JP6238079B2 - Rotating electric machine and engine starting system - Google Patents

Rotating electric machine and engine starting system Download PDF

Info

Publication number
JP6238079B2
JP6238079B2 JP2014140502A JP2014140502A JP6238079B2 JP 6238079 B2 JP6238079 B2 JP 6238079B2 JP 2014140502 A JP2014140502 A JP 2014140502A JP 2014140502 A JP2014140502 A JP 2014140502A JP 6238079 B2 JP6238079 B2 JP 6238079B2
Authority
JP
Japan
Prior art keywords
engine
battery
current
charge
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014140502A
Other languages
Japanese (ja)
Other versions
JP2016017456A (en
Inventor
崇 千田
崇 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014140502A priority Critical patent/JP6238079B2/en
Priority to FR1556025A priority patent/FR3023658B1/en
Priority to DE102015110956.5A priority patent/DE102015110956B4/en
Publication of JP2016017456A publication Critical patent/JP2016017456A/en
Application granted granted Critical
Publication of JP6238079B2 publication Critical patent/JP6238079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0825Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to prevention of engine restart failure, e.g. disabling automatic stop at low battery state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18018Start-stop drive, e.g. in a traffic jam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/266Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the computer being backed-up or assisted by another circuit, e.g. analogue
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/044Starter current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/062Battery current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/063Battery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、エンジンを停止する際の回転電機およびエンジン始動システムに関する。   The present invention relates to a rotating electrical machine and an engine start system for stopping an engine.

従来では、車載バッテリがエンジンを始動させることができるか否かを正確に予測することを目的とする始動性予測装置に関する技術の一例が開示されている(例えば特許文献1を参照)。この始動性予測装置は、車載バッテリが充電中でないときに、車載バッテリの電圧値及び電流値を計測するように構成される。また、エンジンの始動時の始動電流値を車載バッテリの電圧電流特性に適用したときの車載バッテリの電圧値を算出し、算出した電圧値が第1電圧値より低いと判定したときにエンジンが始動不能であると予測する。   Conventionally, an example of a technique related to a startability predicting apparatus for the purpose of accurately predicting whether or not an in-vehicle battery can start an engine has been disclosed (see, for example, Patent Document 1). This startability predicting device is configured to measure the voltage value and the current value of the in-vehicle battery when the in-vehicle battery is not being charged. Further, the voltage value of the in-vehicle battery is calculated when the starting current value at the start of the engine is applied to the voltage-current characteristic of the in-vehicle battery, and the engine is started when it is determined that the calculated voltage value is lower than the first voltage value. Predict that it is impossible.

特開2008−230433号公報JP 2008-230433 A

特許文献1の技術を適用しても、以下に示す問題が残る。第1に、スタータ(電動機)に通電しないで計測した車載バッテリの電圧値や電流値と、スタータに通電して計測した車載バッテリの電圧値や電流値とでは、一致しない可能性が高い。また、スタータに通電する場合でも、当該スタータの界磁巻線に電流を流すと出力トルクが発生するため、エンジンが不用意に作動(回転)する可能性がある。   Even if the technique of Patent Document 1 is applied, the following problems remain. First, there is a high possibility that the voltage value or current value of the in-vehicle battery measured without energizing the starter (electric motor) does not match the voltage value or current value of the in-vehicle battery measured with energization of the starter. Even when the starter is energized, if an electric current is passed through the field winding of the starter, an output torque is generated, which may cause the engine to operate (rotate) carelessly.

第2に、前回の再始動時のデータに基づいて、次回エンジンを再始動できるバッテリ状態であるかどうかを判定する。前回の再始動と次回の再始動との間には時間的なインターバルがあり、当該インターバル中に含まれるエンジンの運転状況などに応じて車載バッテリの状態が変化する。もしバッテリの状態が大きく変化する場合には、車載バッテリの電圧電流特性を適用しても推定誤差が大きくなる。   Second, based on the data at the time of the previous restart, it is determined whether or not the battery is in a state where the engine can be restarted next time. There is a time interval between the previous restart and the next restart, and the state of the in-vehicle battery changes in accordance with the operating condition of the engine included in the interval. If the battery state changes greatly, the estimation error becomes large even if the voltage-current characteristic of the on-vehicle battery is applied.

本発明はこのような点に鑑みてなしたものであり、第1の目的は、エンジンが不用意に作動しないように、エンジンを再始動できるか否かを判定できるようにすることである。第2の目的は、エンジンを再始動できるか否かの判定精度を従来よりも向上することである。   The present invention has been made in view of such a point, and a first object is to make it possible to determine whether or not the engine can be restarted so that the engine is not inadvertently operated. The second object is to improve the accuracy of determination as to whether or not the engine can be restarted as compared with the prior art.

上記課題を解決するためになされた第1の発明は、エンジン(23)と機械的に接続されるとともに、ステータ巻線(Lu,Lv,Lw)と界磁巻線(Lf)とを備えた回転電機本体部(17b)を有する回転電機(17)において、停止している前記エンジンの運転が必要な始動条件を満たすと、外部装置(EX)から始動信号が伝達され、バッテリ(19)から前記ステータ巻線および前記界磁巻線にそれぞれ電流を流して、前記エンジンを始動させるべく前記回転電機本体部を作動させる制御を行う始動制御部(17a)を有し、前記始動制御部は、前記エンジンの運転が不要な停止条件を満たすと、前記外部装置から停止要求信号(SA)が伝達され、前記界磁巻線に電流(If)を流すことなく、前記バッテリから前記ステータ巻線に電流(Is)を流し、前記バッテリの電圧を計測する電圧センサによって計測される電圧値(Vd)が電圧閾値(Vth)以上、かつ、前記ステータ巻線に流れる電流を計測する電流センサによって計測される電流値(Is)が電流閾値(Ith)以上であるか否かで前記バッテリが次回の前記エンジンの始動に必要な電力を供給できるか否かを判定する始動可能性判定手段(172)と、前記始動可能性判定手段によって次回の前記エンジンの始動に必要な電力を供給できると判定された場合には、前記エンジンを停止させるべく前記外部装置に前記エンジンの停止を許可する停止許可信号(SB)を出力する信号出力手段(171)とを有することを特徴とする。 The first invention made to solve the above-mentioned problems is mechanically connected to the engine (23), and includes a stator winding (Lu, Lv, Lw) and a field winding (Lf). In the rotating electrical machine (17) having the rotating electrical machine main body (17b), when a start condition that requires operation of the stopped engine is satisfied, a start signal is transmitted from the external device (EX), and the battery (19) A start control unit (17a) that controls the operation of the rotating electrical machine main body to start the engine by causing current to flow through the stator winding and the field winding , and operation is unnecessary stop condition is satisfied in the engine, the stop request signal from an external device (SA) is transmitted without passing a current (If) to the field winding, said stator winding from said battery Passing a current (Is), the voltage value measured by the voltage sensor for measuring voltage of the battery (Vd) is a voltage threshold (Vth) or more, and measured by a current sensor for measuring a current flowing in the stator winding Startability determination means (172) for determining whether or not the battery can supply electric power necessary for the next start of the engine based on whether or not the current value (Is) to be performed is equal to or greater than the current threshold (Ith ). And a stop permission signal for permitting the external device to stop the engine in order to stop the engine when it is determined by the start possibility determination means that power necessary for starting the engine next time can be supplied. Signal output means (171) for outputting (SB).

この構成によれば、始動可能性判定手段は、停止条件を満たす場合(特にエンジンの停止直前)にバッテリの電圧とステータ巻線に流れる電流の計測を行う。計測された電圧値が電圧閾値以上、かつ、電流値が電流閾値以上であるか否かで、バッテリが次回のエンジンの始動に必要な電力を供給できるか否かを判定する。この判定は、エンジンを停止するまでのエンジンの運転状況などによる影響を受けないので、判定精度を従来よりも向上させることができる。また、界磁巻線に電流を流さない状態でステータ巻線に電流を流すため、回転電機には出力トルクが生じない。そのため、エンジンが不用意に作動するのを防止することができる。 According to this configuration, the startability determination unit measures the battery voltage and the current flowing through the stator winding when the stop condition is satisfied (particularly immediately before the engine is stopped). It is determined whether or not the battery can supply electric power necessary for starting the next engine based on whether or not the measured voltage value is equal to or greater than the voltage threshold value and the current value is equal to or greater than the current threshold value. Since this determination is not affected by the operating condition of the engine until the engine is stopped, the determination accuracy can be improved as compared with the conventional case. Further, since no current is passed through the field winding, current is passed through the stator winding, so that no output torque is generated in the rotating electrical machine. Therefore, it is possible to prevent the engine from operating carelessly.

第2の発明は、前記始動制御部は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定された場合には、前記エンジンを停止させずに前記エンジンの運転を継続し、前記回転電機で発生する電力を前記バッテリに充電する制御を行う充電制御手段(173)をさらに有し、前記信号出力手段は、前記バッテリへの充電を終了する充電終了条件を満たすまで前記充電制御手段による前記バッテリへの充電を行った後、前記停止許可信号を出力することを特徴とする。   According to a second aspect of the present invention, when it is determined by the startability determination means that the electric power necessary for starting the engine cannot be supplied, the start control unit operates the engine without stopping the engine. The charging control means (173) further performs control for charging the battery with the electric power generated by the rotating electrical machine until the signal output means satisfies a charging termination condition for terminating the charging of the battery. After the battery is charged by the charge control means, the stop permission signal is output.

この構成によれば、充電制御手段は、停止条件を満たす場合でも、エンジンの運転を強制的に続けることで発電を行って、バッテリへの充電を行う。また、充電制御手段によって充電終了条件を満たすまで充電を行う。よって、バッテリへの充電によってバッテリ容量(電力容量,蓄電容量とも呼ぶ。以下同じである。)が回復することが十分に考えられるため、エンジンの始動をより確実に行え、判定精度も向上する。   According to this configuration, even when the stop condition is satisfied, the charging control unit performs power generation by forcibly continuing the operation of the engine to charge the battery. Further, charging is performed until the charging termination condition is satisfied by the charging control means. Therefore, since it is sufficiently considered that the battery capacity (also referred to as power capacity or storage capacity; hereinafter the same) is recovered by charging the battery, the engine can be started more reliably and the determination accuracy is improved.

第3の発明は、前記充電制御手段は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定されると、前記電圧センサによって計測される電圧値に基づいて前記充電時間および前記充電電流量のうちで一方または双方を変化させることを特徴とする。   According to a third aspect of the present invention, when the charge control means determines that the electric power necessary for starting the engine cannot be supplied by the start possibility determination means, the charge control means is based on a voltage value measured by the voltage sensor. One or both of the time and the charging current amount is changed.

この構成によれば、バッテリの状態に応じて充電時間や充電電流量を可変にするので、停止条件を満たしてからエンジンを停止させるまでの時間を最適化できる(最小限に抑えられる)。また、始動可能性判定手段による判定の頻度を最小化し、無駄な電力消費を抑制することが可能となる。   According to this configuration, since the charging time and the amount of charging current are made variable according to the state of the battery, the time from when the stop condition is satisfied until the engine is stopped can be optimized (minimized). In addition, it is possible to minimize the frequency of determination by the startability determination unit and suppress wasteful power consumption.

第4の発明は、エンジン(23)と機械的に接続されるとともにステータ巻線(Lu,Lv,Lw)と界磁巻線(Lf)とを備える回転電機(51)と、停止している前記エンジンの運転が必要な始動条件を満たすと、外部装置(EX)から始動信号が伝達され、バッテリ(19)から前記ステータ巻線および前記界磁巻線にそれぞれ電流を流して、前記エンジンを始動させるべく前記回転電機を作動させる制御を行う始動制御部(50)とを有し、前記エンジンの運転が不要な停止条件を満たすと前記エンジンを停止させ、停止している前記エンジンの運転が必要な始動条件を満たすと前記エンジンを始動させるエンジン始動システム(10,10B,10C)において、前記始動制御部は、前記停止条件を満たすと、前記外部装置から停止要求信号(SA)が伝達され、前記界磁巻線に電流(If)を流すことなく、前記バッテリから前記ステータ巻線に電流(Is)を流し、前記バッテリの電圧を計測する電圧センサによって計測される電圧値(Vd)が電圧閾値(Vth)以上、かつ、前記ステータ巻線に流れる電流を計測する電流センサによって計測される電流値(Is)が電流閾値(Ith)以上であるか否かで前記バッテリが次回の前記エンジンの始動に必要な電力を供給できるか否かを判定する始動可能性判定手段(50b)と、前記始動可能性判定手段によって次回の前記エンジンの始動に必要な電力を供給できると判定された場合には、前記エンジンを停止させるエンジン停止手段(50a)とを有することを特徴とする。 The fourth invention is stopped mechanically with the rotating machine (51), which is mechanically connected to the engine (23) and includes stator windings (Lu, Lv, Lw) and field windings (Lf) . When a start condition necessary for operation of the engine is satisfied, a start signal is transmitted from an external device (EX), and current is passed from the battery (19) to the stator winding and the field winding, respectively. A start control unit (50) for controlling the rotating electric machine to start, and when the stop condition that does not require operation of the engine is satisfied, the engine is stopped and the operation of the stopped engine is required starting satisfy an engine starting system for starting the engine (10 and 10B, 10C) in the starting control unit, said a stop condition is satisfied, stop from the external device Request signal (SA) is transmitted measured without passing a current (If) to the field winding, a current flows (Is) from said battery to said stator winding, the voltage sensor for measuring voltage of said battery Whether or not a voltage value (Vd) to be measured is equal to or greater than a voltage threshold value (Vth) and a current value (Is) measured by a current sensor that measures a current flowing through the stator winding is equal to or greater than a current threshold value (Ith) in said battery is started possibility determining means for determining whether or not capable of supplying electric power required to start the next of said engine (50b), the power required to start the next of said engine by said starter possibility determining means The engine stop means (50a) for stopping the engine when it is determined that the engine can be supplied.

この構成によれば、始動可能性判定手段は、停止条件を満たす場合(特にエンジンの停止直前)にバッテリの電圧とステータ巻線に流れる電流の計測を行う。計測された電圧値が電圧閾値以上、かつ、計測された電流値が電流閾値以上であるか否かで、バッテリが次回のエンジンの始動に必要な電力を供給できるか否かを判定する。この判定は、エンジンを停止するまでのエンジンの運転状況などによる影響を受けないので、判定精度を従来よりも向上させることができる。また、界磁巻線に電流を流さない状態でステータ巻線に電流を流すため、回転電機には出力トルクが生じない。そのため、エンジンが不用意に作動するのを防止することができる。 According to this configuration, the startability determination unit measures the battery voltage and the current flowing through the stator winding when the stop condition is satisfied (particularly immediately before the engine is stopped). It is determined whether or not the battery can supply electric power necessary for starting the next engine based on whether or not the measured voltage value is equal to or greater than the voltage threshold value and the measured current value is equal to or greater than the current threshold value. Since this determination is not affected by the operating condition of the engine until the engine is stopped, the determination accuracy can be improved as compared with the conventional case. Further, since no current is passed through the field winding, current is passed through the stator winding, so that no output torque is generated in the rotating electrical machine. Therefore, it is possible to prevent the engine from operating carelessly.

なお「バッテリ」は、充電(蓄電)と供給(放電)が可能であれば、種類や数等を問わない。充電と供給が可能なバッテリと、充電できずに供給しか行えないバッテリとを組み合わせてもよい。「回転電機」は、エンジンを始動させるために少なくとも電動機として作動(機能)する機器であり、さらに発電機としても作動する機器が望ましい。「停止条件」は、エンジンの運転が不要であり、エンジンを停止させるための条件であれば、任意に設定してよい。「始動条件」は、エンジンの運転が必要であり、エンジンを始動させるための条件であれば、任意に設定してよい。「始動」には再始動を含む。「充電時間」は、バッテリへの充電を開始してから終了するまでの時間(期間)である。「充電電流量」は、バッテリへの充電を開始してから終了するまでに流す電流の積算量(「充電容量」とも呼び、単位はアンペア時[Ah])である。各種の「信号」は任意であり、アナログ信号でもよく、デジタル信号でもよく、データなどでもよい。   The “battery” may be of any type or number as long as it can be charged (storage) and supplied (discharged). A battery that can be charged and supplied may be combined with a battery that can only be supplied without being charged. The “rotary electric machine” is a device that operates (functions) as at least an electric motor to start the engine, and is preferably a device that also operates as a generator. The “stop condition” may be arbitrarily set as long as it does not require engine operation and is a condition for stopping the engine. The “starting condition” may be arbitrarily set as long as it is necessary to operate the engine and is a condition for starting the engine. “Startup” includes restart. “Charging time” is the time (period) from the start to the end of charging the battery. The “charge current amount” is an integrated amount of current that flows from the start to the end of charging the battery (also called “charge capacity”, the unit is ampere-hour [Ah]). Various “signals” are arbitrary and may be analog signals, digital signals, data, or the like.

エンジン始動システムの第1構成例を示す模式図である。It is a mimetic diagram showing the 1st example of composition of an engine starting system. 回転電機の第1構成例を示す模式図である。It is a schematic diagram which shows the 1st structural example of a rotary electric machine. 電力変換手段の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a power conversion means. 始動制御処理の手続き例を示すフローチャート図である。It is a flowchart figure which shows the example of a procedure of a starting control process. 充電制御処理の手続き例を示すフローチャート図である。It is a flowchart figure which shows the example of a procedure of a charge control process. 電圧値と充電時間,充電電流量との関係を示すグラフ図である。It is a graph which shows the relationship between a voltage value, charging time, and charging current amount. 電圧,電流,回転数等の経時的な変化を示すタイムチャート図である。It is a time chart which shows a time-dependent change, such as a voltage, an electric current, and rotation speed. エンジン始動システムの第2構成例を示す模式図である。It is a schematic diagram which shows the 2nd structural example of an engine starting system. エンジン始動システムの第3構成例を示す模式図である。It is a schematic diagram which shows the 3rd structural example of an engine starting system. 始動制御部の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a starting control part. エンジン始動システムの第4構成例を示す模式図である。It is a schematic diagram which shows the 4th structural example of an engine starting system. 回転電機の第2構成例を示す模式図である。It is a schematic diagram which shows the 2nd structural example of a rotary electric machine. エンジン始動システムの第5構成例を示す模式図である。It is a schematic diagram which shows the 5th structural example of an engine starting system.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「接続する」という場合には電気的に接続することを意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。上下左右等の方向を言う場合には、図面の記載を基準とする。各実施の形態で示すエンジン始動システム10A,10B,10Cは、いずれもエンジン始動システム10の一例であり、図面で単に符号「10」を示す場合はいずれにも対応する。英数字の連続符号は記号「〜」を用いて略記する。例えば上記「エンジン始動システム10A,10B,10C」は「エンジン始動システム10A〜10C」と略記する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that unless otherwise specified, “connecting” means electrically connecting. Each figure shows elements necessary for explaining the present invention, and does not necessarily show all actual elements. When referring to directions such as up, down, left and right, the description in the drawings is used as a reference. The engine starting systems 10A, 10B, and 10C shown in the embodiments are all examples of the engine starting system 10, and correspond to any case where the reference numeral “10” is simply shown in the drawings. Alphanumeric continuous codes are abbreviated using the symbol “˜”. For example, the “engine start systems 10A, 10B, and 10C” are abbreviated as “engine start systems 10A to 10C”.

〔実施の形態1〕
実施の形態1は図1〜図7を参照しながら説明する。図1に示す車両100は、ハイブリッド自動車の構成例である。この車両100は、バッテリ11,19,20、電気負荷12、コンバータ13、車輪14、トランスミッション15、回転電機16,17、動力伝達部材18,22、インバータ21、エンジン23、電力変換制御装置24などを有する。これらの要素のうちで、エンジン始動システム10Aは、少なくとも回転電機17や電圧センサ30(図2を参照)などを含む。
[Embodiment 1]
The first embodiment will be described with reference to FIGS. A vehicle 100 shown in FIG. 1 is a configuration example of a hybrid vehicle. The vehicle 100 includes batteries 11, 19, 20, an electric load 12, a converter 13, wheels 14, a transmission 15, a rotary electric machine 16, 17, a power transmission member 18, 22, an inverter 21, an engine 23, a power conversion control device 24, and the like. Have Among these elements, the engine start system 10A includes at least the rotating electrical machine 17 and the voltage sensor 30 (see FIG. 2).

バッテリ11は、第2電力線CLに電力を供給する電力源であり、かつ、バッテリ19とは別個の電力源である。バッテリ19は、エンジン23の始動時に電力を供給したり、スイッチ部SW3を介して第2電力線CLに電力を供給したりする電力源である。バッテリ20は、スイッチ部SW1を介して第3電力線HLに電力を供給する電力源である。バッテリ11,19,20は、蓄電と放電が行えれば種類を問わず、例えばリチウムイオン電池や鉛蓄電池などのような二次電池が該当する。本形態では、バッテリ11,19に蓄電池(例えば鉛蓄電池等)を用い、バッテリ20にリチウムイオン電池を用いる。   The battery 11 is a power source that supplies power to the second power line CL, and is a power source that is separate from the battery 19. The battery 19 is a power source that supplies power when starting the engine 23 or supplies power to the second power line CL via the switch unit SW3. The battery 20 is a power source that supplies power to the third power line HL via the switch unit SW1. The batteries 11, 19, and 20 are of any type as long as they can store and discharge, and for example, secondary batteries such as lithium ion batteries and lead storage batteries are applicable. In this embodiment, a storage battery (for example, a lead storage battery) is used for the batteries 11 and 19, and a lithium ion battery is used for the battery 20.

第1電力線PL,第2電力線CL,第3電力線HLは、いずれも電力の伝送路であって、中継用のコネクタを含めてもよい。第2電力線CLと第1電力線PLの間にはスイッチ部SW2が介在される。スイッチ部SW2は「分離スイッチ」に相当する。本形態における第1電力線PLと第2電力線CLの電圧(例えば12ボルト)は、第3電力線HL(例えば660ボルト)よりも低い。   The first power line PL, the second power line CL, and the third power line HL are all power transmission paths and may include a relay connector. A switch unit SW2 is interposed between the second power line CL and the first power line PL. The switch unit SW2 corresponds to a “separation switch”. The voltage (for example, 12 volts) of the first power line PL and the second power line CL in this embodiment is lower than the third power line HL (for example, 660 volts).

電気負荷12は、第2電力線CLを介して供給されて作動する部品や部材等である。例えば、計器、カーナビゲーションシステム、ランプ類(例えば前照灯,室内灯,尾灯等)、冷暖房機(エアコンやヒーター等)、ワイパー等の部材を作動させるモータなどが該当する。コンバータ13は、第2電力線CLと第3電力線HLの間で電圧を変換する。インバータ21は、バッテリ20から供給される電力を変換して回転電機16(電動機として機能)に供給したり、回転電機16(発電機として機能)から供給される電力を変換してバッテリ20に充電したりする。コンバータ13とインバータ21は、破線で示すように、いずれも電力変換制御装置24から個別に伝達される信号に基づいて作動する。   The electrical load 12 is a component, member, or the like that is supplied through the second power line CL to operate. For example, a meter, a car navigation system, lamps (for example, a headlight, a room light, a taillight, etc.), an air conditioner (an air conditioner, a heater, etc.), a motor that operates a member such as a wiper, and the like are applicable. The converter 13 converts a voltage between the second power line CL and the third power line HL. The inverter 21 converts the power supplied from the battery 20 and supplies it to the rotating electrical machine 16 (functions as an electric motor), or converts the power supplied from the rotating electrical machine 16 (functions as a generator) and charges the battery 20 To do. The converter 13 and the inverter 21 operate based on signals individually transmitted from the power conversion control device 24 as indicated by broken lines.

回転電機17は、上述したようにエンジン始動システム10Aに含まれ、動力伝達部材18によってエンジン23と機械的に接続される。この回転電機17は、電動機と発電機の機能を兼ね備える。エンジン23を始動させる場合、エンジン23の動力をアシストする場合、後述するバッテリ19の始動可能性を判定する場合などでは、電動機として機能する。エンジン23や車輪14による動力を受ける場合などでは、発電機として機能する。回転電機17の構成例については後述する(図2を参照)。 The rotating electrical machine 17 is included in the engine start system 10A as described above, and is mechanically connected to the engine 23 by the power transmission member 18. The rotating electrical machine 17 has both functions of an electric motor and a generator. When starting the engine 23, when assisting the motive power of the engine 23, in a case of determining the starting potential below that battery 19, to function as an electric motor. In the case of receiving power from the engine 23 and the wheels 14, it functions as a generator. A configuration example of the rotating electrical machine 17 will be described later (see FIG. 2).

動力伝達部材18は、エンジン23と機械的に接続でき、かつ、エンジン23の始動や発電を行えれば任意の部材を用いてよい。例えば、シャフト(回転軸),カム,リンク,クランク,ベルト,歯車,ラック&ピニオンなどのうちで一以上が該当する。   The power transmission member 18 may be an arbitrary member as long as it can be mechanically connected to the engine 23 and can start the engine 23 or generate power. For example, one or more of a shaft (rotary shaft), a cam, a link, a crank, a belt, a gear, a rack and pinion, and the like are applicable.

車両100の動力源は、エンジン23と回転電機16である。エンジン23は、内燃機関であれば種類を問わない。回転電機16は、動力伝達部材22によってエンジン23と機械的に接続され、電動機と発電機の機能を有する。エンジン23および回転電機16のうちで一方または双方で発生する動力は、トランスミッション15や動力伝達部材22を経て車輪14に伝達される。こうして車輪14に動力が伝達されることで車両100が走行する。トランスミッション15は、マニュアルでもよく、オートマチックでもよい。   The power source of the vehicle 100 is the engine 23 and the rotating electrical machine 16. The engine 23 may be of any type as long as it is an internal combustion engine. The rotating electrical machine 16 is mechanically connected to the engine 23 by a power transmission member 22 and has functions of an electric motor and a generator. Power generated in one or both of the engine 23 and the rotating electrical machine 16 is transmitted to the wheel 14 via the transmission 15 and the power transmission member 22. Thus, the vehicle 100 travels by transmitting power to the wheels 14. The transmission 15 may be manual or automatic.

動力源として作動する場合の回転電機16は、バッテリ20からインバータ21を経て供給される電力を受けて電動機として機能する。回転電機16が動力伝達部材18から動力を受ける場合には、発電機として機能する。動力伝達部材18から動力を受ける例としては、例えばエンジン23が運転されている場合や、動力を必要としない状態で車両100が走行(例えば惰性走行や下り坂走行等)する場合などが該当する。   The rotating electrical machine 16 when operating as a power source receives electric power supplied from the battery 20 via the inverter 21 and functions as an electric motor. When the rotating electrical machine 16 receives power from the power transmission member 18, it functions as a generator. Examples of receiving power from the power transmission member 18 include, for example, the case where the engine 23 is operated, and the case where the vehicle 100 travels (for example, coasting or downhill travel) without requiring power. .

図2に示す回転電機17は、始動制御部17aや回転電機本体部17bなどを有する。始動制御部17aは、外部装置EXとの間で信号を伝達可能に構成され、主にエンジン23を始動させるために回転電機本体部17bを作動する制御を行う。外部装置EXは、例えばECU(Electronic Control Unit)やコンピュータ等が該当する。回転電機本体部17bは、ステータ巻線Lu,Lv,Lwや界磁巻線Lfなどを有する(図3を参照)。   The rotating electrical machine 17 illustrated in FIG. 2 includes a start control unit 17a, a rotating electrical machine main body unit 17b, and the like. The start control unit 17 a is configured to be able to transmit a signal to and from the external device EX, and performs control for operating the rotating electrical machine main body unit 17 b mainly to start the engine 23. The external device EX corresponds to, for example, an ECU (Electronic Control Unit) or a computer. The rotating electrical machine main body 17b includes stator windings Lu, Lv, Lw, a field winding Lf, and the like (see FIG. 3).

始動制御部17aは、バッテリ19から供給される電力を受けてエンジン23の始動に必要な電流を界磁巻線Lf(図3を参照)に流す制御を行うほか、エンジン23を停止する前に次回のエンジン23の始動に必要な電力を確保する制御を行う。図2に示す始動制御部17aは、信号出力手段171,始動可能性判定手段172,充電制御手段173,電力変換制御手段174などを有する。   The start control unit 17a receives electric power supplied from the battery 19 and controls the current required for starting the engine 23 to flow through the field winding Lf (see FIG. 3), and before stopping the engine 23. Control for securing electric power necessary for the next start of the engine 23 is performed. The start control unit 17a shown in FIG. 2 includes a signal output unit 171, a start possibility determination unit 172, a charge control unit 173, a power conversion control unit 174, and the like.

始動可能性判定手段172は、エンジン23の運転が不要な停止条件を満たすと、エンジン23の始動に必要な電力を供給できるか否かを判定する。すなわち、始動可能か始動不能かの始動可能性を判定する。始動可能と判定する場合は、信号出力手段171に判定結果信号SCを伝達する。始動不能と判定する場合は、バッテリ19への充電を行うために充電制御手段173に充電要求信号SDを伝達した後、充電制御手段173から充電完了信号SEを受けるまで待機し、充電完了信号SEを受けてから再び始動可能性を判定する。言い換えると、始動不能と判定する場合は、始動可能性と判定するまでバッテリ19に充電する制御を行う。   The startability determination unit 172 determines whether or not electric power necessary for starting the engine 23 can be supplied when a stop condition that does not require the operation of the engine 23 is satisfied. That is, it is determined whether or not starting is possible. When it is determined that the engine can be started, the determination result signal SC is transmitted to the signal output means 171. When it is determined that starting is impossible, after charging request signal SD is transmitted to charge control means 173 in order to charge battery 19, it waits until it receives charge completion signal SE from charge control means 173, and charge completion signal SE. Then, the possibility of starting is determined again. In other words, when it is determined that starting is impossible, control is performed to charge the battery 19 until it is determined that starting is possible.

始動可能性の判定を行うにあたり、始動可能性判定手段172は電力変換制御手段174に判定指令信号SFを伝達する。当該判定指令信号SFを受けた電力変換制御手段174は、電力変換を行って、回転電機本体部17bの界磁巻線Lfに界磁電流Ifを流すことなく(すなわちIf=0)、ステータ巻線Lu,Lv,Lwにステータ電流Isを流す(図3,図6,図7をも参照)。界磁電流Ifとステータ電流Isは、判定用電流SHに相当する。そして、始動可能性判定手段172は、電圧センサ30によって計測されるバッテリ19の電圧値Vdと、電流センサ31によって計測される電流値(図3に示すステータ電流Is)とに基づいて始動可能性を判定する。具体的な始動可能性の判定例については後述する(図4,図6を参照)。   In determining the startability, the startability determination means 172 transmits a determination command signal SF to the power conversion control means 174. The power conversion control means 174 that has received the determination command signal SF performs power conversion, and does not cause the field current If to flow through the field winding Lf of the rotating electrical machine main body 17b (that is, If = 0), and the stator winding. A stator current Is is passed through the lines Lu, Lv, and Lw (see also FIGS. 3, 6, and 7). The field current If and the stator current Is correspond to the determination current SH. Then, the startability determination means 172 is based on the voltage value Vd of the battery 19 measured by the voltage sensor 30 and the current value (stator current Is shown in FIG. 3) measured by the current sensor 31. Determine. A specific example of determining the possibility of starting will be described later (see FIGS. 4 and 6).

充電制御手段173は、エンジン23を停止させずにエンジン23の運転を継続し、回転電機17で発生する電力をバッテリ19に充電する制御を行う。バッテリ19への充電は、始動可能性判定手段172が始動不能と判定して伝達する充電要求信号SDを充電制御手段173が受けた場合に行う。充電要求信号SDを受けた充電制御手段173は、電力変換制御手段174に対して充電指令信号SGを伝達する。   The charging control unit 173 continues the operation of the engine 23 without stopping the engine 23 and performs control for charging the battery 19 with the electric power generated by the rotating electrical machine 17. Charging of the battery 19 is performed when the charge control means 173 receives a charge request signal SD transmitted by the startability determination means 172 determining that start is impossible. The charge control means 173 that has received the charge request signal SD transmits a charge command signal SG to the power conversion control means 174.

電力変換制御手段174は電力の変換を行う。本形態では、電力変換制御手段174が判定指令信号SFを受けると、バッテリ19から第1電力線PLを介して供給される電力を変換して回転電機本体部17bに出力する制御を行う。上述したように、界磁巻線Lfには界磁電流Ifを流さず、ステータ巻線Lu,Lv,Lwにステータ電流Isを流す。また、電力変換制御手段174が充電指令信号SGを受けると、回転電機本体部17bで発生する起電力EF(すなわち電力)を変換してバッテリ19に充電する制御を行う。電力変換制御手段174の構成例については後述する(図3を参照)。   The power conversion control means 174 performs power conversion. In this embodiment, when the power conversion control means 174 receives the determination command signal SF, it performs control to convert the power supplied from the battery 19 via the first power line PL and output it to the rotating electrical machine main body 17b. As described above, the field current If is not supplied to the field winding Lf, but the stator current Is is supplied to the stator windings Lu, Lv, Lw. Further, when the power conversion control means 174 receives the charge command signal SG, it performs control to convert the electromotive force EF (that is, power) generated in the rotating electrical machine main body 17b and charge the battery 19. A configuration example of the power conversion control unit 174 will be described later (see FIG. 3).

信号出力手段171は、始動可能性判定手段172が判定結果信号SCを受けると、外部装置EXにエンジン23の停止を許可する停止許可信号SBを出力する。停止許可信号SBを受けた外部装置EXは、エンジン23を停止させるための制御(例えば燃料供給の停止など)を行う。   When the start possibility determination unit 172 receives the determination result signal SC, the signal output unit 171 outputs a stop permission signal SB for permitting the external device EX to stop the engine 23. Receiving the stop permission signal SB, the external device EX performs control for stopping the engine 23 (for example, stopping fuel supply).

図3に示す電力変換制御手段174は、インバータ制御部174aやインバータ174bなどを有する。インバータ制御部174aは、始動可能性判定手段172から伝達される判定指令信号SFや、充電制御手段173から伝達される充電指令信号SGなどの各種信号に基づいて、インバータ174bに含まれる複数のスイッチング素子Q1〜Q6,Qfの作動を制御する。   The power conversion control means 174 shown in FIG. 3 includes an inverter control unit 174a, an inverter 174b, and the like. The inverter control unit 174a performs a plurality of switching operations included in the inverter 174b based on various signals such as the determination command signal SF transmitted from the startability determination unit 172 and the charge command signal SG transmitted from the charge control unit 173. Controls the operation of elements Q1-Q6, Qf.

インバータ174bは、スイッチング素子Q1〜Q6,Qf、ダイオードD1〜D6,Dfなどを有する。スイッチング素子Q1〜Q6,Qfは、いずれもスイッチング動作が可能な任意の半導体素子を適用できる。例えば、FET(具体的にはMOSFET,JFET,MESFET等)、IGBT、GTO、パワートランジスタなどが該当する。本形態ではIGBTを適用する。これらのスイッチング素子Q1〜Q6,Qfは、いずれもインバータ制御部174aから個別に伝達される信号に従ってオン/オフが駆動される。ダイオードD1〜D6,Dfは、それぞれ対応するスイッチング素子のコレクタ端子とエミッタ端子との間に並列接続される。これらのダイオードD1〜D6は、いずれもフリーホイールダイオードとして機能する。スイッチング素子Q1〜Q3やダイオードD1〜D3などは上アーム側に配置され、スイッチング素子Q4〜Q6やダイオードD4〜D6などは下アーム側に配置される。共通電位Gは、少なくともインバータ174b内で共通する電位(グラウンド)である。接地する場合の共通電位Gは0[V]になる。   Inverter 174b includes switching elements Q1 to Q6 and Qf, diodes D1 to D6 and Df, and the like. As the switching elements Q1 to Q6 and Qf, any semiconductor element capable of switching operation can be applied. For example, an FET (specifically, MOSFET, JFET, MESFET, etc.), IGBT, GTO, power transistor, or the like is applicable. In this embodiment, IGBT is applied. These switching elements Q1 to Q6 and Qf are all turned on / off in accordance with signals individually transmitted from inverter control unit 174a. The diodes D1 to D6 and Df are connected in parallel between the collector terminal and the emitter terminal of the corresponding switching element. These diodes D1 to D6 all function as freewheeling diodes. Switching elements Q1-Q3, diodes D1-D3, etc. are arranged on the upper arm side, and switching elements Q4-Q6, diodes D4-D6, etc. are arranged on the lower arm side. The common potential G is a potential (ground) that is at least common in the inverter 174b. The common potential G when grounding is 0 [V].

インバータ174b内の回路素子は、一点鎖線で囲って示すように三相(本例ではU相,V相,W相)が並列接続され、インバータ制御部174aによって相ごとに作動が制御される。U相は、スイッチング素子Q1,Q4やダイオードD1,D4などで構成される。V相は、スイッチング素子Q2,Q5やダイオードD2,D5などで構成される。W相は、スイッチング素子Q3,Q6やダイオードD3,D6などで構成される。U相のスイッチング素子Q1,Q4は、直列接続されてハーフブリッジを構成する。V相のスイッチング素子Q2,Q5と、W相のスイッチング素子Q3,Q6とについても同様に、直列接続されてハーフブリッジを構成する。ハーフブリッジの各接続点とインバータ174bのステータ巻線Lu,Lv,Lwとは、それぞれ線路Ku,Kv,Kwによって接続される。スイッチング素子Q1,Q4が駆動されると、ステータ巻線Luには線路Kuを経てU相電流Iuが流れる。スイッチング素子Q2,Q5が駆動されると、ステータ巻線Lvには線路Kvを経てV相電流Ivが流れる。スイッチング素子Q3,Q6が駆動されると、ステータ巻線Lwには線路Kwを経てW相電流Iwが流れる。U相電流Iu,V相電流Iv,W相電流Iwは、電流センサ31によってステータ電流Isとして計測される。   The circuit elements in the inverter 174b are connected in parallel in three phases (in this example, the U phase, the V phase, and the W phase) as surrounded by a one-dot chain line, and the operation is controlled for each phase by the inverter control unit 174a. The U phase is composed of switching elements Q1, Q4, diodes D1, D4, and the like. The V phase includes switching elements Q2 and Q5, diodes D2 and D5, and the like. The W phase includes switching elements Q3 and Q6, diodes D3 and D6, and the like. The U-phase switching elements Q1 and Q4 are connected in series to form a half bridge. Similarly, the V-phase switching elements Q2 and Q5 and the W-phase switching elements Q3 and Q6 are connected in series to form a half bridge. Each connection point of the half bridge and the stator windings Lu, Lv, Lw of the inverter 174b are connected by lines Ku, Kv, Kw, respectively. When the switching elements Q1, Q4 are driven, the U-phase current Iu flows through the stator winding Lu via the line Ku. When switching elements Q2 and Q5 are driven, V-phase current Iv flows through stator winding Lv via line Kv. When switching elements Q3 and Q6 are driven, W-phase current Iw flows through stator winding Lw via line Kw. The U-phase current Iu, the V-phase current Iv, and the W-phase current Iw are measured by the current sensor 31 as the stator current Is.

またインバータ174b内の回路素子は、上述した三相に対して、スイッチング素子Qfが並列接続される。スイッチング素子Qfは、回転電機本体部17bの界磁巻線Lfと直列接続される。界磁巻線Lfを流れる電流は、電流センサ32によって界磁電流Ifとして計測される。   The circuit element in the inverter 174b has a switching element Qf connected in parallel to the above-described three phases. Switching element Qf is connected in series with field winding Lf of rotating electrical machine main body 17b. The current flowing through the field winding Lf is measured by the current sensor 32 as the field current If.

図3では、ステータ巻線Lu,Lv,LwをY結線した回転電機本体部17bを示す。結線形態はY結線に限らず回転電機本体部17bの種類や定格等に応じて変えてもよい。図示しないが、ステータ巻線Lu,Lv,LwはΔ結線としてもよく、Y結線とΔ結線を組み合わせるY−Δ結線としてもよい。 FIG. 3 shows the rotating electrical machine main body 17b in which the stator windings Lu, Lv, Lw are Y-connected. The connection form is not limited to the Y connection, and may be changed according to the type or rating of the rotating electrical machine main body 17b. Although not shown, the stator windings Lu, Lv, and Lw may be Δ-connected, or Y-Δ connections that combine Y-connection and Δ-connection.

上述のように構成された回転電機17において繰り返し実行される始動制御処理について、図4を参照しながら説明する。図4のステップS19は信号出力手段171に相当する。ステップS11,S14,S15は始動可能性判定手段172(電力変換制御手段174を含む)に相当する。ステップS22(図5の充電制御処理)は充電制御手段173(電力変換制御手段174を含む)に相当する。なお、始動制御処理を実行する前は、エンジン23が運転されており、分離スイッチ(スイッチ部SW2)がオンになっていると仮定する。当該分離スイッチのオン/オフ制御は、始動制御部17aが行う。   A start control process repeatedly executed in the rotating electrical machine 17 configured as described above will be described with reference to FIG. Step S19 in FIG. 4 corresponds to the signal output means 171. Steps S11, S14, and S15 correspond to startability determination means 172 (including power conversion control means 174). Step S22 (charging control process in FIG. 5) corresponds to charging control means 173 (including power conversion control means 174). It is assumed that the engine 23 is in operation and the separation switch (switch unit SW2) is turned on before executing the start control process. The start controller 17a performs on / off control of the separation switch.

図4の始動制御処理において、まずエンジン23を停止する停止条件を満たすか否かを判別する〔ステップS10〕。本形態では、外部装置EXから停止要求信号SAを受けるか否かで判別する。停止要求信号SAを受けるまで待機する(ステップS10でNO)。言い換えれば、ステップS11以降の処理を実行しない。   In the starting control process of FIG. 4, it is first determined whether or not a stop condition for stopping the engine 23 is satisfied [step S10]. In this embodiment, the determination is made based on whether or not the stop request signal SA is received from the external device EX. Wait until a stop request signal SA is received (NO in step S10). In other words, the processing after step S11 is not executed.

停止要求信号SAを受けると(ステップS10でYES)、判定指令信号SFの伝達に従ってスイッチング素子Qfをオフして界磁巻線Lfへの通電を停止する〔ステップS11〕。界磁巻線Lfへの通電が停止されると、界磁電流Ifが減少し、ついには流れなくなる(すなわちIf=0)。そこで、界磁巻線Lfを流れる界磁電流Ifが0[A]に達するまで待機する(ステップS12でNO)。   When the stop request signal SA is received (YES in step S10), the switching element Qf is turned off in accordance with the transmission of the determination command signal SF to stop energization of the field winding Lf [step S11]. When the energization of the field winding Lf is stopped, the field current If decreases and finally stops flowing (that is, If = 0). Therefore, the process waits until the field current If flowing through the field winding Lf reaches 0 [A] (NO in step S12).

界磁巻線Lfに界磁電流Ifが流れなくなると(ステップS12でYES)、分離スイッチをオフにするとともに〔ステップS13〕、判定指令信号SFの伝達に従ってスイッチング素子Q1〜Q6を駆動してステータ巻線Lu,Lv,Lwへの通電を開始する〔ステップS14〕。このときの回転電機本体部17bは電動機として作動する。ステータ巻線Lu,Lv,Lwへの通電を開始すると、相電流Iu,Iv,Iwが流れるとともに、バッテリ19の端子電圧である電圧値Vdが変化する(通常は低下する)。   When field current If does not flow in field winding Lf (YES in step S12), the separation switch is turned off [step S13], and switching elements Q1-Q6 are driven in accordance with the transmission of determination command signal SF, and the stator is driven. Energization of the windings Lu, Lv, Lw is started [step S14]. At this time, the rotating electrical machine main body 17b operates as an electric motor. When energization of the stator windings Lu, Lv, and Lw is started, the phase currents Iu, Iv, and Iw flow, and the voltage value Vd that is the terminal voltage of the battery 19 changes (usually decreases).

そこで、電圧センサ30によって計測される電圧値Vdと、電流センサ31によって計測されるステータ電流Isとに基づいて始動可能性を判定する〔ステップS15〕。始動可能性の判定法は任意に設定してよい。本形態では、判定期間内において、ステータ電流Isが電流閾値Ith以上で維持され(Is≧Ith)、かつ、電圧値Vdが電圧閾値Vth以上で維持される場合には(Vd≧Vth)、始動可能と判定する。これに対して、ステータ電流Isが電流閾値Ithを下回るか(Is<Ith)、あるいは電圧値Vdが電圧閾値Vthを下回る場合は(Vd<Vth)、始動不能と判定する。   Therefore, startability is determined based on the voltage value Vd measured by the voltage sensor 30 and the stator current Is measured by the current sensor 31 [step S15]. The determination method of the startability may be arbitrarily set. In this embodiment, when the stator current Is is maintained at the current threshold value Ith or more (Is ≧ Ith) and the voltage value Vd is maintained at the voltage threshold value Vth or more (Vd ≧ Vth) within the determination period, the start is performed. Judge that it is possible. On the other hand, when the stator current Is is lower than the current threshold value Ith (Is <Ith) or when the voltage value Vd is lower than the voltage threshold value Vth (Vd <Vth), it is determined that starting is impossible.

ステップS15で行った判定が始動可能であれば(ステップS16でYES)、バッテリ19からエンジン23の始動に必要な電力を供給できる。そこで、判定のために行ったステータ巻線Lu,Lv,Lwへの通電を停止するためにスイッチング素子Q1〜Q6をオフにし〔ステップS17〕、分離スイッチをオンする〔ステップS18〕。こうしてエンジン23を停止するための準備が整ったので、判定結果信号SCに基づいて停止許可信号SBを外部装置EXに伝達する。停止許可信号SBを受けた外部装置EXは、エンジン23を停止するための制御を行う。   If the determination made in step S15 can be started (YES in step S16), electric power necessary for starting the engine 23 can be supplied from the battery 19. Therefore, the switching elements Q1 to Q6 are turned off [step S17] and the separation switch is turned on [step S18] in order to stop energization to the stator windings Lu, Lv, and Lw performed for the determination. Since preparation for stopping the engine 23 is thus completed, the stop permission signal SB is transmitted to the external device EX based on the determination result signal SC. The external device EX that has received the stop permission signal SB performs control for stopping the engine 23.

一方、ステップS15で行った判定が始動不能であれば(ステップS16でNO)、バッテリ19の充電容量を増やすために充電を行う(ステップS20〜S22)。具体的には、ステップS17と同様にステータ巻線Lu,Lv,Lwへの通電を停止し〔ステップS20〕、分離スイッチをオンしたうえで〔ステップS21〕、充電制御処理を実行する〔ステップS22〕。   On the other hand, if the determination made in step S15 is not startable (NO in step S16), charging is performed to increase the charge capacity of the battery 19 (steps S20 to S22). Specifically, as in step S17, energization of the stator windings Lu, Lv, Lw is stopped [step S20], the separation switch is turned on [step S21], and the charge control process is executed [step S22. ].

図5に示す充電制御処理において、上記判定期間内に計測された電圧値Vdやステータ電流Isに基づいて充電時間CTや充電電流量CVを変化させる〔ステップS30〕。充電時間CTは充電を行う期間であり、充電電流量CVを充電時にバッテリ19へ流す電流量である。充電時間CTを設定(変化を含む。以下同じである。)してもよく、充電電流量CVを設定してもよく、充電時間CTと充電電流量CVの双方を設定してもよい。ステップS30は実行してもよく、実行しなくてもよい。実行しない場合には、充電時間CTや充電電流量CVをそれぞれの所定の一定値に設定する。   In the charging control process shown in FIG. 5, the charging time CT and the charging current amount CV are changed based on the voltage value Vd and the stator current Is measured during the determination period [step S30]. The charging time CT is a period during which charging is performed, and is the amount of current that flows the charging current amount CV to the battery 19 during charging. The charging time CT may be set (including changes; the same applies hereinafter), the charging current amount CV may be set, or both the charging time CT and the charging current amount CV may be set. Step S30 may be executed or may not be executed. If not, the charging time CT and the charging current amount CV are set to respective predetermined constant values.

充電時間CTや充電電流量CVを変化させる一例を図6に示す。図6には、左縦軸を充電時間CTと、右縦軸を充電電流量CVとし、横軸を電圧値Vdとしたときの特性線L1,L2を示す。通常は電圧値Vdが大きくなるほど、バッテリ19の充電容量(残量)も多いので、充電時間CTや充電電流量CVを小さくしてもよい。逆に電圧値Vdが小さくなるほど、バッテリ19の充電容量も少ないので、充電時間CTや充電電流量CVを大きくする必要がある。実線で示す特性線L1は曲線状に規定され、一点鎖線で示す特性線L2は曲線状に規定される。電圧値Vdと充電時間CTの関係は、特性線L1で規定してもよく、特性線L2で規定してもよい。電圧値Vdと充電電流量CVの関係も同様に、特性線L1で規定してもよく、特性線L2で規定してもよい。電圧値Vdが定まれば、特性線L1,L2に基づいて充電時間CTや充電電流量CVも定まる。   An example of changing the charging time CT and the charging current amount CV is shown in FIG. FIG. 6 shows characteristic lines L1 and L2 when the left vertical axis is the charging time CT, the right vertical axis is the charging current amount CV, and the horizontal axis is the voltage value Vd. Normally, as the voltage value Vd increases, the charging capacity (remaining amount) of the battery 19 increases, so the charging time CT and the charging current amount CV may be reduced. Conversely, as the voltage value Vd decreases, the charging capacity of the battery 19 decreases, and therefore it is necessary to increase the charging time CT and the charging current amount CV. A characteristic line L1 indicated by a solid line is defined in a curved line, and a characteristic line L2 indicated by a one-dot chain line is defined in a curved line. The relationship between the voltage value Vd and the charging time CT may be defined by the characteristic line L1 or may be defined by the characteristic line L2. Similarly, the relationship between the voltage value Vd and the charging current amount CV may be defined by the characteristic line L1 or may be defined by the characteristic line L2. If the voltage value Vd is determined, the charging time CT and the charging current amount CV are also determined based on the characteristic lines L1 and L2.

上記電圧値Vdに代えて、図6の括弧内に示すステータ電流Isを用いてもよく、電力値Ps(=Vd×Is)を用いてもよい。電圧値Vd,ステータ電流Is,電力値Psのうちで二以上を用いてもよい。二以上を用いる場合は、複数の充電時間CTや充電電流量CVが定まるので、一つの値を選択したり、単純平均や加重平均等を求めたりすればよい。   Instead of the voltage value Vd, a stator current Is shown in parentheses in FIG. 6 may be used, or a power value Ps (= Vd × Is) may be used. Two or more of the voltage value Vd, the stator current Is, and the power value Ps may be used. In the case of using two or more, a plurality of charging times CT and charging current amounts CV are determined, so one value may be selected or a simple average, a weighted average or the like may be obtained.

図5に戻り、充電時間CTや充電電流量CVを設定した後、充電要求信号SDおよび充電指令信号SGに基づいて充電を開始する〔ステップS31〕。具体的には、まだ停止していないエンジン23の動力を利用する。すなわちエンジン23から動力伝達部材18を経て伝達される動力に基づいて、回転電機本体部17bを発電機として機能させる。回転電機本体部17bで発生する起電力EFは、電力変換制御手段174や第1電力線PLを経てバッテリ19に伝達させ充電する(図1,図2を参照)。   Returning to FIG. 5, after setting the charging time CT and the charging current amount CV, charging is started based on the charging request signal SD and the charging command signal SG [step S31]. Specifically, the power of the engine 23 that has not been stopped is used. That is, based on the power transmitted from the engine 23 through the power transmission member 18, the rotating electrical machine main body 17b is caused to function as a generator. The electromotive force EF generated in the rotating electrical machine main body 17b is transmitted to the battery 19 through the power conversion control means 174 and the first power line PL and charged (see FIGS. 1 and 2).

上記ステップS31の充電は充電終了条件を満たすまで継続する(ステップS32でNO)。充電終了条件は、充電を終える条件であれば任意に設定してよく、充電時間CTや充電電流量CVを含む。充電終了条件を満たすと(ステップS32でYES)、充電完了信号SEおよび充電指令信号SGに基づいて充電を終了し〔ステップS33〕、充電制御処理を終了(リターン)する。   The charging in step S31 is continued until the charging end condition is satisfied (NO in step S32). The charging end condition may be arbitrarily set as long as the charging is completed, and includes a charging time CT and a charging current amount CV. If the charging termination condition is satisfied (YES in step S32), the charging is terminated based on the charging completion signal SE and the charging command signal SG [step S33], and the charging control process is terminated (returned).

上述した回転電機17(具体的には図2,図3に示す始動制御部17a)による制御例(変化例を含む)を図7に示す。横軸を時刻tとする。縦軸には上から順番に、停止条件成立フラグFL,スイッチ部SW2(分離スイッチ),ステータ電流Is,界磁電流If,電圧値Vd,エンジン23の回転数Rについてそれぞれ経時的変化の一例を示す。なお、時刻t1よりも前は、エンジン23が運転されていると仮定する。   FIG. 7 shows a control example (including a change example) by the above-described rotating electrical machine 17 (specifically, the start control unit 17a shown in FIGS. 2 and 3). The horizontal axis is time t. On the vertical axis, in order from the top, stop condition satisfaction flag FL, switch part SW2 (separation switch), stator current Is, field current If, voltage value Vd, and an example of changes over time of engine 23 with respect to time Show. It is assumed that the engine 23 is operating before time t1.

時刻t1に外部装置EXから停止要求信号SAを受けると停止条件を満たすので(図4のステップS10でYES)、停止条件成立フラグFLをロー(図7では「L」と示す)からハイ(図7では「H」と示す)にする。停止条件成立フラグFLがハイになると、回転電機本体部17bへの通電を停止し、少なくとも界磁電流Ifが0[A]に達するまで待機する(図4のステップS12)。図7の例では、時刻t1に電流値If1であった界磁電流Ifが時刻t2に0[A]に達する。ステータ電流Isは、通電時の電流値Is2から0[A]になっている。時刻t1から時刻t2までの期間は一定とは限らない。   When the stop request signal SA is received from the external device EX at time t1, the stop condition is satisfied (YES in step S10 in FIG. 4), so the stop condition establishment flag FL is changed from low (indicated as “L” in FIG. 7) to high (FIG. 7). 7 indicates “H”). When the stop condition satisfaction flag FL becomes high, the energization to the rotating electrical machine main body 17b is stopped, and at least until the field current If reaches 0 [A] (step S12 in FIG. 4). In the example of FIG. 7, the field current If that was the current value If1 at time t1 reaches 0 [A] at time t2. The stator current Is is 0 [A] from the current value Is2 during energization. The period from time t1 to time t2 is not always constant.

時刻t2に界磁電流Ifが0[A]に達したので、スイッチ部SW2をオンからオフに切り換え(図4のステップS13)、次回のエンジン23の始動に必要な電力をバッテリ19が蓄えているか否かの判定を行う(図4のステップS15)。例えば、時刻t2から時刻t3までのチェック区間Chk1において、ステータ電流Isが電流閾値Ith以下を維持でき、かつ、電圧値Vdが電圧閾値Vth以上を維持できるか否かで判定する。   Since the field current If has reached 0 [A] at time t2, the switch unit SW2 is switched from on to off (step S13 in FIG. 4), and the battery 19 stores the power necessary for the next start of the engine 23. Whether or not there is is determined (step S15 in FIG. 4). For example, in the check section Chk1 from time t2 to time t3, the determination is made based on whether the stator current Is can maintain the current threshold Ith or less and the voltage value Vd can maintain the voltage threshold Vth or more.

図7に実線で示す変化例では、ステータ電流Isが電流閾値Ith以下となる電流値Is1で維持できた(Ith>Is1)。しかし、スイッチ部SW2のオフに伴って、バッテリ19の電圧値Vdは電圧値Vd3から電圧値Vd2に低下し、さらにチェック区間Chk1を経過すると電圧閾値Vthを下回る電圧値Vd1まで低下している(Vd3>Vd2>Vth>Vd1)。図7に二点鎖線で示す変化例のように、電圧値Vdが電圧閾値Vth以上を維持できたものの、ステータ電流Isが電流閾値Ithを下回っている。電圧値Vdが電圧閾値Vthを下回り、ステータ電流Isが電流閾値Ithを下回る場合も同様である。いずれの場合でも、図4に示すステップS15では「始動不能」と判定される。そこで、時刻t3ではステータ電流Isへの通電を停止して、ステータ電流Isを0[A]にする。   In the example of change indicated by the solid line in FIG. 7, the stator current Is could be maintained at the current value Is1 that is equal to or less than the current threshold Ith (Ith> Is1). However, as the switch unit SW2 is turned off, the voltage value Vd of the battery 19 decreases from the voltage value Vd3 to the voltage value Vd2, and further decreases to a voltage value Vd1 that is lower than the voltage threshold Vth after the check section Chk1 has elapsed. Vd3> Vd2> Vth> Vd1). Although the voltage value Vd can be maintained at the voltage threshold value Vth or more as in the example of change indicated by the two-dot chain line in FIG. 7, the stator current Is is below the current threshold value Ith. The same applies to the case where the voltage value Vd is lower than the voltage threshold value Vth and the stator current Is is lower than the current threshold value Ith. In any case, it is determined that the engine cannot be started in step S15 shown in FIG. Therefore, at time t3, the energization to the stator current Is is stopped and the stator current Is is set to 0 [A].

「始動不能」と判定されたので、スイッチ部SW2をオフからオンに切り換え(図4のステップS21)、時刻t3以降はエンジン23の運転を停止することなく、回転電機本体部17bを発電機として機能させてバッテリ19への充電を行う。すなわちエンジン23の回転数Rが0[rpm]を超える回転数(通常はアイドリング回転数以上)で維持される。そのため、回転数Rは二点鎖線で示すように一定回転数になるとは限らない。図7の制御例では、時刻t3の時点における電圧値Vdに基づいて、図6に示す特性線L1から充電時間CTを特定し、特性線L2から充電電流量CV(図7では電流値Is3)を特定する。よって、時刻t3から充電時間CTに相当する充電区間CS(すなわちCS=CT)を経過する時刻t4まで、充電電流量CVに対応する電流値Is3を確保しながらバッテリ19への充電を行う。起電力EFの発生によって、図7の変化例では界磁電流Ifに電流値If2が流れている。なお、電流値Is3を確保できない場合は、回転電機本体部17bの起電力EFで確保できる最大の電流で充電するとよい。   Since it is determined that the engine cannot be started, the switch unit SW2 is switched from OFF to ON (step S21 in FIG. 4), and after the time t3, the operation of the engine 23 is not stopped and the rotating electrical machine main body unit 17b is used as a generator. The battery 19 is charged by functioning. That is, the rotational speed R of the engine 23 is maintained at a rotational speed exceeding 0 [rpm] (usually equal to or higher than the idling rotational speed). Therefore, the rotational speed R does not always become a constant rotational speed as shown by a two-dot chain line. In the control example of FIG. 7, the charging time CT is specified from the characteristic line L1 shown in FIG. 6 based on the voltage value Vd at the time t3, and the charging current amount CV (current value Is3 in FIG. 7) from the characteristic line L2. Is identified. Therefore, the battery 19 is charged while securing the current value Is3 corresponding to the charging current amount CV from time t3 to time t4 when the charging section CS corresponding to the charging time CT (ie, CS = CT) elapses. Due to the generation of the electromotive force EF, the current value If2 flows in the field current If in the variation of FIG. If the current value Is3 cannot be ensured, charging may be performed with the maximum current that can be secured by the electromotive force EF of the rotating electrical machine main body 17b.

充電区間CSを経過する時刻t4には充電終了条件を満たすので、バッテリ19への充電を終了する(図5のステップS32,S33)。続いて、再び回転電機本体部17bへの通電を停止し、少なくとも界磁電流Ifが0[A]に達するまで待機する(図4のステップS12)。図7の例では、時刻t5に界磁電流Ifが0[A]に達する。そして、再び次回のエンジン23の始動に必要な電力をバッテリ19が蓄えているか否かの判定を行う(図4のステップS15)。判定方法は、上述したチェック区間Chk1と同様である。   Since the charging termination condition is satisfied at time t4 when the charging section CS elapses, the charging of the battery 19 is terminated (steps S32 and S33 in FIG. 5). Subsequently, the energization of the rotating electrical machine main body 17b is stopped again, and the process waits at least until the field current If reaches 0 [A] (step S12 in FIG. 4). In the example of FIG. 7, the field current If reaches 0 [A] at time t5. Then, it is determined again whether or not the battery 19 stores the electric power necessary for starting the engine 23 (step S15 in FIG. 4). The determination method is the same as that of the check section Chk1 described above.

時刻t5から時刻t6までのチェック区間Chk2において、ステータ電流Isが電流閾値Ith以下を維持でき、かつ、電圧値Vdが電圧閾値Vth以上を維持できるか否かで判定する。図7に実線で示す変化例では、ステータ電流Isが電流閾値Ith以下となる電流値Is1で維持できた(Ith>Is1)。また、スイッチ部SW2のオフに伴ってバッテリ19の電圧値Vdは充電時の電圧値Vd7から電圧値Vd6に低下し、さらにチェック区間Chk2を経過する時刻t6には電圧値Vd5まで低下したが、電圧閾値Vth以上を確保できた(Vd7>Vd6>Vd5>Vth)。よって、図4に示すステップS15では「始動可能」と判定される。そのため、時刻t6には外部装置EXに停止許可信号SBを伝達する(図4のステップS19)。外部装置EXが停止許可信号SBを受けて、エンジン23を停止させる制御を行い、時刻t7には回転数Rが0[rpm]になった。エンジン23が停止した時刻t7以降、停止条件成立フラグFLをローにする。   In the check section Chk2 from time t5 to time t6, the determination is made based on whether or not the stator current Is can maintain the current threshold Ith or less and the voltage value Vd can maintain the voltage threshold Vth or more. In the example of change indicated by the solid line in FIG. 7, the stator current Is could be maintained at the current value Is1 that is equal to or less than the current threshold Ith (Ith> Is1). Further, the voltage value Vd of the battery 19 decreases from the voltage value Vd7 at the time of charging to the voltage value Vd6 as the switch unit SW2 is turned off, and further decreases to the voltage value Vd5 at the time t6 when the check section Chk2 elapses. The voltage threshold value Vth or more could be secured (Vd7> Vd6> Vd5> Vth). Therefore, in step S15 shown in FIG. Therefore, the stop permission signal SB is transmitted to the external device EX at time t6 (step S19 in FIG. 4). The external device EX receives the stop permission signal SB and performs control to stop the engine 23, and the rotational speed R becomes 0 [rpm] at time t7. After time t7 when the engine 23 is stopped, the stop condition satisfaction flag FL is set to low.

図示しないが、時刻t5からチェック区間Chk2を経過するまでに、ステータ電流Isが電流閾値Ith以下を維持でき、かつ、電圧値Vdが電圧閾値Vth以上を維持できなければ、再びバッテリ19への充電を行うために充電区間CSを設ける。すなわち充電区間CSを2回以上実施する。こうすることにより、バッテリ19のバッテリ容量を確実回復させることができ、エンジン23の始動をより確実に行える。   Although not shown, if the stator current Is cannot be maintained below the current threshold Ith and the voltage value Vd cannot be maintained above the voltage threshold Vth before the check section Chk2 elapses from time t5, the battery 19 is charged again. The charging section CS is provided for performing the above. That is, the charging section CS is performed twice or more. By doing so, the battery capacity of the battery 19 can be reliably recovered, and the engine 23 can be started more reliably.

その後、エンジン23の運転が必要な始動条件を満たすと、外部装置EXは始動制御部17aに始動信号を伝達して回転電機本体部17bを作動させたり、エンジン23に燃料を供給する制御を行ったりするなどして、エンジン23を始動させる。始動条件は任意に設定してよい。例えば、アクセルペダルが踏まれる条件、ブレーキペダルが解放される(踏まれない)条件、始動操作が行われる条件などが該当する。   Thereafter, when the start condition necessary for the operation of the engine 23 is satisfied, the external device EX transmits a start signal to the start control unit 17a to operate the rotating electrical machine main body unit 17b, or performs control to supply fuel to the engine 23. For example, the engine 23 is started. The starting condition may be set arbitrarily. For example, the condition where the accelerator pedal is depressed, the condition where the brake pedal is released (not depressed), the condition where the starting operation is performed, and the like are applicable.

〔実施の形態2〕
実施の形態2は図8を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1と相違する点を説明する。
[Embodiment 2]
The second embodiment will be described with reference to FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from the first embodiment will be mainly described.

図8に示す車両110は、ガソリン自動車の構成例である。本明細書でいうガソリン自動車は、化石燃料(石油や天然ガス等)の燃焼によって動力を得る車両を意味する。この車両110は、バッテリ11,19、電気負荷12、車輪14、トランスミッション15、回転電機17、動力伝達部材18,22、エンジン23などを有する。   A vehicle 110 shown in FIG. 8 is a configuration example of a gasoline automobile. The gasoline automobile referred to in this specification means a vehicle that obtains power by burning fossil fuel (oil, natural gas, etc.). The vehicle 110 includes batteries 11 and 19, an electric load 12, wheels 14, a transmission 15, a rotating electrical machine 17, power transmission members 18 and 22, an engine 23, and the like.

エンジン始動システム10Aは、実施の形態1と同様に、少なくとも回転電機17や電圧センサ30などを含む。また、回転電機17を構成する始動制御部17aや回転電機本体部17bも実施の形態1と同様に構成できる(図2,図3を参照)。この構成によれば、図4に示す始動制御処理や図5に示す充電制御処理を実行することができるので、図7に示すような制御例を実現することができる。   The engine start system 10A includes at least the rotating electrical machine 17 and the voltage sensor 30 as in the first embodiment. Further, the starting control unit 17a and the rotating electrical machine main body 17b constituting the rotating electrical machine 17 can be configured in the same manner as in the first embodiment (see FIGS. 2 and 3). According to this configuration, since the start control process shown in FIG. 4 and the charge control process shown in FIG. 5 can be executed, a control example as shown in FIG. 7 can be realized.

〔実施の形態3〕
実施の形態3は図9,図10を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1,2で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1,2と相違する点を説明する。
[Embodiment 3]
The third embodiment will be described with reference to FIGS. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 and 2 will be mainly described.

図9に示す車両120は、実施の形態1と同様に、ハイブリッド自動車の構成例である。この車両120は、バッテリ11,19,20、電気負荷12、コンバータ13、車輪14、トランスミッション15、回転電機16,51、動力伝達部材18,22、インバータ21、エンジン23、電力変換制御装置24、始動制御部50などを有する。これらの要素のうちで、エンジン始動システム10Bは、少なくとも始動制御部50,回転電機51,電圧センサ30(図10を参照)などを含む。   A vehicle 120 shown in FIG. 9 is a configuration example of a hybrid vehicle as in the first embodiment. The vehicle 120 includes batteries 11, 19, 20, an electric load 12, a converter 13, wheels 14, a transmission 15, rotating electrical machines 16 and 51, power transmission members 18 and 22, an inverter 21, an engine 23, a power conversion control device 24, A start control unit 50 and the like are included. Among these elements, the engine start system 10B includes at least a start control unit 50, a rotating electrical machine 51, a voltage sensor 30 (see FIG. 10), and the like.

車両120が図1に示す車両100と相違するのは、エンジン始動システム10の構成である。すなわち、車両100は回転電機17に始動制御部17aを組み込んだのに対して、車両120は回転電機51とは別個に始動制御部50を備える。始動制御部50は、始動制御部17aに相当し、外部装置EXと回転電機51との間に介在させる。言い換えると、従来のハイブリッド自動車に始動制御部50を付加すればよい。この始動制御部50は、ECUやコンピュータ等が該当する。   The vehicle 120 is different from the vehicle 100 shown in FIG. 1 in the configuration of the engine start system 10. That is, the vehicle 100 includes the start control unit 17 a in the rotating electrical machine 17, whereas the vehicle 120 includes the start control unit 50 separately from the rotating electrical machine 51. The start control unit 50 corresponds to the start control unit 17 a and is interposed between the external device EX and the rotating electrical machine 51. In other words, the start control unit 50 may be added to the conventional hybrid vehicle. The start control unit 50 corresponds to an ECU, a computer, or the like.

図10に示す始動制御部50は、エンジン停止手段50a,始動可能性判定手段50b,充電制御手段50c,電力変換制御手段50dなどを有する。エンジン停止手段50aは、始動可能性判定手段50bによってエンジン23の始動に必要な電力を供給できると判定された場合にエンジン23を停止させる機能を担う。このエンジン停止手段50aは、図2に示す信号出力手段171と同様に構成してもよく、当該信号出力手段171の機能と外部装置EXの機能とを含む構成してもよい。後者の構成では、始動可能性判定手段50bから伝達される判定結果信号SCに基づいて、エンジン23を停止するための制御(例えば燃料供給の停止など)を行う。   The start control unit 50 shown in FIG. 10 includes an engine stop unit 50a, a start possibility determination unit 50b, a charge control unit 50c, a power conversion control unit 50d, and the like. The engine stop unit 50a has a function of stopping the engine 23 when it is determined by the start possibility determination unit 50b that power necessary for starting the engine 23 can be supplied. The engine stop means 50a may be configured in the same manner as the signal output means 171 shown in FIG. 2, or may include the function of the signal output means 171 and the function of the external device EX. In the latter configuration, control for stopping the engine 23 (for example, stop of fuel supply) is performed based on the determination result signal SC transmitted from the startability determination unit 50b.

始動可能性判定手段50bは、図2に示す始動可能性判定手段172と同様に構成する。充電制御手段50cは、図2に示す充電制御手段173と同様に構成する。電力変換制御手段50dは、図2に示す電力変換制御手段174と同様に構成する。回転電機51は、図2に示す回転電機本体部17bと同様に構成する。   The startability determination unit 50b is configured in the same manner as the startability determination unit 172 shown in FIG. The charge control means 50c is configured similarly to the charge control means 173 shown in FIG. The power conversion control means 50d is configured similarly to the power conversion control means 174 shown in FIG. The rotating electrical machine 51 is configured in the same manner as the rotating electrical machine main body 17b shown in FIG.

上述した構成によれば、図4に示す始動制御処理や図5に示す充電制御処理を実行することができるので、図7に示すような制御例を実現することができる。   According to the configuration described above, the start control process shown in FIG. 4 and the charge control process shown in FIG. 5 can be executed, so that a control example as shown in FIG. 7 can be realized.

〔実施の形態4〕
実施の形態4は図11を参照しながら説明する。なお図示および説明を簡単にするため、特に明示しない限り、実施の形態1〜3で用いた要素と同一の要素には同一の符号を付して説明を省略する。よって、主に実施の形態1〜3と相違する点を説明する。
[Embodiment 4]
The fourth embodiment will be described with reference to FIG. For simplicity of illustration and description, unless otherwise specified, the same elements as those used in the first to third embodiments are denoted by the same reference numerals and description thereof is omitted. Therefore, differences from Embodiments 1 to 3 will be mainly described.

図11に示す車両130は、実施の形態2と同様に、ガソリン自動車の構成例である。この車両130は、バッテリ11,19、電気負荷12、車輪14、トランスミッション15、回転電機51、動力伝達部材18,22、エンジン23、始動制御部50などを有する。   A vehicle 130 shown in FIG. 11 is a configuration example of a gasoline automobile as in the second embodiment. The vehicle 130 includes batteries 11 and 19, an electric load 12, wheels 14, a transmission 15, a rotating electrical machine 51, power transmission members 18 and 22, an engine 23, a start control unit 50, and the like.

エンジン始動システム10Bは、実施の形態3と同様に、少なくとも始動制御部50,回転電機51,電圧センサ30(図10を参照)などを含む。この構成によれば、図4に示す始動制御処理や図5に示す充電制御処理を実行することができるので、図7に示すような制御例を実現することができる。   As in the third embodiment, engine start system 10B includes at least start control unit 50, rotating electric machine 51, voltage sensor 30 (see FIG. 10), and the like. According to this configuration, since the start control process shown in FIG. 4 and the charge control process shown in FIG. 5 can be executed, a control example as shown in FIG. 7 can be realized.

〔他の実施の形態〕
以上では本発明を実施するための形態について実施の形態1〜4に従って説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
In the above, although the form for implementing this invention was demonstrated according to Embodiment 1-4, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態1,2に示す回転電機17と、実施の形態3,4に示す回転電機51は、いずれも電動機と発電機の機能を兼ね備える構成とした(図1,図8,図9,図11を参照)。この形態に代えて、電動機と発電機を別個に備える構成としてもよい。電動機は回転電機を電動機として機能させる場合を含む。発電機は回転電機を発電機として機能させる場合を含む。例えば、実施の形態1,2に示す回転電機本体部17b(図2を参照)に代えて、電動機17cと発電機17dを備える例を図12に示す。同様に、実施の形態3に示す回転電機51(図9を参照)に代えて、電動機51aと発電機51bを備える例を図13に示す。図13において、エンジン始動システム10Cは、少なくとも始動制御部50,電動機51a,発電機51b,電圧センサ30などを含む。図示しないが、実施の形態4に示す回転電機51(図11を参照)に代えて、電動機51aと発電機51bを備える場合も同様である。回転電機を備えるか、電動機と発電機を備えるかの相違に過ぎないので、実施の形態1〜4と同様の作用効果を得ることができる。   The rotary electric machine 17 shown in the first and second embodiments and the rotary electric machine 51 shown in the third and fourth embodiments are both configured to function as an electric motor and a generator (FIGS. 1, 8, and 9). , See FIG. Instead of this form, a configuration may be adopted in which an electric motor and a generator are provided separately. The electric motor includes a case where the rotating electric machine functions as an electric motor. The generator includes a case where the rotating electrical machine functions as a generator. For example, instead of the rotating electrical machine main body 17b (see FIG. 2) shown in the first and second embodiments, an example including an electric motor 17c and a generator 17d is shown in FIG. Similarly, instead of the rotating electrical machine 51 shown in Embodiment 3 (see FIG. 9), an example including an electric motor 51a and a generator 51b is shown in FIG. In FIG. 13, an engine start system 10C includes at least a start control unit 50, an electric motor 51a, a generator 51b, a voltage sensor 30, and the like. Although not shown, the same applies to the case where an electric motor 51a and a generator 51b are provided instead of the rotating electrical machine 51 (see FIG. 11) shown in the fourth embodiment. Since it is only the difference whether it is provided with a rotary electric machine or an electric motor and a generator, the effect similar to Embodiment 1-4 can be obtained.

上述した実施の形態1〜4では、電圧センサ30や電流センサ31は、始動制御部17a,50と別体に備える構成とした(図2,図3,図10を参照)。この形態に代えて、電圧センサ30および電流センサ31のうちで一方または双方を始動制御部17a,50と一体に備える構成としてもよい。電流センサ32やスイッチ部SW2(分離スイッチ)についても同様である。別体に備えるか一体に備えるかの相違に過ぎないので、実施の形態1〜4と同様の作用効果を得ることができる。   In the above-described first to fourth embodiments, the voltage sensor 30 and the current sensor 31 are configured separately from the start control units 17a and 50 (see FIGS. 2, 3, and 10). Instead of this configuration, one or both of the voltage sensor 30 and the current sensor 31 may be integrated with the start control units 17a and 50. The same applies to the current sensor 32 and the switch unit SW2 (separation switch). Since it is only a difference whether it is provided in a separate body or provided integrally, it is possible to obtain the same effect as in the first to fourth embodiments.

上述した実施の形態1〜4では、始動制御部17a,50は、外部装置EXと別体に備える構成とした(図2,図9,図11,図12を参照)。この形態に代えて、始動制御部17a,50と外部装置EXとを一体に備える構成、すなわち外部装置EXに始動制御部17a,50を設ける構成としてもよい。別体に備えるか一体に備えるかの相違に過ぎないので、実施の形態1〜4と同様の作用効果を得ることができる。   In the first to fourth embodiments described above, the start control units 17a and 50 are configured separately from the external device EX (see FIGS. 2, 9, 11, and 12). Instead of this form, a configuration in which the start control units 17a and 50 and the external device EX are integrally provided, that is, a configuration in which the start control units 17a and 50 are provided in the external device EX may be employed. Since it is only a difference whether it is provided in a separate body or provided integrally, it is possible to obtain the same effect as in the first to fourth embodiments.

上述した実施の形態1,2では、信号出力手段171と始動可能性判定手段172を別体に備える構成とした(図2を参照)。この形態に代えて、信号出力手段171と始動可能性判定手段172を一体に構成としてもよい。同様に実施の形態3,4では、エンジン停止手段50aと始動可能性判定手段50bを別体に備える構成とした(図10を参照)。この形態に代えて、エンジン停止手段50aと始動可能性判定手段50bを一体に構成としてもよい。別体で構成するか、一体に構成するかの相違に過ぎないので、実施の形態1〜4と同様の作用効果を得ることができる。   In the first and second embodiments described above, the signal output means 171 and the startability determination means 172 are provided separately (see FIG. 2). Instead of this form, the signal output means 171 and the startability determination means 172 may be integrated. Similarly, in the third and fourth embodiments, the engine stop unit 50a and the startability determination unit 50b are provided separately (see FIG. 10). Instead of this form, the engine stop means 50a and the startability determination means 50b may be configured integrally. Since it is only a difference whether it comprises by another body or it comprises integrally, the effect similar to Embodiment 1-4 can be obtained.

〔作用効果〕
上述した実施の形態および他の実施の形態によれば、以下に示す各効果を得ることができる。
[Function and effect]
According to the embodiments described above and other embodiments, the following effects can be obtained.

(1)回転電機17において始動制御部17aは、エンジン23の運転が不要な停止条件を満たすと、外部装置EXから停止要求信号SAが伝達され、界磁巻線Lfに界磁電流Ifを流すことなく、バッテリ19からステータ巻線Lu,Lv,Lwにステータ電流Isを流し、電圧センサ30によって計測される電圧値Vdが電圧閾値Vth以上、かつ、電流センサ31によって計測されるステータ電流Is(電流値)が電流閾値Ith以上であるか否かでバッテリ19が次回のエンジン23の始動に必要な電力を供給できるか否かを判定する始動可能性判定手段172と、始動可能性判定手段172によってエンジン23の始動に必要な電力を供給できると判定された場合には、エンジン23を停止させるべく外部装置EXにエンジン23の停止を許可する停止許可信号SBを出力する信号出力手段171とを有する構成とした(図1〜8,図12を参照)。 (1) In the rotating electrical machine 17, when the start control unit 17a satisfies a stop condition that does not require the operation of the engine 23, the stop request signal SA is transmitted from the external device EX, and the field current If is supplied to the field winding Lf. Without flowing, the stator current Is flows from the battery 19 to the stator windings Lu, Lv, Lw, the voltage value Vd measured by the voltage sensor 30 is equal to or higher than the voltage threshold Vth, and the stator current Is measured by the current sensor 31. Startability determination means 172 for determining whether or not the battery 19 can supply power necessary for the next start of the engine 23 based on whether or not (current value) is equal to or greater than the current threshold Ith , and startability determination means If it is determined that can supply the necessary power to start the engine 23 by 172, the engine to an external apparatus EX in order to stop the engine 23 2 Of a structure and a signal output unit 171 outputs a stop permission signal SB to allow stop (see FIG. 1-8, FIG. 12).

この構成によれば、始動可能性判定手段172は、停止条件を満たす場合(特にエンジン23の停止直前)にバッテリ19の電圧値Vdとステータ巻線Lu,Lv,Lwに流れるステータ電流Isの計測を行う。計測された電圧値Vdが電圧閾値Vth以上、かつ、計測されたステータ電流Isが電流閾値Ith以上であるか否かでバッテリ19が次回のエンジン23の始動に必要な電力を供給できるか否かを判定する。この判定は、エンジン23を停止するまでのエンジン23の運転状況などによる影響を受けないので、判定精度を従来よりも向上させることができる。また、界磁巻線Lfに電流を流さない状態でステータ巻線Lu,Lv,Lwにステータ電流Isを流すため、回転電機17には出力トルクが生じない。そのため、エンジン23が不用意に作動するのを防止できる。 According to this configuration, the startability determination unit 172 measures the voltage value Vd of the battery 19 and the stator current Is flowing through the stator windings Lu, Lv, and Lw when the stop condition is satisfied (particularly immediately before the engine 23 is stopped). I do. Whether or not the battery 19 can supply electric power necessary for the next start of the engine 23 depending on whether or not the measured voltage value Vd is equal to or greater than the voltage threshold Vth and the measured stator current Is is equal to or greater than the current threshold Ith . Determine. Since this determination is not affected by the operation state of the engine 23 until the engine 23 is stopped, the determination accuracy can be improved as compared with the conventional case. Further, since the stator current Is is passed through the stator windings Lu, Lv, and Lw in a state where no current is passed through the field winding Lf, no output torque is generated in the rotating electrical machine 17. Therefore, it is possible to prevent the engine 23 from operating carelessly.

(2)始動制御部17a,50は、始動可能性判定手段172,50bによってエンジン23の始動に必要な電力を供給できないと判定された場合には、エンジン23を停止させずにエンジン23の運転を継続し、回転電機17,51で発生する電力をバッテリ19に充電する制御を行う充電制御手段173,50cをさらに有し、信号出力手段171(あるいはエンジン停止手段50a)は、バッテリ19への充電を終了する充電終了条件を満たすまで充電制御手段173,50cによるバッテリ19への充電を行った後、停止許可信号SBを出力する構成とした(図4,図5,図7を参照)。この構成によれば、充電制御手段173,50cは、停止条件を満たす場合でも、エンジン23の運転を強制的に続けることで発電を行って、バッテリ19への充電を行う。また、充電制御手段173,50cによって充電終了条件を満たすまで充電を行う。よって、バッテリ19への充電によってバッテリ容量が回復することが十分に考えられるため、エンジン23の始動をより確実に行え、判定精度も向上する。   (2) When it is determined by the start possibility determination means 172, 50b that the start control units 17a, 50 cannot supply power necessary for starting the engine 23, the start control units 17a, 50 operate the engine 23 without stopping the engine 23. And charging control means 173 and 50c for controlling the electric power generated in the rotating electrical machines 17 and 51 to charge the battery 19, and the signal output means 171 (or the engine stop means 50a) The charging control means 173, 50c charges the battery 19 until the charging termination condition for terminating the charging is satisfied, and then the stop permission signal SB is output (see FIGS. 4, 5, and 7). According to this configuration, the charge control means 173 and 50 c generate power by forcibly continuing the operation of the engine 23 and charge the battery 19 even when the stop condition is satisfied. Further, charging is performed by the charging control means 173, 50c until the charging termination condition is satisfied. Therefore, since it is fully considered that the battery capacity is restored by charging the battery 19, the engine 23 can be started more reliably and the determination accuracy is improved.

(3)充電終了条件は、充電を行う時間である充電時間CTと、充電を行う電流量である充電電流量CVとのうちで一方または双方を含む構成とした(図5のステップS32を参照)。この構成によれば、バッテリ19への充電を終了する時期を容易に設定できる。   (3) The charging end condition includes one or both of a charging time CT that is a charging time and a charging current amount CV that is a charging current amount (see step S32 in FIG. 5). ). According to this configuration, it is possible to easily set the timing for terminating the charging of the battery 19.

(4)充電制御手段173,50cは、始動可能性判定手段172,50bによってエンジン23の始動に必要な電力を供給できないと判定されると、電圧センサ30によって計測される電圧値Vdに基づいて充電時間CTおよび充電電流量CVのうちで一方または双方を変化させる構成とした(図5〜図7を参照)。この構成によれば、停止条件を満たしてからエンジン23を停止させるまでの時間を最適化でき、当該時間を最小限に抑えられる。また、始動可能性判定手段172,50bによる判定の頻度を最小化し、無駄な電力消費を抑制することが可能となる。   (4) When it is determined by the start possibility determination means 172, 50b that the charge control means 173, 50c cannot supply the electric power necessary for starting the engine 23, the charge control means 173, 50c is based on the voltage value Vd measured by the voltage sensor 30. One or both of the charging time CT and the charging current amount CV is changed (see FIGS. 5 to 7). According to this configuration, the time from when the stop condition is satisfied to when the engine 23 is stopped can be optimized, and the time can be minimized. In addition, it is possible to minimize the frequency of determination by the startability determination means 172, 50b and suppress wasteful power consumption.

(5)バッテリ19と接続される第1電力線PLと、バッテリ19とは別個の電力源であるバッテリ11と接続される第2電力線CLとの接続/非接続を切り換えるスイッチ部SW2を有し、始動制御部17a,50は、少なくとも停止条件を満たしてからエンジン23の始動に必要な電力を供給できるか否かを判定するまでの間、第1電力線PLと第2電力線CLとを接続しないようにスイッチ部SW2(分離スイッチ)を切り換える構成とした(図1,図4,図8,図9,図11,図13を参照)。この構成によれば、始動可能性を判定する際に第1電力線PLと第2電力線CLとを非接続(すなわちスイッチ部SW2をオフ)にすることで、バッテリ19のバッテリ容量に基づいてエンジン23の始動可能性を的確に判定することができる。 (5) having a switch unit SW2 for switching connection / disconnection between the first power line PL connected to the battery 19 and the second power line CL connected to the battery 11 which is a power source separate from the battery 19, The start control units 17a and 50 do not connect the first power line PL and the second power line CL until at least whether the power necessary for starting the engine 23 can be supplied after satisfying the stop condition. The switch part SW2 (separation switch) is switched to the above (see FIGS. 1, 4, 8, 9, 11, and 13). According to this configuration, when the startability is determined, the first power line PL and the second power line CL are disconnected (that is, the switch unit SW2 is turned off), so that the engine 23 is based on the battery capacity of the battery 19. Can be accurately determined.

(6)エンジン始動システム10B,10Cにおいて始動制御部50は、停止条件を満たすと、外部装置EXから停止要求信号SAが伝達され、界磁巻線Lfに界磁電流Ifを流すことなく、バッテリ19からステータ巻線Lu,Lv,Lwに電流を流し、電圧センサ30によって計測される電圧値Vdが電圧閾値Vth以上、かつ、電流センサ31によって計測されるステータ電流Isが電流閾値Ith以上であるか否かでバッテリ19が次回のエンジン23の始動に必要な電力を供給できるか否かを判定する始動可能性判定手段50bと、始動可能性判定手段50bによってエンジン23の始動に必要な電力を供給できると判定された場合には、エンジン23を停止させるエンジン停止手段50aとを有する構成とした(図9〜図11,図13を参照)。 (6) In the engine start systems 10B and 10C, when the start control unit 50 satisfies the stop condition, the stop request signal SA is transmitted from the external device EX, and the field current If does not flow through the field winding Lf. Current flows from the battery 19 to the stator windings Lu, Lv, Lw, the voltage value Vd measured by the voltage sensor 30 is equal to or greater than the voltage threshold Vth, and the stator current Is measured by the current sensor 31 is equal to or greater than the current threshold Ith. Depending on whether or not the battery 19 can supply power necessary for starting the engine 23 next time, the startability determining means 50b for determining whether or not the battery 19 can supply power necessary for starting the engine 23, and the power required for starting the engine 23 by the startability determining means 50b. When it is determined that the engine can be supplied, an engine stop means 50a for stopping the engine 23 is provided (FIGS. 9 to 11). Referring to FIG. 13).

この構成によれば、始動可能性判定手段50bは、停止条件を満たす場合(特にエンジン23の停止直前)にバッテリ19の電圧値Vdとステータ巻線Lu,Lv,Lwに流れるステータ電流Isの計測を行う。計測された電圧値Vdが電圧閾値Vth以上、かつ、計測されたステータ電流Is(電流値)が電流閾値Ith以上であるか否かで、バッテリ19が次回のエンジン23の始動に必要な電力を供給できるか否かを判定する。この判定は、エンジン23を停止するまでのエンジン23の運転状況などによる影響を受けないので、判定精度を従来よりも向上させることができる。また、界磁巻線Lfに電流を流さない状態でステータ巻線Lu,Lv,Lwにステータ電流Isを流すため、回転電機51(51a,51b)には出力トルクが生じない。そのため、エンジン23が不用意に作動するのを防止することができる。
According to this configuration, the startability determination unit 50b measures the voltage value Vd of the battery 19 and the stator current Is flowing in the stator windings Lu, Lv, and Lw when the stop condition is satisfied (particularly immediately before the engine 23 is stopped). I do. Depending on whether or not the measured voltage value Vd is equal to or greater than the voltage threshold value Vth and the measured stator current Is (current value) is equal to or greater than the current threshold value Ith, the battery 19 supplies electric power necessary for starting the engine 23 next time. It is determined whether or not it can be supplied. Since this determination is not affected by the operation state of the engine 23 until the engine 23 is stopped, the determination accuracy can be improved as compared with the conventional case. Further, since the stator current Is is passed through the stator windings Lu, Lv, Lw in a state where no current is passed through the field winding Lf, no output torque is generated in the rotating electrical machine 51 (51a, 51b). Therefore, it is possible to prevent the engine 23 from operating inadvertently.

10(10A,10B,10C) エンジン始動システム
11,19,20 バッテリ
17,51 回転電機
17a,50 始動制御部
171 信号出力手段
172,50b 始動可能性判定手段
23 エンジン
30 電圧センサ
31,32 電流センサ
EX 外部装置
Is ステータ電流(固定子電流)
Lf 界磁巻線
Lu,Lv,Lw ステータ巻線(固定子巻線)
SA 停止要求信号
SB 停止許可信号
10 (10A, 10B, 10C) Engine start system 11, 19, 20 Battery 17, 51 Rotating electrical machine 17a, 50 Start controller 171 Signal output means 172, 50b Start possibility determination means 23 Engine 30 Voltage sensor 31, 32 Current sensor EX External device Is Stator current (stator current)
Lf Field winding Lu, Lv, Lw Stator winding (stator winding)
SA stop request signal SB stop permission signal

Claims (10)

エンジン(23)と機械的に接続されるとともに、ステータ巻線(Lu,Lv,Lw)と界磁巻線(Lf)とを備えた回転電機本体部(17b)を有する回転電機(17)において、
停止している前記エンジンの運転が必要な始動条件を満たすと、外部装置(EX)から始動信号が伝達され、バッテリ(19)から前記ステータ巻線および前記界磁巻線にそれぞれ電流を流して、前記エンジンを始動させるべく前記回転電機本体部を作動させる制御を行う始動制御部(17a)を有し、
前記始動制御部は、
前記エンジンの運転が不要な停止条件を満たすと、前記外部装置から停止要求信号(SA)が伝達され、前記界磁巻線に電流(If)を流すことなく、前記バッテリから前記ステータ巻線に電流(Is)を流し、前記バッテリの電圧を計測する電圧センサによって計測される電圧値(Vd)が電圧閾値(Vth)以上、かつ、前記ステータ巻線に流れる電流を計測する電流センサによって計測される電流値(Is)が電流閾値(Ith)以上であるか否かで前記バッテリが次回の前記エンジンの始動に必要な電力を供給できるか否かを判定する始動可能性判定手段(172)と、
前記始動可能性判定手段によって次回の前記エンジンの始動に必要な電力を供給できると判定された場合には、前記エンジンを停止させるべく前記外部装置に前記エンジンの停止を許可する停止許可信号(SB)を出力する信号出力手段(171)と、
を有することを特徴とする回転電機。
In a rotating electrical machine (17) mechanically connected to an engine (23) and having a rotating electrical machine main body (17b) having a stator winding (Lu, Lv, Lw) and a field winding (Lf ). ,
When a start condition necessary for operation of the stopped engine is satisfied, a start signal is transmitted from the external device (EX), and current is supplied from the battery (19) to the stator winding and the field winding. And a start control unit (17a) for performing control to operate the rotating electrical machine main body unit to start the engine ,
The start controller is
When a stop condition that does not require the operation of the engine is satisfied, a stop request signal (SA) is transmitted from the external device, and the current (If) does not flow through the field winding, and the battery turns to the stator winding. A voltage value (Vd) measured by a voltage sensor for passing a current (Is) and measuring the voltage of the battery is equal to or greater than a voltage threshold (Vth), and is measured by a current sensor for measuring a current flowing through the stator winding. Startability determination means (172) for determining whether or not the battery can supply electric power necessary for the next start of the engine based on whether or not the current value (Is) is equal to or greater than the current threshold (Ith). ,
When it is determined by the start possibility determination means that it is possible to supply power necessary for the next start of the engine, a stop permission signal (SB) for permitting the external device to stop the engine to stop the engine. ) To output signal output means (171);
A rotating electric machine comprising:
前記始動制御部は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定された場合には、前記エンジンを停止させずに前記エンジンの運転を継続し、前記回転電機で発生する電力を前記バッテリに充電する制御を行う充電制御手段(173)をさらに有し、
前記信号出力手段は、前記バッテリへの充電を終了する充電終了条件を満たすまで前記充電制御手段による前記バッテリへの充電を行った後、前記停止許可信号を出力することを特徴とする請求項1に記載の回転電機。
When the startability determination unit determines that the electric power necessary for starting the engine cannot be supplied by the startability determination unit, the start control unit continues the operation of the engine without stopping the engine. Charging control means (173) for performing control to charge the battery with electric power generated in
The signal output means outputs the stop permission signal after charging the battery by the charge control means until a charge termination condition for ending charging of the battery is satisfied. The rotating electrical machine described in 1.
前記充電終了条件は、充電を行う時間である充電時間(CT)と、充電を行う電流量である充電電流量(CV)とのうちで一方または双方を含むことを特徴とする請求項2に記載の回転電機。   The charge completion condition includes one or both of a charge time (CT) that is a charge time and a charge current amount (CV) that is a charge current amount. The rotating electrical machine described. 前記充電制御手段は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定されると、前記電圧センサによって計測される電圧値に基づいて前記充電時間および前記充電電流量のうちで一方または双方を変化させることを特徴とする請求項3に記載の回転電機。   When it is determined by the start possibility determination unit that the electric power necessary for starting the engine cannot be supplied, the charge control unit determines the charge time and the charge current amount based on a voltage value measured by the voltage sensor. The rotating electrical machine according to claim 3, wherein one or both of them are changed. 前記バッテリと接続される第1電力線(PL)と、前記バッテリとは別個の電力源と接続される第2電力線(CL)との接続/非接続を切り換えるスイッチ部(SW2)を有し、
前記始動制御部は、少なくとも前記停止条件を満たしてから前記エンジンの始動に必要な電力を供給できるか否かを判定するまでの間、前記第1電力線と前記第2電力線とを接続しないように前記スイッチ部を切り換えることを特徴とする請求項1から4のいずれか一項に記載の回転電機。
A switch unit (SW2) that switches connection / disconnection between a first power line (PL) connected to the battery and a second power line (CL) connected to a power source separate from the battery;
The start control unit does not connect the first power line and the second power line until at least whether the power necessary for starting the engine can be supplied after the stop condition is satisfied. The rotating electrical machine according to any one of claims 1 to 4, wherein the switch unit is switched.
エンジン(23)と機械的に接続されるとともにステータ巻線(Lu,Lv,Lw)と界磁巻線(Lf)とを備える回転電機(51)と、
停止している前記エンジンの運転が必要な始動条件を満たすと、外部装置(EX)から始動信号が伝達され、バッテリ(19)から前記ステータ巻線および前記界磁巻線にそれぞれ電流を流して、前記エンジンを始動させるべく前記回転電機を作動させる制御を行う始動制御部(50)とを有し、
前記エンジンの運転が不要な停止条件を満たすと前記エンジンを停止させ、停止している前記エンジンの運転が必要な始動条件を満たすと前記エンジンを始動させるエンジン始動システム(10,10B,10C)において、
前記始動制御部は、
前記停止条件を満たすと、前記外部装置から停止要求信号(SA)が伝達され、前記界磁巻線に電流(If)を流すことなく、前記バッテリから前記ステータ巻線に電流(Is)を流し、前記バッテリの電圧を計測する電圧センサによって計測される電圧値(Vd)が電圧閾値(Vth)以上、かつ、前記ステータ巻線に流れる電流を計測する電流センサによって計測される電流値(Is)が電流閾値(Ith)以上であるか否かで前記バッテリが次回の前記エンジンの始動に必要な電力を供給できるか否かを判定する始動可能性判定手段(50b)と、
前記始動可能性判定手段によって次回の前記エンジンの始動に必要な電力を供給できると判定された場合には、前記エンジンを停止させるエンジン停止手段(50a)と、
を有することを特徴とするエンジン始動システム。
A rotating electrical machine (51) mechanically connected to the engine (23) and having a stator winding (Lu, Lv, Lw) and a field winding (Lf);
When a start condition necessary for operation of the stopped engine is satisfied, a start signal is transmitted from the external device (EX), and current is supplied from the battery (19) to the stator winding and the field winding. A start control unit (50) for controlling the rotating electrical machine to start the engine .
In an engine start system (10, 10B, 10C) that stops the engine when a stop condition that does not require operation of the engine is satisfied, and starts the engine when a start condition that requires operation of the stopped engine is satisfied. ,
The start controller is
When the stop condition is satisfied, a stop request signal (SA) is transmitted from the external device, and a current (Is) is supplied from the battery to the stator winding without supplying a current (If) to the field winding. The voltage value (Vd) measured by the voltage sensor that measures the battery voltage is equal to or greater than the voltage threshold (Vth), and the current value (Is) measured by the current sensor that measures the current flowing through the stator winding. Startability determination means (50b) for determining whether or not the battery can supply electric power necessary for the next start of the engine depending on whether or not is equal to or greater than a current threshold value (Ith) ;
An engine stop means (50a) for stopping the engine when it is determined by the start possibility determination means that the electric power necessary for the next start of the engine can be supplied;
An engine start system comprising:
前記始動制御部は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定された場合には、前記エンジンを停止させずに前記エンジンの運転を継続し、前記回転電機で発生する電力を前記バッテリに充電する制御を行う充電制御手段(50c)をさらに有し、
前記エンジン停止手段は、前記バッテリへの充電を終了する充電終了条件を満たすまで前記充電制御手段による前記バッテリへの充電を行った後、前記エンジンを停止させるべく前記外部装置に前記エンジンの停止を許可する停止許可信号(SB)を出力することを特徴とする請求項6に記載のエンジン始動システム。
When the startability determination unit determines that the electric power necessary for starting the engine cannot be supplied by the startability determination unit, the start control unit continues the operation of the engine without stopping the engine. Charging control means ( 50c ) for performing control to charge the battery with electric power generated in
The engine stop means causes the external device to stop the engine so as to stop the engine after charging the battery by the charge control means until a charge termination condition for ending charging of the battery is satisfied. The engine start system according to claim 6, wherein a stop permission signal (SB) to be permitted is output.
前記充電終了条件は、充電を行う時間である充電時間(CT)と、充電を行う電流量である充電電流量(CV)とのうちで一方または双方を含むことを特徴とする請求項7に記載のエンジン始動システム。   The charge end condition includes one or both of a charge time (CT) that is a charge time and a charge current amount (CV) that is a charge current amount. The engine starting system as described. 前記充電制御手段は、前記始動可能性判定手段によって前記エンジンの始動に必要な電力を供給できないと判定されると、前記電圧センサによって計測される電圧値に基づいて前記充電時間および前記充電電流量のうちで一方または双方を変化させることを特徴とする請求項8に記載のエンジン始動システム。   When it is determined by the start possibility determination unit that the electric power necessary for starting the engine cannot be supplied, the charge control unit determines the charge time and the charge current amount based on a voltage value measured by the voltage sensor. 9. The engine starting system according to claim 8, wherein one or both of them are changed. 前記バッテリと接続される第1電力線(PL)と、前記バッテリとは別個の電力源と接続される第2電力線(CL)との接続/非接続を切り換えるスイッチ部(SW2)を有し、
前記始動制御部は、少なくとも前記停止条件を満たしてから前記エンジンの始動に必要な電力を供給できるか否かを判定するまでの間、前記第1電力線と前記第2電力線とを接続しないように前記スイッチ部を切り換えることを特徴とする請求項6から9のいずれか一項に記載のエンジン始動システム。
A switch unit (SW2) that switches connection / disconnection between a first power line (PL) connected to the battery and a second power line (CL) connected to a power source separate from the battery;
The start control unit does not connect the first power line and the second power line until at least whether the power necessary for starting the engine can be supplied after the stop condition is satisfied. The engine start system according to any one of claims 6 to 9, wherein the switch unit is switched.
JP2014140502A 2014-07-08 2014-07-08 Rotating electric machine and engine starting system Expired - Fee Related JP6238079B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014140502A JP6238079B2 (en) 2014-07-08 2014-07-08 Rotating electric machine and engine starting system
FR1556025A FR3023658B1 (en) 2014-07-08 2015-06-29 ROTATING ELECTRIC MACHINE AND ENGINE STARTING SYSTEM
DE102015110956.5A DE102015110956B4 (en) 2014-07-08 2015-07-07 Rotating electric machine and engine starting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140502A JP6238079B2 (en) 2014-07-08 2014-07-08 Rotating electric machine and engine starting system

Publications (2)

Publication Number Publication Date
JP2016017456A JP2016017456A (en) 2016-02-01
JP6238079B2 true JP6238079B2 (en) 2017-11-29

Family

ID=54867085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140502A Expired - Fee Related JP6238079B2 (en) 2014-07-08 2014-07-08 Rotating electric machine and engine starting system

Country Status (3)

Country Link
JP (1) JP6238079B2 (en)
DE (1) DE102015110956B4 (en)
FR (1) FR3023658B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052190A1 (en) * 2016-06-06 2017-12-08 Peugeot Citroen Automobiles Sa METHOD FOR AUTHORIZING THE STOPPING OF THE THERMAL MOTOR OF A MOTOR VEHICLE
JP6928833B2 (en) * 2017-09-21 2021-09-01 古河電気工業株式会社 Power management device, power management system, and power management method
JP2023088091A (en) * 2021-12-14 2023-06-26 本田技研工業株式会社 Engine-driven generator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117400A (en) * 1989-09-28 1991-05-20 Nippondenso Co Ltd Controller for ac generator for vehicle
FR2795770B1 (en) 1999-06-30 2001-09-21 Valeo Equip Electr Moteur METHODS AND SYSTEMS FOR AUTOMATICALLY CONTROLLING THE SHUTDOWN AND RESTART OF A HEAT ENGINE OF A VEHICLE DURING TEMPORARY IMMOBILIZATION THEREOF
JP2001304008A (en) * 2000-04-25 2001-10-31 Nissan Motor Co Ltd Control device for vehicle
JP3976180B2 (en) * 2002-06-27 2007-09-12 本田技研工業株式会社 Battery diagnostic device and engine control device equipped with the same
JP3771526B2 (en) * 2002-10-21 2006-04-26 株式会社日立製作所 Secondary battery evaluation method and power storage device
JP2005102425A (en) * 2003-09-25 2005-04-14 Toyota Motor Corp Driving device for vehicle
JP2005233109A (en) * 2004-02-20 2005-09-02 Toyota Motor Corp Starting device for internal combustion engine
JP4641838B2 (en) * 2005-03-18 2011-03-02 ダイハツ工業株式会社 Idle operation stop control method for internal combustion engine
JP2008230433A (en) * 2007-03-21 2008-10-02 Auto Network Gijutsu Kenkyusho:Kk Startability forecasting device and power source control device
DE102008049804A1 (en) 2008-09-30 2010-04-01 Bayerische Motoren Werke Aktiengesellschaft Vehicle electrical energy system has electrical machine, particularly synchronous machine or starter-generator, where energizing circuit and stator circuit are independently connected with electrical energy storage
JP2010270747A (en) * 2009-04-23 2010-12-02 Denso Corp Automatic engine control device
DE102009029227A1 (en) 2009-09-04 2011-03-10 Robert Bosch Gmbh Start-stop control and method of operating the same
DE102009047034A1 (en) 2009-11-24 2011-05-26 Robert Bosch Gmbh Control and method for operating the controller for a starting device
EP2676856B1 (en) * 2011-02-15 2018-02-07 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method of controlling the same
FR2985110B1 (en) * 2011-12-22 2015-03-20 Valeo Equip Electr Moteur METHOD AND DEVICE FOR CONTROLLING THE OPERATION OF A SYSTEM FOR AUTOMATIC STARTING / STOPPING OF A THERMAL MOTOR OF A MOTOR VEHICLE
FR2996511B1 (en) * 2012-10-09 2014-11-07 Renault Sa METHOD AND DEVICE FOR CONTROLLING AND CONTROLLING THE STARTING OF A THERMAL MOTOR OF A HYBRID VEHICLE

Also Published As

Publication number Publication date
JP2016017456A (en) 2016-02-01
DE102015110956B4 (en) 2022-03-31
DE102015110956A1 (en) 2016-01-14
FR3023658B1 (en) 2019-09-13
FR3023658A1 (en) 2016-01-15

Similar Documents

Publication Publication Date Title
JP6399048B2 (en) vehicle
CN102795119B (en) Method and apparatus to operate a powertrain system including an electric machine having a disconnected high-voltage battery
US8467924B2 (en) Control apparatus and control method for hybrid vehicle
EP1736355A2 (en) Electrical power train of vehicle
JP2009148073A (en) Method and device for charging battery
JP6642496B2 (en) Power supply and power supply system
KR101844094B1 (en) Transmission Control Apparatus of Belt Type Mild Hybrid Vehicle and Transmission Control Method Using the Same
JP6179504B2 (en) Hybrid vehicle
JP2015196447A (en) Power supply system for vehicle
JP2015051692A (en) Hybrid vehicle and hybrid vehicle control method
JP6238079B2 (en) Rotating electric machine and engine starting system
JP2012165536A (en) Electric vehicle
CN105408620B (en) For the method and apparatus for the alternator-starter for controlling motor vehicles, and corresponding alternator-starter
JP2012249455A (en) Electric system in vehicle
JP6560713B2 (en) Vehicle power supply
JP5174617B2 (en) Rotating electrical machine device and control device thereof
US8680796B2 (en) Control device and control method for power converter
JP2021093775A (en) Power supply
US10742156B2 (en) Control apparatus of rotating electrical machine
US11489475B2 (en) Power conversion apparatus
JP7339795B2 (en) vehicle power supply
KR102394863B1 (en) Method for Running Hold with Fail-Safe Condition and Hybrid Electric Vehicle thereof
WO2022059106A1 (en) Power converter and drive controller
JP6711305B2 (en) Rotating electric machine control device
WO2018105407A1 (en) Dynamo-electric machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R151 Written notification of patent or utility model registration

Ref document number: 6238079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees