at 4 ° C. at 4 ° C. A polarizing film having a thickness of 22 μm was prepared by drying for 30 minutes. In addition, the draw ratio in each stage has shown the total draw ratio of the film until that time.

[製造例2]厚みが12μmの偏光フィルムの作製
PVAフィルムとして厚みが30μmのものを用いたこと以外は製造例1と同様の方法により厚みが12μmの偏光フィルムを作製した。
[Production Example 2] Production of polarizing film having a thickness of 12 μm A polarizing film having a thickness of 12 μm was produced in the same manner as in Production Example 1 except that a PVA film having a thickness of 30 μm was used.

[実施例1]
(1)厚みが22μmの偏光フィルムの突き刺し強度の測定
製造例1で作製した厚みが22μmの偏光フィルムを中央に直径1cmの円形の穴のあいた厚み1mmの3cm角のステンレス板2枚の間に挟み、重なったステンレス板左右2箇所の辺をクリップで挟んで偏光フィルムを固定し、測定試料とした。次に株式会社島津製作所製 卓上形精密万能試験機「オートグラフAGS−J」の下のつかみ具に上記の測定試料を固定し、上のつかみ具に先端形状が幅1mm、長さ5mmの矩形である金属製の突き刺し具を、その先端形状の長辺が偏光フィルムの延伸方向に平行になるように固定し、100mm/分の速度でステンレス板の穴の中央部に位置する偏光フィルムを突き刺し具で突き刺し、このときの最大荷重を求めた。同様の突き刺し試験を合計4回行い、最大荷重の平均値と標準偏差を計算した。
(2)厚みが12μmの偏光フィルムの突き刺し強度の測定
製造例2で作製した厚みが12μmの偏光フィルムを用いたこと以外は(1)と同様の突き刺し試験を行い、最大荷重の平均値と標準偏差を計算した。
(3)評価
(1)と(2)の結果を表1に示した。なお、厚みが22μmと12μmの偏光フィルムの間で、最大荷重の平均値に明確な差が確認でき且ついずれの標準偏差も0.4未満であったものを「○」と判定し、それ以外のものを「×」と判定した。
[Example 1]
(1) Measurement of the puncture strength of a polarizing film having a thickness of 22 μm A polarizing film having a thickness of 22 μm produced in Production Example 1 is interposed between two 3 cm square stainless steel plates having a thickness of 1 mm with a circular hole having a diameter of 1 cm in the center. The polarizing film was fixed by sandwiching and overlapping the left and right sides of the overlapped stainless steel plate with clips to obtain a measurement sample. Next, the above measurement sample is fixed to the grip under the tabletop precision universal testing machine “Autograph AGS-J” manufactured by Shimadzu Corporation, and a rectangular shape with a tip shape of 1 mm wide and 5 mm long is attached to the upper grip. The metal piercing tool is fixed so that the long side of the tip shape is parallel to the stretching direction of the polarizing film, and the polarizing film located at the center of the hole in the stainless steel plate is pierced at a speed of 100 mm / min. The tool was stabbed and the maximum load at this time was determined. The same piercing test was performed 4 times in total, and the average value and standard deviation of the maximum load were calculated.
(2) Measurement of the puncture strength of a polarizing film having a thickness of 12 μm A puncture test similar to (1) was performed except that the polarizing film having a thickness of 12 μm prepared in Production Example 2 was used, and the average value and standard of the maximum load were measured. Deviation was calculated.
(3) Evaluation Table 1 shows the results of (1) and (2). It should be noted that a clear difference in the average value of the maximum load was confirmed between polarizing films having thicknesses of 22 μm and 12 μm, and any standard deviation was less than 0.4, and other than that, Were judged as “x”.

[比較例1]
突き刺し具の先端形状の長辺の向きを偏光フィルムの延伸方向に対して垂直になるようにしたこと以外は実施例1と同様の突き刺し試験を行い、最大荷重の平均値と標準偏差を計算した。結果を表1に示した。
[Comparative Example 1]
The piercing test was performed in the same manner as in Example 1 except that the direction of the long side of the tip shape of the piercing tool was perpendicular to the stretching direction of the polarizing film, and the average value and standard deviation of the maximum load were calculated. . The results are shown in Table 1.

[比較例2]
突き刺し具としてJIS A5508:2009に規定される太め鉄丸くぎCN65(先端形状は球形)を用いたこと以外は実施例1と同様の突き刺し試験を行い、最大荷重の平均値と標準偏差を計算した。結果を表1に示した。
[Comparative Example 2]
A piercing test was performed in the same manner as in Example 1 except that a thick iron round nail CN65 (tip shape was spherical) defined in JIS A5508: 2009 was used as the piercing tool, and the average value and standard deviation of the maximum load were calculated. . The results are shown in Table 1.

Figure 0006242299
Figure 0006242299

1.延伸フィルム、2.突き刺し具、3.先端形状の長辺、4.静的材料試験機、5.ステンレス板、A.突き刺し具の先端、B.延伸フィルムの延伸方向、C.突き刺し方向 1. Stretched film, 2. Piercing tool, 3. 3. Long side of the tip shape; 4. Static material testing machine Stainless steel plate, A. Tip of piercing tool, B. Stretch direction of stretched film, C.I. Piercing direction

Claims (2)

延伸フィルムの突き刺し強度を測定するための方法であって、先端形状が矩形の突き刺し具をその先端形状の長辺が延伸フィルムの延伸方向に略平行になるように延伸フィルムに突き刺す方法。   A method for measuring the piercing strength of a stretched film, wherein a piercing tool having a rectangular tip shape is pierced into a stretched film so that the long side of the tip shape is substantially parallel to the stretching direction of the stretched film. 延伸フィルムが偏光フィルムである請求項1に記載の方法。   The method according to claim 1, wherein the stretched film is a polarizing film.
JP2014125904A 2014-06-19 2014-06-19 Method for measuring puncture strength of stretched film Active JP6242299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125904A JP6242299B2 (en) 2014-06-19 2014-06-19 Method for measuring puncture strength of stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125904A JP6242299B2 (en) 2014-06-19 2014-06-19 Method for measuring puncture strength of stretched film

Publications (2)

Publication Number Publication Date
JP2016004218A JP2016004218A (en) 2016-01-12
JP6242299B2 true JP6242299B2 (en) 2017-12-06

Family

ID=55223512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125904A Active JP6242299B2 (en) 2014-06-19 2014-06-19 Method for measuring puncture strength of stretched film

Country Status (1)

Country Link
JP (1) JP6242299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202062B2 (en) * 2014-09-30 2017-09-27 住友化学株式会社 Method for measuring strength of polarizing film and polarizing plate
JP6327222B2 (en) * 2014-09-30 2018-05-23 住友化学株式会社 Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
JP6866339B2 (en) * 2018-04-11 2021-04-28 住友化学株式会社 Polarizing plate and display device
WO2020166505A1 (en) * 2019-02-12 2020-08-20 日東電工株式会社 Polarizing plate, manufacturing method thereof, and image display device using said polarizing plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936140A (en) * 1988-01-22 1990-06-26 Measurex Corporation Device and method for calibrating a non-destructive sheet strength measuring system
ATE322978T1 (en) * 2000-03-13 2006-04-15 Cryovac Inc BIAXIALLY STRETCHED AND THERMAL FIXED MULTI-LAYER THERMOPLASTIC PACKAGING FILM
JP2003014600A (en) * 2001-07-04 2003-01-15 Daicel Chem Ind Ltd Apparatus and method for evaluation of tearing property of film
JP4546017B2 (en) * 2002-06-14 2010-09-15 日東電工株式会社 Polarizer, polarizing plate and image display device
JP2008275926A (en) * 2007-04-27 2008-11-13 Nitto Denko Corp Method for manufacturing polarizer, polarizer, polarizing plate, optical film, and image display device
JP6174298B2 (en) * 2011-11-09 2017-08-02 住友化学株式会社 Polarizing laminated film and laminated film
MY172893A (en) * 2012-05-14 2019-12-13 Toyo Boseki Polyester film and method for producing same

Also Published As

Publication number Publication date
JP2016004218A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6242299B2 (en) Method for measuring puncture strength of stretched film
KR101694590B1 (en) Polarizing film and method for manufacturing polarizing film
TWI525350B (en) A thin polarizing film, an optical laminate having a thin polarizing film, and a method for producing a thin polarizing film
CN205483797U (en) Be applied to netted textile material's high -speed tensile test anchor clamps and test device
KR101696521B1 (en) Polarizing film and method for manufacturing polarizing film
BR112018067356A2 (en) techniques for rich message bot communication
JP2012247208A (en) Tensile testing method for thin film brittle material, and tensile testing device for thin film brittle material
WO2017124108A3 (en) Devices and methods for tension measurements and applications of same
JP5588893B2 (en) Polarizing plate and manufacturing method thereof
KR102400213B1 (en) Polyvinyl alcohol polymer film and method for producing same
CN205749119U (en) A kind of battery film material high-speed stretch tester
KR102432418B1 (en) Polarizing film
CN106932849A (en) Polarizer
US20140044870A1 (en) Manufacturing method of long-sized circularly polarizing plate
JP2015194776A (en) Polarizing plate and manufacturing method thereof
CN104924732B (en) Stripping off device and stripping means
JP2009257885A (en) Test piece holding apparatus
CN108693032A (en) A kind of plank compression performance test sample, fixture and method
JP6265196B2 (en) Method and apparatus for evaluating flexibility of sheet-like object
CN203772642U (en) Fixture structure for metal sample electrified tension test
TWI693151B (en) PVA film
JP6471958B2 (en) Viscoelasticity measuring device
CN209085554U (en) A kind of transverse direction Video Extensometer
CN207623093U (en) A kind of copper foil mechanical property tensile sample sample preparation device
JP2023172417A (en) Method for evaluating breakage tensile force of stretched film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6242299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150