JP6237317B2 - Snow surface hardness measuring apparatus and snow surface hardness measuring method - Google Patents

Snow surface hardness measuring apparatus and snow surface hardness measuring method Download PDF

Info

Publication number
JP6237317B2
JP6237317B2 JP2014029087A JP2014029087A JP6237317B2 JP 6237317 B2 JP6237317 B2 JP 6237317B2 JP 2014029087 A JP2014029087 A JP 2014029087A JP 2014029087 A JP2014029087 A JP 2014029087A JP 6237317 B2 JP6237317 B2 JP 6237317B2
Authority
JP
Japan
Prior art keywords
snow surface
pressing member
surface hardness
snow
compression means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014029087A
Other languages
Japanese (ja)
Other versions
JP2015152544A (en
Inventor
倉森 章
倉森  章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014029087A priority Critical patent/JP6237317B2/en
Publication of JP2015152544A publication Critical patent/JP2015152544A/en
Application granted granted Critical
Publication of JP6237317B2 publication Critical patent/JP6237317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、雪面の硬度を測定する雪面硬度測定装置および雪面硬度測定方法に関する。   The present invention relates to a snow surface hardness measuring apparatus and a snow surface hardness measuring method for measuring the hardness of a snow surface.

従来、雪面(圧雪路面)の硬度の測定は、ペネトロメータ等による単点計測によっておこなわれている。
また、下記特許文献1および2では、自動測定により連続的に雪面の硬度を測定する技術が提案されている。
たとえば、特許文献1は、上下に移動自在に支持した硬度測定用部材を雪面に押圧し、その押圧した硬度測定用部材連続的に雪面上を移動させる。その連続的に移動した硬度測定用部材が雪面に沈下した沈下量を順次測定し、その測定した沈下量から雪上硬度を求めている。
また、特許文献2は、被牽引物を牽引しながら走行する牽引車両を用いて雪上硬度を測定する方法であり、雪面上をスリップさせながら牽引車両を走行させた時に被牽引物を牽引する牽引力を検出し、検出した牽引力から雪面の雪上硬度を求めている。
Conventionally, the measurement of the hardness of a snow surface (pressed snow road surface) has been performed by single point measurement with a penetrometer or the like.
Patent Documents 1 and 2 below propose a technique for continuously measuring the hardness of a snow surface by automatic measurement.
For example, in Patent Document 1, a hardness measurement member supported so as to be movable up and down is pressed against a snow surface, and the pressed hardness measurement member is continuously moved on the snow surface. The continuously moving hardness measurement member sequentially measures the sinking amount that sinks to the snow surface, and the hardness on snow is obtained from the measured sinking amount.
Patent Document 2 is a method for measuring the hardness on snow using a tow vehicle that travels while towing the towed object, and pulls the towed object when the towed vehicle travels while slipping on the snow surface. The traction force is detected, and the snow hardness of the snow surface is obtained from the detected traction force.

特開2006−313128号公報JP 2006-313128 A 特開2008−175787号公報JP 2008-175787 A

しかしながら、上述した従来技術では、雪面硬度の測定精度に改善の余地がある。
より詳細には、特許文献1では、路面の不整を考慮しておらず、路面の不整が沈下量検出の誤差となる可能性があり、また、柔らかい路面や新雪が積もった路面では、路面硬度が過小評価され、測定結果が正確でない可能性がある。
また、特許文献2は、路面の変形を直接計測せずに牽引時の前後力から推定するため、測定結果が路面−タイヤの摩擦特性に大きく影響され、路面硬度の推定精度が低い。また、タイヤにスリップ率を与えるので、雪が移動して路面性状が大きく変化し、試験が困難となる可能性がある。
However, in the above-described conventional technology, there is room for improvement in the measurement accuracy of snow surface hardness.
More specifically, in Patent Document 1, road surface irregularities are not taken into account, and road surface irregularities may cause errors in detection of subsidence. Also, on road surfaces with soft roads or fresh snow, road surface hardness May be underestimated and the measurement results may not be accurate.
Further, since Patent Document 2 estimates the road surface deformation from the longitudinal force at the time of towing without directly measuring the deformation, the measurement result is greatly influenced by the road surface-tire friction characteristics, and the estimation accuracy of the road surface hardness is low. In addition, since the slip ratio is given to the tire, snow moves and the road surface property changes greatly, which may make the test difficult.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、雪面硬度を精度よく測定することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to accurately measure the snow surface hardness.

上述した問題を解決し、目的を達成するため、請求項1の発明にかかる雪面硬度測定装置は、雪面に一定の接地圧を加えながら前記雪面上を移動する車輪状の押圧部材と、前記押圧部材の通過前における前記押圧部材の通過位置周辺の前記雪面の断面形状と、前記押圧部材の通過後における前記通過位置周辺の前記断面形状と、を連続的に測定する雪面形状測定手段と、前記押圧部材の通過前後における前記断面形状の変化に基づいて、前記押圧部材の前記通過位置の各点における前記雪面の鉛直方向の変位量を推定するとともに、当該変位量に基づいて前記通過位置の各点における雪面硬度を算出する処理手段と、前記押圧部材の移動方向の前方に設けられ、前記押圧部材の通過前の前記雪面に接地圧を加えて当該雪面を予圧縮する予圧縮手段と、を備えることを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記予圧縮手段は、前記押圧部材の移動方向に対して所定長さを有する平面状の接地面を有する部材である、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記予圧縮手段は、前記押圧部材と同方向に回転する車輪状の部材である、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記予圧縮手段によって前記雪面に加えられる接地圧は、前記押圧部材によって前記雪面に加えられる接地圧より小さい、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記予圧縮手段の接地面の幅は、前記押圧部材の接地面の幅よりも大きい、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記押圧部材および前記予圧縮手段によって前記雪面に加えられる接地圧は、0.1MPa以上1MPa以下である、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記押圧部材と前記雪面形状測定手段とは、同一の筐体に取着されており、前記押圧部材の移動方向に対する前記筐体の傾きを測定する筐体姿勢測定手段をさらに備え、前記処理手段は、前記筐体姿勢測定手段によって測定された前記筐体の傾きに基づいて前記断面形状を補正して前記変位量を推定する、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記押圧部材は、空気入りタイヤである、ことを特徴とする。
請求項の発明にかかる雪面硬度測定装置は、前記押圧部材および前記予圧縮手段は、共に空気入りタイヤである、ことを特徴とする。
請求項10の発明にかかる雪面硬度測定装置は、前記押圧部材および前記予圧縮手段は、同一の筐体に取着されており、前記押圧部材である前記空気入りタイヤおよび前記予圧縮手段である前記空気入りタイヤの両方を駆動輪として前記筐体を移動させる、ことを特徴とする。
請求項11の発明にかかる雪面硬度測定装置は、前記押圧部材である前記空気入りタイヤと前記予圧縮手段である前記空気入りタイヤとを逆位相で操舵する、ことを特徴とする。
請求項12の発明にかかる雪面硬度測定装置は、車輪状の押圧部材の移動方向の前方に設けられた予圧縮手段によって、前記押圧部材の通過前の雪面に接地圧を加えて当該雪面を予圧縮するステップと、前記押圧部材を用いて前記雪面に一定の接地圧を加えながら前記雪面上を移動するとともに、前記押圧部材の通過前における前記押圧部材の通過位置周辺の前記雪面の断面形状を連続的に測定するステップと、前記押圧部材の通過後における前記通過位置周辺の前記断面形状を連続的に測定するステップと、前記押圧部材の通過前後における前記断面形状の変化に基づいて、前記押圧部材の前記通過位置の各点における前記雪面の鉛直方向の変位量を推定するステップと、前記変位量に基づいて前記通過位置の各点における雪面硬度を算出するステップと、を含んだことを特徴とする。
In order to solve the above-described problems and achieve the object, a snow surface hardness measuring apparatus according to the invention of claim 1 includes a wheel-shaped pressing member that moves on the snow surface while applying a constant contact pressure to the snow surface. The snow surface shape for continuously measuring the cross-sectional shape of the snow surface around the passage position of the pressing member before the passage of the pressing member and the cross-sectional shape of the periphery of the passage position after the passage of the pressing member Based on the measurement means and the change in the cross-sectional shape before and after passage of the pressing member, the amount of vertical displacement of the snow surface at each point of the passing position of the pressing member is estimated, and based on the amount of displacement. Processing means for calculating the snow surface hardness at each point of the passing position, and provided in front of the movement direction of the pressing member, and applying the ground pressure to the snow surface before the pressing member passes, Precompression to precompress Characterized in that it comprises a stage, a.
The snow surface hardness measuring apparatus according to a second aspect of the invention is characterized in that the pre-compression means is a member having a planar contact surface having a predetermined length with respect to the moving direction of the pressing member. .
The snow surface hardness measuring apparatus according to a third aspect of the invention is characterized in that the pre-compression means is a wheel-like member that rotates in the same direction as the pressing member.
The snow surface hardness measuring apparatus according to claim 4 is characterized in that a ground pressure applied to the snow surface by the pre-compression means is smaller than a ground pressure applied to the snow surface by the pressing member.
The snow surface hardness measuring apparatus according to claim 5 is characterized in that the width of the ground contact surface of the pre-compression means is larger than the width of the ground contact surface of the pressing member.
The snow surface hardness measurement apparatus according to the invention of claim 6 is characterized in that a contact pressure applied to the snow surface by the pressing member and the pre-compression means is 0.1 MPa or more and 1 MPa or less.
In the snow surface hardness measuring apparatus according to claim 7, the pressing member and the snow surface shape measuring means are attached to the same housing, and the inclination of the housing with respect to the moving direction of the pressing member. A housing posture measuring means for measuring the displacement, and the processing means corrects the cross-sectional shape based on the inclination of the housing measured by the housing posture measuring means to estimate the displacement. It is characterized by.
The snow surface hardness measuring apparatus according to an eighth aspect of the invention is characterized in that the pressing member is a pneumatic tire.
The snow surface hardness measuring apparatus according to claim 9 is characterized in that the pressing member and the pre-compression means are both pneumatic tires.
The snow surface hardness measuring apparatus according to the invention of claim 10 is characterized in that the pressing member and the pre-compression means are attached to the same casing, and the pneumatic tire and the pre-compression means which are the pressing members. The housing is moved using both of the pneumatic tires as drive wheels.
The snow surface hardness measuring apparatus according to the invention of claim 11 is characterized in that the pneumatic tire as the pressing member and the pneumatic tire as the precompression means are steered in opposite phases.
The snow surface hardness measuring apparatus according to the invention of claim 12 applies a ground pressure to the snow surface before passing through the pressing member by a pre-compression means provided in front of the moving direction of the wheel-shaped pressing member. the method comprising the surface to precompression, the conjunction with the pressing member moves on the snow surface while applying a constant ground pressure on the snow surface, said peripheral passage position of the pressing member before the passage of the pressing member A step of continuously measuring the cross-sectional shape of the snow surface, a step of continuously measuring the cross-sectional shape around the passage position after passing through the pressing member, and a change in the cross-sectional shape before and after passing through the pressing member. And a step of estimating a vertical displacement amount of the snow surface at each point of the passing position of the pressing member, and calculating a snow surface hardness at each point of the passing position based on the displacement amount. Characterized in that it includes a step that, a.

発明によれば、車輪状の押圧部材の通過位置周辺の雪面の断面形状を測定し、押圧部材の通過前後における雪面の鉛直方向の変位量に基づいて雪面硬度を算出する。雪面の位置を点ではなく断面形状で測定することによって、雪面の不整による影響を最小限にして雪面硬度の測定精度を向上させることができる。また、押圧部材の通過位置(轍内)のみならず通過位置周辺の雪面の断面形状を測定するので、連続して測定される断面形状のうち同一地点を特定しやすくすることができ、雪面硬度の測定精度を向上させることができる。
発明によれば、押圧部材の移動方向の前方に予圧縮手段を設けたので、新雪のように密度が低い雪面であっても再現性の高い測定結果を得ることができる。また、予圧縮をおこなった雪面では予圧縮をおこなわない雪面と比較して、雪面の変位量と硬度との間の相関が高くなるため、雪面硬度の測定精度を向上させることができる。
発明によれば、予圧縮手段を平面状の接地面を有する部材としたので、予圧縮手段のピッチング等が生じにくく、押圧部材の進行方向に対して均等に接地圧を与えることができる。
発明によれば、予圧縮手段を車輪状の部材としたので、2輪車または4輪車等を雪面硬度測定装置とすることができる。
発明によれば、予圧縮手段によって雪面に加えられる接地圧は、押圧部材によって雪面に加えられる接地圧より小さいので、過剰な予圧縮を防いで測定感度を向上させることができる。
発明によれば、予圧縮手段の接地面の幅は押圧部材の接地面の幅よりも大きいので、押圧部材の接地面を全て予圧縮された状態にすることができ、測定の再現性を向上させることができる。
発明によれば、押圧部材および予圧縮手段によって雪面に加えられる接地圧は、0.1MPa以上1MPa以下であるので、雪を変形(圧縮)させるのに必要な接地圧かつ通常の車輪状部材の接地圧範囲内にすることができる。
発明によれば、押圧部材および雪面形状測定手段が取着された筐体の傾きに基づいて断面形状を補正して変位量を推定するので、筐体のローリングやピッチング、路面勾配の影響による測定誤差を補正することができ、雪面硬度の推定精度を向上させることができる。
発明によれば、押圧部材として空気入りタイヤを用いるので、空気入りタイヤの性能評価試験における走行路面(走行雪面)の状態を把握するのに適したレンジの雪面硬度を測定することができる。
発明によれば、押圧部材および予圧縮手段は、共に空気入りタイヤであるので、空気入りタイヤを装着した一般的な2輪車または4輪車等を雪面硬度測定装置とすることができる。
発明によれば、押圧部材である空気入りタイヤおよび予圧縮手段である空気入りタイヤの両方を駆動輪として筐体を移動させるので、駆動時にかかる力の影響による測定誤差を最小にすることができる。
発明によれば、押圧部材である空気入りタイヤと予圧縮手段である空気入りタイヤとを逆位相で操舵するので、旋回中も前輪(予圧縮手段である空気入りタイヤ)と後輪(押圧部材である空気入りタイヤ)の轍を同一位置にすることができ、曲路における雪面硬度の測定が可能となる。
発明によれば、車輪状の押圧部材の通過位置周辺の雪面の断面形状を測定し、押圧部材の通過前後における雪面の鉛直方向の変位量に基づいて雪面硬度を算出する。雪面の位置を点ではなく断面形状で測定することによって、雪面の不整による影響を最小限にして雪面硬度の測定精度を向上させることができる。また、押圧部材の通過位置(轍内)のみならず通過位置周辺の雪面の断面形状を測定するので、連続して測定される断面形状のうち同一地点を特定しやすくすることができ、雪面硬度の測定精度を向上させることができる。
発明によれば、押圧部材の移動方向の前方に予圧縮手段を設けたので、新雪のように密度が低い雪面であっても再現性の高い測定結果を得ることができる。また、予圧縮をおこなった雪面では予圧縮をおこなわない雪面と比較して、雪面の変位量と硬度との間の相関が高くなるため、雪面硬度の測定精度を向上させることができる。
According to the present invention, the cross-sectional shape of the snow surface around the passing position of the wheel-shaped pressing member is measured, and the snow surface hardness is calculated based on the amount of vertical displacement of the snow surface before and after the passing of the pressing member. By measuring the position of the snow surface not by a point but by a cross-sectional shape, the measurement accuracy of the snow surface hardness can be improved by minimizing the influence of the snow surface irregularity. Further, since the cross-sectional shape of the snow surface around the pass position as well as the pass position (inside of the cage) of the pressing member is measured, it is possible to easily identify the same point in the cross-sectional shape measured continuously. Measurement accuracy of surface hardness can be improved.
According to the present invention, since the precompression unit is provided in front of the moving direction of the pressing member, a highly reproducible measurement result can be obtained even on a snow surface having a low density such as fresh snow. In addition, since the correlation between the amount of displacement and the hardness of the snow surface is higher on the snow surface that has been pre-compressed than on the snow surface that has not been pre-compressed, the accuracy of measuring the snow surface hardness can be improved. it can.
According to the present invention, since the pre-compression means is a member having a flat contact surface, the pre-compression means is unlikely to be pitched and the like, and the contact pressure can be evenly applied in the traveling direction of the pressing member.
According to the present invention, since the pre-compression means is a wheel-shaped member, a two-wheeled vehicle or a four-wheeled vehicle can be used as a snow surface hardness measuring device.
According to the present invention, since the contact pressure applied to the snow surface by the pre-compression means is smaller than the contact pressure applied to the snow surface by the pressing member, excessive pre-compression can be prevented and measurement sensitivity can be improved.
According to the present invention, since the width of the ground contact surface of the pre-compression means is larger than the width of the ground contact surface of the pressing member, the ground contact surface of the pressing member can be completely pre-compressed, and the measurement reproducibility Can be improved.
According to the present invention, since the ground pressure applied to the snow surface by the pressing member and the pre-compression means is 0.1 MPa or more and 1 MPa or less, the ground pressure necessary for deforming (compressing) the snow and a normal wheel shape are obtained. It can be within the contact pressure range of the member.
According to the present invention, the amount of displacement is estimated by correcting the cross-sectional shape based on the inclination of the casing to which the pressing member and the snow surface shape measuring means are attached. Therefore, the influence of rolling, pitching, and road surface gradient of the casing The measurement error due to can be corrected, and the estimation accuracy of the snow surface hardness can be improved.
According to the present invention, since the pneumatic tire is used as the pressing member, it is possible to measure the snow surface hardness of a range suitable for grasping the state of the traveling road surface (traveling snow surface) in the performance evaluation test of the pneumatic tire. it can.
According to the present invention, since the pressing member and the pre-compression means are both pneumatic tires, a general two-wheeled vehicle or four-wheeled vehicle equipped with a pneumatic tire can be used as a snow surface hardness measuring device. .
According to the present invention, since the casing is moved using both the pneumatic tire as the pressing member and the pneumatic tire as the pre-compression means as the driving wheels, the measurement error due to the influence of the force applied during driving can be minimized. it can.
According to the present invention, the pneumatic tire that is the pressing member and the pneumatic tire that is the pre-compression means are steered in opposite phases, so the front wheel (pneumatic tire that is the pre-compression means) and the rear wheel (pressing force) are also turned during the turn. The saddle of the pneumatic tire, which is a member, can be placed at the same position, and the snow surface hardness on a curved road can be measured.
According to the present invention, the cross-sectional shape of the snow surface around the passing position of the wheel-shaped pressing member is measured, and the snow surface hardness is calculated based on the amount of vertical displacement of the snow surface before and after the passing of the pressing member. By measuring the position of the snow surface not by a point but by a cross-sectional shape, the measurement accuracy of the snow surface hardness can be improved by minimizing the influence of the snow surface irregularity. Further, since the cross-sectional shape of the snow surface around the pass position as well as the pass position (inside of the cage) of the pressing member is measured, it is possible to easily identify the same point in the cross-sectional shape measured continuously. Measurement accuracy of surface hardness can be improved.
According to the present invention, since the precompression unit is provided in front of the moving direction of the pressing member, a highly reproducible measurement result can be obtained even on a snow surface having a low density such as fresh snow. In addition, since the correlation between the amount of displacement and the hardness of the snow surface is higher on the snow surface that has been pre-compressed than on the snow surface that has not been pre-compressed, the accuracy of measuring the snow surface hardness can be improved. it can.

実施の形態1にかかる雪面硬度測定装置10の構成を示す説明図である。It is explanatory drawing which shows the structure of the snow surface hardness measuring apparatus 10 concerning Embodiment 1. FIG. 処理部106の機能的構成を示すブロック図である。3 is a block diagram showing a functional configuration of a processing unit 106. FIG. 雪面形状測定手段104によって得られる雪面Gの断面形状の測定値の一例を示す説明図である。It is explanatory drawing which shows an example of the measured value of the cross-sectional shape of the snow surface G obtained by the snow surface shape measuring means 104. トレッドパターンが付いた轍Fの断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the collar F with a tread pattern. 雪面硬度測定装置10による処理を示すフローチャートである。3 is a flowchart showing processing by the snow surface hardness measurement apparatus 10; 実施の形態2にかかる雪面硬度測定装置20の構成を示す説明図である。It is explanatory drawing which shows the structure of the snow surface hardness measuring apparatus 20 concerning Embodiment 2. FIG. 実施の形態2にかかる雪面硬度測定装置20の他の構成を示す説明図である。It is explanatory drawing which shows the other structure of the snow surface hardness measuring apparatus 20 concerning Embodiment 2. FIG. 本発明にかかる雪面硬度測定装置の性能評価試験結果を示すグラフ(予圧縮あり条件)である。It is a graph (condition with pre-compression) which shows the performance evaluation test result of the snow surface hardness measuring apparatus concerning this invention. 本発明にかかる雪面硬度測定装置の性能評価試験結果を示すグラフ(予圧縮なし条件)である。It is a graph (condition without pre-compression) which shows the performance evaluation test result of the snow surface hardness measuring apparatus concerning this invention. 各測定条件における測定結果(雪面硬度)の標準偏差を示すグラフである。It is a graph which shows the standard deviation of the measurement result (snow surface hardness) in each measurement condition. 各測定条件における測定結果(雪面硬度)の平均値を示すグラフである。It is a graph which shows the average value of the measurement result (snow surface hardness) in each measurement condition. 雪面硬度測定装置で測定した雪面硬度と、単点測定した雪面硬度とを比較するグラフである。It is a graph which compares the snow surface hardness measured with the snow surface hardness measuring apparatus with the snow surface hardness measured at a single point.

以下に添付図面を参照して、本発明にかかる雪面硬度測定装置および雪面硬度測定方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a snow surface hardness measuring apparatus and a snow surface hardness measuring method according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、実施の形態1にかかる雪面硬度測定装置10の構成を示す説明図である。
実施の形態1にかかる雪面硬度測定装置10は、車輪状の押圧部材102と、雪面形状測定手段104(104A,104B)と、処理部(処理手段)106と、姿勢角センサ(筐体姿勢測定手段)108と、筐体120と、によって構成される。
雪面硬度測定装置10による測定結果は、たとえばスノータイヤの性能評価試験における走行路面(走行雪面)の状態を把握するために使用される。
(Embodiment 1)
FIG. 1 is an explanatory diagram illustrating a configuration of a snow surface hardness measurement apparatus 10 according to the first embodiment.
The snow surface hardness measuring apparatus 10 according to the first embodiment includes a wheel-shaped pressing member 102, a snow surface shape measuring unit 104 (104A, 104B), a processing unit (processing unit) 106, and an attitude angle sensor (housing). (Orientation measuring means) 108 and a housing 120.
The measurement result by the snow surface hardness measurement device 10 is used, for example, to grasp the state of the traveling road surface (traveling snow surface) in a snow tire performance evaluation test.

押圧部材102は、雪面Gに一定の接地圧L1を加えながら雪面G上を移動する。
本実施の形態では、押圧部材102は空気入りタイヤである。
図1では押圧部材102を1つのみ図示しているが、中心軸Oを共通する2つの空気入りタイヤを進行方向に対して左右に並べて配置してもよい。その場合、後述する雪面硬度の測定は、一方の押圧部材102(空気入りタイヤ)のみでおこなってもよいし、両方の押圧部材102(空気入りタイヤ)でおこなってもよい。
雪面硬度測定装置10において、押圧部材102を車輪状としたのは、他の移動動兼接地圧維持手段の一例であるソリや無限軌道などでは、雪面Gに対する接地圧が不足し、上記のようなタイヤの性能評価試験時における雪面硬度測定に適したレンジの測定値が得られない可能性があるためである。
なお、押圧部材102からの接地圧L1とは、押圧部材102から雪面Gに対する荷重(接地荷重)を、押圧部材102の接地面積(平面接地形状の輪郭に含まれる範囲の面積)で除した値である。
The pressing member 102 moves on the snow surface G while applying a constant ground pressure L1 to the snow surface G.
In the present embodiment, the pressing member 102 is a pneumatic tire.
Although only one pressing member 102 is illustrated in FIG. 1, two pneumatic tires having a common central axis O may be arranged side by side with respect to the traveling direction. In that case, the measurement of the snow surface hardness described later may be performed by only one pressing member 102 (pneumatic tire), or may be performed by both pressing members 102 (pneumatic tires).
In the snow surface hardness measuring apparatus 10, the pressing member 102 is formed into a wheel shape because the ground pressure on the snow surface G is insufficient in a warp or an endless track that is an example of other moving and ground pressure maintaining means, This is because there is a possibility that a measurement value in a range suitable for snow surface hardness measurement during the tire performance evaluation test may not be obtained.
Note that the contact pressure L1 from the pressing member 102 is obtained by dividing the load from the pressing member 102 to the snow surface G (ground contact load) by the contact area of the pressing member 102 (the area included in the outline of the planar ground shape). Value.

本実施の形態では、押圧部材102は、矢印R方向(紙面左方向)に移動するものとする。
押圧部材102および筐体120の移動は、たとえば筐体120を他の車両やウインチ等で牽引したり、モータなどによって押圧部材102を駆動することによっておこなわれる。
なお、雪面硬度測定装置20の測定中における移動速度は一定にするのが好ましい。これは、雪面硬度測定装置20の移動速度に応じて雪面Gに対する押圧部材102からのインパクト(接地圧のかかり方)が変化し、雪面Gの圧縮量が変化する可能性があるためである。
また、押圧部材102を駆動して雪面硬度測定装置20を移動させる場合には、最小限の駆動力で駆動させることが好ましい。これは、駆動輪から雪面Gに対してせん断応力が加わるため、雪面Gの状態が変化して測定に影響を与える可能性があるためである。駆動輪の駆動力を最小限にすることによって、駆動時にかかる力が雪面Gに与える影響を最小限にすることができる。
In the present embodiment, it is assumed that the pressing member 102 moves in the arrow R direction (the left direction in the drawing).
The movement of the pressing member 102 and the housing 120 is performed, for example, by pulling the housing 120 with another vehicle, a winch, or the like, or by driving the pressing member 102 with a motor or the like.
In addition, it is preferable that the moving speed during measurement by the snow surface hardness measuring apparatus 20 is constant. This is because the impact (how the ground pressure is applied) from the pressing member 102 to the snow surface G changes according to the moving speed of the snow surface hardness measuring device 20, and the amount of compression of the snow surface G may change. It is.
Further, when the snow surface hardness measuring device 20 is moved by driving the pressing member 102, it is preferable to drive with the minimum driving force. This is because a shear stress is applied to the snow surface G from the driving wheel, so that the state of the snow surface G may change and affect the measurement. By minimizing the driving force of the driving wheel, the influence exerted on the snow surface G by the force applied during driving can be minimized.

雪面形状測定手段104(104A,104B)は、押圧部材102の通過前における押圧部材102の通過位置周辺の雪面Gの断面形状と、押圧部材102の通過後における通過位置周辺の断面形状と、を連続的に測定する。
本実施の形態では、雪面形状測定手段104としてレーザーラインスキャナ104A,104Bを用いる。
押圧部材102の進行方向に対して前側にはレーザーラインスキャナ104Aが設置され、押圧部材102の通過前における通過位置周辺の雪面Gの断面形状を測定する。また、押圧部材102の進行方向に対して後側にはレーザーラインスキャナ104Bが設置され、押圧部材102の通過後における通過位置周辺の雪面Gの断面形状を測定する。
なお、雪面形状測定手段104として、たとえばステレオカメラなどを用いてもよい。また、レーザーラインスキャナとステレオカメラを組み合わせるなど、複数の測定装置を組み合わせて雪面形状測定手段104としてもよい。
押圧部材102の通過位置周辺とは、押圧部材102の通過によってできた轍およびその周辺を含む雪面Gである。轍のみならず轍周辺の雪面Gの形状を測定することにより、2つのレーザーラインスキャナ104A,104Bで得られた測定値の対応(同一地点における測定値の特定)を精度よく取ることができる。
また、連続的に測定とは、たとえば雪面硬度測定装置10に対する硬度測定の開始指示を受けてから硬度測定の終了指示を受けるまで、との意味である。
なお、本実施の形態では、押圧部材102と雪面形状測定手段104とは、同一の筐体120に取着されている。また、雪面形状測定手段104による測定結果は、処理部106に出力される。
The snow surface shape measuring means 104 (104A, 104B) includes a cross-sectional shape of the snow surface G around the passing position of the pressing member 102 before passing the pressing member 102, and a cross-sectional shape around the passing position after passing the pressing member 102. , Are measured continuously.
In the present embodiment, laser line scanners 104A and 104B are used as the snow surface shape measuring means 104.
A laser line scanner 104A is installed on the front side with respect to the traveling direction of the pressing member 102, and measures the cross-sectional shape of the snow surface G around the passing position before the pressing member 102 passes. Further, a laser line scanner 104B is installed on the rear side with respect to the traveling direction of the pressing member 102, and the cross-sectional shape of the snow surface G around the passing position after the pressing member 102 passes is measured.
As the snow surface shape measuring means 104, for example, a stereo camera may be used. Also, the snow surface shape measuring means 104 may be combined with a plurality of measuring devices such as a laser line scanner and a stereo camera.
The vicinity of the passage position of the pressing member 102 is the snow surface G including the hail formed by the passage of the pressing member 102 and its periphery. By measuring the shape of the snow surface G around the ridge as well as the ridge, correspondence between the measurement values obtained by the two laser line scanners 104A and 104B (specification of measurement values at the same point) can be taken with high accuracy. .
Continuous measurement means, for example, from receiving a hardness measurement start instruction to the snow surface hardness measurement apparatus 10 until receiving a hardness measurement end instruction.
In the present embodiment, the pressing member 102 and the snow surface shape measuring means 104 are attached to the same casing 120. The measurement result by the snow surface shape measuring unit 104 is output to the processing unit 106.

姿勢角センサ108は、押圧部材102の移動方向に対する筐体120の傾きを測定する筐体姿勢測定手段である。
姿勢角センサ108は、慣性計測装置(Inertial Measurement Unit:IMU)などであり、筐体120のローリングやピッチング、路面勾配による傾きなどを検知する。
姿勢角センサ108による測定値は、処理部106に出力される。
The posture angle sensor 108 is a housing posture measuring unit that measures the inclination of the housing 120 with respect to the moving direction of the pressing member 102.
The attitude angle sensor 108 is an inertial measurement unit (IMU) or the like, and detects the rolling and pitching of the housing 120, the inclination due to the road surface gradient, and the like.
The measurement value obtained by the attitude angle sensor 108 is output to the processing unit 106.

処理部106は、押圧部材102の通過前後における雪面Gの断面形状の変化に基づいて、押圧部材102の通過位置の各点における雪面Gの鉛直方向の変位量を推定するとともに、当該変位量に基づいて通過位置の各点における雪面硬度を算出する。
処理部106は、具体的には、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。
なお、本実施の形態では、処理部106を筐体120内に設けることとしたが、処理部106を筐体120の外部に設けてもよい。この場合、たとえば雪面形状測定手段104に通信機能を持たせて測定結果を処理部106送信させるようにする。
The processing unit 106 estimates the amount of vertical displacement of the snow surface G at each point of the passing position of the pressing member 102 based on the change in the cross-sectional shape of the snow surface G before and after the passing of the pressing member 102, and the displacement Based on the quantity, the snow surface hardness at each point of the passing position is calculated.
Specifically, the processing unit 106 is an interface that interfaces with a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an EEPROM that holds various data in a rewritable manner, a peripheral circuit, and the like. Part.
Note that although the processing unit 106 is provided in the housing 120 in this embodiment, the processing unit 106 may be provided outside the housing 120. In this case, for example, the snow surface shape measuring unit 104 is provided with a communication function so that the measurement result is transmitted to the processing unit 106.

図2は、処理部106の機能的構成を示すブロック図である。
処理部106は、上記CPUが上記制御プログラムを実行することにより、変位量推定部1062および硬度算出部1064を実現する。
変位量推定部1062は、押圧部材102の通過前後における雪面Gの断面形状の変化に基づいて、押圧部材102の通過位置の各点における雪面Gの鉛直方向の変位量を推定する。
FIG. 2 is a block diagram illustrating a functional configuration of the processing unit 106.
The processing unit 106 realizes a displacement amount estimation unit 1062 and a hardness calculation unit 1064 when the CPU executes the control program.
The displacement amount estimation unit 1062 estimates the displacement amount of the snow surface G in the vertical direction at each point of the passing position of the pressing member 102 based on the change in the cross-sectional shape of the snow surface G before and after the passage of the pressing member 102.

ここで、変位量推定部1062は、雪面形状測定手段104によって得られる雪面Gの断面形状の測定結果を用いて、雪面Gの鉛直方向の変位量を推定する。
図3は、雪面形状測定手段104によって得られる雪面Gの断面形状の測定値の一例を示す説明図である。
図3Aはレーザーラインスキャナ104Aで得られる押圧部材102の通過前における断面形状P1であり、図3Bはレーザーラインスキャナ104Bで得られる押圧部材102の通過後における断面形状P2であり、図3Cは断面形状P1およびP2を重ね合わせたものである。
図3Aに示す押圧部材102の通過前の断面形状P1は略平面であるのに対して、図3Bに示す押圧部材102の通過後の断面形状P2は中央部に轍Fが形成されている。
Here, the displacement amount estimation unit 1062 estimates the displacement amount of the snow surface G in the vertical direction using the measurement result of the cross-sectional shape of the snow surface G obtained by the snow surface shape measuring unit 104.
FIG. 3 is an explanatory diagram showing an example of a measured value of the cross-sectional shape of the snow surface G obtained by the snow surface shape measuring means 104.
3A is a cross-sectional shape P1 before passing the pressing member 102 obtained by the laser line scanner 104A, FIG. 3B is a cross-sectional shape P2 after passing the pressing member 102 obtained by the laser line scanner 104B, and FIG. 3C is a cross-sectional view. The shapes P1 and P2 are superimposed.
The cross-sectional shape P1 before the passage of the pressing member 102 shown in FIG. 3A is substantially flat, whereas the cross-sectional shape P2 after the passage of the pressing member 102 shown in FIG. 3B has a ridge F at the center.

図3Aや図3Bに示す断面形状は連続的に測定されているため、変位量推定部1062では、まず、レーザーラインスキャナ104Aで得られた測定値とレーザーラインスキャナ104Bで得られた測定値とから、同一箇所で得られた断面形状を特定する。
具体的には、たとえばレーザーラインスキャナ104Aおよびレーザーラインスキャナ104Bで得られた測定値にそれぞれ測定時刻を示すタイムスタンプを付与しておく。
変位量推定部1062は、たとえばレーザーラインスキャナ104Aとレーザーラインスキャナ104Bとの間の距離、および押圧部材102の移動速度から、レーザーラインスキャナ104Aの測定範囲が所定地点Yを通過した時刻T1およびレーザーラインスキャナ104Bの測定範囲が所定地点Yを通過した時刻T2を特定する。
そして、時刻T1にレーザーラインスキャナ104Aで得られた測定値と、時刻T2にレーザーラインスキャナ104Bで得られた測定値とが、同一箇所で得られた断面形状と特定する。
なお、押圧部材102の移動速度が一定であれば、一度2つのレーザーラインスキャナ104A,104Bの測定値の対応をとれば、その後は測定値を同時刻分ずらしていけばよい。
Since the cross-sectional shapes shown in FIGS. 3A and 3B are continuously measured, the displacement amount estimation unit 1062 first determines the measurement values obtained by the laser line scanner 104A and the measurement values obtained by the laser line scanner 104B. From the above, the cross-sectional shape obtained at the same location is specified.
Specifically, for example, a time stamp indicating the measurement time is given to each measurement value obtained by the laser line scanner 104A and the laser line scanner 104B.
The displacement amount estimation unit 1062 determines the time T1 when the measurement range of the laser line scanner 104A has passed the predetermined point Y and the laser from the distance between the laser line scanner 104A and the laser line scanner 104B and the moving speed of the pressing member 102, for example. The time T2 when the measurement range of the line scanner 104B passes the predetermined point Y is specified.
Then, the measurement value obtained by the laser line scanner 104A at time T1 and the measurement value obtained by the laser line scanner 104B at time T2 are identified as the cross-sectional shape obtained at the same location.
If the moving speed of the pressing member 102 is constant, once the measured values of the two laser line scanners 104A and 104B are taken, the measured values may be shifted by the same time thereafter.

つぎに、変位量推定部1062は、図3Cに示すように、同一箇所で得られた断面形状P1,P2を重ね合わせて変位量Dを推定する。
このとき、押圧部材102の通過後の断面形状P2を用いて轍Fの幅である押圧部材102の接地幅W1(轍Fの幅)を特定し、轍F外部の断面形状の位置を揃えることにより、2つの断面形状における雪面Gの位置を揃える。たとえば、2つの断面形状における轍F外部の形状を、相互相関関数などを用いてパターンマッチングするとよい。
そして、変位量推定部1062は、接地幅W1の範囲における断面形状P1,P2の平均位置をそれぞれ算出する。
すなわち、図3Cの点線V1は接地幅W1の範囲における断面形状P1の平均位置、点線V2は接地幅W1の範囲における断面形状P2の平均位置である。
これにより、断面形状P1,P2の微小な凹凸などが平滑化される。
そして、変位量推定部1062は、接地幅W1の範囲における断面形状P1,P2の平均位置の差を、雪面Gの鉛直方向の変位量Dとして推定する。
Next, as shown in FIG. 3C, the displacement amount estimation unit 1062 estimates the displacement amount D by superimposing the cross-sectional shapes P1 and P2 obtained at the same location.
At this time, the cross-sectional shape P2 after passing through the pressing member 102 is used to identify the ground contact width W1 of the pressing member 102 that is the width of the ridge F (the width of the ridge F), and the position of the sectional shape outside the ridge F is aligned. Thus, the positions of the snow surfaces G in the two cross-sectional shapes are aligned. For example, the shape outside the ridge F in two cross-sectional shapes may be pattern-matched using a cross-correlation function or the like.
Then, the displacement amount estimation unit 1062 calculates the average positions of the cross-sectional shapes P1 and P2 in the range of the contact width W1.
That is, the dotted line V1 in FIG. 3C is the average position of the cross-sectional shape P1 in the range of the grounding width W1, and the dotted line V2 is the average position of the cross-sectional shape P2 in the range of the grounding width W1.
Thereby, the minute unevenness | corrugation of cross-sectional shape P1, P2 etc. are smoothed.
Then, the displacement amount estimation unit 1062 estimates the difference between the average positions of the cross-sectional shapes P1 and P2 in the range of the ground contact width W1 as the displacement amount D in the vertical direction of the snow surface G.

なお、押圧部材102の接地面(空気入りタイヤの場合、トレッド面)に模様(トレッドパターン)がある場合、図4に示すように、轍Fの断面形状に凹凸パターンMが形成されることがある。
このような場合、単に断面形状P2の平均位置を算出すると、轍Fの底面よりも高い位置が断面形状P2の平均位置となり、変位量Dの推定精度が低下する。
よって、押圧部材102の接地面に模様が設けられている場合には、図4に示すように、接地幅W1内における断面形状P2の包絡線P2’を平均位置とする。
In addition, when there is a pattern (tread pattern) on the ground contact surface (tread surface in the case of a pneumatic tire) of the pressing member 102, an uneven pattern M may be formed in the cross-sectional shape of the heel F as shown in FIG. is there.
In such a case, if the average position of the cross-sectional shape P2 is simply calculated, the position higher than the bottom surface of the flange F becomes the average position of the cross-sectional shape P2, and the estimation accuracy of the displacement amount D decreases.
Therefore, when a pattern is provided on the ground contact surface of the pressing member 102, the envelope P2 ′ of the cross-sectional shape P2 within the ground contact width W1 is set as the average position as shown in FIG.

また、変位量推定部1062において、姿勢角センサ108の測定値を用いて断面形状(レーザーラインスキャナ104A,104Bの測定値)の補正をおこなってもよい。
より詳細には、姿勢角センサ108で測定された筐体120の姿勢角(ロール角、ピッチ角等)を用いて鉛直方向以外の成分を除去することにより、レーザーラインスキャナ104A,104Bの測定値の補正をおこなう。
この場合、筐体120の姿勢のずれに伴う断面形状の測定誤差を補正することができ、路面硬度の測定精度を向上させることができる。
Further, the displacement amount estimation unit 1062 may correct the cross-sectional shape (measured values of the laser line scanners 104A and 104B) using the measured values of the attitude angle sensor 108.
More specifically, the measured values of the laser line scanners 104A and 104B are removed by removing components other than the vertical direction using the posture angle (roll angle, pitch angle, etc.) of the housing 120 measured by the posture angle sensor 108. Perform the correction.
In this case, the measurement error of the cross-sectional shape due to the deviation of the posture of the housing 120 can be corrected, and the measurement accuracy of the road surface hardness can be improved.

図2の説明に戻り、硬度算出部1064は、雪面Gの変位量Dに基づいて押圧部材102の通過位置の各点における雪面硬度を算出する。
硬度算出部1064は、たとえば回帰式を用いて変位量Dを硬度値(CTI値等)に換算する。この回帰式では、路面硬度は変位量Dに反比例し、押圧部材102からの接地圧L1に比例する。なお、接地圧L1が一定であれば路面硬度の回帰式は変位量Dのみを説明変数とすればよい。
Returning to the description of FIG. 2, the hardness calculation unit 1064 calculates the snow surface hardness at each point of the passing position of the pressing member 102 based on the displacement amount D of the snow surface G.
The hardness calculation unit 1064 converts the displacement amount D into a hardness value (CTI value or the like) using, for example, a regression equation. In this regression equation, the road surface hardness is inversely proportional to the displacement amount D and proportional to the ground pressure L1 from the pressing member 102. If the contact pressure L1 is constant, the regression equation of the road surface hardness may use only the displacement amount D as an explanatory variable.

図5は、雪面硬度測定装置10による処理を示すフローチャートである。
図5のフローチャートでは、雪面G上の一地点Iに対する処理について説明するが、実際は雪面硬度測定装置10では連続的に下記の処理をおこない、雪面Gの硬度を連続的に測定する。
雪面硬度測定装置10は、まず、レーザーラインスキャナ104Aによって押圧部材102の通過前の地点Iの断面形状P1を測定する(ステップS10)。
押圧部材102が地点Iを通過すると(ステップS12)、レーザーラインスキャナ104Bによって押圧部材102の通過後の地点Iの断面形状P2を測定する(ステップS14)。
つぎに、処理部106において、レーザーラインスキャナ104A,104Bから連続的に出力される断面形状の中から地点I(同一地点)の断面形状P1,P2を特定し(ステップS16)、接地幅W1内の断面形状P1,P2を平均化する(ステップS18)。つづいて、処理部106は、平均化した断面形状P1,P2の位置の差分を変位量Dとして推定する(ステップS20)。
そして、変位量Dを硬度に変換する回帰式を用いて地点Iの雪面硬度を算出して(ステップS22)、本フローチャートによる処理を終了する。
FIG. 5 is a flowchart showing processing by the snow surface hardness measurement apparatus 10.
In the flowchart of FIG. 5, the processing for one point I on the snow surface G will be described. Actually, the snow surface hardness measurement apparatus 10 continuously performs the following processing to continuously measure the hardness of the snow surface G.
First, the snow surface hardness measurement apparatus 10 measures the cross-sectional shape P1 of the point I before passing the pressing member 102 by the laser line scanner 104A (step S10).
When the pressing member 102 passes through the point I (step S12), the cross-sectional shape P2 of the point I after passing through the pressing member 102 is measured by the laser line scanner 104B (step S14).
Next, the processing unit 106 identifies the cross-sectional shapes P1 and P2 at the point I (same point) from the cross-sectional shapes continuously output from the laser line scanners 104A and 104B (step S16), and within the grounding width W1. Are averaged (step S18). Subsequently, the processing unit 106 estimates the difference in the positions of the averaged cross-sectional shapes P1, P2 as the displacement amount D (step S20).
And the snow surface hardness of the point I is calculated using the regression formula which converts the displacement amount D into hardness (step S22), and the process by this flowchart is complete | finished.

以上説明したように、実施の形態1にかかる雪面硬度測定装置10は、車輪状の押圧部材102の通過位置周辺の雪面Gの断面形状を測定し、押圧部材102の通過前後における雪面Gの鉛直方向の変位量Dに基づいて雪面硬度を算出する。雪面Gの位置を点ではなく断面形状で測定することによって、雪面Gの不整による影響を最小限にして雪面硬度の測定精度を向上させることができる。
また、押圧部材102の通過位置(轍内)のみならず通過位置周辺の雪面Gの断面形状を測定するので、連続して測定される断面形状のうち同一地点を特定しやすくすることができ、雪面硬度の測定精度を向上させることができる。
また、雪面硬度測定装置10は、押圧部材102および雪面形状測定手段104が取着された筐体120の傾きに基づいて断面形状を補正して変位量Dを推定するので、筐体120のローリングやピッチング、路面勾配の影響による測定誤差を補正することができ、雪面硬度の推定精度を向上させることができる。
また、雪面硬度測定装置10は、押圧部材102として空気入りタイヤを用いるので、空気入りタイヤの性能評価試験における走行路面(走行雪面)の状態を把握するのに適したレンジの雪面硬度を測定することができる。
As described above, the snow surface hardness measuring apparatus 10 according to the first embodiment measures the cross-sectional shape of the snow surface G around the passing position of the wheel-shaped pressing member 102, and the snow surface before and after the passing of the pressing member 102. The snow surface hardness is calculated based on the vertical displacement amount D of G. By measuring the position of the snow surface G not by a point but by a cross-sectional shape, the measurement accuracy of the snow surface hardness can be improved by minimizing the influence of irregularities on the snow surface G.
Further, since the cross-sectional shape of the snow surface G around the passing position as well as the passing position (inside the cage) of the pressing member 102 is measured, it is possible to easily identify the same point in the continuously measured cross-sectional shapes. In addition, the measurement accuracy of snow surface hardness can be improved.
Further, since the snow surface hardness measuring apparatus 10 corrects the cross-sectional shape based on the inclination of the housing 120 to which the pressing member 102 and the snow surface shape measuring means 104 are attached, the displacement amount D is estimated. Measurement errors due to the effects of rolling, pitching and road surface gradient can be corrected, and the accuracy of snow surface hardness estimation can be improved.
Moreover, since the snow surface hardness measuring apparatus 10 uses a pneumatic tire as the pressing member 102, the snow surface hardness of a range suitable for grasping the state of the traveling road surface (traveling snow surface) in the performance evaluation test of the pneumatic tire. Can be measured.

(実施の形態2)
実施の形態2では、実施の形態1の構成に加えて、押圧部材102の通過前の雪面Gを予圧縮する予圧縮手段を設けた例について説明する。
なお、以下の説明において、実施の形態1と同様の構成については同じ符号を付し、詳細な説明を省略する。
図6は、実施の形態2にかかる雪面硬度測定装置20の構成を示す説明図である。
実施の形態2にかかる雪面硬度測定装置20は、図1に示す雪面硬度測定装置10の構成に加えて、押圧部材102の移動方向の前方に設けられ、押圧部材102の通過前の雪面Gに接地圧を加えて当該雪面Gを予圧縮する予圧縮手段110をさらに備える。
本実施の形態では、押圧部材102および予圧縮手段110は、同一の筐体120に取着されている。
予圧縮手段110を用いて押圧部材102の通過前に雪面Gを予圧縮することによって、新雪のように密度が低い雪面Gであっても再現性の高い測定結果を得ることができる。また、後述するように、予圧縮をおこなった雪面Gでは予圧縮をおこなわない雪面と比較して、変位量Dと硬度との間の相関が高くなるため、雪面硬度の測定精度を向上させることができる。
(Embodiment 2)
In the second embodiment, an example in which pre-compression means for pre-compressing the snow surface G before passing through the pressing member 102 is provided in addition to the configuration of the first embodiment.
In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
FIG. 6 is an explanatory diagram of a configuration of the snow surface hardness measurement apparatus 20 according to the second embodiment.
The snow surface hardness measuring apparatus 20 according to the second embodiment is provided in front of the movement direction of the pressing member 102 in addition to the configuration of the snow surface hardness measuring apparatus 10 shown in FIG. Pre-compression means 110 that pre-compresses the snow surface G by applying a contact pressure to the surface G is further provided.
In the present embodiment, the pressing member 102 and the pre-compression means 110 are attached to the same casing 120.
By pre-compressing the snow surface G before passing through the pressing member 102 using the pre-compression means 110, a highly reproducible measurement result can be obtained even for a snow surface G having a low density such as fresh snow. In addition, as will be described later, the snow surface G that has been pre-compressed has a higher correlation between the amount of displacement D and the hardness than the snow surface that has not been pre-compressed. Can be improved.

図6では、予圧縮手段110としてソリ110Aを採用している。予圧縮手段110は、雪面Gに対して一定の接地圧L2を加えながら雪面G上を移動できる構成であればよく、ソリ110Aの他、たとえば無限軌道などであってもよい。すなわち、この場合の予圧縮手段110は、押圧部材102の移動方向に対して所定長さを有する平面状の接地面を有する部材である。
予圧縮手段110として無限軌道を用いる場合、無限軌道を駆動輪とし、押圧部材102を従動輪とするのが好ましい。これは、押圧部材102を駆動輪とした場合に、押圧部材102と雪面Gとの摩擦等によって測定精度が低下する可能性があるためである。
また、予圧縮手段110がソリ110Aの場合は、たとえば筐体120を他の車両やウインチ等で牽引したり、モータなどによって押圧部材102を駆動することによって押圧部材102および筐体120を移動させる。
In FIG. 6, a sled 110 </ b> A is employed as the precompression unit 110. The pre-compression means 110 may be configured to be able to move on the snow surface G while applying a constant contact pressure L2 to the snow surface G, and may be, for example, an endless track other than the sled 110A. That is, the pre-compression means 110 in this case is a member having a planar grounding surface having a predetermined length with respect to the moving direction of the pressing member 102.
When an endless track is used as the precompression means 110, it is preferable that the endless track be a driving wheel and the pressing member 102 be a driven wheel. This is because when the pressing member 102 is a drive wheel, the measurement accuracy may be reduced due to friction between the pressing member 102 and the snow surface G or the like.
When the pre-compression means 110 is the sled 110A, for example, the pressing member 102 and the casing 120 are moved by pulling the casing 120 with another vehicle, a winch or the like, or driving the pressing member 102 with a motor or the like. .

なお、雪面硬度測定装置20の測定中における移動速度は一定にするのが好ましい。これは、雪面硬度測定装置20の移動速度に応じて雪面Gに対する予圧縮手段110および押圧部材102からのインパクト(接地圧のかかり方)が変化し、雪面Gの圧縮量が変化する可能性があるためである。
また、予圧縮手段110または押圧部材102を駆動して雪面硬度測定装置20を移動させる場合には、最小限の駆動力で駆動させることが好ましい。これは、駆動輪から雪面Gに対してせん断応力が加わるため、雪面Gの状態が変化して測定に影響を与える可能性があるためである。駆動輪の駆動力を最小限にすることによって、駆動時にかかる力が雪面Gに与える影響を最小限にすることができる。
In addition, it is preferable that the moving speed during measurement by the snow surface hardness measuring apparatus 20 is constant. This is because the impact (how the ground pressure is applied) from the pre-compression means 110 and the pressing member 102 to the snow surface G changes according to the moving speed of the snow surface hardness measuring device 20, and the compression amount of the snow surface G changes. This is because there is a possibility.
Further, when the pre-compression means 110 or the pressing member 102 is driven to move the snow surface hardness measuring device 20, it is preferable to drive with the minimum driving force. This is because a shear stress is applied to the snow surface G from the driving wheel, so that the state of the snow surface G may change and affect the measurement. By minimizing the driving force of the driving wheel, the influence exerted on the snow surface G by the force applied during driving can be minimized.

また、予圧縮手段110によって雪面Gに加えられる接地圧L2は、押圧部材102によって雪面Gに加えられる接地圧L1より小さくする。
これは、予圧縮手段110によって雪面Gに加えられる接地圧L2が、押圧部材102によって雪面Gに加えられる接地圧L1より大きくなると、予圧縮が過剰となり測定感度が低下する(押圧部材102による雪面Gの圧縮がごく小さくなる)ためである。
なお、予圧縮手段110からの接地圧L2とは、予圧縮手段110から雪面Gにかかる荷重(接地荷重)を、押圧部材102の接地面積(平面接地形状の輪郭に含まれる範囲の面積)で除した値である。
Further, the ground pressure L2 applied to the snow surface G by the pre-compression means 110 is set to be smaller than the ground pressure L1 applied to the snow surface G by the pressing member 102.
This is because when the ground pressure L2 applied to the snow surface G by the pre-compression means 110 becomes larger than the ground pressure L1 applied to the snow surface G by the pressing member 102, the pre-compression is excessive and the measurement sensitivity decreases (the pressing member 102). This is because the compression of the snow surface G due to the above is extremely small).
Note that the contact pressure L2 from the precompression unit 110 is the load applied to the snow surface G from the precompression unit 110 (contact load) by the contact area of the pressing member 102 (the area within the range included in the contour of the planar contact shape). The value divided by.

また、予圧縮手段110の接地面の幅(接地幅)は、押圧部材102の接地面の幅(接地幅)よりも大きくする。
これは、予圧縮手段110の接地幅が押圧部材102の接地幅よりも小さいと、予圧縮がなされない領域を押圧部材102が圧縮することになり、測定の再現性が低下するためである。
Further, the width of the ground contact surface (ground contact width) of the pre-compression means 110 is made larger than the width (ground contact width) of the ground contact surface of the pressing member 102.
This is because if the ground contact width of the pre-compression means 110 is smaller than the ground contact width of the pressing member 102, the pressing member 102 compresses a region where the pre-compression is not performed, and the reproducibility of the measurement is lowered.

また、押圧部材102および予圧縮手段110によって雪面Gに加えられる接地圧は、0.1MPa以上1MPa以下とする。
接地面圧を0.1MPa以上とするのは、雪面Gが破壊性変形(塑性変形)をおこすために必要な接地圧が一般的に0.1MPa以上であることによる。
また、接地面圧を1MPa以下とするのは、通常の空気入りタイヤの接地面圧が1MPa以下程度であることによる。
なお、雪面Gの硬度が特に高い場合には、接地面圧を大きくすると測定感度が向上する。また、雪面Gの硬度が特に低い場合には、接地面圧を小さくすると測定の再現性が向上する。
すなわち、測定対象となる雪面Gの硬度の概算値を用いて押圧部材102および予圧縮手段110からの接地面圧を変更することにより、より信頼性の高い測定をおこなうことができる。
なお、押圧部材102および予圧縮手段110からの接地面圧を変更した場合は(たとえば押圧部材102または予圧縮手段110からの接地圧を変更した場合や、押圧部材102または予圧縮手段110の接地面積を変更した場合など)、変位量Dを硬度に変換する回帰式を再度計算する。
Further, the ground pressure applied to the snow surface G by the pressing member 102 and the pre-compression means 110 is set to 0.1 MPa or more and 1 MPa or less.
The reason why the contact pressure is 0.1 MPa or more is that the contact pressure required for the snow surface G to undergo destructive deformation (plastic deformation) is generally 0.1 MPa or more.
The reason why the contact surface pressure is 1 MPa or less is that the contact surface pressure of a normal pneumatic tire is about 1 MPa or less.
When the snow surface G has a particularly high hardness, the measurement sensitivity is improved by increasing the contact surface pressure. In addition, when the hardness of the snow surface G is particularly low, the reproducibility of the measurement is improved by reducing the contact surface pressure.
That is, more reliable measurement can be performed by changing the contact surface pressure from the pressing member 102 and the pre-compression means 110 using the approximate value of the hardness of the snow surface G to be measured.
When the contact surface pressure from the pressing member 102 and the precompression unit 110 is changed (for example, when the contact pressure from the pressing member 102 or the precompression unit 110 is changed, or when the grounding pressure of the pressing member 102 or the precompression unit 110 is changed). When the area is changed, etc.), the regression equation for converting the displacement D into the hardness is calculated again.

図7は、実施の形態2にかかる雪面硬度測定装置20の他の構成を示す説明図である。
図7では、予圧縮手段110として押圧部材102と同様に空気入りタイヤ110Bを採用した例を示している。すなわち、この場合の予圧縮手段110は、押圧部材102でと同方向に回転する車輪状の部材であり、押圧部材102および予圧縮手段110は、共に空気入りタイヤである。
このように、予圧縮手段110および押圧部材102の両方を空気入りタイヤとした場合、押圧部材102である空気入りタイヤおよび予圧縮手段110である空気入りタイヤの両方を駆動輪として筐体120を移動させることが望ましい。
これにより、空気入りタイヤの駆動による測定誤差を最小にすることができる。
FIG. 7 is an explanatory diagram of another configuration of the snow surface hardness measurement apparatus 20 according to the second embodiment.
FIG. 7 shows an example in which a pneumatic tire 110 </ b> B is employed as the pre-compression unit 110, similarly to the pressing member 102. That is, the pre-compression means 110 in this case is a wheel-like member that rotates in the same direction as the pressing member 102, and both the pressing member 102 and the pre-compression means 110 are pneumatic tires.
As described above, when both the pre-compression unit 110 and the pressing member 102 are pneumatic tires, the housing 120 is configured using both the pneumatic tire as the pressing member 102 and the pneumatic tire as the pre-compression unit 110 as drive wheels. It is desirable to move it.
Thereby, the measurement error by the drive of a pneumatic tire can be minimized.

また、押圧部材102である空気入りタイヤと予圧縮手段110である空気入りタイヤとを逆位相で操舵することが望ましい。
これにより、筐体120の旋回中も前輪と後輪の轍が同一位置となり、測定対象の雪面Gが曲路等である場合にも測定が可能となる。
Further, it is desirable to steer the pneumatic tire as the pressing member 102 and the pneumatic tire as the pre-compression means 110 in opposite phases.
Thereby, even when the casing 120 is turning, the front wheel and the rear wheel are in the same position, and measurement is possible even when the snow surface G to be measured is a curved road or the like.

実施の形態2における雪面硬度測定方法について説明する。
雪面硬度測定装置20に予圧縮手段110を設けた場合には、図5のフローチャートのステップS10の前に、押圧部材102の移動方向の前方に設けられた予圧縮手段110によって、押圧部材102の通過前の雪面Gに接地圧を加えて当該雪面Gを予圧縮するステップをおこなう。
A snow surface hardness measurement method according to Embodiment 2 will be described.
In the case where the pre-compression means 110 is provided in the snow surface hardness measuring device 20, the pressing member 102 is provided by the pre-compression means 110 provided in front of the movement direction of the pressing member 102 before step S10 in the flowchart of FIG. A step of pre-compressing the snow surface G by applying a contact pressure to the snow surface G before passing is performed.

以上説明したように、実施の形態2にかかる雪面硬度測定装置20は、押圧部材102の移動方向の前方に予圧縮手段110を設けたので、新雪のように密度が低い雪面Gであっても再現性の高い測定結果を得ることができる。また、予圧縮をおこなった雪面Gでは予圧縮をおこなわない雪面Gと比較して、雪面Gの変位量Dと硬度との間の相関が高くなるため、雪面硬度の測定精度を向上させることができる。
また、雪面硬度測定装置20において、予圧縮手段110を平面状の接地面を有する部材とすれば、予圧縮手段110のピッチング等が生じにくく、押圧部材102の進行方向に対して均等に接地圧を与えることができる。
また、雪面硬度測定装置20において、予圧縮手段110を車輪状の部材とすれば、2輪車または4輪車等を雪面硬度測定装置とすることができる。
また、雪面硬度測定装置20において、予圧縮手段110によって雪面Gに加えられる接地圧を押圧部材102によって雪面に加えられる接地圧より小さくすれば、過剰な予圧縮を防いで測定感度を向上させることができる。
また、雪面硬度測定装置20において、予圧縮手段110の接地面の幅を押圧部材102の接地面の幅よりも大きくすれば、押圧部材102の接地面を全て予圧縮された状態にすることができ、測定の再現性を向上させることができる。
また、雪面硬度測定装置20において、押圧部材102および予圧縮手段110によって雪面Gに加えられる接地圧を、0.1MPa以上1MPa以下とすれば、雪面Gを変形(圧縮)させるのに必要な接地圧かつ通常の車輪状部材の接地圧範囲内にすることができる。
また、雪面硬度測定装置20において、押圧部材102および予圧縮手段110を共に空気入りタイヤにすれば、空気入りタイヤを装着した一般的な2輪車または4輪車等を雪面硬度測定装置とすることができる。
また、雪面硬度測定装置20において、押圧部材102である空気入りタイヤおよび予圧縮手段110である空気入りタイヤの両方を駆動輪として筐体120を移動させるので、駆動時にかかる力の影響による測定誤差を最小にすることができる。
また、雪面硬度測定装置20において、押圧部材102である空気入りタイヤと予圧縮手段110である空気入りタイヤとを逆位相で操舵するようにすれば、旋回中も前輪(予圧縮手段である空気入りタイヤ)と後輪(押圧部材である空気入りタイヤ)の轍を同一位置にすることができ、曲路における雪面硬度の測定が可能となる。
As described above, the snow surface hardness measurement apparatus 20 according to the second embodiment is provided with the pre-compression means 110 in front of the moving direction of the pressing member 102, so that the snow surface G has a low density like fresh snow. However, highly reproducible measurement results can be obtained. Moreover, since the correlation between the amount of displacement D and the hardness of the snow surface G is higher in the pre-compressed snow surface G than in the non-pre-compressed snow surface G, the measurement accuracy of the snow surface hardness is improved. Can be improved.
Further, in the snow surface hardness measuring apparatus 20, if the pre-compression means 110 is a member having a flat grounding surface, the pre-compression means 110 is less likely to be pitched and the like, and the pressing member 102 is grounded evenly in the traveling direction. Pressure can be applied.
Further, in the snow surface hardness measuring device 20, if the pre-compression means 110 is a wheel-shaped member, a two-wheeled vehicle or a four-wheeled vehicle can be used as the snow surface hardness measuring device.
Further, in the snow surface hardness measuring apparatus 20, if the ground pressure applied to the snow surface G by the pre-compression means 110 is made smaller than the ground pressure applied to the snow surface by the pressing member 102, excessive pre-compression is prevented and measurement sensitivity is increased. Can be improved.
Further, in the snow surface hardness measuring apparatus 20, if the width of the ground contact surface of the pre-compression means 110 is made larger than the width of the ground contact surface of the pressing member 102, the ground contact surface of the pressing member 102 is all pre-compressed. Measurement reproducibility can be improved.
Further, in the snow surface hardness measuring apparatus 20, if the contact pressure applied to the snow surface G by the pressing member 102 and the pre-compression means 110 is 0.1 MPa or more and 1 MPa or less, the snow surface G is deformed (compressed). The required contact pressure can be within the contact pressure range of a normal wheel-like member.
Further, in the snow surface hardness measuring device 20, if both the pressing member 102 and the pre-compression means 110 are pneumatic tires, a general two-wheeled vehicle or four-wheeled vehicle equipped with the pneumatic tire can be used as a snow surface hardness measuring device. It can be.
Further, in the snow surface hardness measurement apparatus 20, the housing 120 is moved using both the pneumatic tire as the pressing member 102 and the pneumatic tire as the pre-compression means 110 as drive wheels, so measurement is performed by the influence of the force applied during driving. Errors can be minimized.
Further, in the snow surface hardness measuring device 20, if the pneumatic tire as the pressing member 102 and the pneumatic tire as the pre-compression means 110 are steered in opposite phases, the front wheels (pre-compression means) are also turned. The wrinkles of the pneumatic tire) and the rear wheel (pneumatic tire which is a pressing member) can be set at the same position, and the snow surface hardness on the curved road can be measured.

以下、本発明の実施例について説明する。
図8および図9は、共に本発明にかかる雪面硬度測定装置を用いて雪面硬度を一定距離間連続測定した結果を示すグラフであり、図8は予圧縮手段110による予圧縮をおこなった場合の測定結果(実施の形態2に対応:予圧縮あり条件)、図9は予圧縮手段110による予圧縮をおこなわない場合の測定結果(実施の形態1に対応:予圧縮なし条件)を示している。
図8および図9において、縦軸は雪面硬度(CTI換算値)、横軸は測定開始点からの距離を示す。また、図8および図9には、本発明にかかる雪面硬度測定装置で測定した雪面硬度の他、先行技術にかかる雪面硬度測定装置で測定した雪面硬度、およびペネトロメータで単点測定した雪面硬度がプロットされている。
なお、先行技術については、引用文献1の請求項11相当の雪上硬度測定装置を用いた。
Examples of the present invention will be described below.
FIGS. 8 and 9 are graphs showing the results of continuous measurement of snow surface hardness for a certain distance using the snow surface hardness measuring apparatus according to the present invention. FIG. 8 shows pre-compression performed by the pre-compression means 110. 9 shows the measurement results (corresponding to the second embodiment: conditions with pre-compression), and FIG. 9 shows the measurement results when the pre-compression means 110 does not perform pre-compression (corresponding to the first embodiment: conditions without pre-compression). ing.
8 and 9, the vertical axis represents the snow surface hardness (CTI conversion value), and the horizontal axis represents the distance from the measurement start point. 8 and 9 show the snow surface hardness measured with the snow surface hardness measuring apparatus according to the present invention, the snow surface hardness measured with the snow surface hardness measuring apparatus according to the prior art, and a single point measurement with a penetrometer. The snow surface hardness is plotted.
In addition, about the prior art, the snow hardness measuring apparatus equivalent to claim 11 of the cited document 1 was used.

また、図10は、各測定条件における測定結果(雪面硬度)の標準偏差を示すグラフ、図11は、各測定条件における測定結果(雪面硬度)の平均値を示すグラフである。
本測定は、排気量1.6L、AWDの4輪車(ハッチバック車)の車両に空気入りタイヤを装着しておこなっている。空気入りタイヤのタイヤサイズは、F:225/45R17、R:195/65R15(ともにスタッドレスタイヤ)であり、トレッド幅は、F:1400mm、R:1400mmとし、ホイールスペーサーを利用して前後を整列させている。
押圧部材102とする車輪(測定車輪)は、予圧縮あり条件では後輪(R)、予圧縮なし条件では前輪(F)とした。
空気入りタイヤの空気圧は、F:180kPa、R:350kPaとし、単輪荷重は、F:4kN、R:4kNとし、接地圧は、F:0.20MPa、R:0.34MPaとした。
雪面形状測定手段104として、レーザーラインスキャナを測定車輪の前後に計2個設置した。また、筐体姿勢測定手段(姿勢角センサ108)として慣性計測装置(IMU)を使用した。また、車両の走行速度と走行距離を測定するためにGPS距離・速度計を使用した。
走行方法は、速度10±2km/hを維持し、直進走行をおこなうものとした。
FIG. 10 is a graph showing the standard deviation of the measurement result (snow surface hardness) under each measurement condition, and FIG. 11 is a graph showing the average value of the measurement result (snow surface hardness) under each measurement condition.
This measurement is performed by mounting a pneumatic tire on a four-wheel vehicle (hatchback vehicle) having a displacement of 1.6 L and an AWD. The tire sizes of the pneumatic tires are F: 225 / 45R17, R: 195 / 65R15 (both studless tires), the tread width is F: 1400mm, R: 1400mm, and the front and rear are aligned using wheel spacers ing.
The wheel (measurement wheel) used as the pressing member 102 was a rear wheel (R) in a condition with pre-compression and a front wheel (F) in a condition without pre-compression.
The pneumatic pressure of the pneumatic tire was F: 180 kPa, R: 350 kPa, the single wheel load was F: 4 kPa, R: 4 kPa, and the contact pressure was F: 0.20 MPa, R: 0.34 MPa.
As the snow surface shape measuring means 104, two laser line scanners were installed before and after the measuring wheel. In addition, an inertial measurement device (IMU) was used as the housing posture measuring means (posture angle sensor 108). In addition, a GPS distance / speed meter was used to measure the travel speed and travel distance of the vehicle.
The traveling method was to maintain a speed of 10 ± 2 km / h and perform straight traveling.

本測定に用いた雪面は、雪面硬度を一定としている。すなわち、雪上硬度測定装置で測定される雪面硬度が一定であるほど、真の雪面硬度に近いと推定できる。
図8および図9における雪面硬度の値を比較すると、先行技術と本願発明とでは本願発明の方が値が一定しており、実際の路面状態(硬度一定)と一致度が高いことがわかる。
また、図8に示す予圧縮あり条件と図9に示す予圧縮なし条件とを比較すると、図8に示す予圧縮あり条件の方が測定値が安定しており、実際の路面状態(硬度一定)と一致度が高いことがわかる。
また、図10に示す測定値の標準偏差を比較すると、先行技術における測定値の標準偏差が最も高く、雪面硬度一定である実際の路面との差異が最も大きい。
一方、本願発明は、予圧縮あり条件および予圧縮なし条件のいずれも先行技術と比較して標準偏差が半分以下となっており、本願発明は先行技術と比較して実際の雪面硬度をより正確に測定できていることがわかる。
また、予圧縮あり条件における標準偏差は、単点計測とほぼ同値となっており、予圧縮なし条件と比較して予圧縮あり条件の方が実際の雪面硬度をより正確に測定できていることがわかる。
また、図11に示すように、本願発明における測定値は、予圧縮あり条件および予圧縮なし条件のいずれも、先行技術と比較して単点計測で得られた測定値に近く、本願発明は先行技術と比較して実際の雪面硬度をより正確に測定できていることがわかる。
The snow surface used for this measurement has a constant snow surface hardness. That is, it can be estimated that the more the snow surface hardness measured by the on-snow hardness measuring device is constant, the closer to the true snow surface hardness.
Comparing the snow surface hardness values in FIGS. 8 and 9, it can be seen that the values of the prior art and the present invention are more consistent with the present invention, and the degree of agreement with the actual road surface condition (constant hardness) is higher. .
Further, when the pre-compression condition shown in FIG. 8 is compared with the pre-compression condition shown in FIG. 9, the measured value is more stable in the pre-compression condition shown in FIG. ) And the agreement is high.
Further, when comparing the standard deviations of the measured values shown in FIG. 10, the standard deviation of the measured values in the prior art is the highest, and the difference from the actual road surface having the constant snow surface hardness is the largest.
On the other hand, the present invention has a standard deviation of less than half of the conditions with pre-compression and the condition without pre-compression compared to the prior art. It turns out that it can measure accurately.
In addition, the standard deviation under conditions with pre-compression is almost the same value as single-point measurement, and the actual snow surface hardness can be measured more accurately under conditions with pre-compression than with conditions without pre-compression. I understand that.
Further, as shown in FIG. 11, the measured values in the present invention are close to the measured values obtained by single-point measurement in both the pre-compression condition and the non-pre-compression condition, compared with the prior art. It can be seen that the actual snow surface hardness can be measured more accurately than in the prior art.

図12は、雪面硬度測定装置で測定した雪面硬度と、単点測定した雪面硬度とを比較するグラフである。
図12において、縦軸は本発明および先行技術にかかる雪面硬度測定装置で測定した雪面硬度(CTI換算値)、横軸はペネトロメータで単点測定した雪面硬度(CTI)である。
本発明にかかる雪面硬度測定装置の測定値のうち、予圧縮あり条件の測定値は、幅広いレンジで単点測定値と一致している。
また、本発明にかかる雪面硬度測定装置の測定値のうち、予圧縮なし条件の測定値は、予圧縮あり条件と比較してCTIが低い領域(雪が柔らかい状態)での精度がやや低下している。
一方、先行技術にかかる雪面硬度測定装置で測定した測定値は、CTIが低い領域(雪が柔らかい状態)において単点測定値より大幅に低い値となっている。
上述のように、本発明および先行技術にかかる雪面硬度測定装置では、変位量Dを回帰式を用いて硬度値(CTI値等)に換算しているが、先行技術にかかる雪面硬度測定装置では、特にCTIが低い領域において誤差が生じやすく、本発明のような幅広いレンジでの雪面硬度の測定が困難である。
FIG. 12 is a graph comparing the snow surface hardness measured by the snow surface hardness measuring apparatus with the snow surface hardness measured at a single point.
In FIG. 12, the vertical axis represents the snow surface hardness (CTI converted value) measured by the snow surface hardness measuring apparatus according to the present invention and the prior art, and the horizontal axis represents the snow surface hardness (CTI) measured by a single point with a penetrometer.
Among the measurement values of the snow surface hardness measurement apparatus according to the present invention, the measurement values under the pre-compression condition agree with the single-point measurement values in a wide range.
In addition, among the measurement values of the snow surface hardness measurement apparatus according to the present invention, the measurement value under the pre-compression condition is slightly less accurate in the region where the CTI is low (the snow is soft) compared to the pre-compression condition. ing.
On the other hand, the measured value measured by the snow surface hardness measuring apparatus according to the prior art is significantly lower than the single-point measured value in the region where the CTI is low (the snow is soft).
As described above, in the snow surface hardness measuring apparatus according to the present invention and the prior art, the displacement amount D is converted into a hardness value (CTI value, etc.) using a regression equation. In the apparatus, an error is likely to occur particularly in a region where the CTI is low, and it is difficult to measure the snow surface hardness in a wide range as in the present invention.

以上のように、本発明にかかる雪上硬度測定装置は、先行技術にかかる雪上硬度測定装置と比較して、実際の雪面硬度をより正確に測定することができる。
また、実施の形態2のように予圧縮をおこなった方が、実施の形態1のように予圧縮をおこなわない場合と比較して、実際の雪面硬度をより正確に測定することができる。
As described above, the snow hardness measuring apparatus according to the present invention can measure the actual snow surface hardness more accurately than the snow hardness measuring apparatus according to the prior art.
In addition, the actual snow surface hardness can be measured more accurately when the pre-compression is performed as in the second embodiment than when the pre-compression is not performed as in the first embodiment.

10,20……雪面硬度測定装置、102……押圧部材、104……雪面形状測定手段、104A,104B……レーザーラインスキャナ、106……処理部、1062……変位量推定部、1064……硬度算出部、108……姿勢角センサ、110……予圧縮手段、110A……ソリ、110B……タイヤ、120……筐体。   DESCRIPTION OF SYMBOLS 10,20 ... Snow surface hardness measuring apparatus, 102 ... Pressing member, 104 ... Snow surface shape measuring means, 104A, 104B ... Laser line scanner, 106 ... Processing part, 1062 ... Displacement amount estimation part, 1064 ...... Hardness calculation unit 108... Posture angle sensor 110... Precompression means 110 A.

Claims (12)

雪面に一定の接地圧を加えながら前記雪面上を移動する車輪状の押圧部材と、
前記押圧部材の通過前における前記押圧部材の通過位置周辺の前記雪面の断面形状と、前記押圧部材の通過後における前記通過位置周辺の前記断面形状と、を連続的に測定する雪面形状測定手段と、
前記押圧部材の通過前後における前記断面形状の変化に基づいて、前記押圧部材の前記通過位置の各点における前記雪面の鉛直方向の変位量を推定するとともに、当該変位量に基づいて前記通過位置の各点における雪面硬度を算出する処理手段と、
前記押圧部材の移動方向の前方に設けられ、前記押圧部材の通過前の前記雪面に接地圧を加えて当該雪面を予圧縮する予圧縮手段と、
を備えることを特徴とする雪面硬度測定装置。
A wheel-shaped pressing member that moves on the snow surface while applying a constant contact pressure to the snow surface;
Snow surface shape measurement for continuously measuring the cross-sectional shape of the snow surface around the passage position of the pressing member before passage of the pressing member and the cross-sectional shape of the periphery of the passage position after passage of the pressing member. Means,
Based on the change in the cross-sectional shape before and after the passage of the pressing member, the amount of vertical displacement of the snow surface at each point of the passage position of the pressing member is estimated, and the passage position based on the amount of displacement. Processing means for calculating the snow surface hardness at each of the points;
Pre-compression means that is provided in front of the movement direction of the pressing member and pre-compresses the snow surface by applying a contact pressure to the snow surface before passing through the pressing member;
A snow surface hardness measuring apparatus comprising:
前記予圧縮手段は、前記押圧部材の移動方向に対して所定長さを有する平面状の接地面を有する部材である、
ことを特徴とする請求項記載の雪面硬度測定装置。
The pre-compression means is a member having a planar grounding surface having a predetermined length with respect to the moving direction of the pressing member.
The snow surface hardness measuring apparatus according to claim 1 .
前記予圧縮手段は、前記押圧部材と同方向に回転する車輪状の部材である、
ことを特徴とする請求項記載の雪面硬度測定装置。
The pre-compression means is a wheel-shaped member that rotates in the same direction as the pressing member.
The snow surface hardness measuring apparatus according to claim 1 .
前記予圧縮手段によって前記雪面に加えられる接地圧は、前記押圧部材によって前記雪面に加えられる接地圧より小さい、
ことを特徴とする請求項1から3のいずれか1項記載の雪面硬度測定装置。
The contact pressure applied to the snow surface by the pre-compression means is smaller than the contact pressure applied to the snow surface by the pressing member,
The snow surface hardness measuring device according to any one of claims 1 to 3 , wherein
前記予圧縮手段の接地面の幅は、前記押圧部材の接地面の幅よりも大きい、
ことを特徴とする請求項1から4のいずれか1項記載の雪面硬度測定装置。
The width of the ground contact surface of the pre-compression means is larger than the width of the ground contact surface of the pressing member,
The snow surface hardness measuring device according to any one of claims 1 to 4 , wherein
前記押圧部材および前記予圧縮手段によって前記雪面に加えられる接地圧は、0.1MPa以上1MPa以下である、
ことを特徴とする請求項1から5のいずれか1項記載の雪面硬度測定装置。
The ground pressure applied to the snow surface by the pressing member and the pre-compression means is 0.1 MPa or more and 1 MPa or less.
The snow surface hardness measuring device according to any one of claims 1 to 5 , wherein
前記押圧部材と前記雪面形状測定手段とは、同一の筐体に取着されており、
前記押圧部材の移動方向に対する前記筐体の傾きを測定する筐体姿勢測定手段をさらに備え、
前記処理手段は、前記筐体姿勢測定手段によって測定された前記筐体の傾きに基づいて前記断面形状を補正して前記変位量を推定する、
ことを特徴とする請求項1から6のいずれか1項記載の雪面硬度測定装置。
The pressing member and the snow surface shape measuring means are attached to the same housing,
A housing posture measuring means for measuring the inclination of the housing with respect to the moving direction of the pressing member;
The processing means corrects the cross-sectional shape based on the inclination of the casing measured by the casing posture measuring means, and estimates the displacement amount.
The snow surface hardness measuring device according to any one of claims 1 to 6 , wherein
前記押圧部材は、空気入りタイヤである、
ことを特徴とする請求項1から7のいずれか1項記載の雪面硬度測定装置。
The pressing member is a pneumatic tire.
The snow surface hardness measuring apparatus according to any one of claims 1 to 7 , wherein
前記押圧部材および前記予圧縮手段は、共に空気入りタイヤである、
ことを特徴とする請求項記載の雪面硬度測定装置。
The pressing member and the pre-compression means are both pneumatic tires.
The snow surface hardness measuring apparatus according to claim 3 .
前記押圧部材および前記予圧縮手段は、同一の筐体に取着されており、
前記押圧部材である前記空気入りタイヤおよび前記予圧縮手段である前記空気入りタイヤの両方を駆動輪として前記筐体を移動させる、
ことを特徴とする請求項記載の雪面硬度測定装置。
The pressing member and the pre-compression means are attached to the same housing,
Moving the housing using both the pneumatic tire as the pressing member and the pneumatic tire as the pre-compression means as drive wheels;
The snow surface hardness measuring apparatus according to claim 9 .
前記押圧部材である前記空気入りタイヤと前記予圧縮手段である前記空気入りタイヤとを逆位相で操舵する、
ことを特徴とする請求項9または10記載の雪面硬度測定装置。
Steering the pneumatic tire as the pressing member and the pneumatic tire as the pre-compression means in opposite phases;
The snow surface hardness measuring apparatus according to claim 9 or 10 , characterized in that
車輪状の押圧部材の移動方向の前方に設けられた予圧縮手段によって、前記押圧部材の通過前の雪面に接地圧を加えて当該雪面を予圧縮するステップと、
前記押圧部材を用いて前記雪面に一定の接地圧を加えながら前記雪面上を移動するとともに、前記押圧部材の通過前における前記押圧部材の通過位置周辺の前記雪面の断面形状を連続的に測定するステップと、
前記押圧部材の通過後における前記通過位置周辺の前記断面形状を連続的に測定するステップと、
前記押圧部材の通過前後における前記断面形状の変化に基づいて、前記押圧部材の前記通過位置の各点における前記雪面の鉛直方向の変位量を推定するステップと、
前記変位量に基づいて前記通過位置の各点における雪面硬度を算出するステップと、
を含んだことを特徴とする雪面硬度測定方法。
Pre-compressing the snow surface by applying a contact pressure to the snow surface before passing through the pressing member by pre-compression means provided in front of the moving direction of the wheel-shaped pressing member;
With displaced on the snow surface while applying a constant ground pressure on the snow surface with the pressing member, continuously cross-sectional shape of the snow surface near the passage position of the pressing member before the passage of the pressing member Measuring to
Continuously measuring the cross-sectional shape around the passing position after passing the pressing member;
Estimating a vertical displacement amount of the snow surface at each point of the passing position of the pressing member based on a change in the cross-sectional shape before and after the passing of the pressing member;
Calculating a snow surface hardness at each point of the passing position based on the amount of displacement;
A snow surface hardness measurement method comprising:
JP2014029087A 2014-02-19 2014-02-19 Snow surface hardness measuring apparatus and snow surface hardness measuring method Active JP6237317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029087A JP6237317B2 (en) 2014-02-19 2014-02-19 Snow surface hardness measuring apparatus and snow surface hardness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029087A JP6237317B2 (en) 2014-02-19 2014-02-19 Snow surface hardness measuring apparatus and snow surface hardness measuring method

Publications (2)

Publication Number Publication Date
JP2015152544A JP2015152544A (en) 2015-08-24
JP6237317B2 true JP6237317B2 (en) 2017-11-29

Family

ID=53894941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029087A Active JP6237317B2 (en) 2014-02-19 2014-02-19 Snow surface hardness measuring apparatus and snow surface hardness measuring method

Country Status (1)

Country Link
JP (1) JP6237317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996987B2 (en) * 2018-01-15 2022-01-17 鹿島建設株式会社 Concrete surface hardness measuring instrument and concrete surface hardness measuring method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172732A (en) * 1987-12-28 1989-07-07 Japan Tobacco Inc Hardness detecting apparatus
JPH02275339A (en) * 1989-04-18 1990-11-09 Toshiba Corp Soil-bearing-power measuring apparatus
JPH0850182A (en) * 1994-08-05 1996-02-20 Nippon Giken:Kk Optical snow depth measuring device
US5831161A (en) * 1997-05-02 1998-11-03 The United States Of America As Represented By The Secretary Of The Army Snow strength penetrometer
JP2006258476A (en) * 2005-03-15 2006-09-28 Japan Racing Association Hardness measuring vehicle of riding ground
JP4600142B2 (en) * 2005-05-09 2010-12-15 横浜ゴム株式会社 Hardness measurement device on snow
JP4788612B2 (en) * 2007-01-22 2011-10-05 横浜ゴム株式会社 Method and apparatus for measuring hardness on snow

Also Published As

Publication number Publication date
JP2015152544A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
EP2655104B1 (en) Method and system for estimating the load acting on a tire
JP6563165B2 (en) Tire sidewall load estimation system and method
US9290069B2 (en) Tire innerliner-based parameter estimation system and method
JP6265411B2 (en) Vehicle weight and center of gravity estimation system and method
US9874496B2 (en) Tire suspension fusion system for estimation of tire deflection and tire load
CN108780016B (en) Tire load estimation method and tire load estimation device
US9259976B2 (en) Torsional mode tire wear state estimation system and method
US8983749B1 (en) Road friction estimation system and method
EP1757464B1 (en) Method and device for estimating dynamic state quantity of tire, and tire with sensor
US20160146706A1 (en) Tire cornering stiffness estimation system and method
JP5111505B2 (en) Tire wear estimation method
CN103863029B (en) Tire slip angle estimating system and method
US8833151B2 (en) Method and system for estimating the inflation pressure of a tire
JP5898519B2 (en) Tire wear amount estimation method and tire wear amount estimation device
JP5902473B2 (en) Tire uneven wear detection method and tire uneven wear detection device
JP5184252B2 (en) Estimating the effective grip margin of tires during rolling
US10048170B2 (en) Vehicle loading condition detection system and method
US20140005883A1 (en) Method Of Analyzing Stopping Distance Performance Efficiency
US20170320494A1 (en) Tire lift-off propensity predictive system and method
US6851307B2 (en) Method for determining components of forces exerted on a tire
JP6237317B2 (en) Snow surface hardness measuring apparatus and snow surface hardness measuring method
KR20050014862A (en) Measurement of the maximum adhesion coefficient by measuring stress in a bead of a tyre
JP6387793B2 (en) Tire characteristic calculation method and tire characteristic calculation apparatus
IT201900006614A1 (en) METHOD AND SYSTEM FOR THE RECOGNITION OF THE IRREGULARITIES OF A ROAD FLOORING
JP2010032355A (en) Tire grounding length calculation method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250