JP6237657B2 - Galvanized steel sheet and method for producing the same - Google Patents

Galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP6237657B2
JP6237657B2 JP2015008428A JP2015008428A JP6237657B2 JP 6237657 B2 JP6237657 B2 JP 6237657B2 JP 2015008428 A JP2015008428 A JP 2015008428A JP 2015008428 A JP2015008428 A JP 2015008428A JP 6237657 B2 JP6237657 B2 JP 6237657B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
galvanized steel
galvanized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015008428A
Other languages
Japanese (ja)
Other versions
JP2016132801A (en
Inventor
雄介 木俣
雄介 木俣
藤田 耕一郎
耕一郎 藤田
船川 義正
義正 船川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015008428A priority Critical patent/JP6237657B2/en
Publication of JP2016132801A publication Critical patent/JP2016132801A/en
Application granted granted Critical
Publication of JP6237657B2 publication Critical patent/JP6237657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主として自動車用や家電用の電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板などの亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to a galvanized steel sheet such as an electrogalvanized steel sheet, a hot dip galvanized steel sheet, and an alloyed hot dip galvanized steel sheet for automobiles and home appliances and a method for producing the same.

自動車用や家電用として用いられる鋼板は、通常、プレス成形が施されて製品となる。近年、これらの製品の製造コスト削減等のために、より大きな鋼板を用いて成形する一体成形化の傾向が進み、より一層深絞り性に優れた鋼板が必要とされるようになってきている。このような深絞り用の鋼板としては、一般に、極低炭素鋼にTiやNbといった炭窒化物形成元素を添加したいわゆるIF(Interstitial Free)鋼が用いられている。このような深絞り用の極低炭素鋼板では、炭窒化物形成元素を添加していない鋼に比べて再結晶温度が大きく上昇し、鋼板表面に未再結晶が残存しやすいという問題がある。鋼板表面に未再結晶粒が残存することで、局部的な深絞り性の低下を招いたり、溶融亜鉛めっきや電気亜鉛めっき処理後にめっき表面に筋状の模様を発生させ、外観を損ねたりする場合がある。   Steel plates used for automobiles and household appliances are usually subjected to press forming to become products. In recent years, in order to reduce the manufacturing cost of these products, etc., the tendency of integral molding to form using larger steel plates has progressed, and steel plates with even better deep drawability have been required. . As such a steel sheet for deep drawing, so-called IF (Interstitial Free) steel obtained by adding a carbonitride-forming element such as Ti or Nb to ultra-low carbon steel is generally used. Such an ultra-low carbon steel sheet for deep drawing has a problem that the recrystallization temperature is greatly increased as compared with a steel not added with a carbonitride-forming element, and unrecrystallized tends to remain on the steel sheet surface. Non-recrystallized grains remain on the surface of the steel sheet, causing local deep drawability to deteriorate, or generating streak patterns on the plated surface after hot dip galvanizing or electrogalvanizing treatment, thereby impairing the appearance. There is a case.

Ti添加極低炭素溶融亜鉛めっき鋼板の筋模様を抑制し、局部的な深絞り性の低下を防止する方法に関しては、いくつかの提案がなされている。例えば、特許文献1には、Ti含有量に応じて熱間圧延前のスラブ加熱温度を低下させ、地鉄表層部の結晶粒径または集合組織を均一化することにより、深絞り性を良好にしつつ、筋ムラを防止する技術が開示されている。しかし、スラブ加熱温度が低いと、コイル全長での熱間圧延時の仕上げ温度の確保が難しく、コイル長手方向で集合組織が異なることによるめっき表面性状の差が問題となる。   Several proposals have been made regarding methods for suppressing streaks in Ti-added ultra-low carbon hot dip galvanized steel sheets and preventing local deep drawability. For example, in Patent Document 1, the slab heating temperature before hot rolling is reduced according to the Ti content, and the crystal grain size or texture of the surface layer of the base iron is made uniform, thereby improving the deep drawability. However, a technique for preventing streaks is disclosed. However, if the slab heating temperature is low, it is difficult to ensure the finishing temperature during hot rolling over the entire length of the coil, and the difference in plating surface properties due to the difference in texture in the longitudinal direction of the coil becomes a problem.

また、特許文献2には、熱延仕上げ終了温度を高め、焼鈍後に未再結晶組織を残さないようにすることにより、筋模様を防止する方法が開示されている。更に、特許文献3には、同じく熱延仕上げ終了温度を高め、焼鈍後の集合組織を制御することにより、筋模様を抑制する方法が開示されている。しかし、これらの特許文献2および特許文献3に開示された技術のように熱延仕上げ温度を高くする方法は、スケール疵の発生を招くために、スケールに起因する表面欠陥が生じやすい。   Patent Document 2 discloses a method of preventing streaking by increasing the hot rolling finish finishing temperature and leaving no unrecrystallized structure after annealing. Furthermore, Patent Document 3 discloses a method of suppressing streaks by increasing the hot rolling finish finishing temperature and controlling the texture after annealing. However, the methods of increasing the hot rolling finishing temperature as in the techniques disclosed in Patent Document 2 and Patent Document 3 cause generation of scale wrinkles, and thus surface defects due to scale are likely to occur.

このように、前述した特許文献1〜3に開示された技術では、筋模様がなく表面性状が良好で、十分な深絞り性を有する亜鉛めっき鋼板はまだ提供できずにいた。   As described above, in the techniques disclosed in Patent Documents 1 to 3 described above, a galvanized steel sheet having no streaks, good surface properties, and sufficient deep drawability has not been provided yet.

特開平7−228944号公報JP-A-7-228944 特開2001−342522号公報JP 2001-342522 A 特開平10−18011号公報JP-A-10-18011

本発明は、上述した問題点を解決するためになされたものであり、その目的は、筋模様がない良好な表面性状を有し、かつ優れた深絞り性を有する亜鉛めっき鋼板を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and an object thereof is to provide a galvanized steel sheet having a good surface property without streaks and an excellent deep drawability. It is.

従来の自動車の外装板用のTi添加IF鋼板では外観ムラが生じる場合があった。そこで、このような外観ムラが生じる鋼板について詳細に調査した。その結果、外観ムラが生じる鋼板の板厚表層部には{100}面の集合組織を持つ未再結晶粒(以下、{100}未再結晶粒と記す。)が存在することを知見した。また、{100}未再結晶粒が表層付近に残存した場合には、合金化処理時に合金化速度が局部的に異なるため外観ムラが生じることもわかった。{100}未再結晶粒が残存する部分には粒径が20nm未満のごく微細な析出物が多く存在することがわかった。このような微細な析出物は、自動車外装板用鋼板に施される一般的な焼鈍条件では溶解せずに残存し、残存することでいわゆるピン止め効果によって表層付近では再結晶が容易に進まず、{100}未再結晶粒が残存するものと考えられる。そこで本発明では、鋼板表面に高い転位密度を与えることで再結晶を促進させ、鋼板表層の{100}未再結晶粒の発生を抑制できることを見出した。   In the conventional Ti-added IF steel sheet for automobile exterior panels, uneven appearance may occur. Therefore, the steel sheets in which such appearance irregularities were generated were investigated in detail. As a result, it was found that non-recrystallized grains having a {100} plane texture (hereinafter referred to as {100} non-recrystallized grains) exist in the plate thickness surface layer portion of the steel sheet where the appearance unevenness occurs. It was also found that when {100} unrecrystallized grains remain in the vicinity of the surface layer, unevenness of appearance occurs because the alloying speed is locally different during the alloying treatment. It was found that there are many very fine precipitates having a particle size of less than 20 nm in the portion where {100} unrecrystallized grains remain. Such fine precipitates remain undissolved under the general annealing conditions applied to steel sheets for automobile exterior plates, and recrystallization does not easily proceed near the surface layer due to the so-called pinning effect. , {100} non-recrystallized grains are considered to remain. Therefore, in the present invention, it was found that recrystallization is promoted by giving a high dislocation density to the steel sheet surface, and generation of {100} unrecrystallized grains on the steel sheet surface layer can be suppressed.

以上の検討結果を踏まえて、本発明では、Tiを含有するIF鋼であって、深絞り性を良好にすると共に、IF鋼で発生しやすい表面欠陥を抑制することで表面外観を良好にした亜鉛めっき鋼板を得るために、鋼板原板表面において、板面に平行な方向の{100}面X線強度をランダム強度比で0.8以下、かつ未再結晶粒の占める面積率を0.10%以下とする。   Based on the above examination results, the present invention is an IF steel containing Ti, which has good deep drawability and a good surface appearance by suppressing surface defects that are likely to occur in IF steel. In order to obtain a galvanized steel sheet, the {100} plane X-ray intensity in the direction parallel to the plate surface is 0.8 or less in random intensity ratio on the surface of the steel sheet, and the area ratio occupied by unrecrystallized grains is 0.10. % Or less.

なお、板面に平行な方向の{100}面X線強度は逆極点図法により測定することができる。測定方法の詳細条件については、後述する。   The {100} plane X-ray intensity in the direction parallel to the plate surface can be measured by an inverse pole figure method. Detailed conditions of the measurement method will be described later.

本発明は、このような知見に基づきなされたものであり、その要旨は次のとおりである。
[1]質量%で、C:0.0005%以上0.0050%以下、Si:0.20%以下、Mn:0.40%以下、P:0.050%以下、S:0.030%以下、Al:0.010%以上0.080%以下、N:0.0050%以下、Ti:0.005%以上0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
表面において、板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下であり、未再結晶粒の占める面積率が0.10%以下である鋼板原板と、
該鋼板原板表面に形成された亜鉛めっき被膜と、を有する亜鉛めっき鋼板。
[2]前記成分組成として、更に、質量%で、Nb:0.001%以上0.010%以下を含有することを特徴とする前記[1]に記載の亜鉛めっき鋼板。
[3]前記成分組成として、更に、質量%で、B: 0.0002%以上0.0030%以下を含有することを特徴とする前記[1]または[2]に記載の亜鉛めっき鋼板。
[4]前記成分組成として、更に、質量%で、Sb:0.001%以上0.100%以下および/またはSn:0.001%以上0.100%以下を含有することを特徴とする前記[1]〜[3]のいずれか1つに記載の亜鉛めっき鋼板。
[5]前記[1]〜[4]のいずれか1つに記載の成分組成からなるスラブを、加熱温度1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ温度で熱間圧延し、600℃以上800℃以下の温度で巻取り、酸洗、冷間圧延後、表面から深さ方向に200μmまでの相当転位密度ρが1.0×1015−2以上である鋼板に対して700℃以上900℃以下の焼鈍を行い、前記鋼板表面に亜鉛めっき処理を行う亜鉛めっき鋼板の製造方法。ここで、前記相当転移密度ρは、14.4ε/bを示す(εは鋼板の不均一歪を表し、bは2.5×10−10mである。)。
This invention is made | formed based on such knowledge, The summary is as follows.
[1] By mass%, C: 0.0005% to 0.0050%, Si: 0.20% or less, Mn: 0.40% or less, P: 0.050% or less, S: 0.030% In the following, Al: 0.010% or more and 0.080% or less, N: 0.0050% or less, Ti: 0.005% or more and 0.100% or less, with the balance being Fe and inevitable impurities Have
On the surface, the {100} plane X-ray intensity in the direction parallel to the plate surface is 0.8 or less in random intensity ratio, and the area ratio occupied by non-recrystallized grains is 0.10% or less,
A galvanized steel sheet having a galvanized film formed on the surface of the original steel sheet.
[2] The galvanized steel sheet according to the above [1], further containing, by mass%, Nb: 0.001% or more and 0.010% or less as the component composition.
[3] The galvanized steel sheet according to the above [1] or [2], wherein the component composition further contains B: 0.0002% to 0.0030% by mass%.
[4] The above-mentioned component composition further contains, in mass%, Sb: 0.001% or more and 0.100% or less and / or Sn: 0.001% or more and 0.100% or less. The galvanized steel sheet according to any one of [1] to [3].
[5] A slab comprising the component composition according to any one of [1] to [4] is heated at a heating temperature of 1000 ° C. to 1300 ° C., and hot at a finishing temperature of 800 ° C. to 1000 ° C. Rolled and rolled up at a temperature of 600 ° C. or higher and 800 ° C. or lower, pickled, and cold-rolled, and then the equivalent dislocation density ρ from the surface to the depth of 200 μm is 1.0 × 10 15 m −2 or higher. The manufacturing method of the galvanized steel plate which anneals 700 degreeC or more and 900 degrees C or less with respect to the said steel plate surface, and performs the galvanization process on the said steel plate surface. Here, the corresponding transition density ρ shows 14.4ε 2 / b 2 (ε represents the uneven distortion of the steel sheet, b is 2.5 × 10 -10 m.).

本発明によれば、筋状模様がなく表面性状が良好で、かつ優れた深絞り性を有する亜鉛めっき鋼板を提供することができる。また、本発明の亜鉛めっき鋼板は、スラブ加熱温度を低下させたり、仕上げ圧延温度を高くしたりせずに製造することができる。   According to the present invention, it is possible to provide a galvanized steel sheet having no streak pattern, good surface properties, and excellent deep drawability. Moreover, the galvanized steel sheet of the present invention can be manufactured without lowering the slab heating temperature or increasing the finish rolling temperature.

本発明に係る亜鉛めっき鋼板は、質量%で、C:0.0005%以上0.0050%以下、Si:0.20%以下、Mn:0.40%以下、P:0.050%以下、S:0.030%以下、Al:0.010%以上0.080%以下、N:0.0050%以下、Ti:0.005%以上0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、表面において、板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下であり、未再結晶粒の占める面積率が0.10%以下である鋼板原板と、該鋼板原板表面に形成された亜鉛めっき被膜と、を有する。以下、本発明に係る亜鉛めっき鋼板について、亜鉛めっき被膜が施された鋼板原板の成分組成および組織、亜鉛めっき被膜、亜鉛めっき鋼板の製造方法に分けて詳細に説明する。   The galvanized steel sheet according to the present invention is, in mass%, C: 0.0005% or more and 0.0050% or less, Si: 0.20% or less, Mn: 0.40% or less, P: 0.050% or less, S: 0.030% or less, Al: 0.010% or more and 0.080% or less, N: 0.0050% or less, Ti: 0.005% or more and 0.100% or less, with the balance being Fe and inevitable The surface composition has a {100} plane X-ray intensity in the direction parallel to the plate surface at a random intensity ratio of 0.8 or less, and the area ratio occupied by non-recrystallized grains is 0.8. It has a steel plate original plate that is 10% or less, and a galvanized film formed on the surface of the steel plate original plate. Hereinafter, the galvanized steel sheet according to the present invention will be described in detail according to the component composition and structure of a steel sheet original sheet to which a galvanized film is applied, the galvanized film, and the method for producing the galvanized steel sheet.

(鋼板原板について)
[成分組成]
まず、本発明に係る亜鉛めっきが施される鋼板原板の成分組成について説明する。なお、以下において成分量の%表示は、特にことわらない限り質量%を意味する。
(About steel plate)
[Ingredient composition]
First, the component composition of the steel plate original plate to which the galvanizing according to the present invention is applied will be described. In the following, “%” of the component amount means “% by mass” unless otherwise specified.

<C:0.0005%以上0.0050%以下>
Cは、優れたプレス加工性、特に、優れた深絞り性を得るためには、できるだけ低減する必要があり、C含有量は0.0050%以下に規制する。また、C含有量は0.0030%以下にすることが好ましい。一方、C含有量が0.0005%未満では、結晶粒径が著しく粗大化して降伏強度が顕著に低下し、面内剛性が低下して腰折れなどの表面欠陥が発生しやすくなるため、0.0005%以上とする。
<C: 0.0005% or more and 0.0050% or less>
C must be reduced as much as possible in order to obtain excellent press workability, particularly excellent deep drawability, and the C content is regulated to 0.0050% or less. Further, the C content is preferably 0.0030% or less. On the other hand, if the C content is less than 0.0005%, the crystal grain size becomes extremely coarse, the yield strength is remarkably lowered, the in-plane rigidity is lowered, and surface defects such as hip breakage tend to occur. 0005% or more.

<Si:0.20%以下>
Siは、加工性を劣化させることなく固溶強化により鋼を強化するのに有用な元素であるが、その含有量が0.20%を超えると、焼鈍時に表面に濃化して亜鉛めっき性を阻害し、表面外観が劣化するため、Si含有量は0.20%以下とする。
<Si: 0.20% or less>
Si is an element useful for strengthening steel by solid solution strengthening without degrading workability. However, if its content exceeds 0.20%, it concentrates on the surface during annealing and increases galvanizing properties. Inhibition and surface appearance deteriorate, so the Si content is 0.20% or less.

<Mn:0.40%以下>
Mnは、鋼を強化する作用があり、所望の強度に応じて必要量を含有させるが、その含有量が0.40%を超えると、微細なMnSが生じて{100}面集合組織が残留しやすくなるため、Mn含有量は0.40%以下とする。好ましくは0.30%以下とする。
<Mn: 0.40% or less>
Mn has an action of strengthening steel, and a necessary amount is contained according to a desired strength. However, when the content exceeds 0.40%, fine MnS is generated and a {100} plane texture remains. Therefore, the Mn content is set to 0.40% or less. Preferably it is 0.30% or less.

<P:0.050%以下>
Pは、鋼を強化する作用があり、所望の強度に応じて必要量を含有させるが、その含有量が0.050%を超えると、めっき性や外観を劣化させるため、P含有量は0.050%以下とする。好ましくは0.030%以下とする。
<P: 0.050% or less>
P has an effect of strengthening steel, and a necessary amount is contained depending on a desired strength. However, when the content exceeds 0.050%, the plating property and appearance are deteriorated, so the P content is 0. .050% or less. Preferably it is 0.030% or less.

<S:0.030%以下>
Sは、不可避的不純物として鋼中に存在し、S含有量が0.030%超えでは鋼板製造時の熱間割れが生じ易くなるとともに、鋼中で多量の硫化物が発生し、再結晶を抑制するため、表面欠陥が発生しやすくなる。そのため、S含有量は0.030%以下とする。
<S: 0.030% or less>
S is present in steel as an unavoidable impurity, and if the S content exceeds 0.030%, hot cracking during steel plate production is likely to occur, and a large amount of sulfide is generated in the steel, causing recrystallization. Therefore, surface defects are likely to occur. Therefore, the S content is 0.030% or less.

<Al:0.010%以上0.080%以下>
Alは、脱酸剤として添加する元素であり、0.010%以上必要である。一方、0.080%を超えて含有させると窒化物のピン止め効果による未再結晶粒が多く残存し、表面欠陥が発生しやすくなる。よって、Al含有量は0.010%以上0.080%以下とする。
<Al: 0.010% or more and 0.080% or less>
Al is an element to be added as a deoxidizer and needs to be 0.010% or more. On the other hand, if the content exceeds 0.080%, a large number of unrecrystallized grains remain due to the pinning effect of nitride, and surface defects are likely to occur. Therefore, the Al content is set to 0.010% or more and 0.080% or less.

<N:0.0050%以下>
Nは、AlやTiと窒化物を形成し、ピン止め効果による未再結晶粒が残存することで表面欠陥が発生しやすくなるため、N含有量は0.0050%以下とする。好ましくは0.0030%以下とする。
<N: 0.0050% or less>
N forms nitrides with Al and Ti, and non-recrystallized grains due to the pinning effect remain, so that surface defects are likely to occur. Therefore, the N content is set to 0.0050% or less. Preferably it is 0.0030% or less.

<Ti:0.005%以上0.100%>
Tiは、炭窒化物形成元素であり、深絞り性を向上させるために必要に応じて含有させる。Tiは0.005%未満ではその効果が不十分なので、Ti含有量は0.005%以上とする。0.100%を超えて含有させると鋼板原板の窒化物形成による未再結晶粒の残存や異常組織の形成を促進し、表面外観が劣化する。そのためTi含有量は0.100%以下とする。なお、好ましくはTiを0.010%以上含有させる。また、好ましくはTiを0.060%以下含有させる。
<Ti: 0.005% or more and 0.100%>
Ti is a carbonitride-forming element and is contained as necessary to improve deep drawability. If Ti is less than 0.005%, the effect is insufficient, so the Ti content is 0.005% or more. If the content exceeds 0.100%, the remaining of non-recrystallized grains and the formation of an abnormal structure are promoted due to the formation of nitride in the steel plate, and the surface appearance deteriorates. Therefore, the Ti content is 0.100% or less. In addition, Preferably 0.010% or more of Ti is contained. Further, preferably, Ti is contained by 0.060% or less.

以上の成分以外の残部は、Fe及び不可避的不純物である。また、本発明においては、Nb、B、Sb、Snは必須成分ではないが、必要に応じて以下の範囲で含有することができる。   The balance other than the above components is Fe and inevitable impurities. In the present invention, Nb, B, Sb, and Sn are not essential components, but can be contained in the following ranges as necessary.

<Nb:0.001%以上0.010%以下>
Nbは、Tiと同様に、炭窒化物を形成して加工性を向上させるのに有利な元素である。加工性向上効果を得るためにNbを含有させる場合は、0.001%以上とする。しかし、0.010%を超えて含有すると、再結晶温度が大きく上昇し、未再結晶粒の残存を招く場合がある。よって、Nbを含有する場合は、Nb含有量は0.001%以上0.010%以下とする。
<Nb: 0.001% or more and 0.010% or less>
Nb, like Ti, is an element that is advantageous for forming a carbonitride to improve workability. When Nb is contained in order to obtain the workability improvement effect, the content is made 0.001% or more. However, if the content exceeds 0.010%, the recrystallization temperature is greatly increased, and unrecrystallized grains may remain. Therefore, when Nb is contained, the Nb content is set to 0.001% or more and 0.010% or less.

<B:0.0002%以上0.0030%以下>
Bは軟質IF鋼板の粒界強化に有効な元素であり、耐二次加工脆性が必要とされる場合に0.0002%以上含有させると効果的である。しかし、0.0030%を超えてBを含有すると、鋼板製造時の表面性状の劣化や再結晶温度の上昇を引き起こす場合がある。よって、Bを含有する場合は、B含有量は0.0002%以上0.0030%以下とする。
<B: 0.0002% or more and 0.0030% or less>
B is an element effective for strengthening the grain boundary of the soft IF steel sheet. When secondary work brittleness resistance is required, it is effective to contain 0.0002% or more. However, if B is contained in excess of 0.0030%, it may cause deterioration of the surface properties and an increase in the recrystallization temperature during the production of the steel sheet. Therefore, when it contains B, B content shall be 0.0002% or more and 0.0030% or less.

<Sb:0.001%以上0.100%以下>
Sbは0.001%以上含有させることにより鋼板原板の最表層に濃化し、窒化を抑制することによって未再結晶粒の残存を抑制する。しかし、含有量が0.100%を超えると{111}面集合組織を有する未再結晶粒が減少し、{100}面集合組織を有する未再結晶粒が残存しやすくなる。よって、Sbを含有する場合は、Sb含有量は0.001%以上0.100%以下とする。
<Sb: 0.001% or more and 0.100% or less>
When Sb is contained in an amount of 0.001% or more, it concentrates in the outermost layer of the steel plate, and suppresses nitriding to suppress the remaining of non-recrystallized grains. However, when the content exceeds 0.100%, non-recrystallized grains having {111} plane texture decrease, and non-recrystallized grains having {100} plane texture tend to remain. Therefore, when it contains Sb, Sb content shall be 0.001% or more and 0.100% or less.

<Sn:0.001%以上0.100%以下>
Snは0.001%以上含有させることにより鋼板原板の最表層に濃化し、窒化を抑制することによって未再結晶粒の残存を抑制する。しかし、含有量が0.100%を超えると{111}面集合組織を有する未再結晶粒が減少し、{100}面集合組織を有する未再結晶粒が残存しやすくなる。よって、Snを含有する場合は、Sn含有量は0.001%以上0.100%以下とする。
<Sn: 0.001% or more and 0.100% or less>
When Sn is contained in an amount of 0.001% or more, it concentrates in the outermost surface layer of the steel plate, and suppresses nitriding to suppress the remaining of non-recrystallized grains. However, when the content exceeds 0.100%, non-recrystallized grains having {111} plane texture decrease, and non-recrystallized grains having {100} plane texture tend to remain. Therefore, when it contains Sn, Sn content shall be 0.001% or more and 0.100% or less.

[物性]
次に本発明の表面外観および深絞り性に優れた亜鉛めっき鋼板において、亜鉛めっき被膜が施される鋼板原板の物性について説明する。
[Physical properties]
Next, in the galvanized steel sheet excellent in surface appearance and deep drawability of the present invention, the physical properties of the steel sheet original plate to which the galvanized film is applied will be described.

<板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下>
鋼板原板表面において板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下であれば、鋼板原板の表面における板面に平行な方向での{100}面の未再結晶粒の面積比率が十分に低くなり、亜鉛めっき処理後の表面外観に優れた亜鉛めっき鋼板を得ることができる。板面に平行な方向の{100}面X線強度は逆極点図法により測定できる。また同時に、選択配向のない結晶方位が不規則な分布をするランダム試料(標準試料)の{100}面X線強度(ランダム強度)を測定し、ランダム試料の{100}面X線強度に対する実試験片の{100}面X線強度の比によりランダム強度比を算出できる。X線強度は、X線源に白色X線を用い、{100}面X線の検出にはGe半導体検出器を用いて測定することができる。この{100}面X線強度のランダム強度比は、後述する焼鈍前の鋼板の相当転位密度を制御することにより0.8以下に調整することができる。
<{100} plane X-ray intensity in a direction parallel to the plate surface is 0.8 or less in terms of random intensity ratio>
If the {100} plane X-ray intensity in the direction parallel to the plate surface on the steel plate surface is 0.8 or less in terms of the random intensity ratio, the {100} plane in the direction parallel to the plate surface on the surface of the steel plate plate The area ratio of the recrystallized grains becomes sufficiently low, and a galvanized steel sheet having an excellent surface appearance after galvanizing treatment can be obtained. The {100} plane X-ray intensity in the direction parallel to the plate surface can be measured by an inverted pole figure method. At the same time, the {100} plane X-ray intensity (random intensity) of a random sample (standard sample) in which the crystal orientation without selective orientation is irregularly distributed is measured, and the real sample relative to the {100} plane X-ray intensity of the random sample is measured. The random intensity ratio can be calculated from the ratio of the {100} plane X-ray intensity of the test piece. The X-ray intensity can be measured using white X-rays as an X-ray source and a Ge semiconductor detector for detecting {100} plane X-rays. This random intensity ratio of {100} plane X-ray intensity can be adjusted to 0.8 or less by controlling the equivalent dislocation density of the steel sheet before annealing, which will be described later.

<鋼板原板表面の未再結晶粒の割合が0.10%以下>
鋼板原板表面の未再結晶粒の割合を0.10%以下とすることで、亜鉛めっき処理被膜処理後の表面外観に優れた亜鉛めっき鋼板を得ることが出来る。亜鉛めっき鋼板の原板表層の未再結晶率を求めるには、めっき層をインヒビタ入りの15%塩酸で溶解除去した後、鋼板原板の表面を観察し、組織全体に対する未再結晶組織の占める割合(面積率)を求めて、これを未再結晶粒の割合とすればよい。この鋼板原板表面の未再結晶粒の割合は、後述する焼鈍前の鋼板の相当転位密度を制御することにより0.10以下に調整することができる。
<The ratio of non-recrystallized grains on the surface of the steel sheet is 0.10% or less>
By setting the ratio of non-recrystallized grains on the surface of the steel sheet original plate to 0.10% or less, it is possible to obtain a galvanized steel sheet having an excellent surface appearance after the galvanized film treatment. In order to obtain the non-recrystallized ratio of the surface layer of the galvanized steel sheet, the surface of the steel sheet is observed after dissolving and removing the plated layer with 15% hydrochloric acid containing inhibitor, and the ratio of the unrecrystallized structure to the entire structure ( The area ratio) may be obtained and used as the ratio of unrecrystallized grains. The ratio of the non-recrystallized grains on the surface of the steel plate can be adjusted to 0.10 or less by controlling the equivalent dislocation density of the steel plate before annealing, which will be described later.

また、鋼板原板は、フェライト単相組織とすることができる。鋼板の組織については、走査型電子顕微鏡を用いて観察することができる。具体的には、まず、鋼板表面を研磨後ナイタール(硝酸を含有するアルコール液)で腐食させる。次いで、走査型電子顕微鏡にて倍率3000倍の組織写真を撮影し、得られた組織写真データにおいて所望の領域を画像解析により抽出し、画像解析ソフト(日本ローパー社製、Image−Pro ver.7)を用い、暗色のコントラストを持つ領域をフェライトと判定することができる。   Further, the steel sheet original plate can have a ferrite single phase structure. The structure of the steel sheet can be observed using a scanning electron microscope. Specifically, first, the steel sheet surface is polished and then corroded with nital (alcohol solution containing nitric acid). Subsequently, a tissue photograph at a magnification of 3000 times was taken with a scanning electron microscope, and a desired region in the obtained tissue photograph data was extracted by image analysis, and image analysis software (Image-Pro ver. 7 manufactured by Nippon Roper Co., Ltd.) was extracted. ), It can be determined that the region having dark contrast is ferrite.

(亜鉛めっき被膜)
本発明では、鋼板原板表面に亜鉛めっき被膜が形成される。本発明の亜鉛めっき鋼板は、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)のいずれであってもよい。また、特に限定されるものではないが、亜鉛被膜の組成は、例えば、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)の場合、Znと、Fe:7〜15質量%と、Al:0.08〜0.22質量%とを含有するものとすることができ、片面あたり20〜150g/mのめっき層とすることができる。また、電気亜鉛めっき鋼板(EG)の場合、Znの付着量が0.5〜1000g/mのめっき層とすることができる。本発明の亜鉛めっき鋼板では、亜鉛めっきが施される鋼板原板が、前述した成分組成を有し、板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下であり、かつ未再結晶粒の割合が0.10%以下であるため、{100}未再結晶粒が鋼板原板表層付近に発生することを抑制でき、筋模様がなく表面性状を良好にすることができると共に、深絞り性を優れたものとすることができる。
(Zinc plating film)
In the present invention, a galvanized film is formed on the surface of the steel plate. The galvanized steel sheet of the present invention may be any of an electrogalvanized steel sheet (EG), a hot dip galvanized steel sheet (GI), and an alloyed hot dip galvanized steel sheet (GA). Although not particularly limited, the composition of the zinc coating is, for example, in the case of a hot dip galvanized steel sheet (GI) or an alloyed hot dip galvanized steel sheet (GA), and Fe: 7 to 15% by mass. , Al: 0.08 to 0.22% by mass, and a plating layer of 20 to 150 g / m 2 per side. Moreover, in the case of an electrogalvanized steel sheet (EG), it can be set as the plating layer with the adhesion amount of Zn of 0.5-1000 g / m < 2 >. In the galvanized steel sheet of the present invention, the original steel sheet on which galvanization is performed has the above-described component composition, and the {100} plane X-ray intensity in the direction parallel to the plate surface is 0.8 or less in terms of random intensity ratio. And the ratio of non-recrystallized grains is 0.10% or less, so that {100} non-recrystallized grains can be prevented from occurring in the vicinity of the surface layer of the steel sheet, and the surface properties are improved without streaking And deep drawability can be improved.

(亜鉛めっき鋼板の製造方法)
続いて、本発明の亜鉛めっき鋼板の製造方法について説明する。本発明の亜鉛めっき鋼板の製造方法では、前述した成分組成からなるスラブを、加熱温度1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、600℃以上800℃以下の温度で巻取り、酸洗、冷間圧延後、表面から深さ方向に200μmまでの相当転位密度ρが1.0×1015−2以上の鋼板に対して、700℃以上900℃以下の焼鈍を行い、鋼板原板表面に亜鉛めっき処理を行う。
(Manufacturing method of galvanized steel sheet)
Then, the manufacturing method of the galvanized steel plate of this invention is demonstrated. In the method for producing a galvanized steel sheet according to the present invention, the slab having the above-described component composition is heated at a heating temperature of 1000 ° C. to 1300 ° C., hot-rolled at a finish rolling temperature of 800 ° C. to 1000 ° C., and 600 ° C. above 800 ° C. coiling at a temperature below, pickling, after cold rolling, relative to corresponding dislocation density ρ is 1.0 × 10 15 m -2 or more steel to 200μm in the depth direction from the surface, 700 ° C. Annealing is performed at 900 ° C. or less and galvanizing treatment is performed on the surface of the original steel sheet.

<1000℃以上1300℃以下の温度でスラブ加熱>
本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。得られたスラブを粗圧延した後又は直接熱間仕上げ圧延機に装入し熱間圧延を行う。スラブ加熱温度は後述の仕上げ温度確保の観点から1000℃以上とする。スラブ加熱温度が1300℃以上では窒化物が多量に発生し、焼鈍後未再結晶粒の残存を招くため1300℃以下とする。
<Slab heating at a temperature of 1000 ° C to 1300 ° C>
In the present invention, the method for melting the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. In addition, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but it may also be used as a slab by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. good. The obtained slab is roughly rolled, or directly inserted into a hot finish rolling mill and hot rolled. Slab heating temperature shall be 1000 degreeC or more from a viewpoint of ensuring the finishing temperature mentioned later. When the slab heating temperature is 1300 ° C. or higher, a large amount of nitride is generated and unrecrystallized grains remain after annealing.

<800℃以上1000℃以下の仕上げ圧延温度で熱間圧延>
熱間圧延では、必要に応じて粗圧延を行った後、仕上げ圧延温度800℃以上1000℃以下で仕上げ圧延を行う。仕上げ圧延温度が800℃を下回ると、鋼板原板の組織が不均一になり、加工性や表面外観が劣化するため、800℃以上とする。また、1000℃を超えて圧延するとスケール疵などの原因となり表面外観を損ねるため、1000℃以下とする。
<Hot rolling at a finish rolling temperature of 800 ° C to 1000 ° C>
In hot rolling, after rough rolling is performed as necessary, finish rolling is performed at a finish rolling temperature of 800 ° C. or higher and 1000 ° C. or lower. If the finish rolling temperature is below 800 ° C., the structure of the steel plate becomes uneven and the workability and surface appearance deteriorate, so the temperature is set to 800 ° C. or higher. Further, if the rolling is performed at a temperature exceeding 1000 ° C., it causes scale wrinkles and the surface appearance is impaired.

<600℃以上800℃以下の温度で巻き取り>
巻取り温度が600℃を下回ると、析出物の成長速度が小さくなり、微細析出物量が増加することで深絞り性が劣化し、再結晶温度が上昇する。このため巻取り温度は600℃以上とする。また、800℃を超えると表層のスケールが成長して表面欠陥の原因となりやすいため、800℃以下とする。
<Winding at a temperature of 600 ° C to 800 ° C>
When the coiling temperature is lower than 600 ° C., the growth rate of precipitates is reduced, the amount of fine precipitates is increased, the deep drawability is deteriorated, and the recrystallization temperature is increased. For this reason, the coiling temperature is 600 ° C. or higher. Further, if it exceeds 800 ° C., the scale of the surface layer grows and tends to cause surface defects.

<焼鈍前の鋼板の鋼板表面から深さ方向に200μmまでの相当転位密度を1×1015−2以上に制御>
巻取り後、酸洗、冷間圧延、洗浄をしてから、焼鈍を行うが、焼鈍前の鋼板表面から深さ方向に200μmまでの相当転位密度を1×1015−2以上とすることで、鋼板表層の再結晶が促進され、{100}未再結晶粒の残存を抑制することが出来る。より好ましくは1×1016−2以上とする。鋼板表層の相当転位密度を1×1015−2以上とする方法は特に規定されるものではないが、自動車用外板や家電用外板を製造する際に通常行われている50%〜95%程度の冷延圧下率の範囲では鋼板表層に1×1015−2以上の相当転位密度を得ることは難しく、例えば冷間圧延後のショットブラスト処理又は高強度ブラシによるひずみ付与処理や冷間圧延最終段、もしくは冷間圧延後に高粗度ロールによる低圧下率圧延を施すことで実現することが出来る。
<Controlling the equivalent dislocation density from the steel sheet surface to 200 μm in the depth direction from the steel sheet surface before annealing to 1 × 10 15 m −2 or more>
After winding, pickling, cold rolling, washing, and then annealing, the equivalent dislocation density from the steel sheet surface before annealing to 200 μm in the depth direction shall be 1 × 10 15 m −2 or more. Thus, the recrystallization of the steel sheet surface layer is promoted, and the remaining {100} unrecrystallized grains can be suppressed. More preferably, it is 1 × 10 16 m −2 or more. Although the method of setting the equivalent dislocation density of the steel sheet surface layer to 1 × 10 15 m −2 or more is not particularly specified, it is usually performed when manufacturing an automobile outer sheet or a household appliance outer sheet, which is 50% to In the range of about 95% cold rolling reduction, it is difficult to obtain an equivalent dislocation density of 1 × 10 15 m −2 or more in the steel sheet surface layer. For example, shot blasting after cold rolling or straining with a high strength brush It can be realized by performing the low-pressure rolling with a high roughness roll after the cold rolling final stage or after cold rolling.

〔相当転位密度〕
相当転位密度は以下の方法によって測定することが出来る。各々の鋼板から、10mm×10mmの試験片を採取し、試験片の裏面から板厚200μmとなるまで研磨を行った後、フッ酸にて裏面表層の研磨歪層を除去する。この試験片を用いてX線回折実験を行い、鋼板の(110)、(211)、(220)結晶面のピークの半値幅を求める。この半値幅を用いてWilliamson−Hall法により試験片の不均一歪εを求める。この不均一歪εを、非特許文献1(中島ら「X線回折を利用した転位密度の評価法」、CAMP−ISIJ、Vol.17、2004、p.396)中に記載の式:ρ=14.4ε/bに代入し、相当転位密度ρを求める。なお、bは、バーガースベクトルの大きさ(m)であり、bの値は2.5×10−10mである。
[Equivalent dislocation density]
The equivalent dislocation density can be measured by the following method. A 10 mm × 10 mm test piece is collected from each steel plate, polished from the back surface of the test piece until the plate thickness becomes 200 μm, and then the polishing strain layer on the back surface layer is removed with hydrofluoric acid. An X-ray diffraction experiment is performed using this test piece, and the half width of the peak of the (110), (211), (220) crystal plane of the steel sheet is obtained. Using this half width, the non-uniform strain ε of the test piece is obtained by the Williamson-Hall method. This inhomogeneous strain ε is expressed by the formula described in Non-Patent Document 1 (Nakashima et al. “Method of evaluating dislocation density using X-ray diffraction”, CAMP-ISIJ, Vol. 17, 2004, p. 396): ρ = Substituting for 14.4ε 2 / b 2 , the equivalent dislocation density ρ is obtained. Note that b is the size (m) of the Burgers vector, and the value of b is 2.5 × 10 −10 m.

<700℃以上900℃以下の温度で焼鈍>
焼鈍は、連続焼鈍炉、連続溶融亜鉛めっきラインのいずれでも良い。焼鈍温度が700℃未満では、未再結晶粒残存の恐れがある。一方、900℃を超える高温域で焼鈍を行うと異常粗大粒が発生し、表面外観を損なう。そのため、焼鈍温度は700℃以上900℃以下とする。
<Annealing at a temperature of 700 ° C to 900 ° C>
Annealing may be either a continuous annealing furnace or a continuous hot dip galvanizing line. If the annealing temperature is less than 700 ° C., there is a possibility that unrecrystallized grains remain. On the other hand, when annealing is performed in a high temperature range exceeding 900 ° C., abnormal coarse particles are generated, and the surface appearance is impaired. Therefore, annealing temperature shall be 700 degreeC or more and 900 degrees C or less.

<亜鉛めっき処理>
焼鈍後、亜鉛めっき処理を行うがその方法は特に限定されるものでなく、例えば電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっきなどの方法によりめっき処理を行えばよい。めっき処理後、表面粗度の調整などのため調質圧延を行うことが好ましい。この際、調質圧延の圧延率(伸長率)は、0.5%〜1.5%程度とすることが好ましい。
<Zinc plating treatment>
Although the galvanizing treatment is performed after annealing, the method is not particularly limited. For example, the galvanizing treatment may be performed by a method such as electrogalvanizing, hot dip galvanizing, alloying hot dip galvanizing. After the plating treatment, it is preferable to perform temper rolling for adjusting the surface roughness. At this time, the rolling rate (elongation rate) of the temper rolling is preferably about 0.5% to 1.5%.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

まず、表1に示す成分組成からなる溶鋼を、真空脱ガス処理後、連続鋳造によりスラブとした。次いで上記スラブを1200℃で加熱し、スケール除去後、板厚40mmまで粗圧延した。次いで、スケール除去装置で鋼板表層を冷却した後、3.5mm厚まで仕上げ圧延し、所定の温度でコイルに巻き取った。   First, the molten steel having the composition shown in Table 1 was made into a slab by continuous casting after vacuum degassing treatment. Next, the slab was heated at 1200 ° C., scale-removed, and then roughly rolled to a plate thickness of 40 mm. Next, after the steel sheet surface layer was cooled with a scale removing device, it was finish-rolled to a thickness of 3.5 mm and wound around a coil at a predetermined temperature.

次いで、巻取り後の鋼板を酸洗し、冷間圧延した。その後、一部のサンプルは、相当転移密度を調整するために、ロール粗さRa=0.2〜7.4μmのロールを用いて追加圧延を施し、鋼板全体を0.7mm厚(冷間圧延率:80%)とした。なお、追加圧延の圧延率は1%とした。冷延板は前処理として脱脂、酸洗した後、溶融亜鉛めっきラインで焼鈍、溶融亜鉛めっき処理、一部のサンプルは合金化処理、伸長率1.0%の調質圧延を行い、合金化溶融亜鉛めっき鋼板(GA)を得た。また、一部のサンプルは連続焼鈍ラインで焼鈍後、電気亜鉛めっきラインにて電気亜鉛めっき鋼板(EG)とした。この時の仕上げ圧延温度、巻取り温度、追加圧延時のロール粗さRaを表2に示す。なお、前記焼鈍時の雰囲気は水素を含む非酸化性ガスとした。溶融亜鉛めっき処理としては、Alを0.12%含む460℃亜鉛めっき浴を用いて、侵入板温460℃、浸漬時間3秒にて行った。合金化処理は、めっき後、Nガスワイパーを用いて亜鉛付着量を片面当たり60g/mに調整し、510℃で20秒で行った。電気亜鉛めっき処理は、浴温50℃、pH1.5、Zn2+を1.5mol/l含む硫酸浴で流速1.5mm/s、電流密度100A/dmで行った。得られた亜鉛めっき鋼板については機械特性評価、{100}面ランダム強度比測定、表層未再結晶率測定および外観評価を行った。評価結果を表2に示す。 Next, the steel sheet after winding was pickled and cold-rolled. Thereafter, in order to adjust the corresponding transition density, some samples were subjected to additional rolling using a roll having a roll roughness Ra = 0.2 to 7.4 μm, and the entire steel sheet was 0.7 mm thick (cold rolling) Rate: 80%). In addition, the rolling rate of additional rolling was 1%. Cold-rolled sheet is degreased and pickled as pretreatment, then annealed in hot-dip galvanizing line, hot-dip galvanized, some samples are alloyed, temper rolled with an elongation of 1.0%, and alloyed A hot dip galvanized steel sheet (GA) was obtained. Moreover, some samples were made into the electrogalvanized steel plate (EG) in the electrogalvanization line after annealing in a continuous annealing line. Table 2 shows the finish rolling temperature, the coiling temperature, and the roll roughness Ra during the additional rolling. The atmosphere during the annealing was a non-oxidizing gas containing hydrogen. As the hot dip galvanizing treatment, a 460 ° C. zinc plating bath containing 0.12% Al was used, and the immersion plate temperature was 460 ° C. and the immersion time was 3 seconds. The alloying treatment was performed at 510 ° C. for 20 seconds after the plating by adjusting the zinc adhesion amount to 60 g / m 2 per side using an N 2 gas wiper. The electrogalvanization treatment was performed in a sulfuric acid bath containing a bath temperature of 50 ° C., pH 1.5, and Zn 2+ at 1.5 mol / l at a flow rate of 1.5 mm / s and a current density of 100 A / dm 2 . The obtained galvanized steel sheet was subjected to mechanical property evaluation, {100} plane random strength ratio measurement, surface layer non-recrystallization rate measurement, and appearance evaluation. The evaluation results are shown in Table 2.

上記の相当転移密度は、前述の方法に従って測定した。   The equivalent transition density was measured according to the method described above.

機械特性評価では、引張試験により、引張強度(TS)および伸び(EL)を評価した。引張特性は、JIS Z2201記載の5号試験片に加工した後、JIS Z2241記載の試験方法に従って行った。   In the mechanical property evaluation, tensile strength (TS) and elongation (EL) were evaluated by a tensile test. Tensile properties were measured according to the test method described in JIS Z2241, after being processed into a No. 5 test piece described in JIS Z2201.

また深絞り性の指標である平均r値は、15%の引張予歪を与えた後、3点法にて測定し、鋼板の圧延方向に対して、90°方向、45°方向、0°方向のr値の平均=(r(0°)+2×r(45°)+r(90°))/4として求めた。平均r値が1.5以上のものを深絞り性に優れているものとした。   The average r value, which is an index of deep drawability, is measured by a three-point method after giving a tensile pre-strain of 15%, and is 90 ° direction, 45 ° direction, 0 ° with respect to the rolling direction of the steel sheet. The average r value in the direction = (r (0 °) + 2 × r (45 °) + r (90 °)) / 4. Those having an average r value of 1.5 or more were considered to have excellent deep drawability.

ランダム強度比は前述の方法により測定した。表面での{100}面X線強度は、試験片を洗浄、乾燥したのちに測定を行った。X線源には白色X線を用い、{100}面X線の検出にはGe半導体検出器を用いた。本実施例で測定した面は、{100}、{111}、{110}、{211}、{310}の5面である。   The random intensity ratio was measured by the method described above. The {100} plane X-ray intensity on the surface was measured after the test piece was washed and dried. White X-rays were used as the X-ray source, and a Ge semiconductor detector was used to detect {100} plane X-rays. The planes measured in this example are five planes {100}, {111}, {110}, {211}, and {310}.

表層未再結晶率はめっき層をインヒビタ入りの15%塩酸で溶解除去した後、鋼板の表面を倍率400倍で光学顕微鏡により観察し、1mm×1mmの範囲の未再結晶組織の占める割合(面積率)を求めて、これを未再結晶粒の割合とした。   The surface layer non-recrystallized rate is obtained by dissolving and removing the plating layer with 15% hydrochloric acid containing an inhibitor, and then observing the surface of the steel sheet with an optical microscope at a magnification of 400 times. The ratio was determined as the ratio of unrecrystallized grains.

外観評価は、筋状模様の有無を目視にて観察し、筋状模様の生じたものを×、筋状模様なく均一な外観であったものを○とした。   Appearance evaluation was made by visually observing the presence or absence of a streak pattern, x where the streak pattern was generated, and ◯ where the streak pattern had a uniform appearance.

また、表中には示していないが、鋼板の組織観察を行った。鋼板の組織については、走査型電子顕微鏡を用いて観察した。具体的には、まず、鋼板表面を研磨後ナイタール(硝酸を含有するアルコール液)で腐食させた。次いで、走査型電子顕微鏡にて倍率3000倍の組織写真を撮影し、得られた組織写真データにおいて所望の領域を画像解析により抽出し、画像解析ソフト(日本ローパー社製、Image−Pro ver.7)を用い、暗色のコントラストを持つ領域をフェライトと判定し、それ以外をパーライト、ベイナイト、マルテンサイト、及び残留オーステナイトと判定した。本発明例の鋼板は、フェライト単相組織であることが確認できた。   Moreover, although not shown in the table | surface, the structure | tissue observation of the steel plate was performed. The structure of the steel sheet was observed using a scanning electron microscope. Specifically, first, the steel plate surface was polished and then corroded with nital (alcohol solution containing nitric acid). Subsequently, a tissue photograph at a magnification of 3000 times was taken with a scanning electron microscope, and a desired region in the obtained tissue photograph data was extracted by image analysis, and image analysis software (Image-Pro ver. 7 manufactured by Nippon Roper Co., Ltd.) was extracted. ), The region having a dark color contrast was determined to be ferrite, and the other regions were determined to be pearlite, bainite, martensite, and retained austenite. It was confirmed that the steel sheet of the example of the present invention has a ferrite single phase structure.

Figure 0006237657
Figure 0006237657

Figure 0006237657
Figure 0006237657

本発明例は筋状模様無く優れた外観を持ち、深絞り性に優れており、自動車用や家電用外装板用途に適した性能を有していた。なお、本発明例では、局部的な深絞り性の劣化(表層部の微細な割れ)は見られなかった。   The examples of the present invention had an excellent appearance without streak patterns, were excellent in deep drawability, and had performances suitable for automobile and home appliance exterior board applications. In the examples of the present invention, local deep drawability deterioration (fine cracks in the surface layer portion) was not observed.

一方、比較例では外観が劣り、自動車用や家電用外装板用途に適した性能を満足しなかった。また、比較例では、局部的な深絞り性の劣化(表層部の微細な割れ)が見られた。   On the other hand, in the comparative example, the external appearance was inferior, and the performance suitable for the exterior board use for automobiles and home appliances was not satisfied. Further, in the comparative example, local deep drawability deterioration (fine cracks in the surface layer portion) was observed.

本発明の鋼板は、深絞り性および成形後の優れた表面品質を必要とする各種電気機器や自動車などの部品に対して好適に利用できる。   The steel sheet of the present invention can be suitably used for various electrical equipment and automobile parts that require deep drawability and excellent surface quality after forming.

Claims (5)

質量%で、C:0.0005%以上0.0050%以下、Si:0.20%以下、Mn:0.40%以下、P:0.050%以下、S:0.030%以下、Al:0.010%以上0.080%以下、N:0.0050%以下、Ti:0.005%以上0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
表面において、板面に平行な方向の{100}面X線強度がランダム強度比で0.8以下であり、未再結晶粒の占める面積率が0.10%以下である鋼板原板と、
該鋼板原板表面に形成された亜鉛めっき被膜と、を有する亜鉛めっき鋼板。
In mass%, C: 0.0005% to 0.0050%, Si: 0.20% or less, Mn: 0.40% or less, P: 0.050% or less, S: 0.030% or less, Al : 0.010% or more and 0.080% or less, N: 0.0050% or less, Ti: 0.005% or more and 0.100% or less, with the balance being composed of Fe and inevitable impurities ,
On the surface, the {100} plane X-ray intensity in the direction parallel to the plate surface is 0.8 or less in random intensity ratio, and the area ratio occupied by non-recrystallized grains is 0.10% or less,
A galvanized steel sheet having a galvanized film formed on the surface of the original steel sheet.
前記成分組成として、更に、質量%で、Nb:0.001%以上0.010%以下を含有することを特徴とする請求項1に記載の亜鉛めっき鋼板。   The galvanized steel sheet according to claim 1, further comprising Nb: 0.001% or more and 0.010% or less in terms of mass% as the component composition. 前記成分組成として、更に、質量%で、B:0.0002%以上0.0030%以下を含有することを特徴とする請求項1または2に記載の亜鉛めっき鋼板。   The galvanized steel sheet according to claim 1 or 2, further comprising B: 0.0002% to 0.0030% by mass% as the component composition. 前記成分組成として、更に、質量%で、Sb:0.001%以上0.100%以下および/またはSn:0.001%以上0.100%以下を含有することを特徴とする請求項1〜3のいずれか1項に記載の亜鉛めっき鋼板。   The component composition further comprises, in mass%, Sb: 0.001% or more and 0.100% or less and / or Sn: 0.001% or more and 0.100% or less. The galvanized steel sheet according to any one of 3. 請求項1〜4のいずれか1項に記載の成分組成からなるスラブを、加熱温度1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、600℃以上800℃以下の温度で巻取り、酸洗、冷間圧延後、表面から深さ方向に200μmまでの相当転位密度ρが1.0×1015−2以上である鋼板に対して700℃以上900℃以下の焼鈍を行い、前記鋼板表面に亜鉛めっき処理を行う、請求項1〜4のいずれか1項に記載された亜鉛めっき鋼板の製造方法。
ここで、前記相当転移密度ρは、14.4ε/bを示す(εは鋼板の不均一歪を表し、bは2.5×10−10mである。)。
A slab comprising the component composition according to any one of claims 1 to 4 is heated at a heating temperature of 1000 ° C to 1300 ° C, hot-rolled at a finish rolling temperature of 800 ° C to 1000 ° C, and 600 ° C. 700 ° C. with respect to a steel sheet having an equivalent dislocation density ρ of 1.0 × 10 15 m −2 or more from the surface to 200 μm in the depth direction after winding at a temperature of 800 ° C. or less, pickling, and cold rolling. The method for producing a galvanized steel sheet according to any one of claims 1 to 4 , wherein the annealing is performed at 900 ° C or lower and the steel sheet surface is galvanized.
Here, the corresponding transition density ρ shows 14.4ε 2 / b 2 (ε represents the uneven distortion of the steel sheet, b is 2.5 × 10 -10 m.).
JP2015008428A 2015-01-20 2015-01-20 Galvanized steel sheet and method for producing the same Active JP6237657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008428A JP6237657B2 (en) 2015-01-20 2015-01-20 Galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008428A JP6237657B2 (en) 2015-01-20 2015-01-20 Galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016132801A JP2016132801A (en) 2016-07-25
JP6237657B2 true JP6237657B2 (en) 2017-11-29

Family

ID=56437644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008428A Active JP6237657B2 (en) 2015-01-20 2015-01-20 Galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6237657B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010079B1 (en) * 2017-09-13 2019-08-12 주식회사 포스코 Steel sheet having excellent image clarity after painting, and method for manufacturing the same
JPWO2022244591A1 (en) 2021-05-21 2022-11-24
WO2022244592A1 (en) 2021-05-21 2022-11-24 日本製鉄株式会社 Alloyed hot-dip galvanized steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820900B2 (en) * 2001-03-22 2006-09-13 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP2009228104A (en) * 2008-03-25 2009-10-08 Nippon Steel Corp Hot-dip galvannealed steel sheet having excellent surface appearance and manufacturing method therefor
JP5446430B2 (en) * 2008-11-12 2014-03-19 Jfeスチール株式会社 Cold-rolled steel sheet, alloyed hot-dip galvanized steel sheet, and production method thereof
PL2500445T3 (en) * 2009-11-09 2020-08-10 Nippon Steel Corporation High-strength steel sheet having excellent processability and paint bake hardenability, and method for producing of high-strength steel sheet
JP2013104114A (en) * 2011-11-15 2013-05-30 Jfe Steel Corp Cold rolled steel sheet having excellent bending workability and method for producing the same

Also Published As

Publication number Publication date
JP2016132801A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP6554396B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6554397B2 (en) High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
JP6123957B1 (en) High strength steel plate and manufacturing method thereof
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6311843B2 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP5446430B2 (en) Cold-rolled steel sheet, alloyed hot-dip galvanized steel sheet, and production method thereof
WO2016158160A1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
JPWO2017168991A1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP2011153349A (en) Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
JPWO2017033222A1 (en) steel sheet
JP2017115212A (en) High strength hot-dipped hot-rolled steel sheet excellent in surface appearance and plating adhesion, and method for manufacturing the same
JP6237657B2 (en) Galvanized steel sheet and method for producing the same
JP4422645B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability
JP2015147966A (en) High-strength high-yield ratio cold-rolled steel sheet and production method thereof
JP6809648B1 (en) High-strength steel sheet and its manufacturing method
JP6210179B2 (en) High strength steel plate and manufacturing method thereof
JP5655363B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
WO2017131052A1 (en) High-strength steel sheet for warm working, and method for producing same
JP2014189869A (en) High strength galvanized steel sheet and manufacturing method therefor
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JP2012219328A (en) Galvannealed steel sheet and method for manufacturing the same
JP6137436B2 (en) Steel plate for can and manufacturing method thereof
JP4957829B2 (en) Cold rolled steel sheet and method for producing the same
JP2011174101A (en) High tensile strength cold rolled steel sheet, and method for producing the same
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250