JP6240910B2 - Infrared transmitting soft magnetic ink and authenticity printed matter - Google Patents

Infrared transmitting soft magnetic ink and authenticity printed matter Download PDF

Info

Publication number
JP6240910B2
JP6240910B2 JP2014076987A JP2014076987A JP6240910B2 JP 6240910 B2 JP6240910 B2 JP 6240910B2 JP 2014076987 A JP2014076987 A JP 2014076987A JP 2014076987 A JP2014076987 A JP 2014076987A JP 6240910 B2 JP6240910 B2 JP 6240910B2
Authority
JP
Japan
Prior art keywords
infrared
magnetic
ink
soft magnetic
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014076987A
Other languages
Japanese (ja)
Other versions
JP2015196819A (en
Inventor
英司 河村
英司 河村
浩 岩崎
浩 岩崎
工藤 豊
豊 工藤
史朗 大澤
史朗 大澤
忠憲 鈴木
忠憲 鈴木
直子 藤澤
直子 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Priority to JP2014076987A priority Critical patent/JP6240910B2/en
Publication of JP2015196819A publication Critical patent/JP2015196819A/en
Application granted granted Critical
Publication of JP6240910B2 publication Critical patent/JP6240910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Credit Cards Or The Like (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、赤外領域の光を透過する光学特性と、軟磁性の磁気特性を有する赤外透過軟磁性インキ及び真偽判別印刷物に関するものである。   The present invention relates to an infrared transmitting soft magnetic ink having an optical characteristic that transmits light in the infrared region and a soft magnetic characteristic, and an authenticity printed matter.

近年、パスポ−ト、有価証券、身分証明書、カ−ド及び通行券等の偽造防止が求められる印刷物には、流通の利便性を考慮した偽造防止を兼ねた機械読取機能が利用されていおり、特に、軟磁性特性又は半硬磁性特性のような磁気特性を利用した磁気読取り又は赤外線透過吸収特性を利用した秘匿画像等が利用されている。   In recent years, machine-reading functions that also serve as anti-counterfeiting in consideration of convenience of distribution have been used for printed matters that require anti-counterfeiting such as passports, securities, identification cards, cards, and passports. In particular, a secret image or the like using a magnetic reading utilizing infrared magnetic characteristics or a magnetic characteristic such as a soft magnetic characteristic or a semi-hard magnetic characteristic is used.

例えば、偽造防止印刷物に赤外線反射特性、赤外線透過特性又は赤外線吸収特性等の光学特性及び軟磁性又は半硬磁性特性のような磁気特性を有する機能性インキを組み合わせて使用し、偽造及び改ざんの防止を図るとともに、機械処理による真偽判別を図ることが一般的に行われている。   For example, forgery and tampering prevention by using anti-counterfeit printed material in combination with optical properties such as infrared reflection properties, infrared transmission properties or infrared absorption properties and magnetic properties such as soft or semi-hard magnetic properties In general, it is generally performed to determine authenticity by machine processing.

機械処理による印刷物の真偽判別としては、赤外線スキャナや赤外線センサによりインキに含まれる材料が赤外線を吸収する特性を利用して赤外線の吸収度合いによる光学特性を用いた識別と、単に磁気の変化を検出する磁気抵抗センサ(以下「MRセンサ」という。)又は近年発達した高周波電流を印加すると外部磁界に応じてインピーダンスが変化する磁気インピーダンスセンサ(以下「MIセンサ」という。)により、磁気を特定する方法等が利用されている。   For authenticity determination of printed matter by mechanical processing, identification using optical characteristics based on the degree of absorption of infrared rays using the characteristics that the materials contained in the ink absorb infrared rays with an infrared scanner or infrared sensor, and simply changing the magnetism. Magnetism is specified by a magnetoresistive sensor (hereinafter referred to as “MR sensor”) to be detected or a magnetic impedance sensor (hereinafter referred to as “MI sensor”) whose impedance changes in response to an external magnetic field when a recently developed high frequency current is applied. Methods are used.

一方、より高度な偽造防止効果を有する磁気読取用材料として、磁気特性と赤外線特性を兼ね備えた複合機能性材料のニーズが高まっている。より具体的には、機械処理による印刷物の真偽判別に使用されている軟磁性特性又は半硬磁性特性に対して、赤外線反射特性、赤外線透過特性又は赤外線吸収特性を付加した材料が一例として挙げられる。   On the other hand, as a magnetic reading material having a higher level of anti-counterfeiting effect, there is an increasing need for a composite functional material having both magnetic characteristics and infrared characteristics. More specifically, a material obtained by adding an infrared reflection characteristic, an infrared transmission characteristic or an infrared absorption characteristic to the soft magnetic characteristic or semi-hard magnetic characteristic used for authenticity determination of a printed matter by mechanical processing is given as an example. It is done.

この一例として、赤外線透過特性を有する磁性インキとしては、残留磁化が25〜35(emu/g)、保持力が250〜400(Oe)及び平均粒子径が10〜600(nm)の特性を有する半硬磁性材料と、ビヒクルを含有して成る磁性インキ組成物が開示されている(例えば、特許文献1参照)。   As an example of this, the magnetic ink having infrared transmission characteristics has characteristics of residual magnetization of 25 to 35 (emu / g), coercive force of 250 to 400 (Oe), and average particle diameter of 10 to 600 (nm). A magnetic ink composition containing a semi-hard magnetic material and a vehicle is disclosed (for example, see Patent Document 1).

また、赤外線反射特性を有する磁性凹版インキとしては、磁性顔料粒子及びポリマー性有機ワニスを有し、粘度(40℃)が3〜15(Pa.s)であって、軟磁性顔料粒子が少なくとも1つの別材料によりコーティングされた磁性コア材料であることを特徴とする磁性凹版インキが開示されている(例えば、特許文献2参照)。   The magnetic intaglio ink having infrared reflection characteristics has magnetic pigment particles and a polymeric organic varnish, has a viscosity (40 ° C.) of 3 to 15 (Pa.s), and has at least 1 soft magnetic pigment particle. A magnetic intaglio ink characterized by being a magnetic core material coated with two different materials has been disclosed (for example, see Patent Document 2).

また、赤外線吸収特性を有する磁性インキとしては、酸価50から300mgKOH/gの光重合性アクリレートオリゴマー、光重合性アクリレートモノマー、半硬磁性粉、ワニス樹脂及び光開始剤を必須成分として含有することを特徴とする活性エネルギー線硬化型磁性インキ組成物およびその印刷物が開示されている(例えば、特許文献3参照)。   In addition, the magnetic ink having infrared absorption characteristics contains a photopolymerizable acrylate oligomer having an acid value of 50 to 300 mgKOH / g, a photopolymerizable acrylate monomer, a semi-hard magnetic powder, a varnish resin, and a photoinitiator as essential components. An active energy ray-curable magnetic ink composition and a printed material thereof are disclosed (for example, see Patent Document 3).

これらの前述した磁性材料のうち、赤外線反射特性を有する磁性材料は、赤外線反射特性を有する基材の上に印刷又は塗工した場合にのみ赤外線透過材料と類似の振舞いをするが、基材の赤外線反射特性との差にも大きな影響を受けるとともに、赤外線吸収特性を有する磁性材料をコアとして赤外線反射材料を被覆しているために、せん断力が加わるようなインキ化法には利用することができず、インキ化工程において大きな制約となっている。   Among these magnetic materials described above, a magnetic material having infrared reflection characteristics behaves similar to an infrared transmission material only when printed or coated on a substrate having infrared reflection characteristics. It is also greatly affected by the difference from the infrared reflection characteristics, and since the infrared reflection material is coated with a magnetic material having infrared absorption characteristics as a core, it can be used for an inking method in which shearing force is applied. This is not possible and is a major limitation in the ink process.

すなわち、インキ化の工程において、少なからず被覆が剥がれることによって、付与した赤外線反射特性が低下すること、また、繰返し安定した赤外線反射特性を有するインキを作製するにも困難性があるのは明白であり、(3本)ロールミルによるインキ化には極めて不適である。   In other words, it is obvious that in the process of making an ink, the applied infrared reflection characteristics are reduced due to a considerable peeling of the coating, and it is also difficult to produce ink having stable and stable infrared reflection characteristics. Yes, it is very unsuitable for (3) roll milling.

特開2005−264074号公報JP 2005-264074 A 特表2012−523470号公報Special table 2012-523470 gazette 特開2010−202772号公報JP 2010-202772 A

しかしながら、特許文献1記載の技術は、単に磁気の変化を検出する磁気抵抗センサ(MRセンサ)では、磁気情報の特定が困難であるものの、半硬磁性特性を有する材料を特定して磁気特性及び光学特性を付与しているため、残留磁化が大きく、磁気インピーダンスセンサ(MIセンサ)等による残留磁化の検出により、磁気特性の検出が容易であることから磁気特性を模倣される可能性がある。   However, although the technique described in Patent Document 1 is difficult to specify magnetic information with a magnetoresistive sensor (MR sensor) that simply detects a change in magnetism, a material having a semi-hard magnetic characteristic is specified and the magnetic characteristics and Since the optical characteristics are imparted, the residual magnetization is large, and the detection of the residual magnetization by a magnetic impedance sensor (MI sensor) or the like makes it easy to detect the magnetic characteristics, so that the magnetic characteristics may be imitated.

また、特許文献2に記載の技術は、軟磁性顔料粒子を二酸化チタン又は二酸化珪素等によりコーティングすることにより軟磁性顔料粒子とは異なる赤外線反射特性を付与しているため、コーティングによる製造コストが高く、かつ、インキ製造工程におけるロールミルを用いた練合においては、二酸化チタン又は二酸化珪素等のコーティングが剥離するため、赤外線反射特性の低下を極力抑える撹拌・混合といったインキ化しかできないという問題があり、低粘度インキにしか使用することができなかった。   In addition, the technique described in Patent Document 2 provides high infrared reflection characteristics different from those of soft magnetic pigment particles by coating soft magnetic pigment particles with titanium dioxide, silicon dioxide, or the like. And, in the kneading using the roll mill in the ink production process, because the coating such as titanium dioxide or silicon dioxide is peeled off, there is a problem that only inkization such as stirring and mixing that suppresses the reduction in infrared reflection characteristics as much as possible can be obtained. It could only be used for low viscosity inks.

また、特許文献3記載の技術は、バーコード等の読取りを対象とした黒色の赤外線吸収特性を有する半硬磁性材料を使用しているため、着色して使用する場合にはインキの色再現域に制限があるという問題があった。   In addition, since the technique described in Patent Document 3 uses a semi-hard magnetic material having a black infrared absorption characteristic for reading barcodes and the like, the color reproduction range of ink when colored and used. There was a problem that there was a limit.

本発明は、これらの課題の解決を目的とするものであり、表面被覆等の二次的な加工をしていない単一の赤外透過軟磁性材料を使用し、残留磁化を低くすることによって、磁気特性の秘匿性に優れ、簡易な磁気センサによって磁気による情報を特定することが困難であり、コーティング加工を行わないため製造コストが安価で、かつ、着色顔料を加えた特色インキとしての色再現域に与える影響が少ない色再現性に優れた赤外透過軟磁性インキに関するものである。   The present invention aims to solve these problems, and uses a single infrared transmitting soft magnetic material that is not subjected to secondary processing such as surface coating, and lowers the residual magnetization. Excellent in confidentiality of magnetic properties, it is difficult to specify magnetic information with a simple magnetic sensor, and since it is not coated, the manufacturing cost is low, and the color as a special color ink with a colored pigment added The present invention relates to an infrared transmitting soft magnetic ink that has little influence on the reproduction area and excellent color reproducibility.

本発明の赤外透過軟磁性インキは、磁性材料、着色顔料、ワニスを少なくとも含有する赤外透過軟磁性インキにおいて、磁性材料の組成が、酸化鉄(III)を主成分とするマグへマイト、マグネシウム系フェライト及び/又はニッケル系フェライトから成る軟磁性材料であり、磁性材料の保磁力が10〜100(Oe)、残留磁化が1〜10(emu/g)、平均粒径が1〜10(μm)であり、赤外波長800〜1000nmにおける印刷物の分光反射率が65%以上であることを特徴とする赤外透過軟磁性インキである。   The infrared transmitting soft magnetic ink of the present invention is an infrared transmitting soft magnetic ink containing at least a magnetic material, a color pigment, and a varnish, and the composition of the magnetic material is maghemite mainly composed of iron (III) oxide, A soft magnetic material made of magnesium-based ferrite and / or nickel-based ferrite. The magnetic material has a coercive force of 10 to 100 (Oe), a residual magnetization of 1 to 10 (emu / g), and an average particle size of 1 to 10 ( The infrared transmission soft magnetic ink is characterized in that the spectral reflectance of the printed matter at an infrared wavelength of 800 to 1000 nm is 65% or more.

また、本発明の赤外透過軟磁性インキは、インキ全体における磁性材料の配合量が、10〜40重量%であることを特徴とする赤外透過軟磁性インキである。   The infrared transmitting soft magnetic ink of the present invention is an infrared transmitting soft magnetic ink characterized in that the blending amount of the magnetic material in the entire ink is 10 to 40% by weight.

さらに、本発明の赤外透過軟磁性インキが基材の少なくとも一部に印刷されたことを特徴とする真偽判別印刷物である。   Further, the present invention is a true / false discrimination printed matter in which the infrared transmitting soft magnetic ink of the present invention is printed on at least a part of a substrate.

本発明の赤外透過軟磁性インキは、赤外線を反射する基材上に印刷した場合、印刷した画線においては、赤外線波長域の光を透過することで、赤外線波長域における分光反射率が高くなり、赤外線センサ等による赤外線反射画像及び赤外線透過画像から印刷画線の検出又は磁性インキの付与位置を特定することが困難である。また、残留磁化が低いため、簡易な磁気センサによって磁気特性の情報を特定することも困難である。   When the infrared transmitting soft magnetic ink of the present invention is printed on a substrate that reflects infrared rays, the printed image line has high spectral reflectance in the infrared wavelength region by transmitting light in the infrared wavelength region. Therefore, it is difficult to detect a print image line or specify a magnetic ink application position from an infrared reflection image and an infrared transmission image by an infrared sensor or the like. In addition, since the residual magnetization is low, it is difficult to specify information on magnetic characteristics with a simple magnetic sensor.

本発明の赤外透過軟磁性インキは、磁性材料の表面をコーティングしたものではなく、均一な磁性材料を使用しているため、製造コストが安価である。さらに、磁性材料の粒径が印刷用途に適して細かく、磁性材料自体の着色力及び隠ぺい力が低く、特に、マグネシウム系フェライト及びニッケル系フェライトにおいては、着色顔料を含んだインキの色再現域が広く、多彩な色再現を可能にしている。   The infrared transmitting soft magnetic ink of the present invention is not a coating of the surface of the magnetic material, but uses a uniform magnetic material, so that the manufacturing cost is low. Furthermore, the particle size of the magnetic material is fine for printing applications, and the coloring power and hiding power of the magnetic material itself are low. In particular, in the case of magnesium-based ferrite and nickel-based ferrite, the color reproduction range of ink containing colored pigments is low. Wide and versatile color reproduction is possible.

実施例1の赤外透過軟磁性材料と公知の磁性材料の分光反射率を比較した図The figure which compared the spectral reflectance of the infrared transmission soft magnetic material of Example 1 and the well-known magnetic material 実施例1の真偽判別印刷物の模式図及び特性図Schematic diagram and characteristic diagram of authenticity determination printed matter of Example 1 実施例1の真偽判別印刷物の分光反射率Spectral reflectance of authenticity determination printed matter of Example 1 実施例1の赤外線透過画像の一例図An example of the infrared transmission image of Example 1

本発明を実施するための形態について説明する。しかしながら、本発明は、以下に述べる形態に限定されるものではなく、特許請求の範囲記載における技術的思想の範囲内であれば、その他のいろいろな実施の形態が含まれる。   A mode for carrying out the present invention will be described. However, the present invention is not limited to the embodiments described below, and includes various other embodiments within the scope of the technical idea described in the claims.

本発明は、磁性材料、着色顔料及びワニスを少なくとも含有する赤外透過軟磁性インキにおいて、磁性材料の組成が、酸化鉄を主成分とするマグへマイト、マグネシウム系フェライト及び/又はニッケル系フェライトから成る軟磁性材料であり、磁性材料の保磁力が10〜100(Oe)、残留磁化が1〜10(emu/g)であり、かつ、赤外波長800〜1000nmにおける印刷物の分光反射率が65%以上であることを特徴とする赤外透過軟磁性インキである。   The present invention relates to an infrared transmitting soft magnetic ink containing at least a magnetic material, a color pigment, and a varnish, wherein the composition of the magnetic material is from maghemite, magnesium-based ferrite and / or nickel-based ferrite containing iron oxide as a main component. The magnetic material has a coercive force of 10 to 100 (Oe), a remanent magnetization of 1 to 10 (emu / g), and a spectral reflectance of a printed matter at an infrared wavelength of 800 to 1000 nm is 65. % Of the infrared transmitting soft magnetic ink characterized in that it is at least%.

(磁性材料)
本発明における磁性材料の組成は、酸化鉄(Fe)を主成分とするマグへマイト、マグネシウム系フェライト(Mg系フェライト)又はニッケル系フェライト(Ni系フェライト)から成る軟磁性材料である。マグへマイトとしては、球状/粒状結晶マグへマイトがある。マグネシウム系フェライト(Mg系フェライト)としては、Mg−Zn系フェライト、Mn−Mg系フェライト、Ca−Mg系フェライト、Cu−Zn−Mg系フェライト及びCu−Zn−Zr−Mg系フェライト等がある。ニッケル系フェライト(Ni系フェライト)としては、Ni−Znフェライト、Cu−Znフェライト及びNi−Cu−Znフェライト等がある。なお、特に好ましいのは、Cu−Zn−Mg系フェライトである。当該材料は、人体に対する危険性や有害性がニッケル系材料より発生しにくい材料であり、赤外線の透過特性も良好となっている。さらに、使用するワニスに対する濡れや、インキの流動特性を改善するために、ステアリン酸等をはじめとした表面処理を施しても良い。
(Magnetic material)
The composition of the magnetic material in the present invention is a soft magnetic material composed of maghemite, magnesium-based ferrite (Mg-based ferrite) or nickel-based ferrite (Ni-based ferrite) mainly composed of iron oxide (Fe 2 O 3 ). . Examples of maghemite include spherical / granular crystal maghemite. Examples of magnesium ferrite (Mg ferrite) include Mg—Zn ferrite, Mn—Mg ferrite, Ca—Mg ferrite, Cu—Zn—Mg ferrite, and Cu—Zn—Zr—Mg ferrite. Examples of nickel-based ferrite (Ni-based ferrite) include Ni—Zn ferrite, Cu—Zn ferrite, and Ni—Cu—Zn ferrite. Particularly preferred is Cu-Zn-Mg ferrite. This material is a material that is less likely to be dangerous and harmful to the human body than a nickel-based material, and has good infrared transmission characteristics. Furthermore, in order to improve the wetting of the varnish used and the fluidity of the ink, a surface treatment such as stearic acid may be applied.

(磁気特性)
軟磁性材料の磁気特性は、保磁力が10〜100(Oe)であり、残留磁化が1〜10(emu/g)である。保磁力が10(Oe)未満では、磁気特性の出力が低すぎることから、磁気センサによっては、磁気変化を良好に読み取ることができない。また、100(Oe)を超える場合は、それに伴い残留磁化も増加するため、磁気特性の隠ぺい力が低下し、検出のエネルギー効率が低下するおそれがある。また、インキ中での磁性体粒子の分散性及び分散安定性が低下するおそれもある。また、残留磁化が1(emu/g)未満では、磁性材料により付与する磁気情報が少なく、10(emu/g)を超えた場合は、容易に残留磁化を検出することにより磁性材料が明確となり、秘匿性に欠けるからである。なお、磁性材料の平均粒子径は、1〜10(μm)である。平均粒子径が1(μm)未満の場合は、粒子径が細かすぎるため、磁気特性が低下する。10(μm)を超えた場合は、粒子径が大きいため、印刷インキ化に問題を生じるとともに、印刷適性が顕著に低下するからである。
(Magnetic properties)
The magnetic properties of the soft magnetic material are a coercive force of 10 to 100 (Oe) and a residual magnetization of 1 to 10 (emu / g). When the coercive force is less than 10 (Oe), the output of the magnetic characteristics is too low, so that the magnetic change cannot be read satisfactorily depending on the magnetic sensor. Further, when it exceeds 100 (Oe), the residual magnetization also increases accordingly, so that the concealing force of the magnetic characteristics is lowered, and the energy efficiency of detection may be lowered. In addition, the dispersibility and dispersion stability of the magnetic particles in the ink may be reduced. Also, if the remanent magnetization is less than 1 (emu / g), the magnetic information provided by the magnetic material is small, and if it exceeds 10 (emu / g), the remanent magnetization is easily detected to make the magnetic material clear. This is because it lacks confidentiality. In addition, the average particle diameter of a magnetic material is 1-10 (micrometer). When the average particle size is less than 1 (μm), the particle size is too small, and the magnetic properties are deteriorated. This is because if it exceeds 10 (μm), the particle diameter is large, which causes a problem in printing ink, and remarkably deteriorates printability.

(磁性材料の調整)
磁性材料の特性の調整は、酸化鉄(III)として酸化マグネシウム、酸化亜鉛及び酸化銅等の主要な材料を配合し、保磁力が10〜100(Oe)であり、かつ、残留磁化が1〜10(emu/g)の磁気特性となるように、平均粒径が1〜10(μm)となるまで前述の配合した磁性材料を粉砕して調整する。なお、磁性材料の粒径の調整は、振動ミル、ボールミル、ロッドミル、ハンマーミル、アトライター及びジェットミル等の粉砕装置による公知の方法により調整する。また、粉砕に当たっては、乾式粉砕と湿式粉砕のいずれでも良い。
(Adjustment of magnetic material)
The characteristics of the magnetic material are adjusted by blending main materials such as magnesium oxide, zinc oxide and copper oxide as iron (III) oxide, having a coercive force of 10 to 100 (Oe) and having a remanent magnetization of 1 to 1. The above-mentioned blended magnetic material is pulverized and adjusted until the average particle size becomes 1 to 10 (μm) so that the magnetic properties become 10 (emu / g). The particle size of the magnetic material is adjusted by a known method using a grinding device such as a vibration mill, a ball mill, a rod mill, a hammer mill, an attritor, and a jet mill. In the pulverization, either dry pulverization or wet pulverization may be used.

(光学特性)
磁性材料の光学特性は、赤外波長800〜1000nmにおける印刷物の分光反射率が65%以上である。印刷物の分光反射率が65%未満の場合は、赤外線スキャナ等による赤外透過画像が視認されることとなるからである。
(optical properties)
As for the optical characteristics of the magnetic material, the spectral reflectance of the printed matter at an infrared wavelength of 800 to 1000 nm is 65% or more. This is because when the spectral reflectance of the printed material is less than 65%, an infrared transmission image by an infrared scanner or the like is visually recognized.

しかしながら、より効果的な使用方法としては、同様な磁気特性を有し、かつ、赤外線を吸収する磁性材料、すなわち、赤外線吸収特性の軟磁性材料と組み合わせて使用することによって、偽造防止抵抗力が格段に向上するのはいうまでもない。   However, as a more effective method of use, anti-counterfeit resistance can be obtained by using in combination with a magnetic material having similar magnetic characteristics and absorbing infrared rays, that is, a soft magnetic material having infrared absorption characteristics. Needless to say, it will improve dramatically.

上述の組合せ使用においては、単に隣接又は離間した画線や画像として使用されても良いが、高度な偽造防止策としてザンメル印刷のように一つの画像を部分的に分割する方法が好ましい方法の一つである。ここに記載するザンメル印刷とは、一つの版面に多色のインキを転移させることが可能な印刷方法であり、例えば、一本の線の色が次第に変化する画線を形成することができる印刷方式である。   In the above-described combination use, the image may be used simply as an adjacent or separated image or image. However, as an advanced anti-counterfeiting method, a method of partially dividing one image like Zummel printing is a preferred method. One. Zammel printing described here is a printing method capable of transferring multi-color ink to one printing plate. For example, printing capable of forming an image line in which the color of one line gradually changes. It is a method.

(赤外透過軟磁性インキ)
次に、前述した磁性材料を混合した印刷用インキ(以下「赤外透過軟磁性インキ」という。)について説明する。前述した磁性材料は、後述する印刷方法に応じて、ワニス及び助剤等と十分に練合し、印刷方式に適した流動特性を持つように粘度等を調整してインキ化する。磁性材料の配合割合は、印刷方式によって異なるが、10重量%から40重量%の範囲である。これは、印刷方式によって付与することができるインキ膜厚に依存するためであり、印刷膜厚が厚い印刷物では、インキ中の磁性材料の総量が多くなり、逆に、印刷膜厚の薄い膜厚では、磁性材料の総量が少なくなる。磁気特性、赤外線特性及び流動性等の観点から見ると、凹版印刷に代表されるような膜厚の厚い印刷方式では、10重量%から30重量%が望ましい。また、10重量%未満の場合は、真偽判別に必要な磁気特性が不十分となり、汎用センサでは十分な出力が得られない可能性がある。40重量%を超えた場合は、インキ粘度が増加し、インキの転移性が低下する。また、読取りに必要以上の過剰な磁性材料を配合した場合、赤外線透過特性には少なからず影響を与える。以上のことから、磁性材料の割合は、総じて10重量%から40重量%にすることが望ましいが、印刷方式によって最適な範囲が異なることは、前述のごとく明白である。
(Infrared transmitting soft magnetic ink)
Next, a printing ink in which the above-described magnetic material is mixed (hereinafter referred to as “infrared transmitting soft magnetic ink”) will be described. The above-described magnetic material is kneaded sufficiently with varnish, auxiliary agent, and the like according to the printing method described later, and adjusted to viscosity and the like so as to have flow characteristics suitable for the printing method, and is converted into an ink. The blending ratio of the magnetic material varies depending on the printing method, but is in the range of 10% by weight to 40% by weight. This is because it depends on the ink film thickness that can be applied by the printing method. In a printed matter with a large print film thickness, the total amount of magnetic material in the ink increases, and conversely, the film thickness with a thin print film thickness. Then, the total amount of magnetic material is reduced. From the viewpoint of magnetic characteristics, infrared characteristics, fluidity, etc., 10 wt% to 30 wt% is desirable in a printing system with a large film thickness as represented by intaglio printing. On the other hand, if it is less than 10% by weight, the magnetic characteristics required for authenticity determination are insufficient, and a general-purpose sensor may not be able to obtain a sufficient output. When it exceeds 40% by weight, the ink viscosity increases and the transferability of the ink decreases. In addition, when an excessive magnetic material more than necessary for reading is blended, the infrared transmission characteristics are affected considerably. From the above, the ratio of the magnetic material is desirably 10% to 40% by weight as a whole, but it is obvious that the optimum range differs depending on the printing method as described above.

(ワニス)
赤外透過軟磁性インキに使用するワニスは、特に限定されるものではない。例えば、アマニ油、桐油、大豆油、オリーブ油、ヒマシ油及びヒマワリ油等の油脂類、鯨ロウ、ミツロウ、ラノリン、カルナウバワックス、キャンデリアワックス及びモンタンワックス等の天然ワックス類、パラフィンワックス、マイクロクリスタリンワックス、酸化ワックス、エステルワックス及び低分子量ポリエチレン等の合成ワックス類、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、フロメン酸及びヘベニン酸等の高級脂肪酸類、ステアリルアルコール及びヘベニルアルコール等の高級アルコール類、グルコース、エチレングルコース及びアミロース等の炭化水素類、脂肪酸エステル等のエステル類、ステアリンアミド及びオレインアミド等のアミド類、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、セルロース系樹脂、ポリビニル系樹脂、石油系樹脂、エチレン・酢酸ビニル共重合体樹脂、フェノール系樹脂、スチレン系樹脂、ロジン変性樹脂及びテルビン樹脂等の樹脂類、天然ゴム、スチレンブタジエンゴム、イソプレンゴム及びクロロプレンゴム等のエラストマー類、アクリレート、メタクリレートのオリゴマー及びモノマーからなる紫外線硬化樹脂、水添石油樹脂、シリコーン、流動パラフィン及びフッ素樹脂等のタッキファイヤー類等を単独又は含有されたものから成るワニスを使用することができる。さらに、必要に応じてワニスに、界面活性剤、添加剤、酸化防止剤、乾燥剤及び光重合開始剤等を添加して使用することができる。
(varnish)
The varnish used for the infrared transmitting soft magnetic ink is not particularly limited. For example, oils and fats such as linseed oil, tung oil, soybean oil, olive oil, castor oil and sunflower oil, natural waxes such as whale wax, beeswax, lanolin, carnauba wax, canderia wax and montan wax, paraffin wax, microcrystalline Synthetic waxes such as waxes, oxidized waxes, ester waxes and low molecular weight polyethylene, higher fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, fumenic acid and hebenic acid, higher alcohols such as stearyl alcohol and hebenyl alcohol , Hydrocarbons such as glucose, ethylene glucose and amylose, esters such as fatty acid esters, amides such as stearamide and oleinamide, polyamide resins, polyester resins, epoxy resins, poly Such as resin, acrylic resin, vinyl chloride resin, cellulose resin, polyvinyl resin, petroleum resin, ethylene / vinyl acetate copolymer resin, phenol resin, styrene resin, rosin modified resin and terbin resin Resins, elastomers such as natural rubber, styrene butadiene rubber, isoprene rubber and chloroprene rubber, tackifiers such as UV curable resins composed of oligomers and monomers of acrylate and methacrylate, hydrogenated petroleum resins, silicones, liquid paraffin and fluororesins The varnish which consists of what was contained individually or etc. can be used. Furthermore, surfactants, additives, antioxidants, drying agents, photopolymerization initiators, and the like can be added to the varnish as necessary.

なお、赤外透過軟磁性インキには、インキの粘性を整え、印刷適性を向上させる目的で、炭酸カルシウム、アルミナ、硫酸バリウム、酸化亜鉛及び酸化チタン等の無機顔料を体質顔料として配合しても良い。また、磁気特性及び赤外線特性を妨げない範囲であれば、蛍光顔料、パール顔料、ガラスフレーク、コレステリック液晶顔料及び蓄光顔料等の公知の機能性顔料等を混合しても良い。また、着色顔料についても、磁気特性及び赤外線特性を妨げない範囲であれば、色彩等の制限はなく、淡色(白色も含む)から濃色(茶褐色、黒色)を有する様々な特色インキとすることができる。   Infrared transmitting soft magnetic ink may contain inorganic pigments such as calcium carbonate, alumina, barium sulfate, zinc oxide and titanium oxide as extender pigments for the purpose of adjusting the viscosity of the ink and improving the printability. good. In addition, a known functional pigment such as a fluorescent pigment, a pearl pigment, a glass flake, a cholesteric liquid crystal pigment, and a phosphorescent pigment may be mixed as long as it does not interfere with the magnetic characteristics and infrared characteristics. In addition, the color pigments are not limited in color as long as they do not interfere with the magnetic characteristics and infrared characteristics, and various special color inks having a light color (including white) to a dark color (brown, black) are used. Can do.

赤外透過軟磁性インキを基材に印刷又はコーティング等により付与する方法(以下「付与方法」という。)としては、公知の凹版印刷、スクリーン印刷及びインクジェット印刷等の印刷方式による付与や、コーティング等の塗工方式を用いることができる。なお、付与方法は、印刷インキを基材に付与可能な方式であれば特に限定されるものではない。また、これらの印刷及び塗工方法の組み合わせにより付与しても良い。   As a method for applying infrared transmission soft magnetic ink to a substrate by printing or coating (hereinafter referred to as “application method”), application by a printing method such as known intaglio printing, screen printing, and ink jet printing, coating, etc. The coating method can be used. The application method is not particularly limited as long as the method can apply the printing ink to the substrate. Moreover, you may provide by the combination of these printing and coating methods.

基材は、赤外透過軟磁性インキの磁気特性及び赤外線特性を妨げなければ特に限定されず、通常の印刷用基材として使用される、紙及びプラスチック等を用いることができる。   The substrate is not particularly limited as long as it does not interfere with the magnetic properties and infrared properties of the infrared transmitting soft magnetic ink, and paper, plastics, and the like that are used as ordinary printing substrates can be used.

(真偽判別印刷物)
次に、本発明の赤外透過軟磁性インキを使用した真偽判別印刷物について説明する。赤外透過軟磁性インキを付与するパターンは、赤外透過軟磁性インキにより一つの図柄を構成しても良いし、赤外吸収軟磁性、赤外吸収半硬磁性及び赤外透過半硬磁性のような特性を有する他の磁性インキを組み合わせて印刷を行い、二つ以上の図柄を構成しても良い。この場合、ザンメル印刷方式が最も効果的な付与方法である。なお、真偽判別印刷物としては、有価証券、カード、印紙類、商品タグ、切符や定期券等の通行券、有料道路等の回数券、各種チケット及び商品券等の貴重品が挙げられる。本発明の赤外透過軟磁性インキは、紫外線領域から可視光領域にかけて紛体色に応じた吸収帯域を有し、赤外領域で光を透過する特性を有するため、磁性材料の含有量により赤外線反射率が低下せず、機械読取する上で好都合である。仮に、磁性が付与されている領域が赤外吸収画像で推測され、プリンタ及び複写機等によって複製を試みても、赤外領域で光透過特性を有するため、真正品と同レベルの光学特性を有する偽造を防止し、判別性が良好であることから真偽判別印刷物に有効である。
(Authentication printed matter)
Next, the authenticity printed matter using the infrared transmitting soft magnetic ink of the present invention will be described. The pattern to which the infrared transmitting soft magnetic ink is applied may constitute one pattern with the infrared transmitting soft magnetic ink, or the infrared absorbing soft magnetism, the infrared absorbing semi-hard magnetism and the infrared transmitting semi-hard magnetism. Two or more designs may be formed by printing by combining other magnetic inks having such characteristics. In this case, the Zammel printing method is the most effective application method. The authenticity printed matter includes valuable securities such as securities, cards, stamps, product tags, pass tickets such as tickets and commuter passes, coupon tickets such as toll roads, various tickets, and gift certificates. The infrared transmitting soft magnetic ink of the present invention has an absorption band corresponding to the powder color from the ultraviolet region to the visible light region, and has the property of transmitting light in the infrared region. The rate does not decrease, which is convenient for machine reading. Temporarily, the region to which magnetism is imparted is estimated by an infrared absorption image, and even if copying is attempted with a printer or copying machine, it has optical transmission characteristics in the infrared region, so it has the same optical characteristics as the genuine product. It is effective for authenticity printed matter because it prevents counterfeiting and has good discrimination.

なお、真偽判別印刷物を判別する方法としては、例えば、赤外線スキャナ及び磁気センサの双方を用いる方法が挙げられる。赤外線スキャナを使用する場合は、赤外線反射画像及び赤外透過画像を確認することにより行う。磁気センサを使用する場合は、真偽判別印刷物の磁気特性に応じて、センサの種類ごとにあらかじめ定めておいた閾値範囲の出力を検知する方法等がある。例えば、検出した赤外線透過強度のデータを、あらかじめ記録しておいた真正な基準となる赤外線透過強度のデータと比較し、所定の閾値内にあるか否かによって真偽判別を行うことができる。また、検出した磁気強度のデータを、あらかじめ記録しておいた真正な基準となる磁気強度のデータと比較し、所定の閾値内にあるか否かによって真偽判別を行うことができる。もちろん、赤外線特性及び磁気特性の両者を使用した真偽判別の信頼性が格段に良好であることはいうまでもない。   In addition, as a method of discriminating the authenticity discrimination printed matter, for example, there is a method using both an infrared scanner and a magnetic sensor. When an infrared scanner is used, it is performed by confirming an infrared reflection image and an infrared transmission image. In the case of using a magnetic sensor, there is a method of detecting an output in a threshold range that is predetermined for each type of sensor according to the magnetic characteristics of the authenticity determination printed matter. For example, it is possible to compare the detected infrared transmission intensity data with the infrared transmission intensity data that is recorded in advance as a genuine reference, and to determine whether the data is within a predetermined threshold. Further, the detected magnetic strength data can be compared with magnetic strength data that has been recorded in advance as a genuine reference, and authenticity determination can be performed based on whether the data is within a predetermined threshold. Of course, it goes without saying that the authenticity determination reliability using both infrared and magnetic properties is remarkably good.

さらに、赤外線特性及び/又は磁気特性の異なる材料を組み合わせた利用では、赤外線透過特性及び/又は磁気特性に対して、単独の閾値設定に限らず離間又は隣接して使用された異なる材料との赤外線特性及び/又は磁気特性の違いを閾値に設定して真偽判別することは、更に判別精度の著しい向上をもたらすことはいうまでもない。また、赤外線透過磁性材料を使用することで、赤外線反射材料を使用した模倣品についても用紙等の赤外線を透過する基材の場合には、赤外線透過特性によって区別することができ、これは、MIセンサの様な磁気センサにおいても同じことがいえる。機械読取りを実施する者にとって、用途に応じて装置のコスト等を考慮した真偽判別の信頼性を自由に選択することができることに繋がる。   Furthermore, in the case of using a combination of materials having different infrared characteristics and / or magnetic characteristics, the infrared transmission characteristics and / or magnetic characteristics are not limited to a single threshold setting, but infrared with different materials used apart or adjacent to each other. Needless to say, authenticity determination by setting a difference in characteristics and / or magnetic characteristics as a threshold value further improves the determination accuracy. In addition, by using an infrared transmitting magnetic material, a counterfeit using an infrared reflecting material can be distinguished by an infrared transmitting characteristic in the case of a base material that transmits infrared rays such as paper. The same is true for magnetic sensors such as sensors. For those who perform machine reading, it is possible to freely select the authenticity of authenticity considering the cost of the apparatus according to the application.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明の内容は、これらの実施例の範囲に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, the content of this invention is not limited to the range of these Examples.

本発明に用いる磁性材料は、粉体の状態でも赤外線透過特性を有する必要がある。図1は、本発明に用いる赤外透過軟磁性特性を有する磁性材料と、赤外線吸収特性を有する材料を一般的な分光光度計を使用して比較した図である。図1に示す第一の磁性材料は、本発明に用いる磁性材料であり、第二の磁性材料は、一般的な赤外線吸収特性を有する材料を用いた。図1に示すように、第一の磁性材料は可視光領域の後半から赤外領域まで、幅広く赤外線透過特性を有しており、粉体の状態でも赤外線透過特性を有していることが分かる。   The magnetic material used in the present invention needs to have infrared transmission characteristics even in a powder state. FIG. 1 is a diagram comparing a magnetic material having an infrared transmitting soft magnetic property used in the present invention and a material having an infrared absorbing property using a general spectrophotometer. The first magnetic material shown in FIG. 1 is a magnetic material used in the present invention, and the second magnetic material is a material having general infrared absorption characteristics. As shown in FIG. 1, the first magnetic material has a wide infrared transmission characteristic from the second half of the visible light region to the infrared region, and it can be seen that the first magnetic material has the infrared transmission property even in a powder state. .

本発明に用いる磁性材料は、残留磁化が1〜10(emu/g)、保磁力が10〜100(Oe)、平均粒子径が1〜10(μm)程度のCu−Zn−Mg系フェライトを使用し、表1に示す配合で赤外透過軟磁性インキを作製した。練合は、3本ロールミル(井上製作所製)で行った。なお、磁気特性の測定は、一般的な磁気センサを使用し、読み取りを行った。   The magnetic material used in the present invention is a Cu—Zn—Mg based ferrite having a remanent magnetization of 1 to 10 (emu / g), a coercive force of 10 to 100 (Oe), and an average particle diameter of about 1 to 10 (μm). An infrared transmitting soft magnetic ink was prepared using the formulation shown in Table 1. The kneading was performed with a three-roll mill (manufactured by Inoue Seisakusho). The magnetic characteristics were measured using a general magnetic sensor.

Figure 0006240910
Figure 0006240910

彫刻凹版印刷機を使用し、上記配合の赤外透過軟磁性インキを用いた第一の図柄(2)と、比較例として特許文献1(特開2005−264074号、発明の名称「磁性インキ組成物及びその印刷物」)の赤外透過半硬磁性インキを用いた第二の図柄(3)を上質紙である基材(1)に印刷し、図2(a)に示す真偽判別印刷物(A1)を作製した。なお、比較例の赤外透過半硬磁性インキの配合については、後述の表2に示す割合とした。   Using the engraving intaglio printing machine, the first pattern (2) using the infrared transmission soft magnetic ink having the above-mentioned composition and Patent Document 1 (Japanese Patent Laid-Open No. 2005-264074, title of the invention “magnetic ink composition” as a comparative example) Printed on the base material (1), which is a high-quality paper, using the infrared transmission semi-hard magnetic ink of the product and its printed product "), and the authenticity printed matter shown in Fig. 2 (a) ( A1) was prepared. In addition, about the mixing | blending of the infrared transmission semi-hard magnetic ink of a comparative example, it was set as the ratio shown in Table 2 mentioned later.

Figure 0006240910
Figure 0006240910

なお、表2の磁性材料は、残留磁化が25〜35(emu/g)、保磁力が250〜400(Oe)、平均粒子径が10〜600(nm)程度の赤外透過半硬磁性材料を使用した。   The magnetic material in Table 2 is an infrared transmission semi-hard magnetic material having a remanent magnetization of 25 to 35 (emu / g), a coercive force of 250 to 400 (Oe), and an average particle diameter of about 10 to 600 (nm). It was used.

図2(b)は、図2(a)に示した真偽判別印刷物(A1)を市販の赤外線センサにより矢印部の方向に赤外線透過率を測定した波形図である。図2(b)に示すように、第一の図柄(2)の領域は、基材(1)よりも赤外線透過率は低いが、第二の図柄(3)の領域よりも赤外線透過率が高くなり、図2(b)に示す波形(S1)を得ることができた。   FIG. 2B is a waveform diagram in which the infrared transmittance of the authenticity printed matter (A1) shown in FIG. 2A is measured in the direction of the arrow by a commercially available infrared sensor. As shown in FIG. 2 (b), the region of the first pattern (2) has a lower infrared transmittance than the base material (1), but has a higher infrared transmittance than the region of the second pattern (3). It became high and the waveform (S1) shown in FIG.2 (b) was able to be obtained.

図2(c)は、図2(a)に示した真偽判別印刷物(A1)の残留磁化を測定するため、市販の磁気インピーダンスセンサにより矢印部の方向に磁気インピーダンスを測定した波形である。図2(c)に示すように、第一の図柄(2)の領域は、第二の図柄(3)より磁気強度が低い波形(S2)が得られた。   FIG. 2C shows a waveform obtained by measuring the magnetic impedance in the direction of the arrow with a commercially available magnetic impedance sensor in order to measure the residual magnetization of the authenticity determination printed matter (A1) shown in FIG. As shown in FIG. 2C, a waveform (S2) having a magnetic intensity lower than that of the second symbol (3) was obtained in the region of the first symbol (2).

図2(d)は、図2(a)に示した真偽判別印刷物(A1)の磁気の有無を測定するため、市販の磁気抵抗型センサにより矢印部の方向に磁気抵抗を測定した波形(S3)の模式図である。図2(d)に示すように、第一の図柄(2)の領域と第二の図柄(3)の領域における磁気の有無について検出することができた。   FIG. 2 (d) shows a waveform (magnetoresistance measured by a commercially available magnetoresistive sensor in the direction of the arrow in order to measure the presence / absence of magnetism in the authenticity printed matter (A1) shown in FIG. It is a schematic diagram of S3). As shown in FIG. 2D, the presence or absence of magnetism in the region of the first symbol (2) and the region of the second symbol (3) could be detected.

次に、実施例1の真偽判別印刷物(A1)の分光反射率について、株式会社日立製作所製の分光光度計U−4000型を用いて測定した。図3に示すように、真偽判別印刷物(A1)の第一の図柄(2)について、可視光領域である400nmから赤外領域である1300nmまでの分光反射率を測定した結果、分光反射率が約10%以下で可視光領域(400nm〜700nm付近)に吸収帯域を示し、赤外領域である波長780nm〜1300nm付近にわたる領域では、70%以上の分光反射率であった。一方、第二の図柄(3)について、可視光領域である400nmから赤外領域である1300nmまでの分光反射率を測定した結果、分光反射率が約10%以下で可視光領域(400nm〜700nm付近)に吸収帯域を示し、赤外領域である波長780nm〜1300nm付近にわたる領域では、50%程度の分光反射率であった。   Next, the spectral reflectance of the authenticity determination printed matter (A1) of Example 1 was measured using a spectrophotometer U-4000 type manufactured by Hitachi, Ltd. As shown in FIG. 3, as a result of measuring the spectral reflectance from the visible light region of 400 nm to the infrared region of 1300 nm for the first pattern (2) of the authenticity discrimination printed matter (A1), the spectral reflectance is shown. Shows an absorption band in the visible light region (around 400 nm to 700 nm) at about 10% or less, and a spectral reflectance of 70% or more in the region extending from the wavelength region of 780 nm to 1300 nm, which is the infrared region. On the other hand, as a result of measuring the spectral reflectance from the visible light region of 400 nm to the infrared region of 1300 nm for the second pattern (3), the spectral reflectance is about 10% or less and the visible light region (400 nm to 700 nm). An absorption band is shown in the vicinity), and the spectral reflectance is about 50% in the region extending from near the wavelength of 780 nm to 1300 nm, which is the infrared region.

次に、市販の赤外線スキャナを用いて、真偽判別印刷物(A1)の赤外線透過画像を確認した。   Next, an infrared transmission image of the authenticity discrimination printed material (A1) was confirmed using a commercially available infrared scanner.

図4に示すように、真偽判別印刷物(A1)における第一の図柄(2)の赤外線透過画像は、点線部に示すように略透明となるため、用紙基材の反射率との違いが分からない状態となり、印刷画像を観察することができなかった。一方、第二の図柄(3)については、灰色として観察することができた。よって、本発明の赤外透過軟磁性インキにおける赤外線光下の透過特性を確認することができた。   As shown in FIG. 4, since the infrared transmission image of the first pattern (2) in the authenticity discrimination printed matter (A1) is substantially transparent as shown by the dotted line portion, there is a difference from the reflectance of the paper base material. As a result, the printed image could not be observed. On the other hand, the second symbol (3) could be observed as gray. Therefore, it was possible to confirm the transmission characteristics under infrared light in the infrared transmission soft magnetic ink of the present invention.

上述した真偽判別印刷物(A1)に関する磁気センサ及び赤外線センサによる検出結果のまとめについて、表3に示す。   Table 3 summarizes the detection results of the magnetic sensor and the infrared sensor related to the authenticity determination printed matter (A1) described above.

Figure 0006240910
Figure 0006240910

表3に示すように、実施例1の真偽判別印刷物(A1)における第一の図柄(2)では、赤外光が赤外透過軟磁性インキを透過しているため、出力電圧における基材(上質紙)に対する変動が小さく、第二の図柄(3)は、赤外光の透過光量が本発明の赤外透過軟磁性インキと比較して少ないため、出力電圧が減少することを確認した。   As shown in Table 3, in the first pattern (2) in the authenticity discrimination printed matter (A1) of Example 1, since the infrared light is transmitted through the infrared transmitting soft magnetic ink, the substrate at the output voltage The variation with respect to (quality paper) was small, and the second design (3) confirmed that the output voltage decreased because the amount of transmitted infrared light was small compared to the infrared transmitting soft magnetic ink of the present invention. .

また、MIセンサでは、第一の図柄(2)における出力電圧が低いため、残留磁化が低いことが確認されたが、磁性材料の付与位置を特定するまでには至らなかった。一方、第二の図柄(3)では、出力電圧が高く、残留磁化が大きいことが確認されたことから、磁気特性を有することを確認することができた。なお、MRセンサでは、第一の図柄(2)と第二の図柄(3)の双方で磁気の有無のみを確認することができた。   Further, in the MI sensor, since the output voltage in the first pattern (2) was low, it was confirmed that the residual magnetization was low, but it did not reach the position where the magnetic material was applied. On the other hand, in the second pattern (3), since it was confirmed that the output voltage was high and the remanent magnetization was large, it could be confirmed that it had magnetic characteristics. In the MR sensor, only the presence or absence of magnetism could be confirmed in both the first symbol (2) and the second symbol (3).

表3に示すように、第一の図柄(2)では、赤外線透過光下又は赤外線反射光下において画像を観察することができないため、赤外線による磁性材料の付与位置を観察することができなかった。一方、第二の図柄(3)では、赤外線透過光下又は赤外線反射光下において灰色の画像を視認することができたため、何らかの磁気特性を有することが確認されるおそれがある状態であった。   As shown in Table 3, in the first pattern (2), the image could not be observed under infrared transmission light or infrared reflection light, so the position where the magnetic material was applied by infrared rays could not be observed. . On the other hand, in the second pattern (3), since a gray image could be visually recognized under infrared transmission light or infrared reflection light, there was a possibility that it was confirmed that the image had some magnetic characteristics.

よって、赤外透過軟磁性インキが付与されている領域は、公知の磁性インキと比較して、赤外領域における光透過特性が高く、MIセンサによる残留磁化の検出が低いため、印刷物の真偽の判別を行うことができた。   Therefore, the area to which the infrared transmission soft magnetic ink is applied has higher light transmission characteristics in the infrared area and lower detection of residual magnetization by the MI sensor than the known magnetic ink. It was possible to make a distinction.

A1 真偽判別印刷物
1 基材(上質紙)
2 第一の図柄
3 第二の図柄
A1 Authenticity printed matter 1 Base material (quality paper)
2 First design 3 Second design

Claims (3)

磁性材料、着色顔料、ワニスを少なくとも含有する赤外透過軟磁性インキにおいて、前記磁性材料の組成が、マグネシウム系フェライトから成る軟磁性材料であり、前記磁性材料の保磁力が10〜100(Oe)、かつ、残留磁化が1〜10(emu/g)であり、前記磁性材料の平均粒径が1〜10(μm)であって、赤外波長800〜1000nmにおける分光反射率が65%以上であることを特徴とする赤外透過軟磁性インキ。 In an infrared transmitting soft magnetic ink containing at least a magnetic material, a color pigment, and a varnish, the composition of the magnetic material is a soft magnetic material made of magnesium-based ferrite, and the coercive force of the magnetic material is 10 to 100 (Oe). In addition, the residual magnetization is 1 to 10 (emu / g), the average particle size of the magnetic material is 1 to 10 (μm), and the spectral reflectance at an infrared wavelength of 800 to 1000 nm is 65% or more. infrared transmitting soft magnetic ink, characterized in that. 前記赤外透過軟磁性インキ全体における前記磁性材料の配合量が、10〜40重量%であることを特徴とする請求項1記載の赤外透過軟磁性インキ。   The infrared transmission soft magnetic ink according to claim 1, wherein the blending amount of the magnetic material in the entire infrared transmission soft magnetic ink is 10 to 40% by weight. 請求項1又は請求項2記載の赤外透過軟磁性インキが基材の少なくとも一部に印刷されたことを特徴とする真偽判別印刷物。   An authenticity printed matter, wherein the infrared transmitting soft magnetic ink according to claim 1 or 2 is printed on at least a part of a substrate.
JP2014076987A 2014-04-03 2014-04-03 Infrared transmitting soft magnetic ink and authenticity printed matter Active JP6240910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076987A JP6240910B2 (en) 2014-04-03 2014-04-03 Infrared transmitting soft magnetic ink and authenticity printed matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076987A JP6240910B2 (en) 2014-04-03 2014-04-03 Infrared transmitting soft magnetic ink and authenticity printed matter

Publications (2)

Publication Number Publication Date
JP2015196819A JP2015196819A (en) 2015-11-09
JP6240910B2 true JP6240910B2 (en) 2017-12-06

Family

ID=54546720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076987A Active JP6240910B2 (en) 2014-04-03 2014-04-03 Infrared transmitting soft magnetic ink and authenticity printed matter

Country Status (1)

Country Link
JP (1) JP6240910B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134842A (en) * 2017-02-23 2018-08-30 独立行政法人 国立印刷局 Forgery-preventive printed matter
JP2018134843A (en) * 2017-02-23 2018-08-30 独立行政法人 国立印刷局 Forgery-preventive printed matter
WO2022045341A1 (en) 2020-08-31 2022-03-03 積水化学工業株式会社 Near-infrared light transmitting black material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823931B2 (en) * 1987-10-23 1996-03-06 共同印刷株式会社 Magnetic recording media
US4944802A (en) * 1988-09-16 1990-07-31 Omni Quest Corporation High coercivity magnetic inks and method for making same
JPH08259861A (en) * 1995-03-20 1996-10-08 Toppan Printing Co Ltd Random magnetic ink and random magnetic recording medium
JP2001261999A (en) * 2000-03-17 2001-09-26 Toshiba Corp Magnetic powder for ink used for distinguishing truth from falsehood, method for producing the same, magnetic ink using the same, printing member using the same and used for distinguishing truth from falsehood, device for detecting the same, and device for distinguishing truth from falsehood
WO2002051643A1 (en) * 2000-12-26 2002-07-04 National Printing Bureau, Incorporated Adiministrative Agency Authenticity discriminating printed matter and authenticity discriminating method
JP4668574B2 (en) * 2003-11-12 2011-04-13 関東電化工業株式会社 Mg-based ferrite, electrophotographic developer carrier and developer using the ferrite
JP2005268655A (en) * 2004-03-19 2005-09-29 National Printing Bureau Magnetic printed matter
JP4686737B2 (en) * 2005-03-24 2011-05-25 独立行政法人 国立印刷局 Authenticity discrimination method of metameric image forming body and metameric image forming body
JP2006286729A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Paint composition excellent in electromagnetic wave absorbency and conductivity, and coated metal plate coated therewith
JP2010202772A (en) * 2009-03-03 2010-09-16 Toyo Ink Mfg Co Ltd Active energy ray-curable magnetic ink composition and printed matter using the same

Also Published As

Publication number Publication date
JP2015196819A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
AU2014304739B2 (en) Magnetic or magnetisable pigment particles and optical effect layers
US9617435B2 (en) Clear magnetic intaglio printing ink
RU2623259C2 (en) Method of intaglio process attribute printing with a lot of characteristics
TWI709626B (en) Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles
CN105980068B (en) Method for producing an effect layer
CN107532030B (en) Fine particle dispersion, process for producing the same, forgery-preventing ink composition, and forgery-preventing printed matter
AU2007251399B2 (en) Security inks containing infrared absorbing metal compounds
JP5151249B2 (en) Lithographic ink composition
JP6240910B2 (en) Infrared transmitting soft magnetic ink and authenticity printed matter
CN107429098B (en) Near-infrared absorbing fine particle dispersion, method for producing same, forgery-preventing ink composition, and forgery-preventing printed matter
WO2016121839A1 (en) Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
JP5044841B2 (en) Anti-counterfeit printed matter
JP4192233B2 (en) Anti-counterfeit printed matter having flip-flop or color flip-flop
JP2016155903A (en) Photochromic brilliant ink and printed matter of the same
JP2005268655A (en) Magnetic printed matter
JP2018134842A (en) Forgery-preventive printed matter
JP2019156917A (en) Magnetic ink and forgery prevention printed matter
WO2017007005A1 (en) Retro-reflective printed matter for forgery prevention, manufacturing method therefor, and authenticity-determining method using same
JP2018134843A (en) Forgery-preventive printed matter
JP2019107818A (en) Authenticity discrimination printed matter and method of discriminating authenticity
KR20080001392A (en) The water wiping intaglio ink composition with magnetic and infrared absorption characteristics
JP2017144619A (en) Printed matter capable of authenticity discrimination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6240910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250