JP6232369B2 - Method for producing magnetic viscoelastic elastomer - Google Patents

Method for producing magnetic viscoelastic elastomer Download PDF

Info

Publication number
JP6232369B2
JP6232369B2 JP2014217084A JP2014217084A JP6232369B2 JP 6232369 B2 JP6232369 B2 JP 6232369B2 JP 2014217084 A JP2014217084 A JP 2014217084A JP 2014217084 A JP2014217084 A JP 2014217084A JP 6232369 B2 JP6232369 B2 JP 6232369B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
mold
mixture
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014217084A
Other languages
Japanese (ja)
Other versions
JP2016086050A (en
Inventor
井上 敏郎
敏郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014217084A priority Critical patent/JP6232369B2/en
Publication of JP2016086050A publication Critical patent/JP2016086050A/en
Application granted granted Critical
Publication of JP6232369B2 publication Critical patent/JP6232369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

本発明は、弾性材料の内部に磁性粒子を内包し、印加する磁力の大きさにより、弾性率を可変とする磁気粘弾性エラストマの製造方法に関する。   The present invention relates to a method for producing a magneto-viscoelastic elastomer in which magnetic particles are encapsulated in an elastic material and the elastic modulus is variable depending on the magnitude of applied magnetic force.

特許文献1には、磁性導電体とゴム状弾性体から導電弾性体を製造する方法が開示されている。この製造方法は、磁性導電体とゴム状弾性体との混合物を被磁性体からなる型に注入する。その後、一対の磁場発生装置の間に、内部に混合物が注入された型を配置して、混合物に対して一定の平行磁場を印加する。その後、型内の混合物を固化させる。   Patent Document 1 discloses a method for producing a conductive elastic body from a magnetic conductor and a rubber-like elastic body. In this manufacturing method, a mixture of a magnetic conductor and a rubber-like elastic body is injected into a mold made of a magnetic material. Thereafter, a mold in which the mixture is injected is disposed between the pair of magnetic field generators, and a constant parallel magnetic field is applied to the mixture. Thereafter, the mixture in the mold is solidified.

特開2005−322492号公報JP 2005-322492 A

特許文献1記載の製造方法の場合、一方の磁場発生装置から他方の磁場発生装置に向かう平行な磁力線により、ゴム状弾性体内部の磁性導電体を配向させる必要がある。この場合、一対の磁場発生装置間の距離が離れるほど、混合物に印加される磁場が弱まる。そのため、磁性導電体の配向方向(磁力線と平行な方向)に厚みを持たせるような導電弾性体を製造するためには、磁場発生装置による発生磁場を強くする必要があり、磁場の発生に要する消費電力が多大であったり、製造装置の大型化が必要であった。   In the case of the manufacturing method described in Patent Document 1, it is necessary to orient the magnetic conductor inside the rubber-like elastic body by parallel magnetic lines of force from one magnetic field generator to the other magnetic field generator. In this case, the magnetic field applied to the mixture becomes weaker as the distance between the pair of magnetic field generators increases. Therefore, in order to produce a conductive elastic body having a thickness in the orientation direction of the magnetic conductor (direction parallel to the lines of magnetic force), it is necessary to increase the magnetic field generated by the magnetic field generator, which is necessary for the generation of the magnetic field. Power consumption is enormous, and the manufacturing apparatus needs to be enlarged.

本発明は、弾性材料内で配向される磁性粒子の配向方向(磁場印加時の磁力線と平行な方向)に厚みを持たせた磁気粘弾性エラストマを製造する際に、消費電力の低減や製造装置の小型化を図ることができる磁気粘弾性エラストマの製造方法を提供することを目的とする。   The present invention reduces power consumption and manufacturing apparatus when manufacturing a magnetic viscoelastic elastomer having a thickness in the orientation direction of magnetic particles oriented in an elastic material (direction parallel to the magnetic field lines when a magnetic field is applied). An object of the present invention is to provide a method for producing a magneto-viscoelastic elastomer that can be miniaturized.

[1] 本発明に係る磁気粘弾性エラストマの製造方法は、弾性材料の内部に磁性粒子を内包し、印加する磁場の大きさにより、弾性率を可変とする磁気粘弾性エラストマの製造方法であって、前記磁性粒子及び前記弾性材料の混合物を非磁性材料からなる型に注入する工程と、前記型に磁場を印加する磁場印加手段により、前記型内の前記混合物に磁場を印加する工程と、前記型内の前記混合物を固化する工程と、を有し、前記磁場印加手段は、互いに反対方向の磁場を印加するように2つ設けられ、前記型内の前記混合物に磁場を印加する際に、前記2つの磁場印加手段の磁場が同一方向で重なる位置に、前記型を配置することを特徴とする。 [1] A method for producing a magnetic viscoelastic elastomer according to the present invention is a method for producing a magnetic viscoelastic elastomer in which magnetic particles are encapsulated in an elastic material and the elastic modulus is variable depending on the magnitude of a magnetic field to be applied. Injecting a mixture of the magnetic particles and the elastic material into a mold made of a non-magnetic material, applying a magnetic field to the mixture in the mold by a magnetic field applying means for applying a magnetic field to the mold, and Solidifying the mixture in the mold, and two magnetic field applying means are provided so as to apply magnetic fields in opposite directions, and when applying a magnetic field to the mixture in the mold The mold is arranged at a position where the magnetic fields of the two magnetic field applying means overlap in the same direction.

上記構成により、2つの磁場印加手段の磁場の方向が重なる方向に磁性粒子を配向させることができるため、特許文献1のように、2つの磁場発生装置間で生じる磁力線に沿って配向するよりも、配向方向への厚みを持たせた磁気粘弾性エラストマを容易に製造することができる。また、磁場が同方向に重なる位置で磁性粒子を配向させるため、より省電力で配向を行うことができる。   With the above configuration, the magnetic particles can be oriented in the direction in which the magnetic field directions of the two magnetic field applying units overlap, and therefore, rather than being oriented along the magnetic field lines generated between the two magnetic field generators as in Patent Document 1. A magnetic viscoelastic elastomer having a thickness in the orientation direction can be easily produced. In addition, since the magnetic particles are aligned at positions where the magnetic fields overlap in the same direction, the alignment can be performed with more power saving.

[2] 本発明において、前記型は前記混合物が環状に形成されるように設けられ、前記2つの磁場印加手段は、互いに反対方向に巻線されて、同方向に電力が供給される励磁コイル、もしくは互いに同方向に巻線されて、反対方向に電力が供給される励磁コイルにより構成され、前記型内の前記混合物は、前記励磁コイルの軸線方向で、前記励磁コイルに挟まれた位置であって、且つ、前記磁場を前記環状の径方向で放射状に受ける位置に配置されてもよい。 [2] In the present invention, the mold is provided so that the mixture is formed in an annular shape, and the two magnetic field applying means are wound in opposite directions to be supplied with power in the same direction. Or an excitation coil that is wound in the same direction and supplied with power in the opposite direction, and the mixture in the mold is positioned between the excitation coils in the axial direction of the excitation coil. In addition, the magnetic field may be arranged at a position that receives the magnetic field radially in the annular radial direction.

上記構成により、環状に形成され、径方向で放射状に磁性粒子が配向された磁気粘弾性エラストマを容易に製造することができる。   With the above configuration, it is possible to easily manufacture a magnetic viscoelastic elastomer that is formed in an annular shape and in which magnetic particles are radially oriented in the radial direction.

[3] 本発明において、前記型は前記混合物が直方体状に形成されるように設けられ、前記2つの磁場印加手段は、互いに反対方向に巻線されて、同方向に電力が供給される励磁コイル、もしくは互いに同方向に巻線されて、反対方向に電力が供給される励磁コイルにより構成され、前記型内の前記混合物は、前記励磁コイルの軸線方向で、前記励磁コイルに挟まれた位置であって、且つ、前記磁場を一方向で平行に受ける位置に配置されてもよい。 [3] In the present invention, the mold is provided so that the mixture is formed in a rectangular parallelepiped shape, and the two magnetic field applying units are wound in opposite directions so that power is supplied in the same direction. A coil or an exciting coil wound in the same direction and supplied with power in the opposite direction, and the mixture in the mold is positioned between the exciting coils in the axial direction of the exciting coil And it may be arrange | positioned in the position which receives the said magnetic field in parallel in one direction.

上記構成により、直方体状に形成され、磁性粒子が一方向で平行に配向された磁気粘弾性エラストマを容易に製造することができる。   With the above configuration, a magnetic viscoelastic elastomer formed in a rectangular parallelepiped shape and having magnetic particles oriented in parallel in one direction can be easily manufactured.

[4] 本発明において、前記型内で固化された前記混合物を、前記磁性粒子の配向と直交する方向に積層する工程を有してもよい。 [4] In the present invention, the method may include a step of laminating the mixture solidified in the mold in a direction orthogonal to the orientation of the magnetic particles.

上記構成により、磁性粒子の配向と直交する方向への厚みを持たせた磁気粘弾性エラストマを容易に製造することができ、磁場印加手段の印加磁場を大きくする必要がないため、省電力で磁気粘弾性エラストマを製造することが可能となる。   With the above configuration, a magnetic viscoelastic elastomer having a thickness in a direction perpendicular to the orientation of the magnetic particles can be easily manufactured, and it is not necessary to increase the applied magnetic field of the magnetic field applying means. It becomes possible to produce a viscoelastic elastomer.

本発明によれば、弾性材料内で配向される磁性粒子の配向方向(磁場印加時の磁力線と平行な方向)に厚みを持たせた磁気粘弾性エラストマを製造する際に、消費電力の低減や製造装置の小型化を図ることができる。   According to the present invention, when manufacturing a magnetic viscoelastic elastomer having a thickness in the orientation direction of magnetic particles oriented in the elastic material (direction parallel to the magnetic field lines when a magnetic field is applied), power consumption can be reduced. The manufacturing apparatus can be downsized.

図1Aは本実施の形態に係る製造方法にて製造される磁気粘弾性エラストマを上面から見て示す平面図であり、図1Bは磁気粘弾性エラストマの側面図である。FIG. 1A is a plan view showing a magnetic viscoelastic elastomer manufactured by the manufacturing method according to the present embodiment as viewed from above, and FIG. 1B is a side view of the magnetic viscoelastic elastomer. 図2Aは本実施の形態に係る製造方法の一例を示す工程図であり、図2Bは本実施の形態に係る製造方法の他の例を示す工程図である。FIG. 2A is a process diagram showing an example of the manufacturing method according to the present embodiment, and FIG. 2B is a process diagram showing another example of the manufacturing method according to the present embodiment. 図3Aは液状の弾性材料と多数の磁性粒子の混合物を型のキャビティに注入した状態を示す断面図であり、図3Bは環状の弾性材料に多数の磁性粒子がランダムに分散している状態を上面から見て示す平面図である。FIG. 3A is a cross-sectional view showing a state in which a mixture of a liquid elastic material and a large number of magnetic particles is injected into a mold cavity, and FIG. 3B shows a state where a large number of magnetic particles are randomly dispersed in an annular elastic material. It is a top view seen from the upper surface. 図4Aは2つの磁場印加手段の間に型を配置した状態を示す説明図であり、図4Bは2つの磁場印加手段からの磁場が同一方向で重なっている状態を示す説明図である。FIG. 4A is an explanatory view showing a state in which a mold is disposed between two magnetic field applying means, and FIG. 4B is an explanatory view showing a state in which the magnetic fields from the two magnetic field applying means overlap in the same direction. 図5Aは本実施の形態に係る他の製造方法にて製造される磁気粘弾性エラストマを上面から見て示す平面図であり、図5Bは単位厚みの混合物を積層して磁気粘弾性エラストマを製造した状態を示す側面図である。FIG. 5A is a plan view showing a magneto-viscoelastic elastomer produced by another production method according to the present embodiment as viewed from above, and FIG. 5B produces a magneto-viscoelastic elastomer by laminating a mixture of unit thicknesses. It is a side view which shows the state which carried out. 図6Aは磁気粘弾性エラストマを利用したダイナミックダンパの一例の構成を示す縦断面図であり、図6Bはダイナミックダンパの作用を図6Aの一部を拡大して示す説明図である。FIG. 6A is a longitudinal cross-sectional view showing a configuration of an example of a dynamic damper using a magneto-viscoelastic elastomer, and FIG. 6B is an explanatory diagram showing a part of FIG. 図7Aは他の製造方法にて製造される磁気粘弾性エラストマを上面から見て示す平面図であり、図7Bは磁気粘弾性エラストマの側面図である。FIG. 7A is a plan view showing a magnetic viscoelastic elastomer manufactured by another manufacturing method as viewed from above, and FIG. 7B is a side view of the magnetic viscoelastic elastomer. 図8Aは2つの磁場印加手段の間に型を配置した状態を示す説明図であり、図8Bは2つの磁場印加手段からの磁場が同一方向で重なっている状態を示す説明図である。FIG. 8A is an explanatory view showing a state in which a mold is disposed between two magnetic field applying means, and FIG. 8B is an explanatory view showing a state in which the magnetic fields from the two magnetic field applying means overlap in the same direction. 図9Aは他の製造方法にて製造される磁気粘弾性エラストマを上面から見て示す平面図であり、図9Bは磁気粘弾性エラストマの側面図である。FIG. 9A is a plan view showing a magnetic viscoelastic elastomer manufactured by another manufacturing method as viewed from above, and FIG. 9B is a side view of the magnetic viscoelastic elastomer.

以下、本発明に係る磁気粘弾性エラストマの製造方法の実施の形態例を図1A〜図9Bを参照しながら説明する。   Hereinafter, an embodiment of a method for producing a magnetic viscoelastic elastomer according to the present invention will be described with reference to FIGS. 1A to 9B.

本実施の形態に係る磁気粘弾性エラストマの製造方法を説明する前に、該製造方法にて製造される磁気粘弾性エラストマ10について説明する。   Before describing the method of manufacturing the magnetic viscoelastic elastomer according to the present embodiment, the magnetic viscoelastic elastomer 10 manufactured by the manufacturing method will be described.

この磁気粘弾性エラストマ10は、例えば図1A及び図1Bに示すように、一定の厚みtを有する円環状の弾性材料12(基質エラストマ)の内部に多数の導電性の磁性粒子14が内包されて構成されている。マトリックスとしての弾性材料12は粘弾性を有する。多数の磁性粒子14は、弾性材料12の径方向に配向されている。すなわち、この磁気粘弾性エラストマ10は、中央に貫通孔15を有する円環状の弾性材料12の内部に、磁性粒子14が径方向に配向されてなる複数の磁性粒子列16が放射状に配列された構成を有する。   As shown in FIGS. 1A and 1B, for example, the magnetic viscoelastic elastomer 10 includes a large number of conductive magnetic particles 14 encapsulated in an annular elastic material 12 (substrate elastomer) having a constant thickness t. It is configured. The elastic material 12 as a matrix has viscoelasticity. A large number of magnetic particles 14 are oriented in the radial direction of the elastic material 12. That is, in the magneto-viscoelastic elastomer 10, a plurality of magnetic particle rows 16 in which magnetic particles 14 are radially oriented are arranged radially inside an annular elastic material 12 having a through hole 15 in the center. It has a configuration.

弾性材料12の構成材料としては、例えば、エチレン−プロピレンゴム、ブタジエンゴム、イソプレンゴム、シリコーンゴム等の室温で粘弾性を有する公知の高分子材料が挙げられる。   Examples of the constituent material of the elastic material 12 include known polymer materials having viscoelasticity at room temperature, such as ethylene-propylene rubber, butadiene rubber, isoprene rubber, and silicone rubber.

磁性粒子14は、磁場の作用によって磁気分極する性質を有すると共に、導電性を有するものである。磁性粒子14の構成材料としては、例えば、磁気軟鉄、方向性ケイ素鋼、Mn−Znフェライト、Ni−Znフェライト、マグネタイト、コバルト、ニッケル等の金属、4−メトキシベンジリデン−4−アセトキシアニリン、トリアミノベンゼン重合体等の有機物、フェライト分散異方性プラスチック等の有機・無機複合体等の公知の材料が挙げられる。   The magnetic particles 14 have the property of being magnetically polarized by the action of a magnetic field and have conductivity. Examples of the constituent material of the magnetic particles 14 include magnetic soft iron, directional silicon steel, Mn—Zn ferrite, Ni—Zn ferrite, magnetite, cobalt, nickel and other metals, 4-methoxybenzylidene-4-acetoxyaniline, triamino Known materials such as organic substances such as benzene polymers and organic / inorganic composites such as ferrite-dispersed anisotropic plastics can be used.

磁性粒子14の形状は、特に限定されず、例えば、球形、針形、平板形等であってよい。磁性粒子14の粒径は、特に限定されず、例えば、0.01μm〜500μm程度であってよい。磁性粒子14の弾性材料12に対する割合は、任意に設定可能であるが、例えば、体積分率で5%〜60%程度であってよい。   The shape of the magnetic particle 14 is not particularly limited, and may be, for example, a spherical shape, a needle shape, a flat plate shape, or the like. The particle size of the magnetic particles 14 is not particularly limited, and may be, for example, about 0.01 μm to 500 μm. The ratio of the magnetic particles 14 to the elastic material 12 can be arbitrarily set, but may be, for example, about 5% to 60% in volume fraction.

次に、本実施の形態に係る製造方法について図2A〜図5Bを参照しながら説明する。   Next, a manufacturing method according to the present embodiment will be described with reference to FIGS. 2A to 5B.

先ず、図2AのステップS1において、図3Aに示すように、液状の弾性材料12と多数の磁性粒子14の混合物18を非磁性材料からなる型20に注入する。型20は、第1型20aと第2型20bとで形成されるキャビティ22に混合物18を注入することによって、図3Bに示すように、混合物18が環状に形成されるように設けられている。キャビティ22内の混合物18は、液状の弾性材料12に多数の磁性粒子14がランダムに分散されている。   First, in step S1 of FIG. 2A, as shown in FIG. 3A, a mixture 18 of a liquid elastic material 12 and a large number of magnetic particles 14 is poured into a mold 20 made of a nonmagnetic material. The mold 20 is provided so that the mixture 18 is formed in an annular shape as shown in FIG. 3B by injecting the mixture 18 into the cavity 22 formed by the first mold 20a and the second mold 20b. . In the mixture 18 in the cavity 22, a large number of magnetic particles 14 are randomly dispersed in the liquid elastic material 12.

その後、図2のステップS2において、図4Aに示すように、型20に磁場Biを印加する磁場印加手段24により、型20内の混合物18に磁場Biを印加する。磁場印加手段24は、互いに反対方向の磁場Biを印加するように2つ設けられている。すなわち、第1磁場印加手段24Aは、円環状を有し、第1導線26aが一方向に巻線された第1励磁コイル28Aにて構成されている。第2磁場印加手段24Bは、円環状を有し、第2導線26bが他方向(一方向とは反対方向)に巻線された第2励磁コイル28Bにて構成されている。あるいは、第1磁場印加手段24Aを、第1導線26aが一方向に巻線された第1励磁コイル28Aにて構成し、第2磁場印加手段24Bを、第2導線26bが同じく一方向に巻線された第2励磁コイル28Bにて構成してもよい。   After that, in step S2 of FIG. 2, as shown in FIG. 4A, the magnetic field Bi is applied to the mixture 18 in the mold 20 by the magnetic field applying means 24 that applies the magnetic field Bi to the mold 20. Two magnetic field applying means 24 are provided so as to apply magnetic fields Bi in opposite directions. That is, the first magnetic field applying means 24A has an annular shape and is configured by a first exciting coil 28A in which a first conducting wire 26a is wound in one direction. The second magnetic field applying unit 24B has an annular shape, and is configured by a second exciting coil 28B in which a second conductive wire 26b is wound in the other direction (a direction opposite to one direction). Alternatively, the first magnetic field applying unit 24A is configured by the first exciting coil 28A in which the first conducting wire 26a is wound in one direction, and the second magnetic field applying unit 24B is similarly wound in the one direction by the second conducting wire 26b. You may comprise by the 2nd exciting coil 28B wired.

また、型20内の混合物18に磁場Biを印加する際に、第1磁場印加手段24A及び第2磁場印加手段24Bからの磁場Biが同一方向で重なる位置に、型20を配置する。具体的には、図4Aに示すように、例えば第1励磁コイル28Aと第2励磁コイル28Bとの間に型20を配置する。このとき、型20内の混合物18が、第1励磁コイル28A及び第2励磁コイル28Bの軸線方向で、第1励磁コイル28Aと第2励磁コイル28Bとで挟まれた位置で、且つ、磁場Biを環状の径方向で放射状に受ける位置に配置される。   Further, when the magnetic field Bi is applied to the mixture 18 in the mold 20, the mold 20 is disposed at a position where the magnetic fields Bi from the first magnetic field applying unit 24A and the second magnetic field applying unit 24B overlap in the same direction. Specifically, as shown in FIG. 4A, for example, the mold 20 is disposed between the first excitation coil 28A and the second excitation coil 28B. At this time, the mixture 18 in the mold 20 is positioned between the first excitation coil 28A and the second excitation coil 28B in the axial direction of the first excitation coil 28A and the second excitation coil 28B, and the magnetic field Bi. Are disposed at positions that receive the ring radially in the annular radial direction.

この場合、図4Bに示すように、第1励磁コイル28Aの軸線30aと、型20の軸線32(型内の混合物の軸線)と、第2励磁コイル28Bの軸線30bとが揃うようにしてもよい。なお、各軸線30a、30b及び32は鉛直方向(重力方向)に沿っていてもよいし、水平方向に沿っていてもよい。   In this case, as shown in FIG. 4B, the axis 30a of the first excitation coil 28A, the axis 32 of the mold 20 (the axis of the mixture in the mold), and the axis 30b of the second excitation coil 28B may be aligned. Good. Each axis 30a, 30b and 32 may be along the vertical direction (gravity direction) or along the horizontal direction.

もちろん、第1励磁コイル28Aの軸線30aと型20の軸線32とのなす角が0°である必要はなく、ある程度の余裕(例えば10°未満)があってもよい。また、第1励磁コイル28Aを型20に投影したとき、第1励磁コイル28Aの中心と型20の中心とが一致しているのが好ましいが、一致していなくてもよい。ある程度の余裕(例えば混合物18の内径の1/2未満)があってもよい。これらのことは第2励磁コイル28Bと型20との関係についても同様である。   Of course, the angle formed between the axis 30a of the first excitation coil 28A and the axis 32 of the mold 20 need not be 0 °, and may have a certain margin (for example, less than 10 °). Further, when the first excitation coil 28A is projected onto the mold 20, it is preferable that the center of the first excitation coil 28A and the center of the mold 20 coincide with each other, but they may not coincide with each other. There may be some margin (for example, less than ½ of the inner diameter of the mixture 18). The same applies to the relationship between the second exciting coil 28B and the mold 20.

また、第1励磁コイル28Aと型20とを接触させてもよいし、第1励磁コイル28Aと型20との間にある程度の隙間(例えば第1励磁コイル28Aの厚みの1/2未満)を置いてもよい。これは、第2励磁コイル28Bと型20との関係についても同様である。   Further, the first excitation coil 28A and the mold 20 may be brought into contact with each other, and a certain amount of gap (for example, less than ½ of the thickness of the first excitation coil 28A) is provided between the first excitation coil 28A and the mold 20. May be placed. The same applies to the relationship between the second excitation coil 28B and the mold 20.

第1励磁コイル28A及び第2励磁コイル28Bの内径Di1、Di2及び外径Do1、Do2は任意に設定することができるが、少なくとも第1励磁コイル28A及び第2励磁コイル28Bの内径Di1、Di2を、型20内の混合物18の外径をDo、内径をDiとしたとき、0<Di1≦(Do+Di)/4、0<Di2≦(Do+Di)/4に設定してもよい。(Do+Di)/4は、混合物18(円環状)の幅Wの1/2の地点を通る円の直径を示す。   The inner diameters Di1 and Di2 and the outer diameters Do1 and Do2 of the first excitation coil 28A and the second excitation coil 28B can be arbitrarily set, but at least the inner diameters Di1 and Di2 of the first excitation coil 28A and the second excitation coil 28B are set. When the outer diameter of the mixture 18 in the mold 20 is Do and the inner diameter is Di, 0 <Di1 ≦ (Do + Di) / 4 and 0 <Di2 ≦ (Do + Di) / 4 may be set. (Do + Di) / 4 indicates the diameter of a circle that passes through a half point of the width W of the mixture 18 (annular).

上述のようにして型20を配置することにより、第1励磁コイル28A及び第2励磁コイル28Bの巻線方向が互いに反対であれば、第1励磁コイル28A及び第2励磁コイル28Bに例えば正方向の電流を流す。第1励磁コイル28A及び第2励磁コイル28Bの巻線方向が互いに同じであれば、第1励磁コイル28Aに正方向に電流を流し、第2励磁コイル28Bに負方向に電流を流す。これにより、図4Bに示すように、第1励磁コイル28Aの周りでは、混合物18の内周部分から外周部分に向かう磁力線34aが形成され、第2励磁コイル28Bの周りでも、混合物18の内周部分から外周部分に向かう磁力線34bが形成される。この場合、混合物18において、第1励磁コイル28Aによる磁力線34aと第2励磁コイル28Bによる磁力線34bとが加わって、多くの磁力線34a及び34bが混合物18を通過することになるため、混合物18に印加される磁場Biの強さが大きくなる。その結果、混合物18内の磁性粒子14が磁場Biの方向に配向し易くなり、混合物18は、図1に示すように、円環状の弾性材料12の内部に、磁性粒子14が径方向に配向されてなる複数の磁性粒子列16が放射状に配列された状態となる。   By disposing the mold 20 as described above, if the winding directions of the first excitation coil 28A and the second excitation coil 28B are opposite to each other, the first excitation coil 28A and the second excitation coil 28B are, for example, in the positive direction. Current. If the winding directions of the first excitation coil 28A and the second excitation coil 28B are the same, a current is passed through the first excitation coil 28A in the positive direction and a current is passed through the second excitation coil 28B in the negative direction. As a result, as shown in FIG. 4B, magnetic lines of force 34a from the inner peripheral portion of the mixture 18 toward the outer peripheral portion are formed around the first excitation coil 28A, and the inner periphery of the mixture 18 is also formed around the second excitation coil 28B. Magnetic field lines 34b from the portion toward the outer peripheral portion are formed. In this case, in the mixture 18, the magnetic lines of force 34 a by the first excitation coil 28 </ b> A and the magnetic lines of force 34 b by the second excitation coil 28 </ b> B are added, and many magnetic lines 34 a and 34 b pass through the mixture 18. The intensity of the applied magnetic field Bi increases. As a result, the magnetic particles 14 in the mixture 18 are easily oriented in the direction of the magnetic field Bi, and the mixture 18 is oriented in the radial direction inside the annular elastic material 12 as shown in FIG. The plurality of magnetic particle rows 16 thus formed are arranged in a radial pattern.

その後、図2AのステップS3において、型20を例えば150℃で2分間加熱することによって、型20内の混合物18を固化する。これにより、図1に示す磁気粘弾性エラストマ10が製造される。   Thereafter, in step S3 of FIG. 2A, the mixture 18 in the mold 20 is solidified by heating the mold 20 at, for example, 150 ° C. for 2 minutes. Thereby, the magnetic viscoelastic elastomer 10 shown in FIG. 1 is manufactured.

このように、本実施の形態に係る磁気粘弾性エラストマの製造方法においては第1励磁コイル28A及び第2励磁コイル28Bの磁場Biの方向が重なる方向に磁性粒子14を配向させることができる。そのため、特許文献1のような従来の製造方法では困難であった、配向方向に厚みを持たせた磁気粘弾性エラストマを容易に製造することができる。例えば図1に示すように、配向方向に厚みを持たせた幅の広い円環状の弾性材料12の内部に、磁性粒子14が径方向に配向されてなる複数の磁性粒子列16が放射状に配列された構成を有する磁気粘弾性エラストマ10を容易に製造することができる。しかも、磁場Biの方向が重なる方向に磁性粒子14を配向させることができるため、より省電力で磁性粒子14の配向を行うことができる。すなわち、磁場印加手段24の印加磁場を大きくする必要がないため、省電力で磁気粘弾性エラストマ10を製造することが可能となる。   Thus, in the method for manufacturing the magneto-viscoelastic elastomer according to the present embodiment, the magnetic particles 14 can be oriented in the direction in which the directions of the magnetic fields Bi of the first excitation coil 28A and the second excitation coil 28B overlap. Therefore, it is possible to easily manufacture a magneto-viscoelastic elastomer having a thickness in the alignment direction, which has been difficult with the conventional manufacturing method as in Patent Document 1. For example, as shown in FIG. 1, a plurality of magnetic particle rows 16 in which magnetic particles 14 are radially oriented are arranged radially in a wide annular elastic material 12 having a thickness in the orientation direction. The magnetic viscoelastic elastomer 10 having the above-described configuration can be easily manufactured. Moreover, since the magnetic particles 14 can be oriented in the direction in which the directions of the magnetic fields Bi overlap, the magnetic particles 14 can be oriented with more power saving. That is, since it is not necessary to increase the applied magnetic field of the magnetic field applying means 24, the magneto-viscoelastic elastomer 10 can be manufactured with power saving.

上述した例では、固化した1つの混合物18にて磁気粘弾性エラストマ10を製造した例を示したが、以下の方法も好ましく採用することができる。   In the above-described example, an example in which the magneto-viscoelastic elastomer 10 is manufactured using one solidified mixture 18 is shown, but the following method can also be preferably employed.

すなわち、図2BのステップS1〜S3において、図5A及び図5Bに示すように、単位厚みta(<一定の厚みt)を有する薄い混合物18aを複数作製し、図2BのステップS4において、複数の薄い混合物18aを、磁性粒子14の配向方向xと直交する方向yに積層して1つの磁気粘弾性エラストマ10を製造してもよい。この場合、磁場印加手段24は、厚みの薄い混合物18aに対して磁場を印加すればよいため、一定の厚みtを有する混合物18に印加する磁場よりも弱い磁場にて磁性粒子14を配向させることができる。その結果、省電力で磁気粘弾性エラストマ10を製造することが可能となる。   That is, in steps S1 to S3 in FIG. 2B, as shown in FIGS. 5A and 5B, a plurality of thin mixtures 18a having a unit thickness ta (<constant thickness t) are produced. In step S4 in FIG. The thin mixture 18 a may be laminated in a direction y perpendicular to the orientation direction x of the magnetic particles 14 to produce one magneto-viscoelastic elastomer 10. In this case, since the magnetic field applying means 24 only needs to apply a magnetic field to the thin mixture 18a, the magnetic particles 14 are oriented with a magnetic field weaker than the magnetic field applied to the mixture 18 having a constant thickness t. Can do. As a result, it becomes possible to manufacture the magnetic viscoelastic elastomer 10 with power saving.

ここで、本実施の形態に係る製造方法にて製造された磁気粘弾性エラストマ10を利用したダイナミックダンパ100の一例について、図6A及び図6Bを参照しながら説明する。   Here, an example of the dynamic damper 100 using the magnetic viscoelastic elastomer 10 manufactured by the manufacturing method according to the present embodiment will be described with reference to FIGS. 6A and 6B.

このダイナミックダンパ100は、図6A及び図6Bに示すように、防振対象部材102に取り付けられるハウジング104と、ハウジング104に取り付けられる上述した磁気粘弾性エラストマ10と、ハウジング104に対して磁気粘弾性エラストマ10を介して配置される質量部材106と、を備える。   As shown in FIGS. 6A and 6B, the dynamic damper 100 includes a housing 104 attached to the vibration isolation target member 102, the above-described magnetic viscoelastic elastomer 10 attached to the housing 104, and a magnetic viscoelasticity with respect to the housing 104. And a mass member 106 disposed via the elastomer 10.

また、ダイナミックダンパ100は、制御回路108からの電力供給によって磁気粘弾性エラストマ10に磁場を印加する2つのコイル110(第1コイル110A及び第2コイル110B)を有する。第1コイル110A及び第2コイル110Bは、磁気粘弾性エラストマ10に隣接し、質量部材106の周方向外側で離間して巻線されるようにハウジング104に配置されている。第1コイル110A及び第2コイル110Bは、電力が供給された際に、質量部材106が防振対象部材102からの入力によって振動する方向(上下方向)と交わる方向に磁場Boを形成する。   The dynamic damper 100 also includes two coils 110 (a first coil 110 </ b> A and a second coil 110 </ b> B) that apply a magnetic field to the magneto-viscoelastic elastomer 10 by supplying power from the control circuit 108. The first coil 110 </ b> A and the second coil 110 </ b> B are adjacent to the magnetic viscoelastic elastomer 10 and are disposed on the housing 104 so as to be wound apart on the outer side in the circumferential direction of the mass member 106. The first coil 110 </ b> A and the second coil 110 </ b> B form a magnetic field Bo in a direction that intersects the direction (vertical direction) in which the mass member 106 vibrates due to the input from the vibration isolation target member 102 when power is supplied.

具体的には、ハウジング104は、防振対象部材102の上面に設置される基台112と、基台112上に設置され、例えば上面が閉塞された筒状体114とを有する。   Specifically, the housing 104 includes a base 112 that is installed on the upper surface of the vibration isolation target member 102 and a cylindrical body 114 that is installed on the base 112 and has a closed upper surface, for example.

筒状体114の収容空間に、少なくとも質量部材106、磁気粘弾性エラストマ10、第1コイル110A及び第2コイル110Bが収容されている。   In the accommodation space of the cylindrical body 114, at least the mass member 106, the magnetic viscoelastic elastomer 10, the first coil 110A, and the second coil 110B are accommodated.

すなわち、ハウジング104の内壁に、中央に貫通孔15(図1参照)が形成された磁気粘弾性エラストマ10が取り付けられ、さらに、貫通孔15に質量部材106が固定されて、質量部材106が磁気粘弾性エラストマ10によって懸架されている。これにより、質量部材106は、上下方向に揺動可能となっており、この実施の形態では、上下方向が動作方向(制振方向)となっている。   That is, the magnetic viscoelastic elastomer 10 having a through hole 15 (see FIG. 1) formed in the center is attached to the inner wall of the housing 104, and the mass member 106 is fixed to the through hole 15 so that the mass member 106 is magnetic. Suspended by a viscoelastic elastomer 10. Thereby, the mass member 106 can swing in the vertical direction, and in this embodiment, the vertical direction is the operation direction (vibration suppression direction).

また、ハウジング104の内壁のうち、磁気粘弾性エラストマ10と筒状体114の上部との間であって、且つ、磁気粘弾性エラストマ10と隣接する位置に第1コイル110Aが設置され、磁気粘弾性エラストマ10と基台112との間であって、且つ、磁気粘弾性エラストマ10と隣接する位置に第2コイル110Bが設置されている。第1コイル110Aと第2コイル110Bは例えば直列に接続され、第1コイル110Aの巻線方向と第2コイル110Bの巻線方向は互いに逆になっている。この場合、第1コイル110A及び第2コイル110Bの各巻線は、質量部材106の周方向に沿って巻回される。   A first coil 110 </ b> A is installed on the inner wall of the housing 104 between the magnetic viscoelastic elastomer 10 and the upper portion of the cylindrical body 114 and adjacent to the magnetic viscoelastic elastomer 10. A second coil 110 </ b> B is provided between the elastic elastomer 10 and the base 112 and at a position adjacent to the magnetic viscoelastic elastomer 10. The first coil 110A and the second coil 110B are connected in series, for example, and the winding direction of the first coil 110A and the winding direction of the second coil 110B are opposite to each other. In this case, each winding of the first coil 110 </ b> A and the second coil 110 </ b> B is wound along the circumferential direction of the mass member 106.

そして、第1コイル110A及び第2コイル110Bに例えば正方向の駆動電流を流したとき、図6Bに示すように、第1コイル110Aの周りでは、磁気粘弾性エラストマ10の内周部分から外周部分に向かう磁力線116が形成され、第2コイル110Bの周りでも、磁気粘弾性エラストマ10の内周部分から外周部分に向かう磁力線116が形成される。すなわち、磁気粘弾性エラストマ10の内周部分から外周部分に向かう磁場Boが形成されることになる。この磁場Boの方向は、質量部材106や防振対象部材102の振動方向(上下方向)と交わる方向である。この場合、磁気粘弾性エラストマ10において、第1コイル110Aによる磁力線116と第2コイル110Bによる磁力線116とが加わって、多くの磁力線116が磁気粘弾性エラストマ10を通過することになるため、磁気粘弾性エラストマ10に印加される磁場Boの強さが大きくなる。また、磁場Boの強さは、第1コイル110A及び第2コイル110Bに流れる駆動電流に応じて変化し、駆動電流が大きくなるほど発生する磁場Boの強さは大きくなる。   When, for example, a positive drive current is passed through the first coil 110A and the second coil 110B, as shown in FIG. 6B, around the first coil 110A, from the inner peripheral portion of the magneto-viscoelastic elastomer 10 to the outer peripheral portion. A magnetic field line 116 is formed toward the outer peripheral part of the magneto-viscoelastic elastomer 10 even around the second coil 110B. That is, a magnetic field Bo is formed from the inner peripheral portion of the magneto-viscoelastic elastomer 10 toward the outer peripheral portion. The direction of the magnetic field Bo is a direction that intersects the vibration direction (vertical direction) of the mass member 106 and the vibration isolation target member 102. In this case, in the magnetic viscoelastic elastomer 10, the magnetic lines of force 116 by the first coil 110A and the magnetic lines of force 116 by the second coil 110B are added, and many magnetic lines 116 pass through the magnetic viscoelastic elastomer 10. The strength of the magnetic field Bo applied to the elastic elastomer 10 increases. In addition, the strength of the magnetic field Bo changes according to the drive current flowing through the first coil 110A and the second coil 110B, and the strength of the generated magnetic field Bo increases as the drive current increases.

第1コイル110A及び第2コイル110Bに負方向の駆動電流を流したときは、上述とは反対に、磁気粘弾性エラストマ10の外周部分から内周部分に向かう磁場が形成される。この磁場の方向も、質量部材106や防振対象部材102の振動方向(上下方向)と交わる方向である。   When a negative direction drive current is passed through the first coil 110A and the second coil 110B, a magnetic field from the outer peripheral portion to the inner peripheral portion of the magneto-viscoelastic elastomer 10 is formed contrary to the above. The direction of this magnetic field is also a direction that intersects the vibration direction (vertical direction) of the mass member 106 and the vibration isolation target member 102.

第1コイル110A及び第2コイル110Bに通電することによって、磁気粘弾性エラストマ10に磁場Boが印加されると、磁場Boの強さに応じて磁性粒子14は分極し、磁気的結合を形成する。磁性粒子14は、例えば連鎖的に結合して網目構造を形成する等によって、磁気粘弾性エラストマ10の弾性率が弾性材料12(基質エラストマ)自体の弾性率(剛性)よりも増大する。磁気粘弾性エラストマ10に印加される磁場Boが強いほど、磁性粒子14間の磁気的結合が増大し、磁気粘弾性エラストマ10の弾性率が増大する。従って、第1コイル110A及び第2コイル110Bに供給される駆動電流が大きいほど、磁気粘弾性エラストマ10の弾性率は増大し、磁気粘弾性エラストマ10は荷重に対して変形しにくくなる。上述の例では、第1コイル110Aと第2コイル110Bの巻線方向を互いに逆方向とし、互いに同方向に電流を流すようにしたが、その他、第1コイル110Aと第2コイル110Bとをそれぞれ独立として、巻線方向を互いに同方向とし、互いに逆方向に電流を流すようにしても、上述と同様の磁場Boを形成することができる。   When the magnetic field Bo is applied to the magneto-viscoelastic elastomer 10 by energizing the first coil 110A and the second coil 110B, the magnetic particles 14 are polarized according to the strength of the magnetic field Bo to form a magnetic coupling. . For example, when the magnetic particles 14 are linked in a chain to form a network structure, the elastic modulus of the magneto-viscoelastic elastomer 10 is greater than the elastic modulus (rigidity) of the elastic material 12 (substrate elastomer) itself. The stronger the magnetic field Bo applied to the magnetic viscoelastic elastomer 10, the more the magnetic coupling between the magnetic particles 14 increases, and the elastic modulus of the magnetic viscoelastic elastomer 10 increases. Therefore, as the drive current supplied to the first coil 110A and the second coil 110B increases, the elastic modulus of the magnetic viscoelastic elastomer 10 increases, and the magnetic viscoelastic elastomer 10 is less likely to be deformed with respect to the load. In the above-described example, the winding directions of the first coil 110A and the second coil 110B are opposite to each other, and currents are made to flow in the same direction. However, the first coil 110A and the second coil 110B are respectively connected to each other. Independently, the magnetic field Bo similar to that described above can be formed even if the winding directions are the same direction and currents flow in opposite directions.

このダイナミックダンパ100は、構造上、防振対象部材102の振動周波数に対して逆位相で振動し、可動マスの慣性力を利用することで、防振対象部材102の振動を低減する。特に、上述したように、磁場Boの形成によって、磁気粘弾性エラストマ10の弾性率が変化することから、防振対象部材102の振動周波数が変化しても、ダイナミックダンパ100の共振周波数を振動周波数に合わせることが可能となる。   The dynamic damper 100 structurally vibrates in an opposite phase to the vibration frequency of the vibration isolation target member 102, and reduces the vibration of the vibration isolation target member 102 by using the inertial force of the movable mass. In particular, as described above, since the elastic modulus of the magneto-viscoelastic elastomer 10 changes due to the formation of the magnetic field Bo, the resonance frequency of the dynamic damper 100 is changed to the vibration frequency even if the vibration frequency of the vibration isolation target member 102 changes. It becomes possible to match.

このように、本実施の形態に係る製造方法にて製造された磁気粘弾性エラストマ10を適用したダイナミックダンパ100においては、質量部材106が振動した際に、質量部材106と第1コイル110A及び第2コイル110Bとが干渉しないように配置することができる。第1コイル110A及び第2コイル110Bをハウジング104の内壁に配置しているので、電気配線の取り回しが容易となる。通常、電気配線は防振対象部材102(フレーム等)を介して配線される。仮に第1コイル110A及び第2コイル110Bが質量部材106に実装された場合、質量部材106は防振対象部材102の振動と逆位相で振動することから、電気配線が断線するおそれがある。そのため、断線しないような電気配線の取り回しが必要となり、配線作業に時間がかかるという問題が生じる。しかし、このダイナミックダンパ100では、防振対象部材102に固定されたハウジング104に第1コイル110A及び第2コイル110Bを実装しているため、質量部材106の逆位相の振動によって断線するということがなくなり、電気配線の取り回しが容易となり、配線作業の時間も短縮することができる。   Thus, in the dynamic damper 100 to which the magneto-viscoelastic elastomer 10 manufactured by the manufacturing method according to the present embodiment is applied, when the mass member 106 vibrates, the mass member 106, the first coil 110A, and the first coil The two coils 110B can be arranged so as not to interfere with each other. Since the first coil 110 </ b> A and the second coil 110 </ b> B are arranged on the inner wall of the housing 104, the electrical wiring can be easily handled. Usually, the electrical wiring is wired through a vibration isolation target member 102 (frame or the like). If the first coil 110 </ b> A and the second coil 110 </ b> B are mounted on the mass member 106, the mass member 106 vibrates in the opposite phase to the vibration of the vibration isolation target member 102, and thus the electric wiring may be disconnected. For this reason, it is necessary to manage the electric wiring so as not to be disconnected, and there arises a problem that the wiring work takes time. However, in this dynamic damper 100, the first coil 110 </ b> A and the second coil 110 </ b> B are mounted on the housing 104 fixed to the anti-vibration target member 102, so that the disconnection is caused by the antiphase vibration of the mass member 106. This makes it easy to handle the electrical wiring and shortens the wiring work time.

また、第1コイル110A及び第2コイル110Bの各巻線を、質量部材106の周方向(外周方向)に沿って巻回し、第1コイル110A及び第2コイル110Bを、それぞれ磁気粘弾性エラストマ10に隣接配置することができるため、磁場Boを磁気粘弾性エラストマ10に対し、質量部材106の揺動方向(上下方向)と交わる方向に印加することができる。そのため、質量部材106の揺動方向に対しての弾性率を高めることができ、防振対象部材102の振動を低減することができる。   Further, the windings of the first coil 110A and the second coil 110B are wound along the circumferential direction (outer circumferential direction) of the mass member 106, and the first coil 110A and the second coil 110B are respectively attached to the magnetic viscoelastic elastomer 10. Since they can be arranged adjacent to each other, the magnetic field Bo can be applied to the magneto-viscoelastic elastomer 10 in a direction crossing the swinging direction (vertical direction) of the mass member 106. Therefore, the elastic modulus with respect to the swinging direction of the mass member 106 can be increased, and the vibration of the vibration isolation target member 102 can be reduced.

ハウジング104側で第1コイル110A及び第2コイル110Bを質量部材106と干渉しないように配置した場合であっても、第1コイル110A及び第2コイル110Bによる磁場Boを、磁気粘弾性エラストマ10に対して質量部材106の揺動方向と交わる方向に印加することができる。そのため、磁気粘弾性エラストマ10による剛性変化を大きく設定することができる。   Even when the first coil 110A and the second coil 110B are arranged on the housing 104 side so as not to interfere with the mass member 106, the magnetic field Bo generated by the first coil 110A and the second coil 110B is applied to the magneto-viscoelastic elastomer 10. On the other hand, it can be applied in a direction crossing the swinging direction of the mass member 106. Therefore, the rigidity change by the magneto-viscoelastic elastomer 10 can be set large.

上述の例では、円環状を有し、磁性粒子14が径方向で放射状に配向した磁気粘弾性エラストマ10を製造する場合に適用した実施の形態を示したが、その他、図7A及び図7Bに示すように、一定の厚みtを有する直方体状であって、磁性粒子14が一方向で平行に配向した磁気粘弾性エラストマ10を製造する場合にも適用することができる。   In the above-described example, the embodiment applied to the case of manufacturing the magneto-viscoelastic elastomer 10 having an annular shape and having the magnetic particles 14 radially oriented in the radial direction is shown. As shown, the present invention can also be applied to the production of a magnetic viscoelastic elastomer 10 having a rectangular parallelepiped shape having a constant thickness t and in which magnetic particles 14 are oriented in parallel in one direction.

すなわち、図8A及び図8Bに示すように、型20は、例えば直方体状を有し、第1型20aと第2型20bとで形成されるキャビティ22に混合物18を注入することによって、混合物18が直方体状に形成されるように設けられている。第1励磁コイル28A及び第2励磁コイル28Bとして、それぞれトラック形状の励磁コイルを使用する。そして、この場合も、型20内の混合物18に磁場Biを印加する際に、第1励磁コイル28Aと第2励磁コイル28Bの磁場が同一方向で重なる位置に、型20を配置する。例えば第1励磁コイル28Aと第2励磁コイル28Bとの間、特に、直線状に延びる部分36の間に、型20を配置する。図8Aの例では、2つの型20(二点鎖線で示す)をそれぞれ直線状に延びる部分36の間に配置した例を示す。   That is, as shown in FIGS. 8A and 8B, the mold 20 has, for example, a rectangular parallelepiped shape, and the mixture 18 is injected by injecting the mixture 18 into the cavity 22 formed by the first mold 20a and the second mold 20b. Is formed in a rectangular parallelepiped shape. Track-shaped excitation coils are used as the first excitation coil 28A and the second excitation coil 28B, respectively. Also in this case, when the magnetic field Bi is applied to the mixture 18 in the mold 20, the mold 20 is disposed at a position where the magnetic fields of the first excitation coil 28A and the second excitation coil 28B overlap in the same direction. For example, the mold 20 is disposed between the first excitation coil 28A and the second excitation coil 28B, particularly between the linearly extending portion 36. In the example of FIG. 8A, an example is shown in which two molds 20 (indicated by two-dot chain lines) are arranged between portions 36 that extend linearly.

そして、第1励磁コイル28A及び第2励磁コイル28Bの巻線方向が互いに反対であれば、第1励磁コイル28A及び第2励磁コイル28Bに例えば正方向の電流を流す。第1励磁コイル28A及び第2励磁コイル28Bの巻線方向が互いに同じであれば、第1励磁コイル28Aに正方向に電流を流し、第2励磁コイル28Bに負方向に電流を流す。これにより、図8Bに示すように、第1励磁コイル28Aの周りでは、混合物18の一方の側面部分から他方の側面部分に向かう磁力線34aが形成され、第2励磁コイル28Bの周りでも、混合物18の一方の側面部分から他方の側面部分に向かう磁力線34bが形成される。   If the winding directions of the first excitation coil 28A and the second excitation coil 28B are opposite to each other, for example, a positive current is passed through the first excitation coil 28A and the second excitation coil 28B. If the winding directions of the first excitation coil 28A and the second excitation coil 28B are the same, a current is passed through the first excitation coil 28A in the positive direction and a current is passed through the second excitation coil 28B in the negative direction. As a result, as shown in FIG. 8B, a magnetic line of force 34 a is formed around the first excitation coil 28 </ b> A from one side surface portion of the mixture 18 to the other side surface portion, and even around the second excitation coil 28 </ b> B. Magnetic field lines 34b from one side surface portion to the other side surface portion are formed.

この場合でも、混合物18に印加される磁場Biの強さが大きくなるため、混合物18内の磁性粒子14が磁場Biの方向に配向し易くなり、キャビティ22内の混合物18は、図7Aに示すように、直方体状の弾性材料12の内部に、磁性粒子14が一方向に直線状に配向されてなる複数の磁性粒子列16が平行に配列された状態となる。従って、この混合物18を固化することで、直方体状に形成され、磁性粒子14が一方向で平行に配向した磁気粘弾性エラストマ10を得ることができる。   Even in this case, since the strength of the magnetic field Bi applied to the mixture 18 is increased, the magnetic particles 14 in the mixture 18 are easily oriented in the direction of the magnetic field Bi, and the mixture 18 in the cavity 22 is shown in FIG. 7A. As described above, a plurality of magnetic particle rows 16 in which the magnetic particles 14 are linearly aligned in one direction are arranged in parallel inside the rectangular parallelepiped elastic material 12. Therefore, by solidifying the mixture 18, the magnetic viscoelastic elastomer 10 formed in a rectangular parallelepiped shape and having the magnetic particles 14 oriented in parallel in one direction can be obtained.

上述した例では、固化した1つの混合物18にて磁気粘弾性エラストマ10を製造した例を示したが、図9A及び図9Bに示すように、単位厚みta(<一定の厚みt)を有する薄い混合物18aを複数作製し、複数の薄い混合物18aを、磁性粒子14の配向方向xと直交する方向yに積層して1つの磁気粘弾性エラストマ10を製造してもよい。この場合も、磁場印加手段24は、厚みの薄い混合物18aに対して磁場を印加すればよいため、一定の厚みtを有する混合物18に印加する磁場よりも弱い磁場にて磁性粒子14を配向させることができる。その結果、省電力で磁気粘弾性エラストマ10を製造することが可能となる。   In the above-described example, an example in which the magneto-viscoelastic elastomer 10 is manufactured using one solidified mixture 18 is shown. However, as shown in FIGS. 9A and 9B, a thin film having a unit thickness ta (<constant thickness t). A plurality of mixtures 18a may be produced, and a plurality of thin mixtures 18a may be laminated in a direction y orthogonal to the orientation direction x of the magnetic particles 14 to produce one magnetic viscoelastic elastomer 10. Also in this case, since the magnetic field applying means 24 only needs to apply a magnetic field to the thin mixture 18a, the magnetic particles 14 are oriented with a magnetic field weaker than the magnetic field applied to the mixture 18 having a constant thickness t. be able to. As a result, it becomes possible to manufacture the magnetic viscoelastic elastomer 10 with power saving.

[実施の形態のまとめ]
以上説明したように、上述した実施の形態に係る磁気粘弾性エラストマの製造方法は、弾性材料12の内部に磁性粒子14を内包し、印加する磁場の大きさにより、弾性率を可変とする磁気粘弾性エラストマ10の製造方法であって、磁性粒子14及び弾性材料12の混合物18を非磁性材料からなる型20に注入する工程と、型20に磁場Biを印加する磁場印加手段24により、型20内の混合物18に磁場Biを印加する工程と、型20内の混合物18を固化する工程と、を有し、磁場印加手段24は、互いに反対方向の磁場Biを印加するように2つ設けられ、型20内の混合物18に磁場Biを印加する際に、2つの磁場印加手段24A及び24Bの磁場Biが同一方向で重なる位置に、型20を配置する。
[Summary of embodiment]
As described above, the magnetic viscoelastic elastomer manufacturing method according to the above-described embodiment includes the magnetic particles 14 in the elastic material 12, and the magnetic modulus is made variable according to the magnitude of the applied magnetic field. A method for producing a viscoelastic elastomer 10 comprising the steps of injecting a mixture 18 of magnetic particles 14 and an elastic material 12 into a mold 20 made of a nonmagnetic material, and a magnetic field applying means 24 for applying a magnetic field Bi to the mold 20. The magnetic field Bi is applied to the mixture 18 in the mold 20, and the process of solidifying the mixture 18 in the mold 20 is performed. Two magnetic field applying means 24 are provided so as to apply the magnetic fields Bi in opposite directions. When the magnetic field Bi is applied to the mixture 18 in the mold 20, the mold 20 is disposed at a position where the magnetic fields Bi of the two magnetic field applying units 24A and 24B overlap in the same direction.

型20内の混合物18に磁場Biを印加する際に、2つの磁場印加手段24A及び24Bの磁場が同一方向で重なる位置に、型20を配置する。   When the magnetic field Bi is applied to the mixture 18 in the mold 20, the mold 20 is disposed at a position where the magnetic fields of the two magnetic field applying units 24 </ b> A and 24 </ b> B overlap in the same direction.

本実施の形態において、型20は混合物18が環状に形成されるように設けられ、2つの磁場印加手段24A及び24Bは、互いに反対方向に巻線されて、同方向に電力が供給される励磁コイル28A及び28B、もしくは互いに同方向に巻線されて、反対方向に電力が供給される励磁コイル28A及び28Bにより構成され、型20内の混合物18は、励磁コイル28A及び28Bの軸線方向で、励磁コイル28A及び28Bに挟まれた位置であって、且つ、磁場Biを環状の径方向で放射状に受ける位置に配置されてもよい。   In the present embodiment, the mold 20 is provided so that the mixture 18 is formed in an annular shape, and the two magnetic field applying means 24A and 24B are wound in opposite directions so that power is supplied in the same direction. Coil 28A and 28B, or exciting coils 28A and 28B wound in the same direction and supplied with power in the opposite direction, the mixture 18 in the mold 20 is in the axial direction of the exciting coils 28A and 28B. It may be disposed at a position sandwiched between the exciting coils 28A and 28B and receiving the magnetic field Bi radially in the annular radial direction.

本実施の形態において、型20は混合物18が直方体状に形成されるように設けられ、2つの磁場印加手段24A及び24Bは、互いに反対方向に巻線されて、同方向に電力が供給される励磁コイル28A及び28B、もしくは互いに同方向に巻線されて、反対方向に電力が供給される励磁コイル28A及び28Bにより構成され、型20内の混合物18は、励磁コイル28A及び28Bの軸線方向で、励磁コイル28A及び28Bに挟まれた位置であって、且つ、磁場Biを一方向で平行に受ける位置に配置されてもよい。   In the present embodiment, the mold 20 is provided so that the mixture 18 is formed in a rectangular parallelepiped shape, and the two magnetic field applying means 24A and 24B are wound in opposite directions to be supplied with electric power in the same direction. The excitation coils 28A and 28B, or the excitation coils 28A and 28B wound in the same direction and supplied with power in the opposite direction, are formed by the mixture 18 in the mold 20 in the axial direction of the excitation coils 28A and 28B. Further, it may be disposed at a position between the exciting coils 28A and 28B and receiving the magnetic field Bi in parallel in one direction.

本実施の形態において、型20内で固化された混合物18aを、磁性粒子14の配向と直交する方向に積層する工程を有してもよい。   In the present embodiment, a step of laminating the mixture 18 a solidified in the mold 20 in a direction orthogonal to the orientation of the magnetic particles 14 may be included.

なお、この発明は、上述の実施の形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。   Note that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted based on the content described in this specification.

10…磁気粘弾性エラストマ 12…弾性材料(基質エラストマ)
14…磁性粒子 16…磁性粒子列
18、18a…混合物 20…型
24…磁場印加手段 24A…第1磁場印加手段
24B…第2磁場印加手段 28A…第1励磁コイル
28B…第2励磁コイル 100…ダイナミックダンパ
10 ... Magnetic viscoelastic elastomer 12 ... Elastic material (substrate elastomer)
DESCRIPTION OF SYMBOLS 14 ... Magnetic particle 16 ... Magnetic particle row | line | column 18, 18a ... Mixture 20 ... Type | mold 24 ... Magnetic field application means 24A ... 1st magnetic field application means 24B ... 2nd magnetic field application means 28A ... 1st excitation coil 28B ... 2nd excitation coil 100 ... Dynamic damper

Claims (2)

弾性材料の内部に磁性粒子を内包し、印加する磁場の大きさにより、弾性率を可変とする磁気粘弾性エラストマの製造方法であって、
前記磁性粒子及び前記弾性材料の混合物を非磁性材料からなる型に注入する工程と、
前記型に磁場を印加する磁場印加手段により、前記型内の前記混合物に磁場を印加する工程と、
前記型内の前記混合物を固化する工程と、を有し、
前記磁場印加手段は、互いに反対方向の磁場を印加するように2つ設けられ、
前記型内の前記混合物に磁場を印加する際に、前記2つの磁場印加手段の磁場が同一方向で重なる位置に、前記型を配置し、
前記型は前記混合物が環状に形成されるように設けられ、
前記2つの磁場印加手段は、互いに反対方向に巻線されて、同方向に電力が供給される励磁コイル、もしくは互いに同方向に巻線されて、反対方向に電力が供給される励磁コイルにより構成され、
前記型内の前記混合物は、前記励磁コイルの軸線方向で、前記励磁コイルに挟まれた位置であって、且つ、前記磁場を前記環状の径方向で放射状に受ける位置に配置されること
を特徴とする磁気粘弾性エラストマの製造方法。
A magnetic viscoelastic elastomer manufacturing method in which magnetic particles are encapsulated in an elastic material, and the elastic modulus is variable depending on the magnitude of a magnetic field to be applied,
Injecting a mixture of the magnetic particles and the elastic material into a mold made of a non-magnetic material;
Applying a magnetic field to the mixture in the mold by magnetic field applying means for applying a magnetic field to the mold;
Solidifying the mixture in the mold,
Two magnetic field applying means are provided so as to apply magnetic fields in opposite directions,
When applying a magnetic field to the mixture in the mold, the mold is arranged at a position where the magnetic fields of the two magnetic field applying means overlap in the same direction ,
The mold is provided so that the mixture is formed in an annular shape,
The two magnetic field applying means are constituted by exciting coils that are wound in opposite directions and supplied with power in the same direction, or excited coils that are wound in the same direction and supplied with power in opposite directions. And
The mixture in the mold is disposed at a position sandwiched between the exciting coils in the axial direction of the exciting coil and receiving the magnetic field radially in the annular radial direction. A method for producing a magnetic viscoelastic elastomer.
請求項記載の磁気粘弾性エラストマの製造方法において、
前記型内で固化された前記混合物を、前記磁性粒子の配向と直交する方向に積層する工程を有すること
を特徴とする磁気粘弾性エラストマの製造方法。
In the manufacturing method of the magnetic viscoelastic elastomer of Claim 1 ,
A method for producing a magneto-viscoelastic elastomer, comprising: laminating the mixture solidified in the mold in a direction perpendicular to the orientation of the magnetic particles.
JP2014217084A 2014-10-24 2014-10-24 Method for producing magnetic viscoelastic elastomer Expired - Fee Related JP6232369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217084A JP6232369B2 (en) 2014-10-24 2014-10-24 Method for producing magnetic viscoelastic elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217084A JP6232369B2 (en) 2014-10-24 2014-10-24 Method for producing magnetic viscoelastic elastomer

Publications (2)

Publication Number Publication Date
JP2016086050A JP2016086050A (en) 2016-05-19
JP6232369B2 true JP6232369B2 (en) 2017-11-15

Family

ID=55972314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217084A Expired - Fee Related JP6232369B2 (en) 2014-10-24 2014-10-24 Method for producing magnetic viscoelastic elastomer

Country Status (1)

Country Link
JP (1) JP6232369B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112683A1 (en) * 2017-07-03 2019-01-03 Fuji Polymer Industries Co., Ltd. Method and device for producing a radially oriented magnetorheological elastomer molded body
CN113429594B (en) * 2021-07-21 2023-10-10 洛阳理工学院 Preparation method of perfusion type fixed-structure magnetorheological elastomer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639424U (en) * 1979-08-29 1981-04-13
JPH0612728B2 (en) * 1981-05-21 1994-02-16 セイコーエプソン株式会社 Manufacturing method of cylindrical radial anisotropic permanent magnet
JPS58210101A (en) * 1982-05-21 1983-12-07 ザ・チヤ−ルズ・スタ−ク・ドラパ−・ラボラトリ−ズ・インコ−ポレ−テツド Radiate arrangement rare earth element-cobalt magnet ring
JPH08167518A (en) * 1994-12-13 1996-06-25 Kobe Steel Ltd High frequency dust core and manufacture thereof
JP2005322492A (en) * 2004-05-07 2005-11-17 Polymatech Co Ltd Conductive elastic body and its manufacturing method
JP2012227411A (en) * 2011-04-21 2012-11-15 Panasonic Corp Magnetic elastic body and method of manufacturing the same

Also Published As

Publication number Publication date
JP2016086050A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
US11469656B2 (en) Linear vibrating motor
US10530230B2 (en) Miniature linear vibrotactile actuator
US10038360B2 (en) Vibration motor
US10158278B2 (en) Vibration motor
JP6002137B2 (en) Electrodynamic actuator
JP6209497B2 (en) Dynamic damper control device and torque rod
US10340781B2 (en) Linear motor
JP6232369B2 (en) Method for producing magnetic viscoelastic elastomer
CN113904479B (en) Magnetic part, vibration device, magnetizer and integrated magnetizing method
Roy et al. MEMS-based vibrational energy harvesting and conversion employing micro-/nano-magnetics
US20110050008A1 (en) Magnetic vibrator
CN206341120U (en) Linear vibration electric motor
JP2017085868A (en) Vibration motor
JP2014020539A (en) Braking device
US20150343740A1 (en) Variable elastic modulus material and method for producing the same
WO2018051919A1 (en) Vibration actuator and electronic device
KR101552573B1 (en) High speed solenoid
US20150229169A1 (en) Spin motor and rotary member
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
WO2018051920A1 (en) Movable element, vibration actuator, and electronic device
JP7427034B2 (en) Particle-based anisotropic composites for magnetic cores
JPS6349889B2 (en)
CN207622966U (en) Efficient magnetic structure and vibration occurrence of equipment applied to vibration occurrence of equipment
CN106655699B (en) A kind of linear vibration motor
JP2013123318A (en) Ring magnet, method of manufacturing ring magnet, and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6232369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees