JP6230015B2 - Optical phase modulation signal receiver - Google Patents

Optical phase modulation signal receiver Download PDF

Info

Publication number
JP6230015B2
JP6230015B2 JP2013005620A JP2013005620A JP6230015B2 JP 6230015 B2 JP6230015 B2 JP 6230015B2 JP 2013005620 A JP2013005620 A JP 2013005620A JP 2013005620 A JP2013005620 A JP 2013005620A JP 6230015 B2 JP6230015 B2 JP 6230015B2
Authority
JP
Japan
Prior art keywords
circuit
exclusive
synchronous detection
detection signal
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013005620A
Other languages
Japanese (ja)
Other versions
JP2014138258A (en
Inventor
古賀 正文
正文 古賀
明 水鳥
明 水鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority to JP2013005620A priority Critical patent/JP6230015B2/en
Publication of JP2014138258A publication Critical patent/JP2014138258A/en
Application granted granted Critical
Publication of JP6230015B2 publication Critical patent/JP6230015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光位相変調信号受信装置に関するものである。   The present invention relates to an optical phase modulation signal receiving apparatus.

光通信において位相変調信号を受信するには局発光(Local光)を受信信号光と同じ周波数にした上で位相同期する必要がある。そのためには受信信号光と局発光との位相誤差を検出しなければならない。位相変調方式では信号が位相として伝送されているため信号に依存しない位相誤差の検出にはCOSTAS回路やDecision-driven回路などが用いられる。   In order to receive a phase modulation signal in optical communication, it is necessary to synchronize the phase with local light (Local light) having the same frequency as the received signal light. For this purpose, the phase error between the received signal light and the local light must be detected. In the phase modulation method, since a signal is transmitted as a phase, a COSTAS circuit, a decision-driven circuit, or the like is used to detect a phase error that does not depend on the signal.

図2は非特許文献1に紹介のCOSTASループに、Decision-driven回路を組み合わせたQPSK受信用光PLLである。この光通信での光位相変調信号受信装置は、電圧制御発信器(VCO)を半導体レーザ光源に置き換え、ここと受信部から低域通過フィルタ(LPF)までの破線部分を光90度ハイブリッド回路とフォトダイオード(PD)に置きかえることで構成している。他の構成要素には加算器、減算器、排他的論理和、識別回路がある。   FIG. 2 shows a QPSK receiving optical PLL in which a COSTAS loop introduced in Non-Patent Document 1 is combined with a decision-driven circuit. In this optical phase modulation signal receiver for optical communication, the voltage-controlled oscillator (VCO) is replaced with a semiconductor laser light source, and the broken line part from this part to the low-pass filter (LPF) is an optical 90-degree hybrid circuit. It is configured by replacing it with a photodiode (PD). Other components include an adder, a subtracter, an exclusive OR, and an identification circuit.

前記の回路構成ではデータの復調も兼ねており、位相がロックした状態ではI-arm、Q-armからの信号を識別回路で識別することで復調信号DATA1、DATA2を得ることができる。従って、識別回路後の信号は2値化されているからその乗算は排他的論理和(ExOR)としても等価である。一方、位相誤差の検出にはアナログ加算・減算回路が必要である。   The above circuit configuration also serves as data demodulation. When the phase is locked, demodulated signals DATA1 and DATA2 can be obtained by identifying signals from the I-arm and Q-arm by the identification circuit. Therefore, since the signal after the identification circuit is binarized, the multiplication is equivalent as an exclusive OR (ExOR). On the other hand, an analog addition / subtraction circuit is required to detect the phase error.

即ち、図2の光位相変調信号受信装置は、90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置に使用されるものであって、ホモダイン位相同期検波方式による復調機能と位相誤差調整機能を実現するために、2つの直交搬送波に対する電気信号(Q-arm、I-arm)を出力する同期検波信号前置増幅器(A1、A2)と、前記同期検波信号前置増幅器(A1、A2)からの前記電気信号(Q-arm、I-arm)をフイルタ(F1、F2)を介して入力しその和を算出する加算器(Ad)と差を算出する減算器(Su)と、加算器(Ad)と減算器(Su)からの成分値を入力して乗算し排他的論理和(G)を算出する排他的論理和回路(L1)と、前記同期検波信号前置増幅器(A1、A2)からの前記差動信号(Q-arm、I-arm)を入力してA/D変換しその差を算出する共にデータ信号(DATA1、DATA2)を出力する判定回路(M1、M2)と、判定回路(M1、M2)からの成分信号(Q、I)を入力して乗算し排他的論理和(H)を出力する排他的論理和回路(L2))と、前記排他的論理和回路(L1)からの排他的論理和(H)と排他的論理和回路(L2)からの排他的論理和(G)とを入力して乗算処理し排他的論理和を算出しこの乗算値に比例したsinεを求めこれに基いて位相誤差ε(phase error)を求め、ループフィルタ(loop filter)を介して半導体レーザ (LD)にフィードバックする排他的論理和回路(L3)を設けたものである。ここで、判定回路(M1、M2)は受信信号を復調するためのものであり、一方、加算回路(Ad)、減算回路(Su)及び排他的論理和(L1、L2、L3)は受信信号における位相誤差を検出するための回路である。   That is, the optical phase modulation signal receiving apparatus in FIG. 2 is used for a QPSK transmitting / receiving apparatus that transmits and receives by modulating two orthogonal carrier components having different 90 ° phases, and has a demodulation function using a homodyne phase-locked detection method. In order to realize the phase error adjustment function, synchronous detection signal preamplifiers (A1, A2) for outputting electrical signals (Q-arm, I-arm) for two orthogonal carriers, and the synchronous detection signal preamplifier The electrical signals (Q-arm, I-arm) from (A1, A2) are input via the filters (F1, F2) and an adder (Ad) for calculating the sum and a subtractor (Su) for calculating the difference. ), An exclusive OR circuit (L1) that calculates the exclusive OR (G) by inputting and multiplying the component values from the adder (Ad) and the subtracter (Su), and the synchronous detection signal pre-set The differential signals (Q-arm, I-arm) from the amplifiers (A1, A2) are input and A / D converted to calculate the difference between them and the data signal ( An exclusive circuit that outputs the exclusive OR (H) by inputting and multiplying the component signals (Q, I) from the decision circuit (M1, M2) that outputs ATA1, DATA2) and the decision circuit (M1, M2) OR circuit (L2)), exclusive OR (H) from the exclusive OR circuit (L1) and exclusive OR (G) from the exclusive OR circuit (L2) Multiplication processing is performed to calculate an exclusive OR, and sin ε proportional to the multiplication value is obtained. Based on this, phase error ε (phase error) is obtained and fed back to the semiconductor laser (LD) through a loop filter. An exclusive OR circuit (L3) is provided. Here, the decision circuits (M1, M2) are for demodulating the received signal, while the adder circuit (Ad), the subtracter circuit (Su) and the exclusive OR (L1, L2, L3) are the received signals. 2 is a circuit for detecting a phase error in

Seiji Norimatsu, Katsushi Iwashita, and Kazuto Noguchi, ”An 8Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE photonics tech. lett. , Vol. 4, No. 7, pp.765-767, July 1992.Seiji Norimatsu, Katsushi Iwashita, and Kazuto Noguchi, ”An 8Gb / s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE photonics tech. Lett., Vol. 4, No. 7, pp.765-767, July 1992.

図2の光位相変調信号受信装置において、信号G、HはQ-arm、I-armから同じタイミングで排他的論理和回路(L3)に到達必要があり、これらの条件を満足した時、信号光と局発光との位相誤差εに対し信号G、Hの乗算結果はsinεに比例したものとなる。しかし、信号Hは判定回路(M1、M2)と排他的論理和回路(L2)を経てくるのに対し、信号(G)は加算器(Ad)あるいは減算器(Su)と排他的論理和回路(L1)を経てきており、経路途中の素子が異なるため少なくともいずれか一方の経路にタイミングを合わせるための遅延回路が必要である。このことは高価な素子の増加と調整の困難さを伴うことになる。   In the optical phase modulation signal receiver of FIG. 2, the signals G and H need to reach the exclusive OR circuit (L3) at the same timing from Q-arm and I-arm, and when these conditions are satisfied, The multiplication result of the signals G and H with respect to the phase error ε between the light and the local light is proportional to sin ε. However, the signal H passes through the decision circuit (M1, M2) and the exclusive OR circuit (L2), whereas the signal (G) is added to the adder (Ad) or subtracter (Su) and the exclusive OR circuit. Since (L1) has been passed and the elements in the path are different, a delay circuit for adjusting the timing to at least one of the paths is necessary. This is accompanied by an increase in expensive elements and difficulty in adjustment.

本発明は、遅延回路のような素子の増加を伴わない簡易な回路にし、しかも調整を容易にして位相誤差を精度よく検出する光位相変調信号受信装置を提供するものである。   The present invention provides an optical phase modulation signal receiving apparatus that is a simple circuit that does not increase the number of elements such as a delay circuit, and that can easily adjust and detect a phase error with high accuracy.

前記課題を解決する本発明の第一の態様は、次の(1)のとおりである。
(1).90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置に設けられ、ホモダイン位相同期検波方式による復調回路(図1に示に示す回路全体)に、2つの直交搬送波に対する差動信号(Q-arm、I-arm)を出力する同期検波信号前置増幅器(AA1、AA2)と、前記同期検波信号前置増幅器(AA1、AA2)からの前記差動信号(Q-arm、I-arm)を入力してその和と差を算出する第一演算回路(B)と、前記同期検波信号前置増幅器(AA1、AA2)からの前記差動信号(Q-arm、I-arm)を入力してその差を算出する第二演算回路(C)とを備えた光位相変調信号受信装置において、
前記第一演算回路(B)は、前記同期検波信号前置増幅器(AA1)からの差動信号Q-armの正極成分Qと前記同期検波信号前置増幅器(AA2)からの差動信号(Q-arm)の負極成分(I(−))を入力しその成分和に対する大小の識別判定する第一識別回路(B1)を有し且つ、前記同期検波信号前置増幅器(AA1)からの差動信号(Q-arm)の正極成分(Q)と前記同期検波信号前置増幅器(AA2)からの差動信号(Q-arm)の正極成分(I)とを入力しその成分差に対する大小の識別を判定する第二識別回路(B2)を有し更に、前記第一識別回路(B1)と第二識別回路(B2)からの各判定出力信号(X、Y)を入力して乗算処理し排他的論理和(XY)を算出する第一排他的論理和回路(B3)を有し、
前記第二演算回路(C)は、前記同期検波信号前置増幅器(AA1)からの差動信号Q-armの正極成分(Q)と負極成分(Q(−))を入力しその成分差(Q)を算出すると共にデータ信号(DATA1)を出力する第三識別回路(C1)を有し且つ、前記同期検波信号前置増幅器(A2)からの差動信号(I-arm)の正極成分(I)と負極成分(I(−))を入力しその成分差(I)を算出すると共にデータ信号(DATA2)を出力する第四識別回路(C2)を有し更に、前記第三識別回路(C1)と第四識別回路(C2)からの各判定出力信号(Q、I)を入力して乗算処理し排他的論理和(Z)を算出する第二排他的論理和回路(C3)を有し、
前記第一排他的論理和回路(B3)からの排他的論理和(XY)と第二排他的論理和回路(C3)からの排他的論理和(Z)とを入力して乗算処理し排他的論理和(XYZ)を算出しこの乗算値に比例したsinεを求めこれに基づいて位相誤差εを求め、loop filterを介して(LD)にフィードバックする第三排他的論理和回路(D)を設けたことを特徴とする光位相変調信号受信装置。
A first aspect of the present invention for solving the above-described problem is as follows (1).
(1). A QPSK transmitter / receiver that modulates two orthogonal carrier components with different 90 ° phases and transmits / receives them. The demodulator circuit using the homodyne phase-locked detection method (the entire circuit shown in Fig. 1) has a difference with respect to the two orthogonal carriers. Synchronous detection signal preamplifiers (AA1, AA2) for outputting dynamic signals (Q-arm, I-arm) and the differential signals (Q-arm, AA2, AA2) from the synchronous detection signal preamplifiers (AA1, AA2) I-arm) and a first arithmetic circuit (B) for calculating the sum and difference thereof, and the differential signals (Q-arm, I-arm) from the synchronous detection signal preamplifiers (AA1, AA2). ) And a second arithmetic circuit (C) for calculating the difference between them,
The first arithmetic circuit (B) includes a positive component Q of the differential signal Q-arm from the synchronous detection signal preamplifier (AA1) and a differential signal (Q2) from the synchronous detection signal preamplifier (AA2). -arm) having a first discrimination circuit (B1) for inputting a negative-polarity component (I (-)) and discriminating the magnitude of the sum of the components, and differential from the synchronous detection signal preamplifier (AA1) The positive component (Q) of the signal (Q-arm) and the positive component (I) of the differential signal (Q-arm) from the synchronous detection signal preamplifier (AA2) are input, and the magnitude of the component difference is identified. And a second discrimination circuit (B2) for judging whether or not each decision output signal (X, Y) from the first discrimination circuit (B1) and the second discrimination circuit (B2) is inputted, multiplied and exclusive. A first exclusive OR circuit (B3) for calculating a logical OR (XY),
The second arithmetic circuit (C) inputs the positive component (Q) and the negative component (Q (−)) of the differential signal Q-arm from the synchronous detection signal preamplifier (AA1), and the difference between the components ( Q) and a third identification circuit (C1) for outputting a data signal (DATA1) and a positive polarity component of the differential signal (I-arm) from the synchronous detection signal preamplifier (A2) ( I) and a negative electrode component (I (-)) are input, a component difference (I) is calculated, and a fourth identification circuit (C2) for outputting a data signal (DATA2) is provided. C1) and a second exclusive OR circuit (C3) for inputting each judgment output signal (Q, I) from the fourth discriminating circuit (C2) and multiplying them to calculate an exclusive OR (Z) And
The exclusive OR (XY) from the first exclusive OR circuit (B3) and the exclusive OR (Z) from the second exclusive OR circuit (C3) are inputted and multiplied to be exclusive. A third exclusive OR circuit (D) is provided to calculate the logical sum (XYZ), determine sin ε proportional to the multiplication value, determine the phase error ε based on this, and feed it back to (LD) through the loop filter. An optical phase modulation signal receiver characterized by the above.

本発明の第二の態様では、90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置において使用され、ホモダイン位相同期検波方式による復調機能を備える光位相変調信号受信装置において、当該装置は、オプティカル90°ハイブリッド回路に入力される信号光の位相誤差を補正するために、
前記オプティカル90°ハイブリッド回路の出力に結合される差動出力型の第一、第第二の同期検波信号前置増幅器であって、前記第一の同期検波信号前置増幅器はQ−armの正極成分Q及び負極成分−Qを出力し、前記第二の同期検波信号前置増幅器はI−armの正極成分I及び負極成分−Iを出力する、第一、第二の同期検波信号前置増幅器と、
前記第一の同期検波信号前置増幅器に接続される、差動入力型の第一の識別回路と、
前記第二の同期検波信号前置増幅器に接続される、差動入力型の第二の識別回路と、
前記第一の同期検波信号前置増幅器出力の正極成分Qと前記第二の同期検波信号前置増幅器出力の負極成分−Iを入力とする、差動入力型の第三の識別回路と、
前記第一の同期検波信号前置増幅器出力の正極成分Qと前記第二の同期検波信号前置増幅器出力の正極成分Iを入力とする、差動入力型の第四の識別回路と、
前記第一の識別回路と第二の識別回路の出力が入力される第一の排他的論理和回路と、
前記第三及び第四の識別回路の出力が入力される第二の排他的論理和回路と、
前記第一及び第二の排他的論理和回路出力が入力される第三の排他的論理和回路と、を備え、
前記第三の排他的論理和出力を位相誤差として検出することを特徴とする、光位相変調信号受信装置、を提供する。
In the second aspect of the present invention, in an optical phase modulation signal receiving apparatus that is used in a QPSK transmitting / receiving apparatus that performs transmission / reception by modulating two orthogonal carrier components having different 90 ° phases, and has a demodulation function based on a homodyne phase-locked detection method In order to correct the phase error of the signal light input to the optical 90 ° hybrid circuit, the apparatus
A differential output type first and second synchronous detection signal preamplifier coupled to an output of the optical 90 ° hybrid circuit, wherein the first synchronous detection signal preamplifier is a positive electrode of Q-arm. The first and second synchronous detection signal preamplifiers output the component Q and the negative component -Q, and the second synchronous detection signal preamplifier outputs the positive component I and the negative component -I of I-arm. When,
A differential input type first identification circuit connected to the first synchronous detection signal preamplifier;
A differential input type second identification circuit connected to the second synchronous detection signal preamplifier;
A differential input type third identification circuit having as inputs the positive component Q of the first synchronous detection signal preamplifier output and the negative component -I of the second synchronous detection signal preamplifier output;
A differential input type fourth discriminating circuit having the positive component Q of the first synchronous detection signal preamplifier output and the positive component I of the second synchronous detection signal preamplifier output as inputs;
A first exclusive OR circuit to which outputs of the first identification circuit and the second identification circuit are input;
A second exclusive OR circuit to which the outputs of the third and fourth identification circuits are input;
A third exclusive OR circuit to which the first and second exclusive OR circuit outputs are input, and
There is provided an optical phase modulation signal receiving apparatus, wherein the third exclusive OR output is detected as a phase error.

本発明の光位相変調信号受信装置は、前記回路構成により、I-armまたはQ-armから信号Q、Q(−)、I、I(−)の各々が乗算され第三排他的論理和回路(D)に至るまでの全ての経路上の素子を一つの識別回路と一つの排他的論理和回路にして配線だけを同じ長さにするだけで第三排他的論理和回路(D)への信号の入力タイミングを一致させるので、一度配線長を調節するだけで第三排他的論理和回路(D)での位相誤差を精度良く検出できるものである。   According to the optical phase modulation signal receiving apparatus of the present invention, a third exclusive OR circuit is obtained by multiplying each of the signals Q, Q (−), I, and I (−) from I-arm or Q-arm by the circuit configuration. The elements on all the paths up to (D) are made one identification circuit and one exclusive OR circuit, and only the wiring is made the same length, so that the third exclusive OR circuit (D) is connected. Since the signal input timing is matched, the phase error in the third exclusive OR circuit (D) can be detected with high accuracy by adjusting the wiring length once.

本発明の光位相変調信号受信装置の回路構成であれば全ての経路での信号が通過する素子数と種類が等しくなるため結線長だけを正確にすることでQPSK信号の受信が可能となる。   With the circuit configuration of the optical phase modulation signal receiving apparatus of the present invention, the number and types of elements through which signals in all paths pass are equal, and therefore, it is possible to receive a QPSK signal by making only the connection length accurate.

また、局発光の位相を主光源光にロックさせることにより、光通信における基地局での受信は容易になり、ディジタルコヒーレント技術は長距離伝送による分散等による波形歪みを補正すればよく、その負荷を軽減できる。従って、本発明による光位相変調信号受信装置を用いることで光コヒーレント通信の実現に繋がる。   In addition, by locking the phase of the local light to the main light source light, reception at the base station in optical communication becomes easy, and digital coherent technology only has to correct waveform distortion due to dispersion due to long-distance transmission, etc. Can be reduced. Therefore, the use of the optical phase modulation signal receiver according to the present invention leads to the realization of optical coherent communication.

本発明の光位相変調信号受信装置の1実施例回路を示す。1 shows a circuit of an embodiment of an optical phase modulation signal receiving apparatus of the present invention. 従来の光位相変調信号受信装置例を示す回路図である。It is a circuit diagram which shows the example of the conventional optical phase modulation signal receiver.

本発明を実施するための装置について図1と共に詳細に説明する。   An apparatus for carrying out the present invention will be described in detail with reference to FIG.

図1に、本発明の一実施形態に係る光位相変調信号受信装置を示す。本装置は、90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置において使用されるものであり、ホモダイン位相同期検波方式による復調機能と受信信号における位相誤差を検出してフィードバックする機能を実現するために、オプティカル90°ハイブリッド回路と、2つの直交搬送波に対する電気信号(Q-arm、I-arm)を出力する第一、第二の同期検波信号前置増幅器(AA1、AA2)と、前記同期検波信号前置増幅器(AA1、AA2)からの前記信号(Q-arm、I-arm)を入力してその和と差を算出する第一演算回路(B)と、前記同期検波信号前置増幅器(AA1、AA2)からの前記差動信号(Q-arm、I-arm)を入力してその差を算出する第二演算回路(C)と、第三排他的論理和回路(D)を備える。   FIG. 1 shows an optical phase modulation signal receiving apparatus according to an embodiment of the present invention. This device is used in a QPSK transmitter / receiver that modulates two orthogonal carrier components with different 90 ° phases and transmits / receives them, and detects the phase error in the received signal and the demodulation function using the homodyne phase-locked detection method. In order to realize the feedback function, an optical 90 ° hybrid circuit and first and second synchronous detection signal preamplifiers (AA 1, A) that output electrical signals (Q-arm, I-arm) for two orthogonal carriers are provided. AA2), a first arithmetic circuit (B) for inputting the signals (Q-arm, I-arm) from the synchronous detection signal preamplifiers (AA1, AA2) and calculating the sum and difference thereof, A second arithmetic circuit (C) for inputting the differential signals (Q-arm, I-arm) from the synchronous detection signal preamplifiers (AA1, AA2) and calculating a difference between them, and a third exclusive OR A circuit (D) is provided.

本発明の同期検波信号前置増幅器(AA1、AA2)はそれぞれ、オプティカル90°ハイブリッド回路からの光出力を光電変換するフォトダイオード(PD)と、このフォトダイオード出力Q-arm、I-armを、差動出力(+Q、−Qと+I、−I)として取り出す、差動出力型の増幅器(リニアアンプ)を備えている。   Each of the synchronous detection signal preamplifiers (AA1, AA2) of the present invention includes a photodiode (PD) for photoelectrically converting the optical output from the optical 90 ° hybrid circuit, and the photodiode outputs Q-arm, I-arm, A differential output type amplifier (linear amplifier) is provided which is extracted as a differential output (+ Q, -Q and + I, -I).

前記第一演算回路(B)は、第一識別回路(B1)と第二識別回路(B2)と 第一排他的論理和回路(B3)を有する。第一識別回路(B1)と第二識別回路(B2)は、同期検波信号前置増幅器(AA1、AA2)からの4つの信号(+Q、−Qと+I、−I)から差動入力型識別回路によりDATA1ではQ−(−Q)=2Q、DATA2では同様に2Iに比例した信号を符号化(例えば+1、−1に量子化)した結果を得る。   The first arithmetic circuit (B) includes a first identification circuit (B1), a second identification circuit (B2), and a first exclusive OR circuit (B3). The first discriminating circuit (B1) and the second discriminating circuit (B2) are differential input type discriminators from four signals (+ Q, -Q and + I, -I) from the synchronous detection signal preamplifiers (AA1, AA2). A circuit obtains a result of encoding (for example, quantizing to +1, −1) a signal proportional to 2I in the case of DATA1 in the case of DATA1 and Q2 in DATA2.

第一識別回路(B1)は、前記同期検波信号前置増幅器(AA1)からの差動出力Q-armの正極成分Qと前記同期検波信号前置増幅器(AA2)からの差動出力(Q-arm)の負極成分(−I)を入力しA/D変換しその成分和に対する大小の識別を判定する。   The first discriminating circuit (B1) has a positive component Q of the differential output Q-arm from the synchronous detection signal preamplifier (AA1) and a differential output (Q-) from the synchronous detection signal preamplifier (AA2). The negative component (-I) of arm) is input and A / D converted to determine whether the component sum is large or small.

第二識別回路(B2)は、前記同期検波信号前置増幅器(AA1)からの差動出力(Q-arm)の正極成分(Q)と前記同期検波信号前置増幅器(AA2)からの差動出力(Q-arm)の正極成分(I)とを入力しA/D変換しその成分差に対する大小の識別を判定する。   The second identification circuit (B2) includes a positive component (Q) of the differential output (Q-arm) from the synchronous detection signal preamplifier (AA1) and a differential from the synchronous detection signal preamplifier (AA2). The positive component (I) of the output (Q-arm) is input and A / D converted to determine whether the component difference is large or small.

第一排他的論理和回路(B3)は、前記第一識別回路(B1)と第二識別回路(B2)からの各判定出力信号(X、Y)を入力して乗算処理し排他的論理和(XY)を算出する。判定出力信号(X)はQ−Iを、判定出力信号YではQ−(−I)=Q+Iを符号化した結果が得られる。   The first exclusive OR circuit (B3) inputs the respective determination output signals (X, Y) from the first identification circuit (B1) and the second identification circuit (B2), performs multiplication processing, and performs exclusive OR. (XY) is calculated. The determination output signal (X) is obtained by encoding Q−I, and the determination output signal Y is obtained by encoding Q − (− I) = Q + I.

前記第二演算回路(C)は、第三識別回路(C1)と第四識別回路(C2)と第二排他的論理和回路(C3)とを備える。   The second arithmetic circuit (C) includes a third identification circuit (C1), a fourth identification circuit (C2), and a second exclusive OR circuit (C3).

第三識別回路(C1)は、前記同期検波信号前置増幅器(AA1)からの差動出力Q-armの正極成分(Q)と負極成分(−Q)を入力しA/D変換しその成分差(Q)を算出すると共にデータ信号(DATA1)を出力する。   The third discriminating circuit (C1) inputs the positive component (Q) and the negative component (-Q) of the differential output Q-arm from the synchronous detection signal preamplifier (AA1), performs A / D conversion, and the component The difference (Q) is calculated and a data signal (DATA1) is output.

第四識別回路(C2)は、前記同期検波信号前置増幅器(AA2)からの差動出力(I-arm)の正極成分(I)と負極成分(−I)を入力しA/D変換しその成分差(I)を算出すると共にデータ信号(DATA2)を出力する。   The fourth discriminating circuit (C2) inputs the positive electrode component (I) and the negative electrode component (-I) of the differential output (I-arm) from the synchronous detection signal preamplifier (AA2) and performs A / D conversion. The component difference (I) is calculated and a data signal (DATA2) is output.

第二排他的論理和回路(C3)は、前記第三識別回路(C1)と第四識別回路(C2)からの各判定出力信号(Q、I)を入力して乗算処理し排他的論理和(Z)を算出する。   The second exclusive OR circuit (C3) receives the respective decision output signals (Q, I) from the third discrimination circuit (C1) and the fourth discrimination circuit (C2), performs multiplication processing, and performs exclusive OR. (Z) is calculated.

第三排他的論理和回路(D)は、前記第一排他的論理和回路(B3)からの排他的論理和(XY)と第二排他的論理和回路(C3)からの排他的論理和(Z)とを入力して乗算処理し排他的論理和(XYZ)を算出し、この乗算値に比例したsinεを求めこれに基いて位相誤差εを求め、これを、ループフィルタ(loop filter)を介して発光ダイオード(LD)に入力して光信号に変換したのち、Local光(局発光)としてオプティカル90°ハイブリッド回路にフィードバックする。   The third exclusive OR circuit (D) includes an exclusive OR (XY) from the first exclusive OR circuit (B3) and an exclusive OR (C3) from the second exclusive OR circuit (C3). Z) is input and multiplication processing is performed to calculate an exclusive OR (XYZ), sinε proportional to the multiplication value is obtained, and based on this, a phase error ε is obtained, and this is used as a loop filter. After being input to the light emitting diode (LD) and converted into an optical signal, the light is fed back to the optical 90 ° hybrid circuit as local light (local light).

而して、Q+IとQ−Iのいずれかは位相誤差をεとした時のsinεまたは−sinεとなっているので、第三排他的論理和回路(D)は、前記第一排他的論理和回路(B3)からのDATA1とDATA2の排他的論理和(Z) と、第一排他的論理和回路(B3)からの排他的論理和により常に+sinεを量子化した結果すなわち位相誤差の符号情報を得る。   Thus, since either Q + I or Q−I is sinε or −sinε when the phase error is ε, the third exclusive OR circuit (D) The result of always quantizing + sinε by the exclusive OR (Z) of DATA1 and DATA2 from the circuit (B3) and the exclusive OR from the first exclusive OR circuit (B3), that is, the sign information of the phase error obtain.

上記が成り立つのは、位相誤差が−π<ε<πの範囲にあるときである。ループフィルタに送られる信号は位相誤差εに比例したものではなく、位相誤差を識別した結果すなわち正か負かの符号情報である。従って、ループフィルタへ入力される信号はビットごとの誤差の符号信号となり、数GHzオーダーの高速かつ数百ミリボルトの振幅であるが、一般的なラグ・リードフィルタに完全積分機能・位相補償機能を持たせることにより半導体レーザ光の位相制御信号として充分使える。   The above holds when the phase error is in the range of −π <ε <π. The signal sent to the loop filter is not proportional to the phase error ε, but is a result of identifying the phase error, that is, sign information of positive or negative. Therefore, the signal input to the loop filter is a sign signal of the error for each bit, and has a high speed of several GHz order and an amplitude of several hundred millivolts. By providing it, it can be used sufficiently as a phase control signal for semiconductor laser light.

前記各識別回路は前述のように入力信号間の大小関係を比較判断する回路であり、例えば差動入力型のリミティングアンプ(振幅制限型高利得増幅器)又はコンパレータ(比較増幅器)を用いて当該入力のアナログ信号を0/1のディジタル信号に変換して前記Q、I、X、Yを生成する。これで前記各排他的論理和回路は、信号データに依存しない位相誤差を生成する。   As described above, each of the identification circuits is a circuit that compares and determines the magnitude relationship between the input signals. For example, the identification circuit uses a differential input type limiting amplifier (amplitude limited high gain amplifier) or a comparator (comparative amplifier). The input analog signal is converted into a 0/1 digital signal to generate Q, I, X, and Y. Thus, each exclusive OR circuit generates a phase error that does not depend on signal data.

ループフィルタ(loop filter)は、第三排他的論理和回路(D)からの位相誤差信号εをLDの光周波数を制御する信号に変換する。   The loop filter converts the phase error signal ε from the third exclusive OR circuit (D) into a signal that controls the optical frequency of the LD.

以上の回路構成により、前述した従来回路構成で必要であったアナログ信号の加減算回路は、本発明の装置では必要なくなり、ループフィルタへの各径路が、一つの識別回路と二つの排他的論理和回路となるため経路長を等しく調節するだけで、第三排他的論理和回路(D)への信号の入力タイミングが一致して、第三排他的論理和回路(D)での位相誤差を精度良く検出できるものである。   With the above circuit configuration, the analog signal addition / subtraction circuit required in the above-described conventional circuit configuration is not necessary in the device of the present invention, and each path to the loop filter has one identification circuit and two exclusive ORs. Since it becomes a circuit, the signal input timing to the third exclusive OR circuit (D) matches by simply adjusting the path length equally, and the phase error in the third exclusive OR circuit (D) is accurate. It can be detected well.

なお、図1では、リミティングアンプB1、B2、C1、C2の負極出力は必ずしも第一または第二排他的論理和回路B3、C3に接続する必要はなく、また、第一排他的論理和回路B3の正極出力、第二排他的論理和回路C3の負極出力を第三の排他的論理和回路Dの負極出力に接続する必要はないが、これらを接続することによって、信号のS/N比を改善することができる。   In FIG. 1, the negative outputs of the limiting amplifiers B1, B2, C1, and C2 are not necessarily connected to the first or second exclusive OR circuit B3 and C3, and the first exclusive OR circuit is not necessarily connected. It is not necessary to connect the positive output of B3 and the negative output of the second exclusive OR circuit C3 to the negative output of the third exclusive OR circuit D, but by connecting them, the S / N ratio of the signal Can be improved.

次に公知であるが参考に位相誤差を算出する論理を以下に紹介する。
<変調側>
PPG1=data1
PPG2=data2
data*の0、1によってπの位相差を与え、さらにdata1、2によってπ/2の位相差を与えている。
Next, a known logic for calculating the phase error will be introduced below.
<Modulation side>
PPG1 = data1
PPG2 = data2
A phase difference of π is given by 0 and 1 of data *, and a phase difference of π / 2 is given by data 1 and 2.

いま、入力光をcos(wt+0)とし、
Arm1ではdata1により(1/√2)cos(wt+θ1)
Arm2ではdata2により(1/√2)cos(wt+θ2)
これらを合波する際にπ/2を与えるので出力光は
(1/√2){cos(wt+θ1)+sin(wt+θ2)}
=(1/√2){coswt*cosθ1-sinwt*sinθ1+sinwt*cosθ2+coswt*sinθ2
(where θ1、θ2=0orπ)
=(1/√2){coswt*cosθ1+sinwt*cosθ2
となる。
Now, let the input light be cos (wt + 0)
For Arm1, (1 / √2) cos (wt + θ 1 ) by data1
For Arm2, (1 / √2) cos (wt + θ 2 ) by data2
Π / 2 is given when combining these, so the output light is
(1 / √2) {cos (wt + θ 1 ) + sin (wt + θ 2 )}
= (1 / √2) {coswt * cosθ 1 -sinwt * sinθ 1 + sinwt * cosθ 2 + coswt * sinθ 2 }
(where θ1, θ2 = 0orπ)
= (1 / √2) {coswt * cosθ 1 + sinwt * cosθ 2 }
It becomes.

伝送データが0のときθ=0、1のときθ=πとすれば
(data1、data2)=(0、0)のとき(1/√2){+coswt+sinwt} = sin(wt+π/4) = cos(wt-π/4)
(data1、data2)=(0、1)のとき(1/√2){+coswt-sinwt} = sin(wt+3π/4)= cos(wt+π/4)
(data1、data2)=(1、0)のとき(1/√2){-coswt+sinwt} = sin(wt-π/4) = cos(wt-3π/4)
(data1、data2)=(1、1)のとき(1/√2){-coswt-sinwt} = sin(wt-3π/4)= cos(wt+3π/4)
If the transmission data is 0, θ = 0, and 1 if θ = π
When (data1, data2) = (0, 0) (1 / √2) {+ coswt + sinwt} = sin (wt + π / 4) = cos (wt-π / 4)
When (data1, data2) = (0, 1) (1 / √2) {+ coswt-sinwt} = sin (wt + 3π / 4) = cos (wt + π / 4)
When (data1, data2) = (1, 0) (1 / √2) {-coswt + sinwt} = sin (wt-π / 4) = cos (wt-3π / 4)
When (data1, data2) = (1, 1) (1 / √2) {-coswt-sinwt} = sin (wt-3π / 4) = cos (wt + 3π / 4)

ゆえに
(data1、data2)={(00)(0、1)、(1、0)、(1、1)}={-π/4、+π/4、-3π/4、+3π/4}=θ(data1、data2)
である。
therefore
(data1, data2) = {(00) (0,1), (1,0), (1,1)} = {-π / 4, + π / 4, -3π / 4, + 3π / 4} = θ (data1, data2)
It is.

<受信側>
S=cos(wt+θ):信号光
L=cos(wt+ε):局発光
S+L=cos(wt+θ)+cos(wt+ε)= 2cos(wt+(θ+ε)/2)cos((θ-ε)/2)
S-L=cos(wt+θ)-cos(wt+ε)=-2sin(wt+(θ+ε)/2)sin((θ-ε)/2)
S+jL=cos(wt+θ)-sin(wt+ε)= 2cos(wt+(θ+ε+π/2)/2)cos((θ-ε-π/2)/2)
S-jL=cos(wt+θ)+sin(wt+ε)= 2cos(wt+(θ+ε-π/2)/2)cos((θ-ε+π/2)/2)
exp(jA)+j*exp(jB)=exp(jA)+exp{j(B+π/2)}
A=wt+(θ+ε)/2、B=(θ-ε)/2
2cosAcosB=cos(A+B)+cos(A-B)、2sinAsinB=cos(A-B)-cos(A+B)
さらにPDによる2乗検波で((1+cos2A)/2=cosAcosA、(1-cos2A)/2=sinAsinA)
S+L= 2cos(wt+(θ+ε)/2)cos((θ-ε)/2) : 1+ cos(θ-ε)
S-L=-2sin(wt+(θ+ε)/2)sin((θ-ε)/2) : 1-cos(θ-ε)
S+jL= 2cos(wt+(θ+ε+π/2)/2)cos((θ-ε-π/2)/2) ; 1+sin(θ-ε)
S-jL= 2cos(wt+(θ+ε-π/2)/2)cos((θ-ε+π/2)/2) : 1-sin(θ-ε)
さらに差動であるから
I=2cos(θ-ε)
Q=2sin(θ-ε)
ゆえにI-armはcosθすなわちdata1を表し
Q-armはsinθすなわちdata2を表す。
<Receiving side>
S = cos (wt + θ): Signal light
L = cos (wt + ε): Local light emission
S + L = cos (wt + θ) + cos (wt + ε) = 2cos (wt + (θ + ε) / 2) cos ((θ-ε) / 2)
SL = cos (wt + θ) -cos (wt + ε) =-2sin (wt + (θ + ε) / 2) sin ((θ-ε) / 2)
S + jL = cos (wt + θ) -sin (wt + ε) = 2cos (wt + (θ + ε + π / 2) / 2) cos ((θ-ε-π / 2) / 2)
S-jL = cos (wt + θ) + sin (wt + ε) = 2cos (wt + (θ + ε-π / 2) / 2) cos ((θ-ε + π / 2) / 2)
exp (jA) + j * exp (jB) = exp (jA) + exp {j (B + π / 2)}
A = wt + (θ + ε) / 2, B = (θ-ε) / 2
2cosAcosB = cos (A + B) + cos (AB), 2sinAsinB = cos (AB) -cos (A + B)
Furthermore, square detection by PD ((1 + cos2A) / 2 = cosAcosA, (1-cos2A) / 2 = sinAsinA)
S + L = 2cos (wt + (θ + ε) / 2) cos ((θ-ε) / 2): 1+ cos (θ-ε)
SL = -2sin (wt + (θ + ε) / 2) sin ((θ-ε) / 2): 1-cos (θ-ε)
S + jL = 2cos (wt + (θ + ε + π / 2) / 2) cos ((θ-ε-π / 2) / 2); 1 + sin (θ-ε)
S-jL = 2cos (wt + (θ + ε-π / 2) / 2) cos ((θ-ε + π / 2) / 2): 1-sin (θ-ε)
Because it ’s more differential.
I = 2cos (θ-ε)
Q = 2sin (θ-ε)
Therefore, I-arm represents cosθ or data1
Q-arm represents sinθ, that is, data2.

<decision driven回路>
・dd回路はdataを復号化するとともに位相誤差εを検出する。さらにループフィルタを経て局発光を制御することで安定にホモダイン検波が実現できる。ただしデータであるθに依存せずεのみに依存する形にする。
・識別回路(decision circuit)はアナログ信号を2値にディジタル化する。(式では[]を使用する)
(実際にはリミテッド回路あるいはコンパレータ)

Figure 0006230015
<Decision driven circuit>
The dd circuit decodes data and detects the phase error ε. Furthermore, homodyne detection can be realized stably by controlling local light emission through a loop filter. However, the data is not dependent on θ, which is data, but only on ε.
• The decision circuit digitizes analog signals into binary values. (Use [] in expressions)
(Actually a limited circuit or comparator)
Figure 0006230015

Figure 0006230015
Figure 0006230015
Figure 0006230015
Figure 0006230015

<送信側>
(data1、data2)={(0、0)(0、1)、(1、0)、(1、1)}={-π/4、+π/4、-3π/4、+3π/4}=θ(data1、data2)
<受信側>
I=2cos(θ-ε)
Q=2sin(θ-ε)
ERROR出力はどうなる?

Figure 0006230015
<Sender>
(data1, data2) = {(0,0) (0,1), (1,0), (1,1)} = {-π / 4, + π / 4, -3π / 4, + 3π / 4} = θ (data1, data2)
<Receiving side>
I = 2cos (θ-ε)
Q = 2sin (θ-ε)
What happens to ERROR output?
Figure 0006230015

常に 4θ=π であるから
ERROR=[sin(4ε)]
となり+/-が誤差εにより決まる。
具体的には
(0、0)のときθ=-π/4
I=2cos(-π/4-ε)=√2(cosε-sinε)
Q=2sin(-π/4-ε)=√2(-cosε-sinε)
I+Q=-2√2(sinε)
I-Q=+2√2(cosε)
より

Figure 0006230015
Because always 4θ = π
ERROR = [sin (4ε)]
+/- is determined by the error ε.
In particular
When (0, 0), θ = -π / 4
I = 2cos (-π / 4-ε) = √2 (cosε-sinε)
Q = 2sin (-π / 4-ε) = √2 (-cosε-sinε)
I + Q = -2√2 (sinε)
IQ = + 2√2 (cosε)
Than
Figure 0006230015

Figure 0006230015
つまり、ERRORからはデータに依存せずにsinεに従った出力が得られる。また、εの絶対値が充分に小さいとき(|ε|≪1)、sinε≒εが成り立つ。
Figure 0006230015
In other words, the output according to sinε is obtained from ERROR without depending on the data. When the absolute value of ε is sufficiently small (| ε | << 1), sinε≈ε holds.

本発明の光位相変調信号受信装置は、前述した優れた作用効果を有するため、光通信産業及びその関連産業において、大いに活用され貢献すること多大なものがある。   Since the optical phase modulation signal receiving apparatus of the present invention has the above-described excellent operational effects, there is a great deal of utilization and contribution in the optical communication industry and related industries.

AA1、AA2 同期検波信号前置増幅器
B 第一演算回路
C 第二演算回路
B1 第一識別回路
B2 第二識別回路
B3 第一排他的論理和回路
C1 第三識別回路
C2 第四識別回路
C3 第二排他的論理和回路
D 第三排他的論理和回路
AA1, AA2 Synchronous detection signal preamplifier B 1st operation circuit C 2nd operation circuit B1 1st discrimination circuit B2 2nd discrimination circuit B3 1st exclusive OR circuit C1 3rd discrimination circuit C2 4th discrimination circuit C3 2nd Exclusive OR circuit
D Third exclusive OR circuit

Claims (4)

90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置に設けられ、ホモダイン位相同期検波方式による復調を行う光位相変調信号受信装置において、当該装置は、オプティカル90°ハイブリッド回路と、当該ハイブリッド回路からの2つの直交搬送波に対する信号(Q-arm、I-arm)を差動出力として出力する同期検波信号前置増幅器(AA1、AA2)と、前記同期検波信号前置増幅器(AA1、AA2)からの前記差動出力(Q-arm、I-arm)を入力してその和と差を算出する第一演算回路(B)と、前記同期検波信号前置増幅器(AA1AA2)からの前記差動出力(Q-arm、I-arm)を入力してその差を算出する第二演算回路(C)とを備え、
前記第一演算回路(B)は、前記同期検波信号前置増幅器(AA1)からの差動出力Q-armの正極成分と前記同期検波信号前置増幅器(AA2)からの差動出力(-arm)の負極成分(−I)を入力しその成分和に対する大小の識別判定する差動入力型の第一識別回路(B1)を有し、前記同期検波信号前置増幅器(AA1)からの差動出力(Q-arm)の正極成分(Q)と前記同期検波信号前置増幅器(AA2)からの差動出力(-arm)の正極成分(I)とを入力しその成分差に対する大小の識別を判定する差動入力型の第二識別回路(B2)を有し、前記第一識別回路(B1)と第二識別回路(B2)からの各判定出力信号(X、Y)を入力して乗算処理し排他的論理和(XY)を算出する第一排他的論理和回路(B3)を有し、
前記第二演算回路(C)は、前記同期検波信号前置増幅器(AA1)からの差動出力Q-armの正極成分(Q)と負極成分(−Q)を入力しその成分差(Q)を算出すると共にデータ信号(DATA1)を出力する差動入力型の第三識別回路(C1)を有し、前記同期検波信号前置増幅器(AA2)からの差動出力(I-arm)の正極成分(I)と負極成分(−I)を入力しその成分差(I)を算出すると共にデータ信号(DATA2)を出力する差動入力型の第四識別回路(C2)を有し、前記第三識別回路(C1)と第四識別回路(C2)からの各判定出力信号(Q、I)を入力して乗算処理し排他的論理和(Z)を算出する第二排他的論理和回路(C3)を有し、
前記第一排他的論理和回路(B3)からの排他的論理和(XY)と第二排他的論理和回路(C3)からの排他的論理和(Z)とを入力して乗算処理し排他的論理和(XYZ)を算出する第三排他的論理和回路(D)を設け、
前記第一識別回路、第二識別回路、第三識別回路及び第四識別回路を一つの識別回路で構成し、さらに前記第一排他的論理和回路及び第二排他的論理和回路を一つの排他的論理和回路で構成すると共に、
前記第三排他的論理和回路出力によって半導体レーザを制御して局発光を求めることを特徴とする、光位相変調信号受信装置。
An optical phase-modulated signal receiving device that is provided in a QPSK transmitting / receiving device that modulates two orthogonal carrier components with different 90 ° phases and performs transmission / reception, and that performs demodulation using a homodyne phase-locked detection method, the device includes an optical 90 ° hybrid circuit A synchronous detection signal preamplifier (AA1, AA2) for outputting signals (Q-arm, I-arm) for two orthogonal carriers from the hybrid circuit as differential outputs, and the synchronous detection signal preamplifier ( A first arithmetic circuit (B) for inputting the differential outputs (Q-arm, I-arm) from AA1, AA2) and calculating the sum and difference thereof, and the synchronous detection signal preamplifiers ( AA1 , AA2) And a second arithmetic circuit (C) that inputs the differential output (Q-arm, I-arm)
The first arithmetic circuit (B) includes a difference between the positive component ( Q ) of the differential output ( Q-arm ) from the synchronous detection signal preamplifier (AA1 ) and the synchronous detection signal preamplifier (AA2). A differential input type first discriminating circuit (B1) that receives the negative component (-I) of the dynamic output ( I- arm) and discriminates the magnitude of the sum of the components; The positive component (Q) of the differential output (Q-arm) from the AA1) and the positive component (I) of the differential output ( I -arm) from the synchronous detection signal preamplifier (AA2) are input. A differential input type second identification circuit (B2) for determining the magnitude of the component difference is provided, and each determination output signal (X,) from the first identification circuit (B1) and the second identification circuit (B2) is provided. Y) and a first exclusive OR circuit (B3) for calculating an exclusive OR (XY) by performing multiplication processing.
The second arithmetic circuit (C) inputs the positive component (Q) and the negative component (-Q) of the differential output ( Q-arm ) from the synchronous detection signal preamplifier (AA1), and the component difference ( Q) and a differential input type third identification circuit (C1) for outputting a data signal (DATA1) and a differential output (I-arm) from the synchronous detection signal preamplifier (AA2) A differential input type fourth discriminating circuit (C2) for inputting a positive electrode component (I) and a negative electrode component (-I) of the input and calculating a difference (I) between them and outputting a data signal (DATA2); A second exclusive OR that calculates the exclusive OR (Z) by inputting the decision output signals (Q, I) from the third discrimination circuit (C1) and the fourth discrimination circuit (C2) and multiplying them. Circuit (C3)
The exclusive OR (XY) from the first exclusive OR circuit (B3) and the exclusive OR (Z) from the second exclusive OR circuit (C3) are inputted and multiplied to be exclusive. A third exclusive OR circuit (D) for calculating a logical sum (XYZ) is provided;
The first identification circuit, the second identification circuit, the third identification circuit, and the fourth identification circuit are configured by one identification circuit, and the first exclusive OR circuit and the second exclusive OR circuit are one exclusive circuit. With a logical OR circuit,
An optical phase modulation signal receiving apparatus characterized in that local light emission is obtained by controlling a semiconductor laser with the output of the third exclusive OR circuit.
90°位相の異なる2つの直交搬送波成分を変調して送受信を行うQPSK送受信装置において使用され、ホモダイン位相同期検波方式による復調機能を備える光位相変調信号受信装置において、当該装置は、オプティカル90°ハイブリッド回路に入力される信号光の位相誤差を補正するために、
前記オプティカル90°ハイブリッド回路の出力に結合される差動出力型の第一、第第二の同期検波信号前置増幅器であって、前記第一の同期検波信号前置増幅器はQ−armの正極成分Q及び負極成分−Qを出力し、前記第二の同期検波信号前置増幅器はI−armの正極成分I及び負極成分−Iを出力する、第一、第二の同期検波信号前置増幅器と、
前記第一の同期検波信号前置増幅器に接続される、差動入力型の第一の識別回路と、
前記第二の同期検波信号前置増幅器に接続される、差動入力型の第二の識別回路と、
前記第一の同期検波信号前置増幅器出力の正極成分Qと前記第二の同期検波信号前置増幅器出力の負極成分−Iを入力とする、差動入力型の第三の識別回路と、
前記第一の同期検波信号前置増幅器出力の正極成分Qと前記第二の同期検波信号前置増幅器出力の正極成分Iを入力とする、差動入力型の第四の識別回路と、
前記第一の識別回路と第二の識別回路の出力が入力される第一の排他的論理和回路と、
前記第三及び第四の識別回路の出力が入力される第二の排他的論理和回路と、
前記第一及び第二の排他的論理和回路出力が入力される第三の排他的論理和回路と、を備え、
前記第一識別回路、第二識別回路、第三識別回路及び第四識別回路を一つの識別回路で構成し、さらに前記第一排他的論理和回路及び第二排他的論理和回路を一つの排他的論理和回路で構成すると共に、
前記第三の排他的論理和回路出力を位相誤差として検出することを特徴とする、光位相変調信号受信装置。
An optical phase modulation signal receiving apparatus used in a QPSK transmission / reception apparatus that performs transmission / reception by modulating two orthogonal carrier components having different 90 ° phases and has a demodulation function based on a homodyne phase synchronous detection method. In order to correct the phase error of the signal light input to the circuit,
A differential output type first and second synchronous detection signal preamplifier coupled to an output of the optical 90 ° hybrid circuit, wherein the first synchronous detection signal preamplifier is a positive electrode of Q-arm. The first and second synchronous detection signal preamplifiers output the component Q and the negative component -Q, and the second synchronous detection signal preamplifier outputs the positive component I and the negative component -I of I-arm. When,
A differential input type first identification circuit connected to the first synchronous detection signal preamplifier;
A differential input type second identification circuit connected to the second synchronous detection signal preamplifier;
A differential input type third identification circuit having as inputs the positive component Q of the first synchronous detection signal preamplifier output and the negative component -I of the second synchronous detection signal preamplifier output;
A differential input type fourth discriminating circuit having the positive component Q of the first synchronous detection signal preamplifier output and the positive component I of the second synchronous detection signal preamplifier output as inputs;
A first exclusive OR circuit to which outputs of the first identification circuit and the second identification circuit are input;
A second exclusive OR circuit to which the outputs of the third and fourth identification circuits are input;
A third exclusive OR circuit to which the first and second exclusive OR circuit outputs are input, and
The first identification circuit, a second identification circuit, the third identification circuit and a fourth identification circuit constructed in one identification circuit, further wherein said first exclusive OR circuit and a second exclusive OR The sum circuit is composed of one exclusive OR circuit,
An optical phase modulation signal receiving apparatus, wherein the output of the third exclusive OR circuit is detected as a phase error.
請求項2に記載の装置において、検出された前記位相誤差を示す信号は、ループフィルタを介して半導体レーザ装置に入力され、局発光として前記オプティカル90°ハイブリッド回路に入力されることを特徴とする、光位相変調信号受信装置。   3. The apparatus according to claim 2, wherein the detected signal indicating the phase error is input to the semiconductor laser device via a loop filter and input to the optical 90 ° hybrid circuit as local light. Optical phase modulation signal receiver. 請求項2または3に記載の装置において、前記第一乃至第四の識別回路は、リミティングアンプまたはコンパレータであることを特徴とする、光位相変調信号受信装置。   4. The optical phase modulation signal receiving apparatus according to claim 2, wherein the first to fourth identification circuits are limiting amplifiers or comparators.
JP2013005620A 2013-01-16 2013-01-16 Optical phase modulation signal receiver Active JP6230015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013005620A JP6230015B2 (en) 2013-01-16 2013-01-16 Optical phase modulation signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013005620A JP6230015B2 (en) 2013-01-16 2013-01-16 Optical phase modulation signal receiver

Publications (2)

Publication Number Publication Date
JP2014138258A JP2014138258A (en) 2014-07-28
JP6230015B2 true JP6230015B2 (en) 2017-11-15

Family

ID=51415561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013005620A Active JP6230015B2 (en) 2013-01-16 2013-01-16 Optical phase modulation signal receiver

Country Status (1)

Country Link
JP (1) JP6230015B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406269B2 (en) * 2006-03-10 2008-07-29 Discovery Semiconductors, Inc. Feedback-controlled coherent optical receiver with electrical compensation/equalization
US8681027B2 (en) * 2010-03-16 2014-03-25 Nec Corporation Digital receiver and optical communication system that uses same
JP5598958B2 (en) * 2010-03-19 2014-10-01 独立行政法人情報通信研究機構 Dividing optical phase tracking demodulator
US9252888B2 (en) * 2011-01-20 2016-02-02 Nec Corporation Coherent optical receiver device and coherent optical receiving method
JP2014072682A (en) * 2012-09-28 2014-04-21 Oki Electric Ind Co Ltd Optical phase-locked loop circuit

Also Published As

Publication number Publication date
JP2014138258A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6633200B2 (en) Extract carrier signal from modulated signal
JP5812131B2 (en) Phase imbalance observation apparatus, amplitude imbalance observation apparatus, and apparatus using them
US7676162B2 (en) Phase monitor used in optical receiver
US8761600B2 (en) In-band supervisory data modulation
JP4911618B2 (en) Coherent optical receiver
JP5287516B2 (en) Digital coherent optical receiver
US10401655B2 (en) Bias control of optical modulators
US10778340B2 (en) Digital coherent receiver and skew adjustment method thereof
EP2378679A1 (en) Optical electric field transmitter and optical transmission system
US8331802B2 (en) Synchronous circuit for use in optical homodyne receiver for generating local oscillation light with accurate demodulation
US8977140B2 (en) Optical receiver and optical reception method
CN105634591B (en) Free space coherent light communication detection device based on 2 × 4 90 ° of optical bridging devices
US20120269514A1 (en) High Speed IO with Coherent Detection
CN105721061B (en) Photoelectricity based on 2 × 4 90 ° of optical bridging devices mixes detection device
JP2009206556A (en) Transmitter
JP5068109B2 (en) Method and apparatus for compensating mismatch in digital quadrature transmitter / receiver with direct conversion structure
JP5598958B2 (en) Dividing optical phase tracking demodulator
JP6230015B2 (en) Optical phase modulation signal receiver
US20090086215A1 (en) Polarization-Multiplexed Multilevel Differential Phase Shift Keyed Signal Detector
CN107733525B (en) Photoelectric mixed oscillation phase-locked loop
WO2020184445A1 (en) Optical receiver evaluation method and optical receiver evaluation device
JP2013509115A (en) Method and apparatus for monitoring and controlling phase difference based on DQPSK modulation
KR101003028B1 (en) Coherent receiver
JP6396016B2 (en) Optical receiver and optical signal receiving method
US20130114956A1 (en) Dpsk optical receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6230015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250