JP6239255B2 - Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method - Google Patents

Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method Download PDF

Info

Publication number
JP6239255B2
JP6239255B2 JP2013085019A JP2013085019A JP6239255B2 JP 6239255 B2 JP6239255 B2 JP 6239255B2 JP 2013085019 A JP2013085019 A JP 2013085019A JP 2013085019 A JP2013085019 A JP 2013085019A JP 6239255 B2 JP6239255 B2 JP 6239255B2
Authority
JP
Japan
Prior art keywords
liquefaction
probability
building
damage
expected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085019A
Other languages
Japanese (ja)
Other versions
JP2014206908A (en
Inventor
安紀子 更谷
安紀子 更谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2013085019A priority Critical patent/JP6239255B2/en
Publication of JP2014206908A publication Critical patent/JP2014206908A/en
Application granted granted Critical
Publication of JP6239255B2 publication Critical patent/JP6239255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Foundations (AREA)

Description

この発明は、液状化対策工法の費用対効果を検討するための、液状化した場合の地盤補強や液状化対策工法毎の期待損失額を導出する方法、及び、ある供用期間中の期待被害額を求める地盤補強や液状化対策工法毎の液状化による期待被害額の評価方法に関する。   The present invention is a method for deriving the expected loss for each liquefaction countermeasure construction method for ground reinforcement and liquefaction countermeasure methods for examining the cost effectiveness of the liquefaction countermeasure construction method, and the expected damage amount during a certain service period It is related with the evaluation method of the expected damage due to liquefaction for each ground reinforcement and liquefaction countermeasure construction method.

従来、地震動強さや地盤状況により液状化の危険度を評価する方法、および地震の発生確率の評価方法が提案されている。例えば、液状化危険度の評価方法としては、FL法、PL法など複数存在する。   Conventionally, methods for evaluating the risk of liquefaction based on seismic intensity and ground conditions and methods for evaluating the probability of occurrence of earthquakes have been proposed. For example, there are a plurality of methods for evaluating the liquefaction risk such as the FL method and the PL method.

特開2011−074714号公報JP 2011-0747414 A 特開2002−024481号公報JP 2002-024481 A

地震ハザードステーションJ−SHIS HP:http://www.j-shis.bosai.go.jp/ の公開データSeismic hazard station J-SHIS HP: http://www.j-shis.bosai.go.jp/ Public data

上記のように、液状化危険度の評価方法および地震の発生確率の評価方法が個々には提案されているが、液状化した場合の期待損失額を導出する方法、特に地盤補強や液状化対策工法毎の液状化期待損失額を導出する方法については提案されるに至っていない。液状化対策工法の費用対効果を適切に検討するためには、地盤補強や液状化対策工法毎の液状化期待損失額を精度良く求めることが必要である。   As mentioned above, liquefaction risk assessment methods and earthquake occurrence probability assessment methods have been proposed individually, but methods for deriving expected losses in liquefaction, especially ground reinforcement and liquefaction countermeasures. A method for deriving the expected loss of liquefaction for each method has not been proposed. In order to appropriately examine the cost effectiveness of the liquefaction countermeasure method, it is necessary to accurately determine the expected loss of liquefaction for each ground reinforcement and liquefaction countermeasure method.

また、上記のように液状化危険度の評価方法は複数存在するが、地震の発生確率を考慮した対象地盤での液状化発生確率を評価するものは存在せず、ある供用期間中の液状化による期待被害額を求める方法は知られていない。   As described above, there are multiple methods for evaluating the risk of liquefaction, but there is no method for evaluating the probability of occurrence of liquefaction on the target ground considering the probability of earthquake occurrence. There is no known way to calculate the expected damage due to.

この発明の目的は、地盤補強や液状化対策工法毎の液状化発生時の期待損失額を精度良く求めることができる液状化対策工法の液状化期待損失額の評価方法を提案することである。
この発明の他の目的は、さらに、地盤補強や液状化対策工法毎のt年間の液状化による期待被害額を精度良く求めることができる液状化対策工法の液状化による期待被害額の評価方法を提案することである。
An object of the present invention is to propose a method for evaluating the expected liquefaction loss of a liquefaction countermeasure method, which can accurately determine the expected loss when liquefaction occurs for each ground reinforcement or liquefaction countermeasure method.
Another object of the present invention is to provide a method for evaluating the expected damage due to liquefaction in the liquefaction countermeasure method, which can accurately determine the expected damage due to liquefaction for t years for each ground reinforcement or liquefaction countermeasure method. It is to propose.

この発明の液状化対策工法の液状化による期待被害額の評価方法は、
地盤補強や液状化対策工法毎に過去の液状化時の敷地の最大傾斜角の平均と標準偏差とを算出し、液状化による最大傾斜角の発生確率が1となるように、対数正規分布などの確率密度関数で、前記各地盤補強や液状化対策工法毎の、液状化した場合の建物損傷確率をモデル化する過程(S1)と、
過去の液状化時の復旧費用データなどを用い、建築面積当たりの、建物の損傷程度に応じた建物補修費用をモデル化する過程(S2)と、
地盤補強や液状化対策工法毎に、前記各モデル化により得られた前記「液状化した場合の建物損傷確率」と前記「建物の損傷程度に応じた建物補修費用」との積を積分し、その算出した積分値を前記地盤補強や液状化対策工法における液状化発生時の期待損失額とする過程(S3)とを含む方法である。
前記建物損傷確率をモデル化する過程(S1)においては、地盤補強または液状化対策についての異なる工法である複数種の工法と、補強無しの場合とのそれぞれについて、共通の方法でモデル化し、前記工法毎と補強無しの場合とのモデル化された、最大傾斜角度と建物損傷確率の関係を示す曲線を同じグラフ上に併記し、
前記期待損失額を求める過程においては、前記複数の工法のそれぞれと補強無しの場合とについて前記期待損失額を算出し、工法毎と補強無しの場合との前記期待損失額の算出結果を同じグラフに併記する。
The method for evaluating the expected damage due to liquefaction of the liquefaction countermeasure method of this invention is as follows:
Calculate the average and standard deviation of the maximum slope angle of the site at the time of past liquefaction for each ground reinforcement and liquefaction countermeasure construction method, and lognormal distribution etc. so that the probability of occurrence of the maximum slope angle due to liquefaction becomes 1 (S1) for modeling the building damage probability in the case of liquefaction for each area reinforcement and liquefaction countermeasure construction method with the probability density function of
A process (S2) of modeling a building repair cost according to the degree of damage to the building per building area by using past recovery cost data at the time of liquefaction, etc.
For each ground reinforcement and liquefaction countermeasure construction method, integrate the product of the "building damage probability when liquefied" obtained by each modeling and the "building repair costs according to the degree of building damage", And a step (S3) of setting the calculated integrated value to an expected loss when liquefaction occurs in the ground reinforcement or liquefaction countermeasure method.
In the process of modeling the building damage probability (S1), a plurality of types of construction methods, which are different construction methods for ground reinforcement or liquefaction countermeasures, and a case without reinforcement are modeled by a common method, Curves showing the relationship between the maximum inclination angle and the building damage probability modeled for each method and the case without reinforcement are also shown on the same graph.
In the process of obtaining the expected loss amount, the expected loss amount is calculated for each of the plurality of methods and the case without reinforcement, and the calculation result of the expected loss amount for each method and without reinforcement is the same graph. It is written together.

この方法によると、地盤補強や液状化対策工法毎に「液状化した場合の建物損傷確率」を求め、この「液状化した場合の建物損傷確率」と「損傷程度に応じた建物補修費用」との積を積分して液状化発生時の期待損失額とするため、地盤補強や液状化対策工法毎の液状化発生時の期待損失額を求めることができる。また、前記建物損傷確率や建物補修費用は、いずれも、過去に実際に発生した地震による液状化被害データなどから求めるので、信頼性の高い値となる。このいずれも信頼性の高い値を用いて液状化発生時の期待損失額を求めるため、その求めた液状化期待損失額は信頼性の高いものとなり、液状化対策工法の液状化が発生した場合の期待損失額の評価を精度良く行うことができる。   According to this method, the “building damage probability when liquefied” is determined for each ground reinforcement and liquefaction countermeasure method, and this “building damage probability when liquefied” and “building repair costs according to the degree of damage” Therefore, the expected loss amount at the time of liquefaction occurrence can be obtained for each ground reinforcement or liquefaction countermeasure construction method. In addition, since the building damage probability and the building repair cost are both obtained from liquefaction damage data due to earthquakes that have actually occurred in the past, they are highly reliable values. In both cases, the expected loss at the time of liquefaction is obtained using highly reliable values, so the calculated expected liquefaction loss is highly reliable, and liquefaction occurs in the liquefaction countermeasure method. The expected loss amount can be accurately evaluated.

この発明の評価方法において、「t年間(t:任意に設定した対象期間)で対象地盤が液状化する確率」と、前記「液状化発生時の期待損失額」との積により、前記地盤補強や液状化対策工法におけるt年間の液状化による期待被害額とする過程(S4)を含めても良い。
前記「対象地盤が液状化する確率」は、例えば、J−SHISが公開しているハザード地図等から地震ハザード曲線を得て求める。
このように、対象地盤が液状化する確率と液状化発生時の期待損失額とを用いてt年間の液状化による期待被害額を求めるため、地域の地震危険度と地盤の液状化危険度を踏まえた液状化対策工法の選定が行える。
このため、より一層的確に、液状化対策工法の選定が行える。
In the evaluation method of the present invention, the ground reinforcement is calculated based on a product of “probability of liquefaction of the target ground in t years (t: arbitrarily set target period)” and the “expected loss when liquefaction occurs”. In addition, a process (S4) of making an expected damage amount due to liquefaction for t years in the liquefaction countermeasure method may be included.
The “probability of liquefaction of the target ground” is obtained, for example, by obtaining an earthquake hazard curve from a hazard map or the like released by J-SHIS.
Thus, in order to obtain the expected damage due to liquefaction for t years using the probability that the target ground will be liquefied and the expected loss at the time of liquefaction, the earthquake risk of the area and the liquefaction risk of the ground will be calculated. The liquefaction countermeasure method can be selected based on this.
For this reason, the liquefaction countermeasure method can be selected more accurately.

この発明の液状化対策工法の液状化による期待被害額の評価方法によると、地盤補強や液状化対策工法毎に、液状化した場合の建物損傷確率と建物の損傷程度に応じた建物補修費用とを求めてその積を積分し、地盤補強や液状化対策工法における液状化発生時の期待損失額とするため、地盤補強や液状化対策工法毎の液状化発生時の期待損失額を求めることができる。また、前記建物損傷確率および建物補修費用は、いずれも過去に実際に発生した地震による液状化被害データなどから求めるので、信頼性の高い値となり、そのためこれらの値を用いて得られる期待損失額は信頼性および精度の高いものとなる。したがって、液状化対策工法の費用対効果を適切に求めることができる。
また、t年間で対象地盤が液状化する確率と、前記液状化発生時の期待損失額とからt年間の液状化による期待被害額を求める場合は、地域の地震危険度と地盤の液状化危険度を踏まえた液状化対策工法の選定が行える。
According to the method for evaluating the expected damage due to liquefaction of the liquefaction countermeasure method of this invention, for each of the ground reinforcement and liquefaction countermeasure method, the building repair probability according to the building damage probability and the degree of building damage in the case of liquefaction To calculate the expected loss at the time of liquefaction for each ground reinforcement or liquefaction countermeasure method. it can. In addition, the building damage probability and building repair cost are both highly reliable because they are obtained from liquefaction damage data due to earthquakes that have actually occurred in the past, so the expected loss amount obtained using these values. Is reliable and accurate. Therefore, the cost-effectiveness of the liquefaction countermeasure method can be obtained appropriately.
When the expected damage due to liquefaction for t years is calculated from the probability that the target ground will liquefy in t years and the expected loss when the liquefaction occurs, the earthquake risk of the area and the risk of liquefaction of the ground The liquefaction countermeasure method can be selected based on the degree.

この発明の一実施形態に係る液状化対策工法の液状化による期待被害額の評価方法を示す流れ図である。It is a flowchart which shows the evaluation method of the expected damage amount by liquefaction of the liquefaction countermeasure construction method which concerns on one Embodiment of this invention. 同評価方法の過程で求める地盤補強や液状化対策工法毎の液状化発生時の最大傾斜角の分布を示すグラフである。It is a graph which shows the distribution of the maximum inclination angle at the time of liquefaction generation | occurrence | production for every ground reinforcement and liquefaction countermeasure construction method calculated | required in the process of the same evaluation method. 同評価方法の過程で求める液状化発生時の最大傾斜角の確率分布を示すグラフである。It is a graph which shows the probability distribution of the maximum inclination angle at the time of liquefaction generation calculated | required in the process of the same evaluation method. 同評価方法の過程で求める損傷程度に応じた建物補修費用を示すグラフである。It is a graph which shows the building repair cost according to the damage degree calculated | required in the process of the evaluation method. 同評価方法の過程で求める液状化した場合の地盤補強や液状化対策工法毎の期待損失額を示すグラフである。It is a graph which shows the expected loss amount for every ground reinforcement and liquefaction countermeasure construction method at the time of liquefaction calculated | required in the process of the same evaluation method. 同評価方法の過程で求めるt年間の液状化による期待被害額を示すグラフである。It is a graph which shows the expected damage amount by liquefaction of t years calculated | required in the process of the evaluation method. 同評価方法の過程で用いるt年間で対象地盤が液状化する確率を求める方法の例を示す流れ図である。It is a flowchart which shows the example of the method of calculating | requiring the probability that a target ground will liquefy in t years used in the process of the evaluation method. 同液状化確率を求める方法に用いる液状化判定指標であるPL値情報となる曲線の例を示すグラフである。It is a graph which shows the example of the curve used as PL value information which is a liquefaction determination parameter | index used for the method of calculating | requiring the liquefaction probability. 同液状化確率を求める方法における途中の過程で求める液状化危険度曲線の例を示すグラフである。It is a graph which shows the example of the liquefaction risk degree curve calculated | required in the middle process in the method of calculating | requiring the liquefaction probability. 同液状化確率を求める方法に用いる地震ハザード曲線の例を示すグラフである。It is a graph which shows the example of the earthquake hazard curve used for the method of calculating | requiring the same liquefaction probability. 同液状化確率を求める方法における途中の過程で求める対象期間の地震動の発生確率の例を示すグラフである。It is a graph which shows the example of generation | occurrence | production probability of the ground motion of the object period calculated | required in the middle process in the method of calculating | requiring the liquefaction probability. 同液状化確率を求める方法で求める対象期間の液状化発生確率の例を示すグラフである。It is a graph which shows the example of the liquefaction generation | occurrence | production probability of the object period calculated | required with the method of calculating | requiring the liquefaction probability. 液状化した場合の損傷確率曲線と建物補修費用の関係を示すグラフである。It is a graph which shows the relationship between the damage probability curve at the time of liquefaction, and building repair expense.

この発明の一実施形態を図面と共に説明する。この液状化対策工法の液状化による期待被害額の評価方法は、概要を説明すると、地盤補強の種類毎に、液状化発生時の期待損失額を、「液状化した場合の建物損傷確率」と「建物の損傷程度に応じた建物補修費用」との積の積分値(図5の面積)として求め、さらにこの求めた期待損失額と、地震発生確率(t年間で対象地盤が液状化する確率)を考慮してt年間の液状化による期待被害額を求める方法である。   An embodiment of the present invention will be described with reference to the drawings. The method of evaluating the expected damage due to liquefaction in this liquefaction countermeasure construction method can be summarized as follows: For each type of ground reinforcement, the expected loss at the time of liquefaction is expressed as “building damage probability when liquefied” Calculated as the integrated value (area in Fig. 5) of the product with "building repair costs according to the degree of damage to the building", and the expected loss amount and the probability of earthquake occurrence (probability that the target ground will liquefy in t years) ) And the expected damage due to liquefaction for t years.

この方法は、次の各過程(S1)〜(S4)を含む。
・液状化した場合の建物損傷確率をモデル化する過程(S1)。
・建物の損傷程度に応じた建物補修費用をモデル化する過程(S2)。
・各モデル化により得られた、「液状化した場合の建物損傷確率」と「建物の損傷程度に応じた建物補修費用」とから「液状化発生時の期待損失額」を求める過程(S3)。
・t年間の液状化による期待被害額を求める過程(S4)。
上記各過程(S1)〜(S4)の処理は、コンピュータを用いて行う。
This method includes the following steps (S1) to (S4).
A process of modeling the building damage probability when liquefied (S1).
A process of modeling building repair costs according to the degree of building damage (S2).
-The process of obtaining the "expected loss when liquefaction occurs" from "building damage probability when liquefied" and "building repair costs according to the degree of building damage" obtained by each modeling (S3) .
A process of obtaining the expected damage due to liquefaction for t years (S4).
The processes in the steps (S1) to (S4) are performed using a computer.

液状化した場合の建物損傷確率をモデル化する過程(S1)では、地盤補強や液状化対策工法毎に過去の液状化時の敷地の最大傾斜角の平均と標準偏差とを算出し、液状化による最大傾斜角の発生確率が1となるように、対数正規分布などの確率密度関数で、前記各地盤補強や液状化対策工法毎の、液状化した場合の建物損傷確率をモデル化する。   In the process of modeling the building damage probability in the case of liquefaction (S1), the average and standard deviation of the maximum inclination angle of the site at the time of past liquefaction is calculated for each ground reinforcement and liquefaction countermeasure method, and liquefaction The probability of building damage in the case of liquefaction is modeled by a probability density function such as lognormal distribution so that the occurrence probability of the maximum inclination angle by 1 is liquefied for each local reinforcement or liquefaction countermeasure method.

すなわち、この液状化した場合の建物損傷確率をモデル化する過程(S1)では、液状化による建物の損傷程度を地盤の最大傾斜角(=建物の最大傾斜角)と考え、実際の液状化被害データなどを用いてモデル化を行う。
具体的には、まず図2に示すように、過去の大地震時の地盤補強や液状化対策工法による最大傾斜角度の分布を調べる。地盤補強や液状化対策工法は、例えば、地盤補強無しの場合と、地盤補強有りの場合の各種類(A工法、B工法)とする。
That is, in the process of modeling the building damage probability in the case of liquefaction (S1), the degree of building damage due to liquefaction is considered as the maximum inclination angle of the ground (= maximum inclination angle of the building), and actual liquefaction damage Model using data.
Specifically, first, as shown in FIG. 2, the distribution of the maximum inclination angle by the ground reinforcement and the liquefaction countermeasure method at the time of the past large earthquake is examined. The ground reinforcement and liquefaction countermeasure methods are, for example, each type (A method, B method) when there is no ground reinforcement and when there is ground reinforcement.

この地盤補強や液状化対策工法毎に、過去の液状化時の敷地の最大傾斜角の平均μと、標準偏差σを算出する。
例えば,対数正規分布の確率密度関数でモデル化するために、次の式により、対数平均λ、対数標準偏差ζに変換する。
λ=ln(μ)−0.5×ζ
ζ=√(ln(1+(σ/μ))
For each ground reinforcement or liquefaction countermeasure method, the average μ of the maximum inclination angle of the site at the time of past liquefaction and the standard deviation σ are calculated.
For example, in order to model with a logarithmic normal distribution probability density function, it is converted into a logarithmic mean λ and a logarithmic standard deviation ζ by the following equations.
λ = ln (μ) −0.5 × ζ 2
ζ = √ (ln (1+ (σ 2 / μ 2 ))

この後、地盤補強や液状化対策工法毎に、液状化による最大傾斜角xの発生確率を面積が1となるように、次式(1)で示される対数正規分布などの確率密度関数でモデル化する。
Pf (x) = Φ[ { ln(x) − ln(λ) } / ζ ] …式(1)
Then, for each ground reinforcement and liquefaction countermeasure method, the probability of occurrence of the maximum inclination angle x due to liquefaction is modeled with a probability density function such as a logarithmic normal distribution represented by the following equation (1) so that the area becomes 1 Turn into.
P f (x) = Φ [{ln (x) −ln (λ)} / ζ] (1)

損傷程度に応じた建物補修費用をモデル化する過程(S2)では、過去の液状化時の復旧費用データなどを用い、建築面積当たりの、建物の損傷程度に応じた建物補修費用をモデル化する。
具体的には、図4に示すように、実際に液状化被害からの復旧必要データを用い、最大傾斜角に対する補修費用のモデル化を行う。
復旧費用は、建築面積によると考えられるため、単位となる、例えば建築面積1mあたりの費用とする。
この最大傾斜角と建築面積に対する復旧費用との関係の分布図(図4)より、近似式を作成し、この近似式を、損傷程度に応じた建物補修費用のモデルとする。
In the process of modeling the building repair cost according to the degree of damage (S2), the repair cost data according to the degree of building damage per building area is modeled using the restoration cost data at the time of past liquefaction. .
Specifically, as shown in FIG. 4, the repair cost for the maximum inclination angle is modeled by actually using data necessary for recovery from liquefaction damage.
Since the recovery cost is considered to depend on the building area, it is assumed to be a cost per unit of building area, for example, 1 m 2 .
An approximate expression is created from the distribution diagram (FIG. 4) of the relationship between the maximum inclination angle and the restoration cost for the building area, and this approximate expression is used as a model for building repair costs according to the degree of damage.

「液状化発生時の期待被害額」を求める過程(S3)では、地盤補強や液状化対策工法毎に、前記各モデル化により得られた、前記「液状化した場合の建物損傷確率」と前記「建物の損傷程度に応じた建物補修費用」との積を積分し、その算出した積分値(図5の各曲線と横軸とで囲まれる面積)を前記地盤補強や液状化対策工法における液状化発生時の期待被害額とする。   In the process of obtaining the “expected damage amount at the time of liquefaction” (S3), the “building damage probability in the case of liquefaction” obtained by the above modeling for each ground reinforcement or liquefaction countermeasure construction method and the above Integrate the product with “building repair costs according to the degree of building damage”, and use the calculated integrated value (the area enclosed by each curve and the horizontal axis in FIG. 5) for the liquid in the ground reinforcement and liquefaction countermeasure methods. The expected damage amount at the time of occurrence

すなわち、「液状化した場合の建物損傷確率」×「建物の損傷程度に応じた建物補修費用」により、地盤補強の種類に応じた期待損失額が求まる。
例えば、「液状化した場合の建物損傷確率」をPf(x)、「損傷程度に応じた建物補修費用」をCl(x)とすると、液状化した場合の期待損失額Cliqを次の式(2)より求める。
Cliq =∫(Pf(x)×Cl (x))dx …式(2)
上記の式(2)の積分値Cliqは、図5の各曲線と横軸とで囲まれる面積を示す。
That is, the expected loss amount corresponding to the type of ground reinforcement is obtained by “the probability of building damage in the case of liquefaction” × “building repair cost according to the degree of building damage”.
For example, assuming that “building damage probability when liquefied” is Pf (x) and “building repair cost according to the degree of damage” is Cl (x), the expected loss Cliq when liquefied is expressed by the following formula ( 2) Find from.
Cliq = ∫ (Pf (x) × Cl (x)) dx Equation (2)
The integral value Cliq in the above equation (2) indicates an area surrounded by each curve and the horizontal axis in FIG.

t年間の液状化発生時の期待被害額を求める過程(S4)では、「t年間(t:任意に設定した対象期間(例えば、供用期間))で対象地盤が液状化する確率」と、前記「液状化発生時の期待損失額」との積により、前記地盤補強や液状化対策工法におけるt年間の液状化による期待被害額とする。   In the process of obtaining the expected damage amount at the time of occurrence of liquefaction for t years (S4), “probability that the target ground will liquefy in t years (t: target period set arbitrarily (for example, service period))”, Based on the product of the “expected loss at the time of liquefaction”, the expected damage amount due to liquefaction for t years in the ground reinforcement or liquefaction countermeasure construction method is used.

地盤補強や液状化対策工法に応じたt年間の液状化による期待被害額は、「t年間で液状化する確率」×「液状化発生時の期待損失額」により求まる。
例えば、「t年間で液状化する確率」をPliq (t)、「液状化した場合の期待損失額」をCliq とすると、液状化による期待被害額Eliq (t)は、次式(3)により求められる。
Eliq (t)=Pliq (t)×Cliq …式(3)
The expected damage due to liquefaction for t years according to the ground reinforcement and liquefaction countermeasure construction method is obtained by “probability of liquefaction in t years” × “expected loss when liquefaction occurs”.
For example, if “probability of liquefaction in t years” is Pliq (t) and “expected loss when liquefied” is Cliq, the expected damage Eliq (t) due to liquefaction is calculated by the following equation (3). Desired.
Eliq (t) = Pliq (t) × Cliq Equation (3)

図6は、このように求めた、ある地盤補強の種類Aと対策無しの場合についての、t年間の液状化による期待被害額の例を示すグラフである。
なお、対象地盤が液状化する確率は、例えば、J−SHISが公開しているハザード地図等から地震ハザード曲線を得て求める。
FIG. 6 is a graph showing an example of the expected damage amount due to liquefaction for t years for a certain ground reinforcement type A and no countermeasures obtained in this way.
In addition, the probability that the target ground is liquefied is obtained, for example, by obtaining an earthquake hazard curve from a hazard map or the like released by J-SHIS.

この方法によると、地盤補強や液状化対策工法毎に「液状化した場合の建物損傷確率」を求め、この「液状化した場合の建物損傷確率」と「損傷程度に応じた建物補修費用」との積を積分して液状化発生時の期待損失額とするため、地盤補強や液状化対策工法毎の液状化発生時の期待損失額を求めることができる。
前記建物損傷確率および建物補修費用は、いずれも過去に実際に発生した地震による液状化被害データなどから求めるので、信頼性の高い値となる。このいずれも信頼性の高い値を用いて液状化発生時の期待損失額を求めるため、その求めた液状化期待損失額は信頼性の高いものとなり、液状化対策工法の液状化期待損失額の評価を精度良く行うことができる。
また、対象地盤が液状化する確率と液状化発生時の期待損失額とを用いてt年間の液状化による期待被害額を求めるため、地域の地震危険度と地盤の液状化危険度を踏まえた液状化対策工法の選定が行える。
According to this method, the “building damage probability when liquefied” is determined for each ground reinforcement and liquefaction countermeasure method, and this “building damage probability when liquefied” and “building repair costs according to the degree of damage” Therefore, the expected loss amount at the time of liquefaction occurrence can be obtained for each ground reinforcement or liquefaction countermeasure construction method.
Since the building damage probability and the building repair cost are both obtained from liquefaction damage data caused by earthquakes that have actually occurred in the past, the building damage probability and the building repair cost are highly reliable values. In both cases, the expected loss at the time of liquefaction is calculated using highly reliable values, so the calculated expected liquefaction loss is highly reliable, and the expected liquefaction loss of the liquefaction countermeasure method is calculated. Evaluation can be performed with high accuracy.
In addition, in order to obtain the expected damage due to liquefaction for t years using the probability that the target ground will liquefy and the expected loss at the time of liquefaction occurrence, the earthquake risk of the area and the liquefaction risk of the ground were taken into account. The liquefaction countermeasure method can be selected.

このように、地域の地震危険度と、地盤の液状化可能性を踏まえた液状化対策工法の選定が行え、また、実際に発生した地震による液状化被害データなどを踏まえて建物の損傷確率や補修費用を求めるので、信頼性のある評価手法となる。
従来、地震の発生確率を考慮した対象地盤での液状化発生確率を評価する方法、およびその被害額を算出する方法は知られておらず、この発明により、地震の発生確率を考慮した液状化対策工法の選定が可能となる。
In this way, it is possible to select a liquefaction countermeasure method based on the seismic risk of the area and the possibility of liquefaction of the ground, as well as the probability of damage to the building based on the data of liquefaction damage caused by the actual earthquake. Since repair costs are sought, it becomes a reliable evaluation method.
Conventionally, there is no known method for evaluating the probability of occurrence of liquefaction in the target ground taking into account the probability of occurrence of an earthquake, and a method for calculating the amount of damage. A countermeasure method can be selected.

次に、対象期間(t年間)に対象地盤が液状化する確率を求める方法の例を、図7と共に説明する。この方法は、先の出願(特願2013−029739号)で提案した方法であり、例えばJ−SHISが公開しているハザード地図等から地震ハザード曲線を得て、次のように求める。   Next, an example of a method for obtaining the probability that the target ground liquefies during the target period (t years) will be described with reference to FIG. This method is a method proposed in the previous application (Japanese Patent Application No. 2013-029739). For example, an earthquake hazard curve is obtained from a hazard map or the like published by J-SHIS, and obtained as follows.

対象期間(t年間)に対象地盤が液状化する確率を求める方法の概要を示すと、次の通りである。
地震動強さ指標Sに対しての対象地盤の液状化の危険性を示す液状化判定指標を示した液状化判定値情報を取得する液状化判定値情報取得過程(R1)と、
前記液状化判定値情報を、液状化危険度の発生確率に変換する液状化危険度曲線変換過程(R2)と、
対象地盤の地震動強さ指標Sに対する超過確率の関係を示す地震ハザード曲線を取得する地震ハザード曲線取得過程(R3)と、
この取得した地震ハザード曲線より対象期間t中における地震動発生確率を求める地震動発生確率変換過程(R4)と、
これらの求められた液状化危険度と地震動発生確率とを掛け合わせ地震動強さ指標Sで積分することで対象期間tの間の液状化発生確率を求める対象期間中液状化発生確率演算過程(R5)、とを含む。
なお、図1において、上記の過程(R1)および過程(R2)からなる過程と、過程(R3)および過程(R4)からなる過程とは、互いに後先を逆にしても、また並行して行っても良い。
An outline of a method for obtaining the probability that the target ground liquefies during the target period (t years) is as follows.
A liquefaction determination value information acquisition process (R1) for acquiring liquefaction determination value information indicating a liquefaction determination index indicating the risk of liquefaction of the target ground with respect to the seismic intensity index S;
A liquefaction risk curve conversion step (R2) for converting the liquefaction determination value information into a probability of occurrence of a liquefaction risk;
An earthquake hazard curve acquisition process (R3) for acquiring an earthquake hazard curve indicating the relationship of the excess probability to the seismic intensity index S of the target ground;
The seismic motion occurrence probability conversion process (R4) for obtaining the seismic motion occurrence probability during the target period t from the acquired earthquake hazard curve,
The liquefaction occurrence probability calculation process during the target period (R5) for obtaining the liquefaction occurrence probability during the target period t by multiplying the obtained liquefaction risk and the earthquake occurrence probability and integrating with the seismic intensity index S. ), And.
In FIG. 1, the process consisting of the above process (R1) and the process (R2) and the process consisting of the process (R3) and the process (R4) are reversed in parallel with each other. You can go.

図7において、液状化判定値情報取得過程(R1)は、地震動強さ指標Sに対しての対象地盤の液状化の危険性を示す液状化判定指標を地震動強さ指標Sの程度に応じて示した液状化判定値情報を得る過程である。この液状化判定値情報は、例えば図8に示すように、横軸の地震動強さ指標Sを最大地動加速度PGA、縦軸を液状化判定指標であるPL値として示されるグラフからなる情報である。   In FIG. 7, in the liquefaction determination value information acquisition process (R1), the liquefaction determination index indicating the risk of liquefaction of the target ground with respect to the seismic intensity index S is set according to the degree of the seismic intensity index S. This is a process of obtaining the liquefaction judgment value information shown. For example, as shown in FIG. 8, the liquefaction determination value information is information including a graph in which the seismic intensity index S on the horizontal axis is the maximum ground motion acceleration PGA, and the PL value is the liquefaction determination index on the vertical axis. .

液状化判定指標は、既往の液状化判定方法であるPL法に基づく評価方法で用いられる指数であってもよい。PL法は、想定する地震動強さに対して、対象地盤の液状化危険性を判定する指標である。地震動強さは、最大地動加速度PGAである。液状化判定指標PLは、例えば、次式(1)で定まる値とされる。   The liquefaction determination index may be an index used in an evaluation method based on the PL method, which is a conventional liquefaction determination method. The PL method is an index for determining the risk of liquefaction of the target ground with respect to the assumed seismic intensity. The seismic intensity is the maximum ground acceleration PGA. The liquefaction determination index PL is, for example, a value determined by the following equation (1).

Figure 0006239255
Figure 0006239255

PL法によると、地盤の地下水位の深さ、地表面深度に応じたN値(地盤の強度を示す指標であり、標準貫入試験によって得られる)と土質が分かれば評価可能である。PL法による演算で必要となるその他のパラメータ(細粒分含有率や密度など)は、適宜のデータベースから抽出することにしてもよい。
上記の理由から、SWS(スウェーデン式サウンディング試験)の結果を用いることも可能である。換算N値を用いることができるためである。
PL法で必要となる地震タイプ(内陸型または海溝型)は、地震ハザード曲線の地震カテゴリーの影響度から決める。
According to the PL method, it is possible to evaluate if the N value (an index indicating the strength of the ground, which is obtained by a standard penetration test) and the soil quality according to the depth of the groundwater level and the ground surface depth are known. Other parameters (such as fine particle content and density) required for the calculation by the PL method may be extracted from an appropriate database.
For the above reasons, it is also possible to use the results of SWS (Swedish Sounding Test). This is because the converted N value can be used.
The earthquake type (inland or trench type) required by the PL method is determined from the degree of influence of the earthquake category on the seismic hazard curve.

なお、PL法で用いる液状化判定基準を利用して、液状化発生確率を評価する評価例としては、次の表1,表2に示す例がある。表1は対象地盤での地下水位、N値、土質を示す。表2は、埼玉県の液状化判定基準を示す。   In addition, as an evaluation example for evaluating the liquefaction occurrence probability using the liquefaction determination standard used in the PL method, there are examples shown in the following Tables 1 and 2. Table 1 shows the groundwater level, N value, and soil quality in the target ground. Table 2 shows liquefaction criteria for Saitama Prefecture.

Figure 0006239255
Figure 0006239255

Figure 0006239255
Figure 0006239255

なお、液状化判定指標は、既往の液状化判定方法であるFL法,地形分類による方法などであってもよい。   Note that the liquefaction determination index may be an FL method that is a past liquefaction determination method, a method based on landform classification, or the like.

図7において、液状化危険度曲線変換過程(R2)は、前記液状化判定値情報を、発生確率で示した液状化危険度に変換する過程である。例えば、図9に示す液状化危険度曲線に変換する。この液状化危険度曲線は、最大地動加速度(PGA)に対する液状化する確率を表した曲線である。   In FIG. 7, a liquefaction risk level curve conversion process (R2) is a process of converting the liquefaction determination value information into a liquefaction risk level indicated by an occurrence probability. For example, it converts into the liquefaction risk level curve shown in FIG. This liquefaction risk level curve is a curve representing the probability of liquefaction with respect to the maximum ground motion acceleration (PGA).

最大地動加速度(PGA)に対するPL値による液状化判定曲線(前記PL値情報)は図8と共に前述したようになるが、液状化危険度曲線変換過程(R2)では、これを液状化判定基準に基づき、縦軸を発生確率に変換する。例えば、PL=5を50%、PL=15を100%とするなどして変換処理を行う。変換結果は、対数正規分布に置き換えても良いし、また図8の形状のままで縦軸を発生確率に変換しても良い。   The liquefaction determination curve (PL value information) based on the PL value with respect to the maximum ground acceleration (PGA) is as described above with reference to FIG. 8, but this is used as a liquefaction determination criterion in the liquefaction risk curve conversion process (R2). Based on this, the vertical axis is converted into occurrence probability. For example, the conversion process is performed by setting PL = 5 to 50% and PL = 15 to 100%. The conversion result may be replaced with a lognormal distribution, or the vertical axis may be converted into an occurrence probability with the shape shown in FIG.

例えば、次式によって変換する。
Plr= PL ×0.1 (PL≦5 )
Plr= 0.5×(PL −5)×0.1 +0.5 (5 <PL≦15)
Plr= 1(15<PL)
For example, the conversion is performed by the following equation.
Plr = PL × 0.1 (PL ≦ 5)
Plr = 0.5 × (PL −5) × 0.1 +0.5 (5 <PL ≦ 15)
Plr = 1 (15 <PL)

図7において、地震ハザード曲線取得過程(R3)は、対象地盤の最大地動速度PGVに対する超過確率の関係を示す地震ハザード曲線を取得し最大地動速度PGVを液状化発生確率と対応する地震動強さ指標Sに変換する過程である。図10に地震ハザード曲線の例を示す。前記「超過確率」は、その地震の起こり易さであり、例えば年超過確率である。地震ハザード曲線を取得する方法は、既に作成された地震ハザード曲線を、通信ネットワーク等を経て、この評価方法の処理に用いるコンピュータ(図示せず)に入力することで得る方法であっても良く、またコンピュータにより適宜の入力情報から演算することで作成する方法としても良い。   In FIG. 7, the seismic hazard curve acquisition process (R3) acquires an earthquake hazard curve indicating the relationship of the excess probability to the maximum ground motion speed PGV of the target ground, and the seismic intensity index corresponding to the maximum ground motion speed PGV and the liquefaction occurrence probability. This is a process of converting to S. FIG. 10 shows an example of an earthquake hazard curve. The “excess probability” is the probability of the earthquake, for example, the annual excess probability. The method of obtaining the earthquake hazard curve may be a method of obtaining an already created earthquake hazard curve by inputting it to a computer (not shown) used for processing of this evaluation method via a communication network or the like. Moreover, it is good also as a method of creating by calculating from appropriate input information with a computer.

地震ハザード曲線は、例えば、J−SHISが公開しているハザード地図等から得るようにしても良い。
地震ハザード曲線を作成する場合、例えばコンピュータに入力された対象地点の住所等の情報(都道府県、市町村、町丁目のデータ)から、緯度、経度、地盤増幅率をデータベースより取得し、また付近の活断層情報(予測震度、目安距離・深さ・マグニチュード・発生確率)をデータベースより求め、解析を行って作成する。データベースおよび解析には、例えば文科省の地震調査研究推進本部より公開されている断層データ、計算方法を用いる。
The earthquake hazard curve may be obtained from, for example, a hazard map published by J-SHIS.
When creating an earthquake hazard curve, for example, the latitude, longitude, and ground amplification factor are obtained from the database from the information such as the address of the target point entered in the computer (prefecture, municipality, town chome data), and nearby Active fault information (predicted seismic intensity, estimated distance / depth / magnitude / probability of occurrence) is obtained from the database, analyzed, and created. For the database and analysis, for example, fault data and calculation methods published by the Ministry of Education, Culture, Sports, Science and Technology Earthquake Research Promotion Headquarters are used.

図7において、地震動発生確率変換過程(R4)は、液状化発生確率と対応する地震動強さ指標Sに対する地震ハザード曲線を示す式において、超過確率を地震動強さ指標Sで微分することによって、図11にグラフで示すような例えば最大地動加速度PGAに対する対象期間t中における地震動発生確率を求める過程である。   In FIG. 7, the seismic motion occurrence probability conversion process (R4) is performed by differentiating the excess probability with the seismic intensity indicator S in the equation showing the seismic hazard curve for the seismic intensity indicator S corresponding to the liquefaction occurrence probability. 11 is a process for obtaining the seismic motion occurrence probability during the target period t with respect to the maximum ground motion acceleration PGA as shown in FIG.

図7において、対象期間中液状化発生確率演算過程(R5)は、上記の各変換過程(R2)、(R4)で求められた液状化危険度と地震動発生確率とを掛け合わせて地震動強さ指標Sで積分することで対象期間tの間の液状化発生確率を求める過程である。
対象期間tの間の液状化発生確率は、例えば、図12に示すように横軸に最大地動加速度PGA、縦軸に確率密度を採ったグラフとして示され、確率密度の曲線内の面積が対象期間tの間の液状化発生確率となる。
In FIG. 7, the liquefaction occurrence probability calculation process (R5) during the target period is obtained by multiplying the liquefaction risk obtained in each of the conversion processes (R2) and (R4) and the occurrence probability of earthquake motion. This is a process of obtaining the liquefaction occurrence probability during the target period t by integrating with the index S.
The liquefaction occurrence probability during the target period t is shown, for example, as a graph with the maximum ground motion acceleration PGA on the horizontal axis and the probability density on the vertical axis as shown in FIG. 12, and the area in the probability density curve is the target. It becomes the liquefaction occurrence probability during the period t.

前記液状化危険度Plr と地震動発生確率Per とを掛け合わせて地震動強さ指標Sで積分する処理は、例えば次式によって行われる。
Pliq = ∫(Per×Plr) ds
The process of multiplying the liquefaction risk degree Plr and the earthquake motion occurrence probability Per and integrating with the earthquake motion intensity index S is performed by the following equation, for example.
Pliq = ∫ (Per × Plr) ds

この液状化発生確率の評価方法によると、このようにして、地震動発生確率を踏まえた対象期間t中の対象地点での液状化発生確率を評価することができる。そのため、各種の建築,土木事業に貢献できる。   According to this liquefaction occurrence probability evaluation method, the liquefaction occurrence probability at the target point during the target period t based on the seismic motion occurrence probability can be evaluated in this way. Therefore, it can contribute to various construction and civil engineering projects.

S1:液状化した場合の建物損傷確率をモデル化する過程
S2:損傷程度に応じた建物補修費用をモデル化する過程
S3:液状化発生時の期待損失額とする過程
S4:t年間の液状化による期待被害額とする過程
R1:液状化判定値情報取得過程
R2:液状化危険度曲線変換過程
R3:地震ハザード曲線取得過程
R4:地震動発生確率変換過程
R5:対象期間中液状化発生確率演算過程
S1: A process for modeling the probability of building damage when liquefied S2: A process for modeling building repair costs according to the degree of damage S3: A process for setting the expected loss when liquefaction occurs S4: Liquefaction for t years R1: Liquefaction judgment value information acquisition process R2: Liquefaction risk curve conversion process R3: Seismic hazard curve acquisition process R4: Earthquake motion occurrence probability conversion process R5: Liquefaction occurrence probability calculation process during the target period

Claims (2)

地盤補強や液状化対策工法毎に過去の液状化時の敷地の最大傾斜角の平均と標準偏差とを算出し、液状化による最大傾斜角の発生確率が1となるように、対数正規分布などの確率密度関数で、前記各地盤補強や液状化対策工法毎の、液状化した場合の建物損傷確率をモデル化する過程と、
過去の液状化時の復旧費用データを用い、建築面積当たりの、建物の損傷程度に応じた建物補修費用をモデル化する過程と、
地盤補強や液状化対策工法毎に、前記各モデル化により得られた前記「液状化した場合の建物損傷確率」と前記「建物の損傷程度に応じた建物補修費用」との積を積分し、その算出した積分値を前記地盤補強や液状化対策工法における液状化発生時の期待損失額とする過程、
とを含み、
前記建物損傷確率をモデル化する過程において、地盤補強または液状化対策についての異なる工法である複数種の工法と、補強無しの場合とのそれぞれについて、共通の方法でモデル化し、前記工法毎と補強無しの場合とのモデル化された、最大傾斜角度と建物損傷確率の関係を示す曲線を同じグラフ上に併記し、
前記期待損失額を求める過程において、前記複数の工法のそれぞれと補強無しの場合とについて前記期待損失額を算出し、工法毎と補強無しの場合との前記期待損失額の算出結果を同じグラフに併記する、
液状化対策工法の液状化による期待被害額の評価方法。
Calculate the average and standard deviation of the maximum slope angle of the site at the time of past liquefaction for each ground reinforcement and liquefaction countermeasure construction method, and lognormal distribution etc. so that the probability of occurrence of the maximum slope angle due to liquefaction becomes 1 In the probability density function, the process of modeling the building damage probability in the case of liquefaction, for each local reinforcement and liquefaction countermeasure method,
A process of modeling building repair costs according to the extent of building damage per building area, using past recovery costs data during liquefaction,
For each ground reinforcement and liquefaction countermeasure construction method, integrate the product of the "building damage probability when liquefied" obtained by each modeling and the "building repair costs according to the degree of building damage", The process of setting the calculated integral value as the expected loss when liquefaction occurs in the ground reinforcement or liquefaction countermeasure method,
Viewing including the door,
In the process of modeling the building damage probability, a plurality of types of construction methods, which are different methods for ground reinforcement or liquefaction countermeasures, and a case where there is no reinforcement are modeled by a common method, and each method is reinforced. A curve showing the relationship between the maximum inclination angle and the building damage probability, modeled with no case, is shown on the same graph.
In the process of obtaining the expected loss amount, the expected loss amount is calculated for each of the plurality of construction methods and the case without reinforcement, and the calculation result of the expected loss amount for each construction method and the case without reinforcement is shown in the same graph. Along with
Evaluation method of expected damage due to liquefaction by liquefaction countermeasure method.
請求項1に記載の液状化対策工法の液状化による期待被害額の評価方法において、
「t年間(t:任意に設定した対象期間)で対象地盤が液状化する確率」と、前記「液状化発生時の期待被害額」との積により、前記地盤補強や液状化対策工法におけるt年間の液状化による期待被害額とする、
液状化対策工法の液状化による期待被害額の評価方法。
In the method for evaluating the expected damage due to liquefaction of the liquefaction countermeasure method according to claim 1,
Based on the product of “probability of liquefaction of target ground in t year (t: arbitrarily set target period)” and “expected damage amount when liquefaction occurs”, t in the ground reinforcement and liquefaction countermeasure construction method The expected damage due to annual liquefaction
Evaluation method of expected damage due to liquefaction by liquefaction countermeasure method.
JP2013085019A 2013-04-15 2013-04-15 Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method Active JP6239255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085019A JP6239255B2 (en) 2013-04-15 2013-04-15 Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085019A JP6239255B2 (en) 2013-04-15 2013-04-15 Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method

Publications (2)

Publication Number Publication Date
JP2014206908A JP2014206908A (en) 2014-10-30
JP6239255B2 true JP6239255B2 (en) 2017-11-29

Family

ID=52120398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085019A Active JP6239255B2 (en) 2013-04-15 2013-04-15 Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method

Country Status (1)

Country Link
JP (1) JP6239255B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909840B2 (en) * 2002-10-30 2007-04-25 株式会社フジタ Building loss assessment program
JP2005121464A (en) * 2003-10-16 2005-05-12 Mitsubishi Space Software Kk Server, system, method and program for monitoring structure, and computer readable recording medium recording program for monitoring structure
JP4385774B2 (en) * 2004-01-21 2009-12-16 株式会社大林組 Seismic loss evaluation system for building under construction, seismic risk evaluation system for building under construction using the system, program for executing these systems, and computer-readable recording medium recording these programs
JP2007039879A (en) * 2005-07-29 2007-02-15 Tokyo Electric Power Co Inc:The Damage rate estimating method of pile foundation and damage rate estimating system of pile foundation
JP5327632B2 (en) * 2009-10-01 2013-10-30 清水建設株式会社 Earthquake damage prediction method, earthquake damage prediction system, and earthquake damage prediction chart for foundation structures

Also Published As

Publication number Publication date
JP2014206908A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
Charvet et al. Estimating tsunami-induced building damage through fragility functions: critical review and research needs
Yuan et al. Density distribution of landslides triggered by the 2008 Wenchuan earthquake and their relationships to peak ground acceleration
KR101663679B1 (en) Method and System of Construction of Landslide Hazard Map During Earthquakes Considering Geometrical Amplification Characteristics of Slope
Wang et al. Evaluating variability and uncertainty of geological strength index at a specific site
CN114021487B (en) Early warning method, device and equipment for landslide collapse and readable storage medium
Deshpande Improved floodplain delineation method using high‐density lidar data
WO2022070706A1 (en) Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium
JP2019085712A (en) Slope stability determination assistance system
Tóth et al. Seismic hazard in the Pannonian region
Ashadi et al. Probabilistic Seismic‐Hazard Analysis for Central Java Province, Indonesia
Dupire et al. Harmonized mapping of forests with a protection function against rockfalls over European Alpine countries
DeBock et al. Incorporation of spatial correlations between building response parameters in regional seismic loss assessment
Toma-Danila et al. Insights into the possible seismic damage of residential buildings in Bucharest, Romania, at neighborhood resolution
JP4104135B2 (en) Cliff collapse prediction device and computer program for cliff collapse prediction
Bouali et al. Rockfall hazard rating system: Benefits of utilizing remote sensing
Sonaviya et al. A review on GIS based approach for road traffic noise mapping
Iskandar et al. Estimating urban seismic damages and debris from building-level simulations: application to the city of Beirut, Lebanon
Latcharote et al. A prototype seismic loss assessment tool using integrated earthquake simulation
Ferrari et al. A rapid approach to estimate the rockfall energies and distances at the base of rock cliffs
Rosti et al. Comparison of PSH results with historical macroseismic observations at different scales. Part 2: application to South-East France
Izanlu et al. Determination of structural fragility curves of various building types for seismic vulnerability assessment in the Sarpol-e Zahab City
JP6096000B2 (en) Method and apparatus for evaluating probability of occurrence of liquefaction during target period
JP6239255B2 (en) Evaluation method of expected damage due to liquefaction in liquefaction countermeasure method
Mavrouli et al. Review and advances in methodologies for rockfall hazard and risk assessment
Di Meo et al. Real time damage scenario and seismic risk assessment of Italian roadway network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250