JP6235441B2 - Non-instantaneous system switching device and storage battery deterioration diagnosis method - Google Patents

Non-instantaneous system switching device and storage battery deterioration diagnosis method Download PDF

Info

Publication number
JP6235441B2
JP6235441B2 JP2014186540A JP2014186540A JP6235441B2 JP 6235441 B2 JP6235441 B2 JP 6235441B2 JP 2014186540 A JP2014186540 A JP 2014186540A JP 2014186540 A JP2014186540 A JP 2014186540A JP 6235441 B2 JP6235441 B2 JP 6235441B2
Authority
JP
Japan
Prior art keywords
storage battery
switching
power
opening
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014186540A
Other languages
Japanese (ja)
Other versions
JP2016059247A (en
Inventor
健晃 藤本
健晃 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2014186540A priority Critical patent/JP6235441B2/en
Publication of JP2016059247A publication Critical patent/JP2016059247A/en
Application granted granted Critical
Publication of JP6235441B2 publication Critical patent/JP6235441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Keying Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本実施形態は、負荷に対して電源供給を行う少なくとも2つの交流電源系統の切換を無瞬断で行うものであって、機械スイッチ及び半導体スイッチを備えた無瞬断系統切換装置に関する。   The present embodiment relates to an uninterruptible system switching device including a mechanical switch and a semiconductor switch for switching at least two AC power supply systems that supply power to a load without instantaneous disconnection.

従来、無瞬断系統切換装置として、負荷に対して電源供給を行う2つの交流電源系統の切換を行うため、機械スイッチ及び半導体スイッチを備えたハイブリッド式のものがある。   2. Description of the Related Art Conventionally, as an uninterruptible system switching device, there is a hybrid type that includes a mechanical switch and a semiconductor switch in order to switch between two AC power supply systems that supply power to a load.

特開2009−278755号公報JP 2009-278755 A

前述の無瞬断系統切換装置にあっては、機械スイッチの経年劣化が進行すると機械スイッチ内部のグリース切れや主接点の劣化等が起こり、機械スイッチの開閉時の動作不良が起こり、開閉の遅延や故障に発展することが考えられる。   In the above-mentioned uninterruptible system switching device, when the mechanical switch deteriorates over time, the machine switch is out of grease, the main contact is deteriorated, etc. It can be considered to develop into a failure.

本実施形態は、機械スイッチの経年劣化が原因で起こる不具合を少なくでき、これにより無停電電源装置の信頼性が向上する無瞬断系統切換装置を提供することを目的とする。   An object of the present embodiment is to provide an uninterruptible system switching device that can reduce problems caused by aged deterioration of a mechanical switch, thereby improving the reliability of the uninterruptible power supply.

本実施形態の系統切換装置の代表例は、第1の交流電力系統からの電力と、第2の交流電力系統からの電力のいずれかを負荷に供給可能であって、前記第1の交流電力系統と前記負荷の間の電路及び前記第2の交流電力系統と前記負荷の間の電路にそれぞれ設けられた半導体スイッチと、前記各半導体スイッチと並列に接続され、接点が機械切換機構により切換可能な機械スイッチを備えた切換回路と、前記各半導体スイッチに対して動作指令と、前記機械切換機構に対して切換動作指令を与えると共に、前記機械スイッチの接点が導通する動作期間及び前記半導体スイッチが導通する動作期間が重なるように指令を与える制御回路を具備した無瞬断系統切換装置において、前記機械スイッチの機械切換機構に対して前記制御回路からの切換指令が与えられてから前記接点の切換動作が完了するまでの時間を検出する切換動作検出手段と、
前記切換動作検出手段の検出結果を保存する保存手段と、
を具備した無瞬断系統切換装置である。
A representative example of the system switching device of this embodiment is capable of supplying either a power from a first AC power system or a power from a second AC power system to a load, and the first AC power A semiconductor switch provided in the electric circuit between the system and the load and the electric circuit between the second AC power system and the load, and connected in parallel with each semiconductor switch, the contact point can be switched by a mechanical switching mechanism. A switching circuit including a mechanical switch, an operation command to each of the semiconductor switches, a switching operation command to the mechanical switching mechanism, an operation period in which a contact of the mechanical switch is conducted, and the semiconductor switch In an uninterruptible system switching device having a control circuit for giving a command so that operating periods of conduction overlap, switching from the control circuit to a mechanical switching mechanism of the mechanical switch And switching operation detection means for detecting the time from decree is given until the switching operation of the contact is completed,
Storage means for storing the detection result of the switching operation detection means;
Is an uninterruptible system switching device.

本実施形態によれば、状態変化及び定期点検において機械スイッチ及び無停電電源装置における蓄電池の経年劣化を確認することが可能になるため、高信頼の系統切換装置を提供できる。   According to this embodiment, since it becomes possible to confirm the aged deterioration of the storage battery in a mechanical switch and an uninterruptible power supply device in a state change and a periodic check, a highly reliable system switching device can be provided.

実施形態1の無瞬断系統切換装置の概略構成図。1 is a schematic configuration diagram of an uninterruptible system switching device according to a first embodiment. 図1の制御回路とは異なる例2を示す図。The figure which shows the example 2 different from the control circuit of FIG. 図1の制御回路とは異なる例3を示す図。The figure which shows the example 3 different from the control circuit of FIG. 図1の制御回路とは異なる例4を示す図。The figure which shows the example 4 different from the control circuit of FIG. 実施形態2の無瞬断系統切換装置の概略構成図。The schematic block diagram of the uninterruptible system switching apparatus of Embodiment 2. FIG. 実施形態3の無瞬断系統切換装置の概略構成図。The schematic block diagram of the uninterruptible system switching apparatus of Embodiment 3. 図1の実施形態1の動作を説明するためのタイムチャート。The time chart for demonstrating operation | movement of Embodiment 1 of FIG. 図6の実施形態の蓄電池劣化パターンを説明するための図。The figure for demonstrating the storage battery deterioration pattern of embodiment of FIG.

以下各実施形態について、図面を参照して説明するが、始めに図1と図7を参照して実施形態1について説明する。図1において、常用系統1aから交流電力が供給され、機械切換機構を有する機械スイッチ(機械コンタクタ)3cを通り負荷4へと電力の供給が可能になっている。また予備系統1bから交流電力が供給され、機械切換機構を有する、
いわゆる切換スイッチを構成する機械スイッチ3cを通り負荷4へと電力の供給が可能になっている。常用系統1aと負荷4との接続点であって機械スイッチ3cに並列に常用系統側半導体スイッチ2aが接続されている。予備系統1bと負荷4との接続点であって機械スイッチ3cに並列に予備系統側半導体スイッチ2bが接続されている。
Each embodiment will be described below with reference to the drawings. First, the first embodiment will be described with reference to FIGS. 1 and 7. In FIG. 1, AC power is supplied from the service system 1a, and power can be supplied to a load 4 through a mechanical switch (mechanical contactor) 3c having a mechanical switching mechanism. Also, AC power is supplied from the standby system 1b and has a machine switching mechanism.
Electric power can be supplied to the load 4 through a mechanical switch 3c constituting a so-called changeover switch. The common system side semiconductor switch 2a is connected in parallel to the mechanical switch 3c, which is a connection point between the regular system 1a and the load 4. A standby system side semiconductor switch 2b is connected to the standby system 1b and the load 4 in parallel with the mechanical switch 3c.

制御回路20は点検時及び異常検知をした際には、機械スイッチ3cに系統切換操作指令を与えることで、予備系統1bから負荷4へと電力供給が行えるようになっている。   The control circuit 20 can supply power from the standby system 1b to the load 4 by giving a system switching operation command to the mechanical switch 3c at the time of inspection and when an abnormality is detected.

この場合、上記の系統切換操作を行う場合、瞬断を避けるため機械スイッチ3c及び半導体スイッチ2a、2bを用いたハイブリッド式の系統切換制御回路を用いた系統切換を行う。例えば、常用系統1aから予備系統1bへの系統切換を行う際には、常用系統1aが接続されたまま、半導体スイッチ2bを動作させ、常用系統1a及び予備系統1bの両方から給電される期間、つまりラップ時間を作り、ラップ期間中に、機械スイッチ3cを動作させ予備系統1bへの切換を行う。予備系統1bからの切換の際には半導体スイッチ2aを動作させてラップ期間後、常用系統1aへと切換を行う。これにより瞬断のない無瞬断切換操作を実現している。 In this case, when performing the above-described system switching operation, system switching using a hybrid system switching control circuit using the mechanical switch 3c and the semiconductor switches 2a and 2b is performed in order to avoid instantaneous interruption. For example, when system switching from the normal system 1a to the standby system 1b is performed, the semiconductor switch 2b is operated while the normal system 1a is connected, and power is supplied from both the normal system 1a and the standby system 1b. That is, a lap time is created, and the mechanical switch 3c is operated during the lap period to switch to the standby system 1b. When switching from the standby system 1b, the semiconductor switch 2a is operated to switch to the regular system 1a after the lap period. As a result, a non-instantaneous switching operation without instantaneous interruption is realized.

常用系統1aの出力電圧は電圧検出器16aにより検出され、また常用系統1aの出力電流は電流検出器17aにより検出され、これらの検出値は制御回路20へと入力される。同様に、予備系統1bの出力電圧は電圧検出器16bにより検出され、また予備系統1bの出力電流は電流検出器17bにより検出され制御回路20へと入力される。同様に、負荷4へと供給される、電圧は電圧検出器16cで検出され、また負荷4へと供給される、電流は電流検出器17cにより検出され、これらの検出値も制御回路20へ入力される。   The output voltage of the regular system 1a is detected by the voltage detector 16a, the output current of the regular system 1a is detected by the current detector 17a, and these detected values are input to the control circuit 20. Similarly, the output voltage of the standby system 1b is detected by the voltage detector 16b, and the output current of the standby system 1b is detected by the current detector 17b and input to the control circuit 20. Similarly, the voltage supplied to the load 4 is detected by the voltage detector 16 c, and the current supplied to the load 4 is detected by the current detector 17 c, and these detected values are also input to the control circuit 20. Is done.

制御回路20では、電圧検出器16a、16b、16c及び電流検出器17a、17b、17cにより検出したデータが入力され、商用電源の入力電圧低下又はバイパス切換手段の切換時の際にトリガーが行われ、これが波形記憶回路21において所定時間前から所定時間後までのトレースデータの記憶ができるようになっている。   In the control circuit 20, data detected by the voltage detectors 16a, 16b, 16c and the current detectors 17a, 17b, 17c are input, and a trigger is performed when the input voltage of the commercial power supply is reduced or the bypass switching means is switched. This enables the waveform storage circuit 21 to store trace data from a predetermined time before and after a predetermined time.

さらに、機械スイッチ3cの切換状態を検出する切換状態検出手段を構成している例えば切換状態検出器18a、18bと、機械スイッチ3cの切換状態変化の検出手段と、装置の状態変化が発生した際の波形を保存できる手段例えば波形記憶回路21とを有している。   Furthermore, for example, switching state detectors 18a and 18b constituting switching state detecting means for detecting the switching state of the mechanical switch 3c, detecting means for detecting the switching state of the mechanical switch 3c, and when a state change of the device occurs For example, a waveform storage circuit 21.

切換状態検出器18a、18bとして、電流検出の場合は、例えばホールCTを使用し、また電圧検出の場合は、例えば分圧器とA/D変換器を組み合わせたものを使用する。   As the switching state detectors 18a and 18b, in the case of current detection, for example, a Hall CT is used, and in the case of voltage detection, for example, a combination of a voltage divider and an A / D converter is used.

図1の実施形態によれば、波形記憶回路21に機械スイッチ3cの状態変化の波形が記憶されているので、機械スイッチ3cの経年劣化の傾向を判断することが可能になる。   According to the embodiment of FIG. 1, since the waveform of the state change of the mechanical switch 3c is stored in the waveform storage circuit 21, it is possible to determine the tendency of the mechanical switch 3c to deteriorate over time.

これについて、図7を参照して説明する。図7(a1)、(b1)、(c1)、(d1)は使用開始初期の状態を説明するためのもので、(a1)は制御回路20から機械スイッチ3c及び半導体スイッチ2a、2bに対して与えられる系統切換指令であり、(b1)は機械スイッチ3cに与えられる切換指令(予備)であり、(c1)は機械スイッチ3cに切換指令が与えられて機械スイッチ3cが切換ったとき制御回路20に与えられるフィードバック信号であり、(d1)は半導体スイッチ2aの開閉状態を示す波形図である。   This will be described with reference to FIG. FIGS. 7 (a1), (b1), (c1), and (d1) are for explaining the initial state of use, and (a1) is applied from the control circuit 20 to the mechanical switch 3c and the semiconductor switches 2a and 2b. (B1) is a switching command (preliminary) given to the mechanical switch 3c, and (c1) is controlled when the switching command is given to the mechanical switch 3c and the mechanical switch 3c is switched. It is a feedback signal given to the circuit 20, and (d1) is a waveform diagram showing the open / close state of the semiconductor switch 2a.

図7(a2)、(b2)、(c2)、(d2)は経年劣化後の状態を説明するためのもので、(a2)は制御回路20から機械スイッチ3c及び半導体スイッチ2a、2bに対して与えられる系統切換指令であり、(b2)は機械スイッチ3cに与えられる切換指令(予備)であり、(c2)は機械スイッチ3cに切換指令が与えられて機械スイッチ3cが切換ったとき制御回路20に与えられるフィードバック信号であり、(d2)は半導体スイッチ2aの開閉状態を示す波形図である。   FIGS. 7 (a2), (b2), (c2), and (d2) are for explaining the state after aged deterioration, and (a2) is applied from the control circuit 20 to the mechanical switch 3c and the semiconductor switches 2a and 2b. (B2) is a switching command (preliminary) given to the mechanical switch 3c, and (c2) is a control when the switching command is given to the mechanical switch 3c and the mechanical switch 3c is switched. It is a feedback signal given to the circuit 20, and (d2) is a waveform diagram showing the open / close state of the semiconductor switch 2a.

図1の波形記憶回路21は、制御回路20からの系統切換指令(a1)、(a2)をトリガーとしてトレースデータの保存を行っている。機械スイッチ3cへの系統切換指令(b1)、(b2)及び機械スイッチ3cの切換状態の完了を示すフィードバック信号(c1)、(c2)をトレースデータとして図1の波形記憶回路21に保存している。図7では常用系統1aから予備系統1bの切換例を示しており、系統切換指令により予備系統へ機械スイッチ3cの切換指令及び、常用側半導体スイッチ2aの切換を行い、ラップ期間を設けた後、機械スイッチ3cの切換フィードバック信号(c1)、(c2)を受けて再度半導体スイッチ2a、2bの切換を行っている。   The waveform storage circuit 21 in FIG. 1 stores trace data using the system switching commands (a1) and (a2) from the control circuit 20 as triggers. System switching commands (b1) and (b2) to the mechanical switch 3c and feedback signals (c1) and (c2) indicating completion of the switching state of the mechanical switch 3c are stored as trace data in the waveform storage circuit 21 of FIG. Yes. FIG. 7 shows an example of switching from the normal system 1a to the standby system 1b. After switching the mechanical switch 3c and the normal-side semiconductor switch 2a to the standby system by the system switching command, and providing a lap period, In response to the switching feedback signals (c1) and (c2) of the mechanical switch 3c, the semiconductor switches 2a and 2b are switched again.

図7において経年劣化後の例では機械スイッチ3cの切換時間が使用開始初期の例に比較して延びており、機械スイッチ3cの経年劣化もしくは別の原因により不具合が発生していると思われる。このことから、機械スイッチ3cの診断もしくは交換の必要性を検討するきっかけとなる。   In FIG. 7, in the example after aging, the switching time of the mechanical switch 3c is extended as compared with the example at the beginning of use, and it seems that a malfunction occurs due to the aging of the mechanical switch 3c or another cause. From this, it becomes a chance to examine the necessity of diagnosis or replacement of the mechanical switch 3c.

以上のように機械スイッチ3cの開閉時の状態や状態変化信号を装置の使用開始初期との比較データの累積により経年劣化の傾向を判断が可能になる。   As described above, it is possible to determine the tendency of aging degradation by accumulating the comparison data of the state when the mechanical switch 3c is opened and closed and the state change signal with the initial use of the apparatus.

図2は実施形態2を説明するための図であって、図1の制御回路20と波形記憶回路21に相当する部分のみを示すブロックである。切換状態検出器18a、18b及び機械スイッチ3cと半導体スイッチ2a、2bから入力された状態・制御信号8が制御演算回路22へと入力され、さらに計測演算回路23を通じて規定の形式へと変換され内部記憶回路24で保存される。この場合の波形が保存されるタイミングは制御演算回路22に入力される状態・制御信号8の状態信号の変化に基づいて波形保存が行われる。   FIG. 2 is a diagram for explaining the second embodiment, and is a block showing only portions corresponding to the control circuit 20 and the waveform storage circuit 21 of FIG. The state / control signal 8 input from the switching state detectors 18a and 18b, the mechanical switch 3c, and the semiconductor switches 2a and 2b is input to the control arithmetic circuit 22, and further converted into a prescribed format through the measurement arithmetic circuit 23 to be internally generated. Stored in the storage circuit 24. In this case, the waveform is stored based on the state signal input to the control arithmetic circuit 22 and the change of the state signal of the control signal 8.

本実施形態2によれば、内部記憶回路24に状態・制御信号8の状態信号の変化に基づいて波形保存が行われるので、機械スイッチ3cの劣化状況の診断が可能になり、電力系統の切換時にも安定した切換操作が可能となり、給電信頼性の向上を図ることができる。   According to the second embodiment, since the waveform is stored in the internal storage circuit 24 based on the change in the state signal of the state / control signal 8, the deterioration state of the mechanical switch 3c can be diagnosed, and the power system is switched. In some cases, stable switching operation is possible, and power supply reliability can be improved.

図3は、実施形態3を説明するための図であって、図1の制御回路20と波形記憶回路21に相当する部分のみを示すブロックである。図2の構成に、新たに外部記憶回路25を付加したものである。ここで、外部記憶回路25はSD(Smart Media)(登録商標)、CF(Compact Flash)カード、USBメモリのような外部メモリを通じて持ち出すことが可能な取り外し可能な外部記憶媒体を用いて構成している。   FIG. 3 is a diagram for explaining the third embodiment, and is a block showing only portions corresponding to the control circuit 20 and the waveform storage circuit 21 of FIG. An external storage circuit 25 is newly added to the configuration of FIG. Here, the external storage circuit 25 is configured using a removable external storage medium that can be taken out through an external memory such as an SD (Smart Media) (registered trademark), a CF (Compact Flash) card, or a USB memory. Yes.

図3の外部記憶回路25に系統切換器の状態変化時の波形を保存することにより、波形データの移動、持ち出しが可能となる。また、記憶媒体の容量に依存した数量の波形データを保存することが可能となる。   By storing the waveform when the state of the system switch is changed in the external storage circuit 25 of FIG. 3, the waveform data can be moved and taken out. Further, it becomes possible to store a quantity of waveform data depending on the capacity of the storage medium.

図4は、実施形態4を説明するための図であって、図1の制御回路20と波形記憶回路21に相当する部分のみを示すブロックである。図3の外部記憶回路25を設けず、この代わりにネットワーク等の通信回路26を設けたものである。   FIG. 4 is a block diagram for explaining the fourth embodiment, and is a block showing only portions corresponding to the control circuit 20 and the waveform storage circuit 21 of FIG. The external storage circuit 25 of FIG. 3 is not provided, but a communication circuit 26 such as a network is provided instead.

実施形態4によれば、ネットワークを介して波形データを保存することで本装置から離れた場所においても波形データの観測が可能となる。また、記憶媒体の容量に依存した数量の波形データを保存することが可能となる。   According to the fourth embodiment, waveform data can be observed even at a location away from the present apparatus by storing the waveform data via a network. Further, it becomes possible to store a quantity of waveform data depending on the capacity of the storage medium.

図5は実施形態5を示すブロック図であり、図1の常用系統1aから供給される交流電力をコンバータ7により直流電力へと変換し、出力に接続されているインバータ6により交流電力に変換し、これを負荷4に供給するように構成されている点が、図1とは異なる。さらに、予備系統1cと負荷4の接続点に機械開閉機構を有する機械スイッチ3aが設けられ、また、常用系統1aのインバータ6と負荷4の接続点に機械開閉機構を有する機械スイッチ3bが設けられ、機械スイッチ3a、3bに並列に半導体スイッチ2cが接続されている。機械スイッチ3a、3bの各々の開閉状態を検出する開閉状態検出器18c、18dが設けられ、これらの検出信号が制御回路20に入力されている。   FIG. 5 is a block diagram showing the fifth embodiment. The AC power supplied from the regular system 1a in FIG. 1 is converted into DC power by the converter 7, and is converted into AC power by the inverter 6 connected to the output. 1 is different from FIG. 1 in that it is configured to supply this to the load 4. Further, a mechanical switch 3a having a mechanical switching mechanism is provided at a connection point between the standby system 1c and the load 4, and a mechanical switch 3b having a mechanical switching mechanism is provided at a connection point between the inverter 6 and the load 4 of the regular system 1a. The semiconductor switch 2c is connected in parallel to the mechanical switches 3a and 3b. Open / close state detectors 18c and 18d for detecting the open / close state of each of the mechanical switches 3a and 3b are provided, and these detection signals are input to the control circuit 20.

図5において、常用系統1aから予備系統1c及び予備系統1cから常用系統1aの切換時には半導体スイッチ2c及び機械スイッチ3a、3bを用いたハイブリッド式の切換を行うことになる。系統切換操作の際には半導体スイッチ2cを動作させた後、機械スイッチ3a、3bの切換操作を行うことになる。   In FIG. 5, at the time of switching from the regular system 1a to the standby system 1c and from the standby system 1c to the regular system 1a, hybrid switching using the semiconductor switch 2c and the mechanical switches 3a and 3b is performed. In the system switching operation, the semiconductor switch 2c is operated, and then the switching operation of the mechanical switches 3a and 3b is performed.

図5のようにコンバータ7に接続されたインバータ6を用いることで、交流電源系統より入力される電圧に歪みがあった場合にも負荷4へ高品質な交流電力を供給できる。   By using the inverter 6 connected to the converter 7 as shown in FIG. 5, high-quality AC power can be supplied to the load 4 even when the voltage input from the AC power supply system is distorted.

図6は実施形態6を示すブロック図であり、コンバータ7とインバータ6の直流系統に直流電源5が接続され、直流電源5の電圧を検出する直流電圧検出回路19が設けられ、この検出信号が制御回路20に入力され、また直流電源5から出力される電流を検出する電流検出器17cが設けられ、この検出信号が制御回路20に入力されるようになっている。   FIG. 6 is a block diagram showing the sixth embodiment. A DC power source 5 is connected to the DC system of the converter 7 and the inverter 6, and a DC voltage detection circuit 19 for detecting the voltage of the DC power source 5 is provided. A current detector 17 c for detecting a current input to the control circuit 20 and output from the DC power supply 5 is provided, and this detection signal is input to the control circuit 20.

ここで、蓄電池劣化診断方法について、図8を参照して説明する。図8(a)は蓄電池運転指令を示し、図8(b)は蓄電池電圧を示している。蓄電池劣化診断を行う際には蓄電池充電後、停電試験を行い、バッテリセル電圧が規定値を下回っていた場合、蓄電池の劣化と判断する。例えば、鉛蓄電池の浮動充電電圧2.23〔V〕、蓄電池劣化判断時のセル電圧を公称バッテリセル電圧の−0.05〔V〕とすると、セル電圧が2.17〔V〕を下回ったとき蓄電池劣化と判断する。蓄電池電圧はこれとセル数の積であるためセル数を200個としたとき蓄電池電圧は436〔V〕となる。   Here, the storage battery deterioration diagnosis method will be described with reference to FIG. FIG. 8A shows a storage battery operation command, and FIG. 8B shows a storage battery voltage. When the storage battery deterioration diagnosis is performed, a power failure test is performed after the storage battery is charged. If the battery cell voltage is lower than the specified value, it is determined that the storage battery is deteriorated. For example, if the lead-acid battery has a floating charging voltage of 2.23 [V] and the battery voltage at the time of determining the deterioration of the storage battery is -0.05 [V] of the nominal battery cell voltage, the cell voltage is lower than 2.17 [V]. Sometimes it is judged that the storage battery has deteriorated. Since the storage battery voltage is the product of this and the number of cells, the storage battery voltage is 436 [V] when the number of cells is 200.

また、通常運転時は常用系統1aよりコンバータ7を通じて電力供給が行われるため、直流電圧検出回路19より検出される蓄電池電圧はフロート充電電圧に保たれているため、停電試験を行い常用系統1aの入力を遮断し、蓄電池からの給電に切り替わったタイミングにおいて蓄電池電圧が規定値を下回っていた場合蓄電池劣化と判断する。   In addition, during normal operation, power is supplied from the utility system 1a through the converter 7, so that the storage battery voltage detected by the DC voltage detection circuit 19 is maintained at the float charge voltage. If the storage battery voltage is lower than the specified value at the timing when the input is cut off and the power supply from the storage battery is switched, it is determined that the storage battery is deteriorated.

以上述べた実施形態6によれば、蓄電池の劣化を診断することができ、蓄電池の交換等を推奨することで給電信頼性の向上が図れる。   According to the sixth embodiment described above, deterioration of the storage battery can be diagnosed, and power supply reliability can be improved by recommending replacement of the storage battery.

1a…常用系統、1b…予備系統、1c…バイパス用電源、2a…半導体スイッチ、2b…半導体スイッチ、2c…半導体スイッチ、3a…開閉器、3b…開閉器、3c…機械スイッチ、4…負荷、5…直流電源、6…インバータ、7…コンバータ、8…状態・制御信号、9…系統切換器、16a…電圧検出器、16b…電圧検出器、17a…電流検出器、17b…電流検出器、17c…電流検出器、18…切換状態検出器、19…直流電圧検出回路、20…制御回路、21…波形記憶回路、22…制御演算回路、23…計測演算回路、24…内部記憶回路、25…外部記憶回路、26…通信回路、30…使用開始初期蓄電池電圧、31…使用末期蓄電池電圧   DESCRIPTION OF SYMBOLS 1a ... Regular system, 1b ... Reserve system, 1c ... Power supply for bypass, 2a ... Semiconductor switch, 2b ... Semiconductor switch, 2c ... Semiconductor switch, 3a ... Switch, 3b ... Switch, 3c ... Mechanical switch, 4 ... Load, DESCRIPTION OF SYMBOLS 5 ... DC power supply, 6 ... Inverter, 7 ... Converter, 8 ... Status / control signal, 9 ... System switch, 16a ... Voltage detector, 16b ... Voltage detector, 17a ... Current detector, 17b ... Current detector, 17c ... current detector, 18 ... switching state detector, 19 ... DC voltage detection circuit, 20 ... control circuit, 21 ... waveform storage circuit, 22 ... control operation circuit, 23 ... measurement operation circuit, 24 ... internal storage circuit, 25 ... External memory circuit, 26 ... communication circuit, 30 ... use initial storage battery voltage, 31 ... use end-stage storage battery voltage

Claims (9)

第1の交流電力系統からの電力と、第2の交流電力系統からの電力のいずれかを負荷に供給可能であって、前記第1の交流電力系統と前記負荷の間の電路及び前記第2の交流電力系統と前記負荷の間の電路にそれぞれ設けられた半導体スイッチと、前記各半導体スイッチと並列に接続され、接点が機械切換機構により切換可能な機械スイッチを備えた切換回路と、前記各半導体スイッチに対して動作指令と、前記機械切換機構に対して切換動作指令を与えると共に、前記機械スイッチの接点が導通する動作期間及び前記半導体スイッチが導通する動作期間が重なるように指令を与える制御回路を具備した無瞬断系統切換装置において、
前記機械スイッチの機械切換機構に対して前記制御回路からの切換指令が与えられてから前記接点の切換動作が完了するまでの時間を検出する切換動作検出手段と、
前記切換動作検出手段の検出結果を保存する可搬式の保存手段と、
を具備したことを特徴とする無瞬断系統切換装置。
Either the power from the first AC power system or the power from the second AC power system can be supplied to the load, and the electric circuit between the first AC power system and the load and the second A switching circuit having a mechanical switch connected in parallel to each of the semiconductor switches and having a contact that can be switched by a mechanical switching mechanism; Control that gives an operation command to the semiconductor switch and a switching operation command to the machine switching mechanism, and gives a command so that an operation period in which the contact point of the mechanical switch conducts and an operation period in which the semiconductor switch conducts overlap. In an uninterruptible system switching device equipped with a circuit,
A switching operation detecting means for detecting a time from when a switching command is given from the control circuit to the mechanical switching mechanism of the mechanical switch until the switching operation of the contact is completed;
Portable storage means for storing the detection result of the switching operation detection means;
A non-instantaneous system switching device characterized by comprising:
第1の交流電力系統からの電力を負荷に供給可能であり、第2の交流電力系統からの電力をコンバータにより直流に変換し、この変換された直流をインバータにより交流に変換して前記負荷に供給可能であり、前記第1の交流電力系統と前記負荷の間の電路及び前記第2の交流電力系統であって前記インバータと前記負荷の間の電路にそれぞれ設けられ、各々に有する接点が機械開閉機構により開閉可能な機械スイッチと、前記第1の交流電力系統に接続されている前記機械スイッチと並列に接続された半導体スイッチを備えた切換回路と、前記半導体スイッチに対して動作指令と、前記各機械スイッチの開閉機構に対して開閉動作指令を与えると共に、前記各機械スイッチの接点が導通する動作時間及び前記半導体スイッチが導通する動作期間が重なるように指令を与える制御回路を具備した無瞬断系統切換装置において、
前記各機械スイッチの機械開閉機構に対して前記制御回路からの開閉指令が与えられてから前記各接点の開閉動作が完了するまでの時間を検出する開閉動作検出手段と、
前記開閉動作検出手段の検出結果を保存する保存手段と、
を具備したことを特徴とする無瞬断系統切換装置。
The power from the first AC power system can be supplied to the load, the power from the second AC power system is converted to DC by a converter, and the converted DC is converted to AC by an inverter to the load. The first AC power system and the load can be supplied, and the second AC power system is provided in the electric circuit between the inverter and the load. A mechanical switch that can be opened and closed by an opening and closing mechanism, a switching circuit including a semiconductor switch connected in parallel to the mechanical switch connected to the first AC power system, an operation command for the semiconductor switch, An opening / closing operation command is given to the opening / closing mechanism of each mechanical switch, and an operation time during which the contact of each mechanical switch is conducted and an operation in which the semiconductor switch is conducted In uninterruptible line switching apparatus including a control circuit for giving an instruction so that during overlap,
An opening / closing operation detecting means for detecting a time from when an opening / closing command is given from the control circuit to the mechanical opening / closing mechanism of each mechanical switch until the opening / closing operation of each contact is completed;
Storage means for storing the detection result of the opening / closing operation detection means;
A non-instantaneous system switching device characterized by comprising:
第1の交流電力系統からの電力を負荷に供給可能であり、第2の交流電力系統からの電力をコンバータにより直流に変換し、かつインバータにより交流に変換して前記負荷に供給可能であると共に前記コンバータと前記インバータの接続点に蓄電池が接続され、前記第1の交流電力系統と前記負荷の間の電路及び前記第2の交流電力系統であって前記インバータと前記負荷の間の電路にそれぞれ設けられ、各々に有する接点が機械開閉機構により開閉可能な機械スイッチと、前記第1の交流電力系統に接続されている前記機械スイッチと並列に接続された半導体スイッチを備えた切換回路と、前記半導体スイッチに対して動作指令と、前記各機械スイッチの機械開閉機構に対して開閉動作指令を与えると共に、前記各機械スイッチの接点が導通する動作時間及び前記半導体スイッチが導通する動作期間が重なるように指令を与える制御回路を具備した無瞬断系統切換装置において、
前記各機械開閉機構に対して前記制御回路からの開閉指令が与えられてから前記各接点の開閉動作が完了するまでの時間を検出する開閉動作検出手段と、
前記開閉動作検出手段の検出結果を保存する保存手段と、
を具備したことを特徴とする無瞬断系統切換装置。
The power from the first AC power system can be supplied to the load, the power from the second AC power system can be converted to DC by a converter, and converted to AC by an inverter and supplied to the load. A storage battery is connected to the connection point of the converter and the inverter, and the electric circuit between the first AC power system and the load and the second AC power system are respectively connected to the electric circuit between the inverter and the load. A switching circuit provided with a semiconductor switch connected in parallel with the mechanical switch connected to the first AC power system; An operation command is given to the semiconductor switch and an opening / closing operation command is given to the mechanical opening / closing mechanism of each mechanical switch, and the contact of each mechanical switch is guided. In uninterruptible system switching device operating time and the semiconductor switch comprises a control circuit for giving an instruction to the operation period to conduct overlap to,
An opening / closing operation detecting means for detecting a time from when an opening / closing command is given from the control circuit to each mechanical opening / closing mechanism until the opening / closing operation of each contact is completed;
Storage means for storing the detection result of the opening / closing operation detection means;
A non-instantaneous system switching device characterized by comprising:
前記保存手段は、通信回路を介するか又は通信回路を介さず、前記切換動作検出手段、前記開閉動作検出手段のいずれかの検出結果を保存することを特徴とする請求項1乃至請求項3のいずれか一つに記載の無瞬断系統切換装置。   4. The storage unit according to claim 1, wherein the storage unit stores a detection result of either the switching operation detection unit or the opening / closing operation detection unit via a communication circuit or without a communication circuit. The uninterruptible system switching device according to any one of the above. 前記制御回路は、前記蓄電池の充電後、前記蓄電池が接続されている電力系統の停電試験を行い、前記蓄電池の充電電圧を電圧検出手段で検出し、この検出電圧値が浮動充電時の規定値より下回った時前記蓄電池の劣化と判断するように構成されている、請求項3に記載の無瞬断系統切換装置。 The control circuit, after charging the storage battery, performs a power failure test of the power system to which the storage battery is connected, detects the charging voltage of the storage battery by voltage detection means, and the detected voltage value is a specified value at the time of floating charging The uninterruptible power system switching device according to claim 3 , configured so as to determine that the storage battery has deteriorated when the battery power is lower. 前記蓄電池は複数の蓄電池セルからなるものであって、
前記制御回路は、前記蓄電池の充電後、前記蓄電池が接続されている電力系統の停電試験を行い、前記各蓄電池セルの充電電圧を電圧検出手段で検出し、この検出電圧値が浮動充電時の規定値より下回った時前記蓄電池セルの劣化と判断するように構成されている、請求項3に記載の無瞬断系統切換装置。
The storage battery is composed of a plurality of storage battery cells,
The control circuit, after charging the storage battery, performs a power failure test of the power system to which the storage battery is connected, detects the charging voltage of each storage battery cell by voltage detection means, and this detected voltage value is the value at the time of floating charging The uninterruptible system switching device according to claim 3 , configured to determine that the storage battery cell has deteriorated when the value falls below a specified value.
前記切換動作検出手段、および前記開閉動作検出手段は、電流検出手段又は電圧検出手段のいずれかで構成したことを特徴とする請求項1〜3のいずれか1項記載の無瞬断系統切換装置。 The switching operation detecting means, and the switching operation detecting hand stage, the current detection means or voltage uninterrupted line switching according to any one of claims 1-3, characterized by being configured by any of the detection means apparatus. 請求項3に記載の無瞬断系統切換装置において行なわれる蓄電池劣化診断方法であって、A storage battery deterioration diagnosis method performed in the uninterruptible system switching device according to claim 3,
前記蓄電池の充電後、前記蓄電池が接続されている電力系統の停電試験を行うステップと、After charging the storage battery, performing a power failure test of the power system to which the storage battery is connected;
前記蓄電池の充電電圧を検出するステップと、Detecting a charging voltage of the storage battery;
前記充電電圧を検出するステップにおいて検出された電圧値が浮動充電時の規定値より下回った時、前記蓄電池の劣化と判断するステップとを含む、蓄電池劣化診断方法。A storage battery deterioration diagnosis method, comprising: determining that the storage battery has deteriorated when a voltage value detected in the step of detecting the charging voltage falls below a specified value during floating charging.
請求項3に記載の無瞬断系統切換装置において行なわれる蓄電池劣化診断方法であって、A storage battery deterioration diagnosis method performed in the uninterruptible system switching device according to claim 3,
前記蓄電池は複数の蓄電池セルからなるものであって、The storage battery is composed of a plurality of storage battery cells,
前記蓄電池の充電後、前記蓄電池が接続されている電力系統の停電試験を行うステップと、After charging the storage battery, performing a power failure test of the power system to which the storage battery is connected;
前記各蓄電池セルの充電電圧を検出するステップと、Detecting the charging voltage of each storage battery cell;
前記充電電圧を検出するステップにおいて検出された電圧値が浮動充電時の規定値より下回った時、前記蓄電池セルの劣化と判断するステップとを含む、蓄電池劣化診断方法。A storage battery deterioration diagnosis method, comprising: determining that the storage battery cell has deteriorated when a voltage value detected in the step of detecting the charging voltage falls below a specified value during floating charge.
JP2014186540A 2014-09-12 2014-09-12 Non-instantaneous system switching device and storage battery deterioration diagnosis method Active JP6235441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186540A JP6235441B2 (en) 2014-09-12 2014-09-12 Non-instantaneous system switching device and storage battery deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186540A JP6235441B2 (en) 2014-09-12 2014-09-12 Non-instantaneous system switching device and storage battery deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JP2016059247A JP2016059247A (en) 2016-04-21
JP6235441B2 true JP6235441B2 (en) 2017-11-22

Family

ID=55757385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186540A Active JP6235441B2 (en) 2014-09-12 2014-09-12 Non-instantaneous system switching device and storage battery deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP6235441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116686185A (en) * 2021-11-22 2023-09-01 东芝三菱电机产业系统株式会社 Uninterruptible power supply device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63916A (en) * 1986-06-18 1988-01-05 株式会社東芝 Preventive maintenance of switch gear
JP2004048964A (en) * 2002-07-15 2004-02-12 Toshiba Corp Uninterruptible power supply and no-instantaneous interruption system switching device
JP2006174590A (en) * 2004-12-15 2006-06-29 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
JP2006254522A (en) * 2005-03-08 2006-09-21 Toshiba Mitsubishi-Electric Industrial System Corp System switching device
JP5259069B2 (en) * 2006-10-02 2013-08-07 株式会社東芝 Circuit breaker switching control system

Also Published As

Publication number Publication date
JP2016059247A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6233469B2 (en) Switch failure diagnosis device, power storage device, switch failure diagnosis program, and switch failure diagnosis method
WO2022193899A1 (en) Balance monitoring control system and method for power battery, server, and storage medium
JP5469625B2 (en) Battery system
JP6201160B2 (en) Power supply control device and relay abnormality detection method
JP5637339B1 (en) Electric power supply device using electric vehicle
KR101732854B1 (en) Storage battery device and storage battery system
JP5875015B2 (en) Distribution board
WO2016067603A1 (en) Power supply device, power supply system, and method for controlling power supply device
CN104871387B (en) For the security concept being integrated into battery in inverter
WO2018171259A1 (en) Detection circuit, method, and device
JPWO2017043238A1 (en) Battery monitoring device
JP2022535123A (en) Battery management system and management method
JP6235441B2 (en) Non-instantaneous system switching device and storage battery deterioration diagnosis method
US20220317206A1 (en) Battery Management Apparatus
US20220373606A1 (en) Power storage system and management method
JP6092800B2 (en) Uninterruptible power supply system
KR101362934B1 (en) Apparatus and methof for diagnosing performance characteristics of a circuit breaker in a state of live wire
JP5897941B2 (en) Secondary battery charge / discharge tester
JP5146514B2 (en) Switching device, switching device control method, switching device control program
JP2018011447A (en) Large-capacity storage battery system
CN116512914A (en) Control method and control device for relay for power battery
JP2006238514A (en) Uninterruptible power supply device
US20190285701A1 (en) Determining Capacitance of an Energy Store of an Uninterruptible Direct Current Supply Unit
KR20210080070A (en) Apparatus and method for diagnosing parallel battery relay
KR20190088153A (en) Insulation resistance measuring apparatus for parallel energy storage system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171026

R150 Certificate of patent or registration of utility model

Ref document number: 6235441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250