JP6234172B2 - Rubber composition for anti-vibration rubber and anti-vibration rubber - Google Patents
Rubber composition for anti-vibration rubber and anti-vibration rubber Download PDFInfo
- Publication number
- JP6234172B2 JP6234172B2 JP2013230203A JP2013230203A JP6234172B2 JP 6234172 B2 JP6234172 B2 JP 6234172B2 JP 2013230203 A JP2013230203 A JP 2013230203A JP 2013230203 A JP2013230203 A JP 2013230203A JP 6234172 B2 JP6234172 B2 JP 6234172B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- weight
- vibration
- parts
- zinc white
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001971 elastomer Polymers 0.000 title claims description 114
- 239000005060 rubber Substances 0.000 title claims description 114
- 239000000203 mixture Substances 0.000 title claims description 36
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 62
- 239000011787 zinc oxide Substances 0.000 claims description 54
- 235000014692 zinc oxide Nutrition 0.000 claims description 54
- 239000002131 composite material Substances 0.000 claims description 35
- 238000004073 vulcanization Methods 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 21
- 239000011593 sulfur Substances 0.000 claims description 21
- 229910052717 sulfur Inorganic materials 0.000 claims description 21
- 229920001194 natural rubber Polymers 0.000 claims description 16
- 244000043261 Hevea brasiliensis Species 0.000 claims description 11
- 229920003052 natural elastomer Polymers 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 description 20
- 239000003921 oil Substances 0.000 description 13
- 230000003712 anti-aging effect Effects 0.000 description 12
- 239000006229 carbon black Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000004636 vulcanized rubber Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- -1 CaCO 3 Substances 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 229960002447 thiram Drugs 0.000 description 2
- BUZICZZQJDLXJN-UHFFFAOYSA-N 3-azaniumyl-4-hydroxybutanoate Chemical compound OCC(N)CC(O)=O BUZICZZQJDLXJN-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 239000006237 Intermediate SAF Substances 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000010074 rubber mixing Methods 0.000 description 1
- 238000013040 rubber vulcanization Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Vibration Prevention Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、防振ゴム用ゴム組成物および防振ゴムに関し、特に自動車用エンジンマウントなどの防振部材として好適に用いることができる防振ゴム用ゴム組成物およびこれを用いた防振ゴムに関するものである。 The present invention relates to a rubber composition for vibration proof rubber and vibration proof rubber, and more particularly to a rubber composition for vibration proof rubber that can be suitably used as a vibration proof member for an engine mount for automobiles, and a vibration proof rubber using the same. Is.
従来から天然ゴムに補強材としてのカーボンブラックを配合したものが防振ゴムとして使用されている。近年の市場においては、防振ゴム、特に自動車用防振ゴムとして、動倍率(動的バネ定数/静的バネ定数)の低減が要求されている。 Conventionally, natural rubber blended with carbon black as a reinforcing material has been used as an anti-vibration rubber. In recent years, a reduction in dynamic magnification (dynamic spring constant / static spring constant) is required as an anti-vibration rubber, particularly an anti-vibration rubber for automobiles.
防振ゴムの低動倍率化を図るためには、天然ゴム中のカーボンブラックの分散性を高めることが重要となる。従来は、カーボンブラックとして大粒径のものを使用することで、天然ゴム中のカーボンブラックの分散性を高める方法が採用されてきたが、この方法では防振ゴムの耐久性が損なわれる傾向があった。 In order to reduce the dynamic magnification of the vibration-proof rubber, it is important to improve the dispersibility of carbon black in natural rubber. Conventionally, a method of increasing the dispersibility of carbon black in natural rubber by using carbon black having a large particle size has been adopted, but this method tends to impair the durability of the vibration-proof rubber. there were.
ところで、一般にゴム組成物においては、硫黄を含む加硫剤と併用して、加硫時間の短縮、加硫温度の低下、加硫剤の減量を目的として加硫促進剤が配合される。かかる加硫促進剤を活性化し、促進効果をさらに高めるものとして、酸化亜鉛(亜鉛華)を代表とする金属酸化物が挙げられる。下記特許文献1では、天然ゴム100重量部に対し、微粒子化された亜鉛華を特定量配合したゴム組成物を加硫することにより、動倍率が低減された防振ゴムが得られる点が記載されている。しかしながら、本発明者が鋭意検討した結果、防振ゴムの低動倍率化の観点から、かかる特許文献に記載の技術において、さらなる改良の余地があることが判明した。 By the way, in general, in a rubber composition, a vulcanization accelerator is blended in combination with a vulcanizing agent containing sulfur for the purpose of shortening the vulcanization time, lowering the vulcanization temperature, and reducing the amount of the vulcanizing agent. A metal oxide typified by zinc oxide (zinc white) is exemplified as one that activates the vulcanization accelerator and further enhances the acceleration effect. In the following Patent Document 1, it is described that an anti-vibration rubber with reduced dynamic ratio can be obtained by vulcanizing a rubber composition containing a specific amount of finely divided zinc white with respect to 100 parts by weight of natural rubber. Has been. However, as a result of intensive studies by the inventor, it has been found that there is room for further improvement in the technique described in the patent document from the viewpoint of reducing the dynamic magnification of the vibration-proof rubber.
下記特許文献2では、熱老化を抑制しつつ空気入りタイヤとしたときの諸物性(操縦性や乗り心地性、耐摩耗性など)を向上するために、空気入りタイヤの原料として、SBRに複合亜鉛華を添加したゴム組成物が記載されている。しかしながら、これらの文献に記載のゴム組成物は防振ゴム用として使用することが意図されているわけではなく、ましてやかかるゴム組成物を用いた場合、動倍率の低減に有効であるなどの記載や示唆があるわけではない。 In Patent Document 2 below, in order to improve various physical properties (maneuverability, ride comfort, wear resistance, etc.) of a pneumatic tire while suppressing heat aging, it is combined with SBR as a raw material for the pneumatic tire. A rubber composition to which zinc white is added is described. However, the rubber compositions described in these documents are not intended to be used as anti-vibration rubbers. Furthermore, when such a rubber composition is used, it is effective to reduce dynamic magnification. There is no suggestion.
なお、下記特許文献3および4には、複合亜鉛華粒子の製造方法が記載され、得られた複合亜鉛華をゴム組成物に配合する技術が記載されている。 Patent Documents 3 and 4 listed below describe a method for producing composite zinc white particles, and a technique for blending the obtained composite zinc white into a rubber composition.
しかしながら、本発明者らが鋭意検討した結果、上記特許文献3および4に記載の製造方法により得られた複合亜鉛華を使用した場合、特に近年要求されている、防振ゴムの高耐久化および低動倍率化の両立を図ることが困難であることが判明した。さらに、特許文献3および4に記載の技術は、防振ゴム用に開発されたものではなく、ましてや得られた複合亜鉛華を用いた場合、動倍率の低減に有効であるなどの記載や示唆があるわけではない。 However, as a result of intensive studies by the present inventors, when the composite zinc white obtained by the production methods described in Patent Documents 3 and 4 above is used, the durability of the vibration-proof rubber, which has been particularly required recently, and It was found that it was difficult to achieve both low dynamic magnification. In addition, the techniques described in Patent Documents 3 and 4 are not developed for vibration-proof rubber, and if the obtained composite zinc white is used, it is effective to reduce dynamic magnification. There is no reason.
本発明は上記実情に鑑みてなされたものであり、その目的は、高耐久性および低動倍率性の両立が可能な防振ゴム用ゴム組成物および防振ゴムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rubber composition for vibration-proof rubber and a vibration-proof rubber capable of achieving both high durability and low dynamic magnification.
本発明者らは、上記課題を解決すべく、防振ゴム用ゴム組成物に配合する複合亜鉛華の「窒素吸着比表面積」、「DBP吸油量」および「亜鉛華濃度」に着目し、これらを最適化した複合亜鉛華をゴム組成物に配合し、これを原料として防振ゴムを製造することにより、高耐久性および低動倍率性の両立が可能な防振ゴムが得られることを見出した。本発明は、上記の検討の結果なされたものであり、下記の如き構成により上述の目的を達成するものである。 In order to solve the above problems, the present inventors pay attention to “nitrogen adsorption specific surface area”, “DBP oil absorption amount” and “zinc flower concentration” of the composite zinc white to be blended in the rubber composition for vibration-proof rubber, We have found that anti-vibration rubbers that are compatible with both high durability and low dynamic magnification can be obtained by blending composite zinc white with optimized rubber composition into rubber compositions and using them as raw materials. It was. The present invention has been made as a result of the above-described studies, and achieves the above-described object with the following configuration.
すなわち、本発明は、少なくとも天然ゴムおよびポリイソプレンゴムからなる群より選択される少なくとも1種80重量部を含むゴム成分100重量部に対し、複合亜鉛華を2〜10重量部含有し、前記複合亜鉛華は、窒素吸着比表面積が15〜110m2/g、DBP吸油量が50〜100ml/100g、かつ亜鉛華濃度が38〜64重量%であることを特徴とする防振ゴム用ゴム組成物、に関する。本発明に係る防振ゴム用ゴム組成物は、少なくとも天然ゴムおよびポリイソプレンゴムからなる群より選択される少なくとも1種80重量部を含むゴム成分100重量部に対し、比表面積が大きく小粒径であって、分散性能に優れる特定の複合亜鉛華を特定部数配合するため、最終的に得られる加硫ゴムの高耐久性および低動倍率性の両立が可能となる。 That is, the present invention contains 2 to 10 parts by weight of composite zinc white with respect to 100 parts by weight of a rubber component containing at least 80 parts by weight of at least one selected from the group consisting of natural rubber and polyisoprene rubber. Zinc flower has a nitrogen adsorption specific surface area of 15 to 110 m 2 / g, a DBP oil absorption of 50 to 100 ml / 100 g, and a zinc flower concentration of 38 to 64% by weight. , Regarding. The rubber composition for vibration-proof rubber according to the present invention has a large specific surface area and a small particle size with respect to 100 parts by weight of a rubber component containing at least 80 parts by weight selected from the group consisting of at least natural rubber and polyisoprene rubber. In addition, since the specific composite zinc white having excellent dispersion performance is blended in a specific number of parts, it is possible to achieve both high durability and low dynamic magnification of the finally obtained vulcanized rubber.
上記防振ゴム用ゴム組成物において、前記ゴム成分100重量部に対し、硫黄を0.1〜3重量部含有することが好ましい。かかるゴム組成物を原料として得られる防振ゴムでは、耐熱性やゴム強度などを維持しつつ、動倍率を低減することができる。 In the rubber composition for vibration-proof rubber, it is preferable to contain 0.1 to 3 parts by weight of sulfur with respect to 100 parts by weight of the rubber component. In the vibration-proof rubber obtained by using such a rubber composition as a raw material, the dynamic magnification can be reduced while maintaining heat resistance, rubber strength, and the like.
本発明に係る防振ゴムは、前記いずれかに記載の防振ゴム用ゴム組成物を使用し、加硫、成形して得られる。かかる防振ゴムは、動倍率が著しく低減されている。 The anti-vibration rubber according to the present invention is obtained by vulcanization and molding using any of the rubber compositions for anti-vibration rubber described above. Such an anti-vibration rubber has a significantly reduced dynamic magnification.
本発明に係る防振ゴム用ゴム組成物は、ゴム成分100重量部に対し、少なくとも天然ゴムおよびポリイソプレンゴムからなる群より選択される少なくとも1種80重量部を含む。加硫後に得られる防振ゴムの耐疲労性などを維持しつつ、動倍率を低減するためには、ゴム成分100重量部に対し、天然ゴムおよびポリイソプレンゴムからなる群より選択される少なくとも1種を90重量部以上含有することが好ましく、95重量部以上含有することが好ましく、略100重量部含有することが特に好ましい。 The rubber composition for vibration-proof rubber according to the present invention contains at least one 80 parts by weight selected from the group consisting of natural rubber and polyisoprene rubber with respect to 100 parts by weight of the rubber component. In order to reduce the dynamic magnification while maintaining the fatigue resistance of the vibration-proof rubber obtained after vulcanization, at least one selected from the group consisting of natural rubber and polyisoprene rubber with respect to 100 parts by weight of the rubber component It is preferable to contain 90 parts by weight or more of seeds, preferably 95 parts by weight or more, and particularly preferably about 100 parts by weight.
本発明に係る防振ゴム用ゴム組成物では、複合亜鉛華を2〜10重量部含有する。複合亜鉛華は、ゴム中へのキャリアーとしてのcoreに、CaCO3、Ca(OH)2、CaSO4、ZnO、MgO、Mg(OH)2、MgCO3などを有し、そのcoreの表面に一般の亜鉛華よりもさらに活性度の高い亜鉛華を被覆した構造を有する。かかるcoreの大きさと亜鉛華の被覆層の厚み比率などは任意に設定可能である。防振ゴム用ゴム組成物中の複合亜鉛華の配合量は、ゴム成分100重量部に対して2〜10重量部であり、防振ゴムの耐久性を向上しつつ動倍率をさらに低減するためには、3〜7重量部であることが好ましく、4〜6重量部であることがより好ましい。 The rubber composition for vibration-proof rubber according to the present invention contains 2 to 10 parts by weight of composite zinc white. Composite zinc white has cores as carriers in rubber, such as CaCO 3 , Ca (OH) 2 , CaSO 4 , ZnO, MgO, Mg (OH) 2 , MgCO 3, etc. It has a structure in which zinc oxide having a higher activity than that of zinc oxide is coated. The size of the core and the thickness ratio of the zinc oxide coating layer can be arbitrarily set. The compounding amount of the composite zinc white in the rubber composition for vibration-proof rubber is 2 to 10 parts by weight with respect to 100 parts by weight of the rubber component, in order to further reduce the dynamic magnification while improving the durability of the vibration-proof rubber. Is preferably 3 to 7 parts by weight, and more preferably 4 to 6 parts by weight.
本発明において使用する複合亜鉛華は、窒素吸着比表面積が15〜110m2/g、DBP吸油量が50〜100ml/100g、かつ亜鉛華濃度が38〜64重量%である点が特徴である。かかる複合亜鉛華は、例えば特開昭54−7279号公報および特開昭60−262841号公報などを参考に、CaCo3などの前記coreの中でも、できるだけ小さなcore径を有するものを使用し、これに対し、亜鉛華濃度が38〜64重量%となるように亜鉛華の被覆量を調整することで製造することができる。所望の窒素吸着比表面積およびDBP吸油量の複合亜鉛華を得るためには、coreとして、core径が0.06〜0.22μm、好ましくは0.08〜0.12μmのCaCO3、Ca(OH)2、CaSO4、ZnO、MgO、Mg(OH)2、またはMgCO3を使用することが好ましく、CaCO3を使用することがより好ましい。 The composite zinc white used in the present invention is characterized by a nitrogen adsorption specific surface area of 15 to 110 m 2 / g, a DBP oil absorption of 50 to 100 ml / 100 g, and a zinc white concentration of 38 to 64% by weight. As such a composite zinc white, reference is made to, for example, JP-A-54-7279 and JP-A-60-262841, and among the cores such as CaCo 3 , one having the smallest possible core diameter is used. On the other hand, it can manufacture by adjusting the coating amount of zinc white so that zinc white density | concentration may be 38 to 64 weight%. In order to obtain a composite zinc white having a desired nitrogen adsorption specific surface area and DBP oil absorption, the core diameter is 0.06-0.22 μm, preferably 0.08-0.12 μm of CaCO 3 , Ca (OH ) 2 , CaSO 4 , ZnO, MgO, Mg (OH) 2 , or MgCO 3 are preferably used, and CaCO 3 is more preferably used.
複合亜鉛華の窒素吸着比表面積は、複合亜鉛華の粒子径の尺度となり、複合亜鉛華の粒子径が小さくなると、窒素吸着比表面積が大きくなる関係がある。得られる防振ゴムの低動倍率化および高耐久化を図るためには、使用する複合亜鉛華の窒素吸着比表面積は15〜110m2/gである必要があり、31〜106m2/gであることが好ましく、48〜69m2/gであることがより好ましい。 The nitrogen adsorption specific surface area of the composite zinc white is a measure of the particle diameter of the composite zinc white, and there is a relationship that the nitrogen adsorption specific surface area increases as the particle diameter of the composite zinc white decreases. To achieve low dynamic magnification and high durability of the vibration damping rubber resulting nitrogen adsorption specific surface area of the composite zinc oxide to be used must be 15~110m 2 / g, in 31~106m 2 / g It is preferably 48 to 69 m 2 / g.
複合亜鉛華のDBP吸油量は、複合亜鉛華の凝集構造(ストラクチャーの発達度合)の尺度となり、凝集構造が発達するほど、DBP吸油量が大きくなる傾向がある。得られる防振ゴムの低動倍率化および高耐久化を図るためには、使用する複合亜鉛華のDBP吸油量は50〜100ml/100gである必要があり、60〜80ml/100gであることが好ましい。 The DBP oil absorption amount of the composite zinc white is a scale of the aggregate structure (structure development degree) of the composite zinc white, and the DBP oil absorption amount tends to increase as the aggregate structure develops. In order to achieve low dynamic magnification and high durability of the vibration-proof rubber obtained, the DBP oil absorption amount of the composite zinc white used must be 50 to 100 ml / 100 g, and should be 60 to 80 ml / 100 g. preferable.
複合亜鉛華の亜鉛華濃度は、ゴム組成物中に配合する加硫促進剤を活性化するために、使用する複合亜鉛華の亜鉛華濃度は38〜64重量%である必要があり、50〜60重量%であることが好ましい。 The zinc white concentration of the composite zinc white needs to be 38 to 64% by weight in order to activate the vulcanization accelerator compounded in the rubber composition. 60% by weight is preferred.
本発明に係る防振ゴム用ゴム組成物では、硫黄系加硫剤を含有することが好ましい。かかる硫黄系加硫剤としての硫黄は通常のゴム用硫黄であればよく、例えば粉末硫黄、沈降硫黄、不溶性硫黄、高分散性硫黄などを用いることができる。本発明に係る防振ゴム用ゴム組成物における硫黄の含有量は、ゴム成分100重量部に対して0.1〜3重量部であることが好ましい。硫黄の含有量が0.1重量部未満であると、加硫ゴムの架橋密度が不足してゴム強度などが低下し、3重量部を超えると、特に耐熱性が悪化する。加硫ゴムのゴム強度を良好に確保し、動倍率および耐熱性をより向上するためには、硫黄の含有量がゴム成分100重量部に対して0.7〜2.0重量部であることがより好ましく、0.9〜1.5重量部であることがさらに好ましい。 The rubber composition for vibration-proof rubber according to the present invention preferably contains a sulfur vulcanizing agent. Sulfur as the sulfur-based vulcanizing agent may be normal sulfur for rubber. For example, powdered sulfur, precipitated sulfur, insoluble sulfur, highly dispersible sulfur and the like can be used. The sulfur content in the rubber composition for vibration-proof rubber according to the present invention is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the rubber component. When the sulfur content is less than 0.1 parts by weight, the crosslinking density of the vulcanized rubber is insufficient and the rubber strength and the like are reduced, and when it exceeds 3 parts by weight, the heat resistance is particularly deteriorated. In order to ensure good rubber strength of the vulcanized rubber and to further improve the dynamic magnification and heat resistance, the sulfur content is 0.7 to 2.0 parts by weight with respect to 100 parts by weight of the rubber component. Is more preferably 0.9 to 1.5 parts by weight.
本発明の防振ゴム用ゴム組成物は、上記ゴム成分、複合亜鉛華、硫黄系加硫剤と共に、加硫促進剤、カーボンブラック、シリカ、シランカップリング剤、ステアリン酸、加硫促進助剤、加硫遅延剤、老化防止剤、ワックスやオイルなどの軟化剤、加工助剤などの通常ゴム工業で使用される配合剤を、本発明の効果を損なわない範囲において適宜配合し用いることができる。 The rubber composition for vibration-proof rubber of the present invention comprises the above rubber component, composite zinc white, sulfur vulcanizing agent, vulcanization accelerator, carbon black, silica, silane coupling agent, stearic acid, and vulcanization acceleration aid. Additives usually used in the rubber industry, such as vulcanization retarders, anti-aging agents, softeners such as waxes and oils, processing aids, etc., can be appropriately mixed and used within a range not impairing the effects of the present invention. .
カーボンブラックとしては、例えばSAF、ISAF、HAF、FEF、GPFなどが用いられる。カーボンブラックは、加硫後のゴムの硬度、補強性、低発熱性などのゴム特性を調整し得る範囲で使用することができる。カーボンブラックの配合量はゴム成分100重量部に対して、20〜120重量部の範囲であることが好ましく、より好ましくは30〜100重量部であり、さらに好ましくは30〜60重量部である。この配合量が20重量部未満では、カーボンブラックの補強効果が充分に得られず、120重量部を超えると、発熱性、ゴム混合性および加工時の作業性などが悪化する。 Examples of carbon black include SAF, ISAF, HAF, FEF, and GPF. Carbon black can be used within a range in which rubber properties such as hardness, reinforcement and low heat build-up of the rubber after vulcanization can be adjusted. The compounding amount of carbon black is preferably in the range of 20 to 120 parts by weight, more preferably 30 to 100 parts by weight, and further preferably 30 to 60 parts by weight with respect to 100 parts by weight of the rubber component. If the blending amount is less than 20 parts by weight, the reinforcing effect of carbon black cannot be sufficiently obtained. If the blending amount exceeds 120 parts by weight, exothermic properties, rubber mixing properties, workability during processing, and the like are deteriorated.
加硫促進剤としては、ゴム加硫用として通常用いられる、スルフェンアミド系加硫促進剤、チウラム系加硫促進剤、チアゾール系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤などの加硫促進剤を単独、または適宜混合して使用しても良い。加硫促進剤の含有量は、ゴム成分100重量部に対し、1〜5重量部であることが好ましい。なお、加硫促進剤の含有量は、併用する硫黄の含有量に応じて調節することが好ましく、具体的には、ゴム成分100重量部に対し、硫黄の含有量が0.15〜0.6重量部である場合、加硫促進剤の含有量は2.5〜5重量部であることが好ましく、硫黄の含有量が0.7〜3重量部である場合、加硫促進剤の含有量は2.5〜5重量部であることが好ましい。 As the vulcanization accelerator, sulfenamide vulcanization accelerator, thiuram vulcanization accelerator, thiazole vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization, which are usually used for rubber vulcanization. Vulcanization accelerators such as accelerators and dithiocarbamate vulcanization accelerators may be used alone or in admixture as appropriate. The content of the vulcanization accelerator is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the rubber component. The content of the vulcanization accelerator is preferably adjusted according to the content of sulfur to be used in combination. Specifically, the sulfur content is 0.15 to 0.005 per 100 parts by weight of the rubber component. When the content is 6 parts by weight, the content of the vulcanization accelerator is preferably 2.5 to 5 parts by weight. When the content of sulfur is 0.7 to 3 parts by weight, the content of the vulcanization accelerator is included. The amount is preferably 2.5 to 5 parts by weight.
老化防止剤としては、ゴム用として通常用いられる、芳香族アミン系老化防止剤、アミン−ケトン系老化防止剤、モノフェノール系老化防止剤、ビスフェノール系老化防止剤、ポリフェノール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオウレア系老化防止剤などの老化防止剤を単独、または適宜混合して使用しても良い。 As an anti-aging agent, an aromatic amine-based anti-aging agent, an amine-ketone anti-aging agent, a monophenol anti-aging agent, a bisphenol anti-aging agent, a polyphenol anti-aging agent, dithiocarbamic acid, which are usually used for rubber Anti-aging agents such as a salt-based anti-aging agent and a thiourea-based anti-aging agent may be used alone or in an appropriate mixture.
本発明の防振ゴム用ゴム組成物は、上記ゴム成分、複合亜鉛華、硫黄系加硫剤、必要に応じて、カーボンブラック、ステアリン酸、加硫促進剤、老化防止剤、ワックスなどを、バンバリーミキサー、ニーダー、ロールなどの通常のゴム工業において使用される混練機を用いて混練りすることにより得られる。 The rubber composition for vibration-proof rubber of the present invention comprises the above rubber component, composite zinc white, sulfur vulcanizing agent, and if necessary, carbon black, stearic acid, vulcanization accelerator, anti-aging agent, wax, etc. It can be obtained by kneading using a kneader such as a Banbury mixer, a kneader, or a roll, which is used in a normal rubber industry.
また、上記各成分の配合方法は特に限定されず、硫黄系加硫剤、および加硫促進剤などの加硫系成分以外の配合成分を予め混練してマスターバッチとし、残りの成分を添加してさらに混練する方法、各成分を任意の順序で添加し混練する方法、全成分を同時に添加して混練する方法などのいずれでもよい。 In addition, the blending method of each of the above components is not particularly limited, and a blending component other than a vulcanizing component such as a sulfur vulcanizing agent and a vulcanization accelerator is previously kneaded to obtain a master batch, and the remaining components are added. Any of a method of further kneading, a method of adding and kneading each component in an arbitrary order, a method of adding all components simultaneously and kneading may be used.
上記各成分を混練し、成形加工した後、加硫を行うことで、低動倍率である防振ゴムを製造することができる。かかる防振ゴムは、エンジンマウント、トーショナルダンパー、ボディマウント、メンバーマウント、ストラットマウント、マフラーマウントなどの自動車用防振ゴムを始めとして、鉄道車両用防振ゴム、産業機械用防振ゴムに好適に用いることができ、特にエンジンマウントなどの低動倍率を必要とする自動車用防振ゴムの構成部材として有用である。 Anti-vibration rubber having a low dynamic magnification can be produced by kneading and molding each of the above components, followed by vulcanization. Such anti-vibration rubber is suitable for anti-vibration rubber for automobiles such as engine mount, torsional damper, body mount, member mount, strut mount, muffler mount, etc. In particular, it is useful as a component of a vibration-proof rubber for automobiles that require a low dynamic magnification such as an engine mount.
以下に、この発明の実施例を記載してより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
(ゴム組成物の調製)
ゴム成分100重量部に対して、表2の配合処方に従い、実施例1〜2、比較例1〜5のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調整した。表2に記載の各配合剤を以下に示す。
(Preparation of rubber composition)
The rubber compositions of Examples 1 and 2 and Comparative Examples 1 to 5 are blended with 100 parts by weight of the rubber component according to the formulation of Table 2, and kneaded using a normal Banbury mixer to adjust the rubber composition. did. Each compounding agent described in Table 2 is shown below.
a)ゴム成分
天然ゴム(NR) 「RSS#3」
b)カーボンブラック(GPF) 「シーストV」 (東海カーボン社製)
c)アロマオイル 「JOMO NC140」 (JX日鉱日石エネルギー社製)
d)亜鉛華 「3種ZnO」
e)複合亜鉛華
複合亜鉛華(A)〜複合亜鉛華(D)
表1に記載のcore径を有する炭酸カルシウムからなるcoreに対し、当業者に公知の手法に基づき、亜鉛華を被覆することにより、複合亜鉛華(A)〜(D)を製造した。製造した複合亜鉛華の窒素吸着比表面積(m2/g)、平均粒径(μm)、DBP吸油量(ml/100g)および亜鉛華濃度(重量%)を表1に示す。なお、製造した複合亜鉛華の窒素吸着比表面積はASTM D6556に基づき測定し、複合亜鉛華の平均粒径は、窒素吸着比表面積の測定結果に基づき、複合亜鉛華を球状物と仮定して計算により算出した。DBP吸油量は、ASTM D2414に基づき測定し、亜鉛華濃度はICP−AESを使用した元素分析に基づき測定した。なお炭酸カルシウムのcore径は、算出した複合亜鉛華の平均粒径および亜鉛華濃度から、計算により算出可能である。
a) Rubber component
Natural rubber (NR) "RSS # 3"
b) Carbon Black (GPF) “Seast V” (Tokai Carbon Co., Ltd.)
c) Aroma oil “JOMO NC140” (manufactured by JX Nippon Oil & Energy Corporation)
d) Zinc Hana “3 types of ZnO”
e) Composite zinc white
Composite zinc white (A) to composite zinc white (D)
A composite zinc white (A) to (D) was produced by coating a core made of calcium carbonate having the core diameter shown in Table 1 with a zinc white based on a method known to those skilled in the art. Table 1 shows the nitrogen adsorption specific surface area (m 2 / g), average particle diameter (μm), DBP oil absorption (ml / 100 g), and zinc white concentration (% by weight) of the produced composite zinc white. In addition, the nitrogen adsorption specific surface area of the manufactured composite zinc white was measured based on ASTM D6556, and the average particle size of the composite zinc white was calculated based on the measurement result of the nitrogen adsorption specific surface area, assuming that the composite zinc white was a spherical object. Calculated by The DBP oil absorption was measured based on ASTM D2414, and the zinc white concentration was measured based on elemental analysis using ICP-AES. The core diameter of calcium carbonate can be calculated from the calculated average particle diameter and zinc white concentration of the composite zinc white.
f)ステアリン酸 (日油社製)
g)ワックス 「OZOACE−2701」(日本精蝋社製)
h)老化防止剤 N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン 「アンテージ6C」 (川口化学工業社製)
i)硫黄 5%オイル処理硫黄
j)加硫促進剤
(A)チウラム化合物 テトラメチルチウラムモノスルフィド 「ノクセラーTS(TS−P)」 (大内新興化学工業社製)
(B)スルフェンアミド系加硫促進剤 N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド 「ノクセラー CZ−G(CZ)」 (大内新興化学工業社製)
(C)チアゾール系加硫促進剤 ジ−2−ベンゾチアゾリルジスルフィド 「ノクセラー DM−P(DM)」 (大内新興化学工業社製)
f) Stearic acid (manufactured by NOF Corporation)
g) Wax “OZOACE-2701” (manufactured by Nippon Seiwa Co., Ltd.)
h) Anti-aging agent N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine “ANTAGE 6C” (manufactured by Kawaguchi Chemical Co., Ltd.)
i) Sulfur 5% oil-treated sulfur j) Vulcanization accelerator (A) Thiuram compound Tetramethylthiuram monosulfide “Noxeller TS (TS-P)” (manufactured by Ouchi Shinsei Chemical Co., Ltd.)
(B) Sulfenamide vulcanization accelerator N-cyclohexyl-2-benzothiazolylsulfenamide “Noxeller CZ-G (CZ)” (manufactured by Ouchi Shinsei Chemical Co., Ltd.)
(C) Thiazole-based vulcanization accelerator di-2-benzothiazolyl disulfide “Noxeller DM-P (DM)” (manufactured by Ouchi Shinsei Chemical Co., Ltd.)
(評価)
評価は、各ゴム組成物を所定の金型を使用して、160℃で20分間加熱、加硫して得られたゴムについて行った。
(Evaluation)
The evaluation was performed on rubbers obtained by heating and vulcanizing each rubber composition at 160 ° C. for 20 minutes using a predetermined mold.
<動倍率(動的バネ定数/静的バネ定数)>
動倍率は、動的バネ定数および静的バネ定数を測定することにより算出した。
<Dynamic magnification (dynamic spring constant / static spring constant)>
The dynamic magnification was calculated by measuring the dynamic spring constant and the static spring constant.
(1)動的バネ定数(Kd)
測定機として、島津製作所社製「サーボパルサーEHF−Eシリーズ」を使用し、初期歪10%、周波数100Hz、振幅±0.05mmとして、JIS K 6394に記載の計算方法により算出した。
(1) Dynamic spring constant (Kd)
A “servo pulser EHF-E series” manufactured by Shimadzu Corporation was used as a measuring machine, and the calculation was performed according to the calculation method described in JIS K 6394 with an initial strain of 10%, a frequency of 100 Hz, and an amplitude of ± 0.05 mm.
(2)静的バネ定数(Ks)
測定機として、島津製作所社製「サーボパルサーEHF−Eシリーズ」を使用し、φ50mm×25mmの加硫ゴムテストピースに、0.7mm/secのクロスヘッドスピードで0〜5mm間の予備圧縮を2回繰り返し、次に0.167mm/secのクロスヘッドスピードで0〜5mm間の本圧縮を1回行った。3回目の荷重−たわみ線図を描き、下記式(1)に基づいて算出した。
(2) Static spring constant (Ks)
Use a “Servo Pulsar EHF-E Series” manufactured by Shimadzu Corporation as a measuring machine, and apply 2 pre-compression between 0 and 5 mm at a crosshead speed of 0.7 mm / sec to a vulcanized rubber test piece of φ50 mm × 25 mm. Then, the main compression of 0 to 5 mm was performed once at a crosshead speed of 0.167 mm / sec. A third load-deflection diagram was drawn and calculated based on the following formula (1).
(静的バネ定数(N/mm))=(w2−w1)/(δ2−δ1) (1)
(上記式(1)において、w1;たわみ量δ1が1.3mm時の荷重(N)、w2;たわみ量δ2が3.8mm時の荷重(N))
算出した動的バネ定数(Kd)と静的バネ定数(Ks)とに基づき、動倍率(Kd/Ks)を算出した。評価結果を表2に示す。
(Static spring constant (N / mm)) = (w2-w1) / (δ2-δ1) (1)
(In the above formula (1), w1; load (N) when the deflection amount δ1 is 1.3 mm, w2; load (N) when the deflection amount δ2 is 3.8 mm)
Based on the calculated dynamic spring constant (Kd) and static spring constant (Ks), the dynamic magnification (Kd / Ks) was calculated. The evaluation results are shown in Table 2.
<耐久性>
各ゴム組成物を所定の円柱構造(φ30×H20)となるようにトランスファー成型したものを、55°傾けて上下定荷重加振(上方向0.9kN、下方向0.3kN)を3Hzの周波数で与え、亀裂が成長しバネが初期より半分になった回数に基づき耐久性を評価した。評価は、比較例1を100とした指数評価で行い、数値が高いほど耐久性に優れることを意味する。結果を表2に示す。
<Durability>
Each rubber composition is transfer-molded so as to have a predetermined cylindrical structure (φ30 × H20), tilted by 55 °, and subjected to constant vertical load excitation (upward 0.9 kN, downward 0.3 kN) at a frequency of 3 Hz. The durability was evaluated based on the number of times the crack grew and the spring was halved from the initial stage. Evaluation is performed by index evaluation with Comparative Example 1 being 100, and the higher the value, the better the durability. The results are shown in Table 2.
<ゴム硬度および引張特性>
JIS−K 6253に準拠し、タイプAデュロメーターにてゴム硬度を測定した、さらに、JIS3号ダンベルを使用して作製したサンプルをJIS−K 6251に準拠して、引張強さ(TB(MPa))および伸び(EB(%))を測定した。結果を表2に示す。
<Rubber hardness and tensile properties>
According to JIS-K 6253, rubber hardness was measured with a type A durometer. Further, a sample produced using a JIS No. 3 dumbbell was subjected to tensile strength (TB (MPa)) in accordance with JIS-K 6251. And elongation (EB (%)) was measured. The results are shown in Table 2.
表2の結果から、実施例1〜2に係る防振ゴム用ゴム組成物の加硫ゴムは、低動倍率化され、かつ高耐久化されていることがわかる。
From the results of Table 2, it can be seen that the vulcanized rubber of the rubber composition for vibration-proof rubber according to Examples 1 and 2 has a low dynamic magnification and high durability.
Claims (3)
前記複合亜鉛華は、窒素吸着比表面積が48〜69m2/g、DBP吸油量が60〜80ml/100g、かつ亜鉛華濃度が38〜64重量%であることを特徴とする防振ゴム用ゴム組成物。 2-10 parts by weight of composite zinc white is contained with respect to 100 parts by weight of a rubber component containing at least 80 parts by weight selected from the group consisting of at least natural rubber and polyisoprene rubber,
The composite zinc white has a nitrogen adsorption specific surface area of 48 to 69 m 2 / g, a DBP oil absorption of 60 to 80 ml / 100 g, and a zinc white concentration of 38 to 64% by weight. Rubber composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230203A JP6234172B2 (en) | 2013-11-06 | 2013-11-06 | Rubber composition for anti-vibration rubber and anti-vibration rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230203A JP6234172B2 (en) | 2013-11-06 | 2013-11-06 | Rubber composition for anti-vibration rubber and anti-vibration rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015089917A JP2015089917A (en) | 2015-05-11 |
JP6234172B2 true JP6234172B2 (en) | 2017-11-22 |
Family
ID=53193605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013230203A Active JP6234172B2 (en) | 2013-11-06 | 2013-11-06 | Rubber composition for anti-vibration rubber and anti-vibration rubber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6234172B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5873063B2 (en) * | 2013-11-06 | 2016-03-01 | 東洋ゴム工業株式会社 | Rubber composition for anti-vibration rubber and anti-vibration rubber |
JP2018083880A (en) * | 2016-11-22 | 2018-05-31 | 東洋ゴム工業株式会社 | Rubber composition for vibration-proof rubber |
CN112876753B (en) * | 2021-01-21 | 2021-11-16 | 中国石油大学(北京) | Covalent organic framework/styrene butadiene rubber composite material and preparation method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60262841A (en) * | 1984-06-08 | 1985-12-26 | Bridgestone Corp | Vulcanizable rubber composition |
JPH1160815A (en) * | 1997-08-14 | 1999-03-05 | Jsr Corp | Ethylenic copolymer rubber composition |
JP2001214005A (en) * | 2000-02-02 | 2001-08-07 | Jsr Corp | Rubber composition and vulcanized rubber |
JP2001240703A (en) * | 2000-02-25 | 2001-09-04 | Jsr Corp | Rubber composition and vibrationproof rubber using the same |
JP5009457B2 (en) * | 2000-05-11 | 2012-08-22 | 株式会社ブリヂストン | Rubber composition and pneumatic tire using the same |
JP2003055505A (en) * | 2001-08-20 | 2003-02-26 | Sumitomo Rubber Ind Ltd | Rubber composition and tire using the same |
JP2004352760A (en) * | 2003-05-27 | 2004-12-16 | Bridgestone Corp | Foamed rubber composition and its manufacturing method |
JP2006193621A (en) * | 2005-01-13 | 2006-07-27 | Toyo Tire & Rubber Co Ltd | Vibration-proof rubber composition and vibration-proof rubber |
JP5247086B2 (en) * | 2007-08-09 | 2013-07-24 | 株式会社ブリヂストン | Rubber composition and pneumatic tire using the same |
JP5356047B2 (en) * | 2009-01-14 | 2013-12-04 | 東洋ゴム工業株式会社 | Rubber composition for covering steel cord and pneumatic tire |
JP5270395B2 (en) * | 2009-02-12 | 2013-08-21 | 東洋ゴム工業株式会社 | Rubber composition for covering steel cord and pneumatic tire |
MY163283A (en) * | 2011-07-25 | 2017-08-30 | Denka Company Ltd | Polychloroprene latex composition and dip-molded article |
-
2013
- 2013-11-06 JP JP2013230203A patent/JP6234172B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015089917A (en) | 2015-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5873063B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
AU2013399480B2 (en) | Improved natural rubber compositions | |
CN106414589A (en) | Anti-vibration rubber composition and anti-vibration rubber | |
JP5949493B2 (en) | Anti-vibration rubber composition and anti-vibration rubber | |
JP6234172B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP5546426B2 (en) | Rubber composition for shock absorbing rubber for railway vehicles | |
JP2014077050A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP5465317B2 (en) | Anti-vibration rubber composition and anti-vibration rubber using the same | |
EP3252098B1 (en) | Rubber composition for vibration damping rubbers, and vibration damping rubber | |
JP2008007546A (en) | Vibration-insulating rubber composition and vibration-insulating rubber | |
JP2019085792A (en) | Fender | |
JP2019044078A (en) | Rubber composition, inner peripheral cover rubber, conveyor belt, and belt conveyor | |
JP2011162585A (en) | Rubber composition for vibration-damping rubber, and vibration-damping rubber | |
JP2007314697A (en) | Vibration-proof rubber composition and rubber vibration isolator | |
JP2010209285A (en) | Rubber composition for vibration-damping rubber and vibration-damping rubber | |
JP2013151584A (en) | Rubber composition for rubber vibration isolator | |
JP5355378B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP2020090665A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP7288749B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP2004292679A (en) | Rubber vibration insulator composition and rubber vibration insulator for automobile obtained using the same | |
JP2017110093A (en) | Rubber composition for vibration-proof rubber | |
JP2018083880A (en) | Rubber composition for vibration-proof rubber | |
JP2002293992A (en) | Vibration insulating rubber with high hardness and high electrical resistance and rubber composition giving the same | |
JP2008208204A (en) | Vibration-proof rubber composition and vibration-proof rubber by using the same | |
JP2007070582A (en) | Method for manufacturing rubber composition and rubber product obtained by the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6234172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |