JP6229986B1 - Detector of hydrogen in steel materials - Google Patents

Detector of hydrogen in steel materials Download PDF

Info

Publication number
JP6229986B1
JP6229986B1 JP2016143319A JP2016143319A JP6229986B1 JP 6229986 B1 JP6229986 B1 JP 6229986B1 JP 2016143319 A JP2016143319 A JP 2016143319A JP 2016143319 A JP2016143319 A JP 2016143319A JP 6229986 B1 JP6229986 B1 JP 6229986B1
Authority
JP
Japan
Prior art keywords
hydrogen
oxide
steel material
buffer film
detection substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016143319A
Other languages
Japanese (ja)
Other versions
JP2018013424A (en
Inventor
優 菅原
優 菅原
晃裕 柴田
晃裕 柴田
勇人 境沢
勇人 境沢
武藤 泉
泉 武藤
信義 原
信義 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016143319A priority Critical patent/JP6229986B1/en
Application granted granted Critical
Publication of JP6229986B1 publication Critical patent/JP6229986B1/en
Publication of JP2018013424A publication Critical patent/JP2018013424A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】材料中に存在する、あるいは外部から侵入した水素の濃度や水素の存在箇所の経時変化を、目視観察や画像、動画撮影を通して計測するための、材料中の水素の検出器を提供する。【解決手段】水素バッファー膜と水素検出物質とを有し、水素バッファー膜の厚さが2nm以上150nm以下であり、水素バッファー膜を材料表面に接触させることで、材料中に含まれる水素の濃度に応じて水素検出物質の可視紫外反射スペクトルが変化するよう構成されている。水素検出物質がタングステン酸化物、チタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物のいずれかであり、水素検出物質の厚さが10nm以上500nm以下であること、水素バッファー膜の室温における水素拡散係数が1.0×10-9m2・s-1以下であり、水素バッファー膜がパラジウムまたはニッケルであることが望ましい。【選択図】図2Provided is a hydrogen detector in a material for measuring the concentration of hydrogen existing in a material or entering from the outside and the temporal change of the location of hydrogen through visual observation, images, and video recording. . A hydrogen buffer film and a hydrogen detection substance, the thickness of the hydrogen buffer film is 2 nm or more and 150 nm or less, and the concentration of hydrogen contained in the material is brought into contact with the material surface by contacting the hydrogen buffer film with the material surface. The visible ultraviolet reflection spectrum of the hydrogen detection substance is changed in accordance with the above. The hydrogen detection substance is tungsten oxide, titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, or rhodium oxide, and the thickness of the hydrogen detection substance is 10 nm or more. It is desirable that it is 500 nm or less, the hydrogen diffusion coefficient of the hydrogen buffer film at room temperature is 1.0 × 10 −9 m 2 · s−1 or less, and the hydrogen buffer film is palladium or nickel. [Selection] Figure 2

Description

本発明は、鉄鋼材料中に存在する水素あるいは外部から侵入した水素の濃度や存在箇所の経時変化を計測するための、鉄鋼材料中の水素の検出器に関する。
The present invention relates to a detector for hydrogen in a steel material for measuring the concentration of hydrogen existing in the steel material or the concentration of hydrogen invading from the outside and the change with time of the location.

材料中に水素が侵入すると、機械的特性が低下し、脆性的な破壊現象を引き起こすことがある。特に鉄鋼材料では、強度が増加するにつれて水素脆化感受性が高まることが知られている。材料中に侵入した水素は、応力集中部等に局在化し、破壊現象を生じさせる。そのため、水素脆化機構を解明し、脆化を防止していくためには、材料中に存在する水素の濃度や水素の存在箇所を知ることが不可欠である。また、水素侵入過程は、高圧水素ガス環境に代表される気相からの侵入と、大気腐食過程で発生する水素発生反応に付随する液相からの侵入の二種類があり、液相からの水素の侵入速度は大気環境により大きく変動する。よって、水素に起因する破壊を抑制するためには、材料中の水素の局在的な蓄積を連続的に計測し、静止画や動画として捉えることが可能な水素検出器が必要である。   If hydrogen penetrates into the material, the mechanical properties may deteriorate and a brittle fracture phenomenon may occur. Particularly in steel materials, it is known that the sensitivity to hydrogen embrittlement increases as the strength increases. Hydrogen that has penetrated into the material is localized in a stress concentration portion or the like, and causes a destruction phenomenon. Therefore, in order to elucidate the hydrogen embrittlement mechanism and prevent embrittlement, it is essential to know the concentration of hydrogen present in the material and the location of hydrogen. There are two types of hydrogen intrusion processes: invasion from the gas phase typified by the high-pressure hydrogen gas environment and intrusion from the liquid phase associated with the hydrogen generation reaction that occurs in the atmospheric corrosion process. The intrusion speed varies greatly depending on the atmospheric environment. Therefore, in order to suppress the breakdown caused by hydrogen, a hydrogen detector that can continuously measure the local accumulation of hydrogen in the material and capture it as a still image or a moving image is required.

材料中の水素濃度を測定する代表的な手法として、昇温脱離水素分析法や電気化学水素透過法が知られている。これらの手法は、材料中に含まれるすべての水素量を検出するため、材料全体の水素濃度を測定することができるが、材料中の水素の存在箇所を知ることはできない。   As representative techniques for measuring the hydrogen concentration in a material, a temperature programmed desorption hydrogen analysis method and an electrochemical hydrogen permeation method are known. Since these methods detect the total amount of hydrogen contained in the material, the hydrogen concentration of the entire material can be measured, but the location of hydrogen in the material cannot be known.

材料中の水素の存在箇所を可視化する手法として、銀デコレーション法(例えば、非特許文献1参照)や水素マイクロプリント法(例えば、特許文献1参照)が知られている。銀デコレーション法は、水素を含む材料をシアン化銀(I)カリウム水溶液に浸漬することにより、材料表面に露出した水素原子がイオン化し放出する箇所に銀粒子を還元析出させるものである。また、水素マイクロプリント法は、水素を含む材料表面に臭化銀(I)とゼラチンとを主成分とする乳剤を塗布し、材料表面に露出した水素原子がイオン化し放出する箇所に銀粒子を還元析出させるものである。両手法ともに、銀粒子の分布から水素の存在箇所を可視化することができる。しかし、材料表面に銀原子が析出するため、連続的な水素濃度や水素分布の計測が不可能である。   As a technique for visualizing the location of hydrogen in a material, a silver decoration method (for example, see Non-Patent Document 1) and a hydrogen microprint method (for example, see Patent Document 1) are known. In the silver decoration method, a material containing hydrogen is immersed in a silver (I) potassium cyanide aqueous solution, whereby silver particles are reduced and deposited at locations where hydrogen atoms exposed on the material surface are ionized and released. In the hydrogen microprint method, an emulsion mainly composed of silver (I) bromide and gelatin is applied to the surface of a hydrogen-containing material, and silver particles are formed at locations where hydrogen atoms exposed on the material surface are ionized and released. It is reduced and deposited. Both methods can visualize the location of hydrogen from the distribution of silver particles. However, since silver atoms are deposited on the material surface, it is impossible to continuously measure hydrogen concentration and hydrogen distribution.

ところで、大気中に存在する水素ガス濃度を測定する水素ガスセンサは、数多く考案されている。特に、金属酸化物を用いた水素センサは、高い検出感度と良好な応答性とを有することが知られている。このような水素センサとして、例えば、陽極酸化した含水酸化タングステン膜の反射率が、水素ガス濃度によって変化することを利用した、含水酸化タングステン膜とパラジウムまたは白金の触媒金属薄膜とからなるガス検出装置が開示されている(例えば、特許文献2参照)。また、酸化タングステン、酸化モリブデン、酸化ニッケル、および酸化亜鉛の薄膜の透過率が水素ガスの有無によって変化することを利用した光学式水素センサも開示されている(例えば、特許文献3参照)。これらの水素センサは、大気中の水素分子が触媒金属上で解離し、水素原子として金属酸化物内に侵入することで、光学的特性が変化することを利用しており、水素ガス濃度を連続的に測定することができる。しかし、材料中に存在する水素の濃度や水素の存在箇所を連続的に測定する水素検出器は、存在しない。   By the way, many hydrogen gas sensors for measuring the concentration of hydrogen gas existing in the atmosphere have been devised. In particular, hydrogen sensors using metal oxides are known to have high detection sensitivity and good responsiveness. As such a hydrogen sensor, for example, a gas detection device comprising a hydrous tungsten oxide film and a catalytic metal thin film of palladium or platinum utilizing the fact that the reflectivity of the anodized hydrous tungsten film varies depending on the hydrogen gas concentration. Is disclosed (for example, see Patent Document 2). Also disclosed is an optical hydrogen sensor that utilizes the fact that the transmittance of a thin film of tungsten oxide, molybdenum oxide, nickel oxide, and zinc oxide changes depending on the presence or absence of hydrogen gas (see, for example, Patent Document 3). These hydrogen sensors take advantage of the fact that the optical properties change as hydrogen molecules in the atmosphere dissociate on the catalytic metal and enter the metal oxide as hydrogen atoms, and the hydrogen gas concentration is continuously increased. Can be measured automatically. However, there is no hydrogen detector that continuously measures the concentration of hydrogen present in the material and the location of hydrogen.

T. Schober and C. Dicker, “Observation of Local Hydrogen on Nickel Surfaces”, Metall. Trans. A,, 1983, 14A, p.2440T. Schober and C. Dicker, “Observation of Local Hydrogen on Nickel Surfaces”, Metall. Trans. A ,, 1983, 14A, p.2440

特開2006−258595号公報JP 2006-258595 A 特開平7−72080号公報JP-A-7-72080 特開2007−155650号公報JP 2007-155650 A

本発明は上記事情に鑑みなされたもので、鉄鋼材料中に存在する水素の濃度や水素の存在箇所の経時変化を、目視観察や画像、動画撮影を通して計測するための鉄鋼材料中の水素の検出器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and detection of hydrogen in a steel material for measuring the concentration of hydrogen present in a steel material and the change over time of the location of hydrogen through visual observation, images, and video shooting. The purpose is to provide a vessel.

本発明者等は、従来技術では成し得なかった、鉄鋼材料中に存在する水素の濃度や水素の存在箇所の連続測定を実現するため、種々の試験研究を行い、本発明を完成させた。本発明の趣旨は、以下の通りである。
The present inventors have found, in the conventional art has not been achieved, in order to achieve a continuous measurement of the presence position of the concentration and the hydrogen of the hydrogen present in the steel material, we conducted research various tests, the present invention has been completed . The gist of the present invention is as follows.

本発明に係る鉄鋼材料中の水素の検出器は、水素バッファー膜と水素検出物質とを有し、前記水素バッファー膜は、厚さが2nm以上150nm以下であり、測定対象の鉄鋼材料表面に接触するよう、前記鉄鋼材料と前記水素検出物質との間に設けられ、前記水素検出物質は、厚さが30nm以上70nm以下であり、タングステン酸化物、チタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物からなる群より選ばれるいずれかであり、前記鉄鋼材料中に含まれる水素の濃度に応じて前記水素検出物質の可視紫外反射スペクトルが変化するよう構成されていることを特徴とする。
The detector for hydrogen in the steel material according to the present invention has a hydrogen buffer film and a hydrogen detection substance, and the hydrogen buffer film has a thickness of 2 nm to 150 nm and contacts the surface of the steel material to be measured. The hydrogen detection substance is provided between the steel material and the hydrogen detection substance, and the hydrogen detection substance has a thickness of 30 nm or more and 70 nm or less, tungsten oxide, titanium oxide, vanadium oxide, molybdenum oxide, It is one selected from the group consisting of nickel oxide, chromium oxide, iridium oxide, and rhodium oxide, and the visible ultraviolet reflection spectrum of the hydrogen detection substance changes depending on the concentration of hydrogen contained in the steel material. It is comprised so that it may carry out.

本発明に係る鉄鋼材料中の水素の検出器は、前記鉄鋼材料中に含まれる水素が前記水素検出物質と混合することで、前記水素検出物質の可視紫外反射スペクトルが変化することが好ましい。
Detector of the hydrogen in the steel material according to the present invention, the by hydrogen contained in the steel material is mixed with the hydrogen detection substance, it is not preferable that the visible ultraviolet reflection spectrum of the hydrogen detection substance changes .

本発明に係る鉄鋼材料中の水素の検出器は、前記水素バッファー膜の室温における水素拡散係数が 1.0×10-9 m2・s-1以下であることが好ましい。また、前記水素バッファー膜がパラジウム、ニッケルからなる群より選ばれるいずれかであることが好ましい。本発明に係る鉄鋼材料中の水素の検出器は、特に、前記水素検出物質がタングステン酸化物、前記水素バッファー膜がパラジウムであることが好ましい。
In the detector for hydrogen in the steel material according to the present invention, the hydrogen diffusion coefficient of the hydrogen buffer film at room temperature is preferably 1.0 × 10 −9 m 2 · s −1 or less. The hydrogen buffer film is preferably any one selected from the group consisting of palladium and nickel. In the detector for hydrogen in the steel material according to the present invention, it is particularly preferable that the hydrogen detection substance is tungsten oxide and the hydrogen buffer film is palladium.

本発明は、鉄鋼材料中に存在する水素あるいは外部から侵入した水素の濃度や存在箇所の経時変化を、目視観察や画像、動画撮影を通して計測するための、鉄鋼材料中の水素の検出器を提供することができる。本発明に係る鉄鋼材料中の水素の検出器は、鉄鋼材料に接触させることで、鉄鋼材料中の水素濃度に応じて可視紫外反射スペクトルが変化するため、目視観察や光学顕微鏡観察、ビデオ撮影等により、鉄鋼材料中の水素濃度分布を連続的に取得することができる。
The present invention provides a detector for hydrogen in steel materials for measuring the time-dependent changes in the concentration and location of hydrogen present in steel materials or from the outside through visual observation, images, and video recording. can do. Detector of the hydrogen in the steel material according to the present invention, is brought into contact with the steel material, in order to change the visible ultraviolet reflection spectrum depending on the concentration of hydrogen in the steel material, visual observation and optical microscopic observation, video recording, etc. Thus, the hydrogen concentration distribution in the steel material can be obtained continuously.

本発明の実施の形態の鉄鋼材料中の水素の検出器を使用し、電気化学的水素発生反応により水素を純鉄へ侵入させた時の、純鉄に含まれる水素を検出する試験の装置の(a)模式正面図、(b)作用電極面の模式平面図である。A test apparatus for detecting hydrogen contained in pure iron when hydrogen is introduced into pure iron by an electrochemical hydrogen generation reaction using the hydrogen detector in the steel material according to the embodiment of the present invention. (A) A schematic front view, (b) A schematic plan view of a working electrode surface. 本発明の実施の形態の鉄鋼材料中の水素の検出器を使用して水素検出試験を行ったときの、水素を導入する前と、水素を3時間および6時間導入した後の、水素検出物質であるタングステン酸化物表面の画像である。Hydrogen detection substance before introducing hydrogen and after introducing hydrogen for 3 hours and 6 hours when the hydrogen detection test is performed using the detector for hydrogen in the steel material according to the embodiment of the present invention It is an image of the tungsten oxide surface which is. 図2中の点Aにおける、RGBカラーモードのR値(赤色)の経時変化を示すグラフである。It is a graph which shows the time-dependent change of R value (red) of RGB color mode in the point A in FIG.

以下に、本発明を実施するための形態について述べる。
本発明の実施の形態の鉄鋼材料中の水素の検出器は、水素バッファー膜と水素検出物質とを有し、水素バッファー膜を鉄鋼材料表面に接触させることで、鉄鋼材料中に含まれる水素が濃度勾配に応じて拡散し、水素検出物質と混合する。そのとき、鉄鋼材料中に含まれる水素の濃度に応じて、水素検出物質の可視紫外反射スペクトルが変化する。この水素検出物質の可視紫外反射スペクトルの変化を、目視観察や画像、動画撮影を通して計測し、鉄鋼材料中の水素濃度分布を連続的に取得する。
Hereinafter, embodiments for carrying out the present invention will be described.
Detectors hydrogen steel material of the embodiment of the present invention, and a hydrogen buffer film and the hydrogen detection substance, by contacting the hydrogen buffer layer on the steel material surface, hydrogen contained in the steel material It diffuses according to the concentration gradient and mixes with the hydrogen detection substance. At that time, the visible ultraviolet reflection spectrum of the hydrogen detection substance changes in accordance with the concentration of hydrogen contained in the steel material. Changes in the visible ultraviolet reflection spectrum of this hydrogen detection substance are measured through visual observation, images, and video shooting, and the hydrogen concentration distribution in the steel material is continuously acquired.

本明細書中で用いている可視紫外反射スペクトルという用語は、光源から発した可視光および紫外光をモノクロメータによって単色光に分光し、水素検出物質に照射した時の正反射スペクトルのみを示すわけではなく、広い意味での色調変化をも包含したものである。すなわち、ハロゲンランプ等の可視域の光源を水素検出物質に照射し、光学顕微鏡等で撮影された静止画あるいは動画や、拡散光源を水素検出物質に照射し、目視観察やカメラ、ビデオカメラ撮影等で得られる静止画あるいは動画も、本願の可視紫外反射スペクトルの定義に含むこととする。そのため、水素検出物質には、水素が混合した時に色調変化が変化し、肉眼やカメラ、光学顕微鏡を通してその変化が認識できる物質であることが要求される。   The term visible ultraviolet reflection spectrum used in this specification indicates only the regular reflection spectrum when a monochromator splits visible light and ultraviolet light emitted from a light source into a monochromatic light and irradiates a hydrogen detection material. Rather, it encompasses color tone changes in a broad sense. In other words, a hydrogen detection substance is irradiated with a visible light source such as a halogen lamp, a still image or a moving picture taken with an optical microscope or the like, a diffusion light source is irradiated with a hydrogen detection substance, visual observation, camera, video camera photography, etc. The still image or the moving image obtained in the above is also included in the definition of the visible ultraviolet reflection spectrum of the present application. Therefore, the hydrogen detection material is required to be a material that changes in color tone when hydrogen is mixed and that can be recognized through the naked eye, a camera, or an optical microscope.

この要求を満たす水素検出物質として、タングステン酸化物、チタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物が挙げられる。中でも、タングステン酸化物(WO3)は、水素ガスを含む大気環境において、触媒金属によって乖離した水素原子と接すると、タングステンブロンズ(HxWO3: x<1)と呼ばれる化合物が形成され、光学的特性が変化する(特許文献3参照)。タングステン酸化物は、水素ガスセンサとして高い応答性を発揮することから、特に高い検出感度が必要な場合には、水素検出物質として、タングステン酸化物(WO3)が望ましい。 Examples of hydrogen detection substances that satisfy this requirement include tungsten oxide, titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, and rhodium oxide. In particular, tungsten oxide (WO 3 ) forms a compound called tungsten bronze (H x WO 3 : x <1) when it comes into contact with hydrogen atoms separated by a catalytic metal in an atmospheric environment containing hydrogen gas. The characteristic changes (see Patent Document 3). Since tungsten oxide exhibits high responsiveness as a hydrogen gas sensor, tungsten oxide (WO 3 ) is desirable as a hydrogen detection material when particularly high detection sensitivity is required.

また、水素検出物質の厚さは、10nm以上500nm以下であることが望ましい。中でも、特に高い検出感度が必要な場合には、30nm以上70nm以下であることが好適である。これは、水素検出物質が厚すぎると、可視紫外反射スペクトルが変化するまでに長い時間を要し、水素検出物質が薄すぎると、可視紫外反射スペクトルの変化量が少なくなり検出感度が低下するためである。   The thickness of the hydrogen detection substance is preferably 10 nm or more and 500 nm or less. In particular, when particularly high detection sensitivity is required, the thickness is preferably 30 nm or more and 70 nm or less. This is because if the hydrogen detection material is too thick, it takes a long time for the visible ultraviolet reflection spectrum to change, and if the hydrogen detection material is too thin, the amount of change in the visible ultraviolet reflection spectrum decreases and the detection sensitivity decreases. It is.

さらに、水素検出物質の作製法としては、スパッタリング法、蒸着法、陽極酸化法、ゾルゲル法が挙げられる。中でも、マグネトロンスパッタリング法で作製した水素検出物質が好適である。特に高い検出感度が必要な場合には、金属性ターゲットを用いて酸素含有雰囲気でスパッタリングを行う、反応性スパッタリング法が望ましい。   Further, as a method for producing the hydrogen detection substance, a sputtering method, a vapor deposition method, an anodic oxidation method, and a sol-gel method can be given. Among these, a hydrogen detection material prepared by a magnetron sputtering method is preferable. When a particularly high detection sensitivity is required, a reactive sputtering method in which sputtering is performed in an oxygen-containing atmosphere using a metallic target is desirable.

水素検出物質中に水素が混合し、可視紫外反射スペクトルを変化させる過程において高い応答性を得るためには、水素検出物質に拡散する水素量をなるべく増加させることが望ましい。なお、本明細書中の「混合」とは、金属学での固溶、化学反応での反応を包含した広い意味での概念である。しかし、鉄鋼材料を例に取ると、材料中に存在できる水素量は質量分率でppm程度であり、水素検出物質に混合する水素量が少なく、高い応答性を得ることができない。そこで、測定対象の材料と水素検出物質との間に水素バッファーを設け、水素検出物質と混合する水素量を増加させる必要がある。   In order to obtain high responsiveness in the process of mixing the hydrogen detection material with hydrogen and changing the visible ultraviolet reflection spectrum, it is desirable to increase the amount of hydrogen diffusing into the hydrogen detection material as much as possible. In the present specification, “mixing” is a concept in a broad sense including solid solution in metallurgy and reaction in chemical reaction. However, when an iron and steel material is taken as an example, the amount of hydrogen that can be present in the material is about ppm by mass, and the amount of hydrogen mixed with the hydrogen detection substance is small, so that high responsiveness cannot be obtained. Therefore, it is necessary to provide a hydrogen buffer between the material to be measured and the hydrogen detection substance to increase the amount of hydrogen mixed with the hydrogen detection substance.

水素バッファーは、厚さ2nm以上150nm以下の膜状であることが望ましい。材料中に存在する、あるいは外部から侵入した水素の存在箇所の経時変化を計測するためには、組成や厚さが均一な形状が要求されるためである。中でも、特に高い検出感度が必要な場合には、2nm以上30nm以下の厚さであることが好適である。これは、水素バッファー膜が厚すぎると、水素が水素検出物質まで拡散するまでに長い時間を要し、応答性が低下するためである。   The hydrogen buffer is preferably in the form of a film having a thickness of 2 nm to 150 nm. This is because a shape having a uniform composition and thickness is required in order to measure a change with time of the location of hydrogen existing in the material or entering from the outside. In particular, when particularly high detection sensitivity is required, the thickness is preferably 2 nm or more and 30 nm or less. This is because if the hydrogen buffer film is too thick, it takes a long time for hydrogen to diffuse to the hydrogen detection substance, and the responsiveness decreases.

また、水素バッファー膜中では、水素の拡散速度を低減させ、水素の存在量を増加させる役割が要求されるため、水素バッファー膜として、室温における水素拡散係数が1.0×10-9 m2・s-1以下である物質が望ましい。この要求を満たす水素バッファー膜として、パラジウム、ニッケルが挙げられ、特定の物質に限定するものではない。中でも、パラジウムは、水素吸蔵材料としても用いられていることから好適である。 In addition, in the hydrogen buffer film, the role of reducing the hydrogen diffusion rate and increasing the amount of hydrogen present is required, so the hydrogen diffusion coefficient at room temperature is 1.0 × 10 -9 m 2 · s. Substances that are -1 or less are desirable. Examples of hydrogen buffer membranes that satisfy this requirement include palladium and nickel, and are not limited to specific substances. Among these, palladium is preferable because it is also used as a hydrogen storage material.

ところで、水素バッファー膜は、検出対象である材料と接触していることが必要要件である。その際の接触とは、物理的・幾何学的に接触しているという意味である。したがって、水素バッファー膜が自重で、材料の上にのっている状態も、本願の意図する実施の形態の一つである。しかし、高い感度で材料中の水素濃度を検出ためには、接触状態をより密接なものとすることが好適である。その際には、物理気相成長法や化学気相成長などの適用が望まれる。中でも、水素バッファー膜の成膜法としては、スパッタリング法、蒸着法、めっき法が好適な方法として挙げられる。めっき法の場合、成膜する材料表面の不均一性に依存して厚さ等の膜質が変化するため、スパッタリング法、蒸着法による成膜が好適である。   Incidentally, it is a necessary requirement that the hydrogen buffer film is in contact with the material to be detected. Contact at that time means physical contact and geometric contact. Therefore, the state in which the hydrogen buffer film is on its own weight and is on the material is also one embodiment intended by the present application. However, in order to detect the hydrogen concentration in the material with high sensitivity, it is preferable to make the contact state closer. In that case, application of physical vapor deposition or chemical vapor deposition is desired. Among these, as a method for forming a hydrogen buffer film, a sputtering method, a vapor deposition method, and a plating method are preferable methods. In the case of the plating method, film quality such as thickness changes depending on the non-uniformity of the surface of the material to be formed, so that film formation by sputtering or vapor deposition is preferable.

以下、実施例に基づき本発明を詳細に説明するが、本発明は実施例の記載に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to description of an Example.

水素を含有する材料として、純度が99.5%(質量分率)、厚さが1mmの純鉄を用いた。純鉄は、450℃で熱処理を行い、表面と裏面とを鏡面になるまで研磨した。純鉄中に水素はほとんど含まれていないが、片面に電気化学セルを設置し、定電位カソード分極を行い、表面で水素発生反応を生じさせることで、純鉄内に水素を導入した。電気化学セル内を0.1M硫酸で満たし、純鉄の電位は標準水素電極基準で-0.52Vとした。   As a material containing hydrogen, pure iron having a purity of 99.5% (mass fraction) and a thickness of 1 mm was used. Pure iron was heat-treated at 450 ° C., and the front and back surfaces were polished to a mirror surface. Although hydrogen was hardly contained in pure iron, hydrogen was introduced into pure iron by installing an electrochemical cell on one side, performing constant potential cathode polarization, and causing a hydrogen generation reaction on the surface. The electrochemical cell was filled with 0.1 M sulfuric acid, and the potential of pure iron was -0.52 V with respect to the standard hydrogen electrode.

純鉄のもう一方の面に、水素バッファー膜となるパラジウムもしくはニッケルを、厚さが10nm、100nm、500nmとなるように蒸着した。比較のため、水素バッファー膜を成膜しない試料も作製した。その後、マグネトロンスパッタ装置を用いた反応性スパッタリングにて、水素バッファー膜の上に水素検出物質を形成した。水素検出物質は、タングステン酸化物、チタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物のいずれかとした。   On the other surface of the pure iron, palladium or nickel as a hydrogen buffer film was deposited so as to have thicknesses of 10 nm, 100 nm, and 500 nm. For comparison, a sample without forming a hydrogen buffer film was also produced. Thereafter, a hydrogen detection substance was formed on the hydrogen buffer film by reactive sputtering using a magnetron sputtering apparatus. The hydrogen detection substance was any one of tungsten oxide, titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, and rhodium oxide.

この水素検出試験における装置の模式図を、図1(a)に示す。電解液と接している純鉄の作用電極面から水素が侵入し、厚さ方向に内部の水素濃度が増加するため、電極面の反対側に相当する水素検出物質部分に水素が侵入し、可視紫外反射スペクトルが変化する。そのときの水素検出物質の色調変化を、ビデオカメラで撮影した。純鉄の作用電極面の模式図を、図1(b)に示す。図1(b)に示すように、純鉄の表面にマスキングを施し、半円部分が水素侵入エリアとなるように作用電極面を作製した。   A schematic diagram of the apparatus in this hydrogen detection test is shown in FIG. Hydrogen enters the working electrode surface of pure iron that is in contact with the electrolyte, and the hydrogen concentration inside increases in the thickness direction, so that hydrogen enters the hydrogen detection material part on the opposite side of the electrode surface and is visible. The ultraviolet reflection spectrum changes. The change in color tone of the hydrogen detection material at that time was photographed with a video camera. A schematic diagram of the working electrode surface of pure iron is shown in FIG. As shown in FIG. 1 (b), the surface of pure iron was masked, and the working electrode surface was prepared so that the semicircular portion became a hydrogen intrusion area.

作製した各検出器の構成を、表1にまとめて示す。また、各検出器により水素検出試験を行い、可視紫外反射スペクトルによる水素の検出が可能だったものを○、不可能だったものを×と評価し、その結果を表1に示す。   Table 1 summarizes the configuration of each of the fabricated detectors. In addition, hydrogen detection tests were carried out with each detector, and those that could detect hydrogen by the visible ultraviolet reflection spectrum were evaluated as ◯, and those that could not be detected as ×, and the results are shown in Table 1.

表1中の番号1は、水素検出物質にタングステン酸化物を用い、水素バッファー膜を成膜しなかった場合の検出器であり、この検出器では水素を捉えることができなかった。表1中の番号2から7までは、水素検出物質にタングステン酸化物を用い、水素バッファー膜の厚さを変化させたときの結果を示しており、水素バッファー膜に厚さ2nm以上150nm以下のパラジウムもしくはニッケルを用いることで、材料中の水素を検出できることを示している。表1中の番号2および8から11までは、水素バッファー膜を厚さ10nmのパラジウムとし、水素検出物質にタングステン酸化物を用いた時の、水素検出物質の厚さが水素の検出に与える影響を示しており、厚さ10nm以上500nm以下のタングステン酸化物を水素検出物質に用いることで、材料中の水素を検出できることを示している。   Number 1 in Table 1 is a detector when tungsten oxide was used as the hydrogen detection substance and no hydrogen buffer film was formed. This detector could not capture hydrogen. The numbers 2 to 7 in Table 1 show the results when the thickness of the hydrogen buffer film is changed using tungsten oxide as the hydrogen detection substance. The thickness of the hydrogen buffer film is 2 nm or more and 150 nm or less. It shows that hydrogen in the material can be detected by using palladium or nickel. Numbers 2 and 8 to 11 in Table 1 indicate the effect of hydrogen detection material thickness on hydrogen detection when the hydrogen buffer film is palladium with a thickness of 10 nm and tungsten oxide is used as the hydrogen detection material. It is shown that hydrogen in a material can be detected by using a tungsten oxide having a thickness of 10 nm to 500 nm as a hydrogen detection substance.

表1中の番号12から39までは、水素バッファー膜を厚さ10nmのパラジウムとし、水素検出物質にチタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物のいずれかを用いた時の結果を示しており、厚さ10nm以上500nm以下のチタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物のいずれかを用いることで、材料中の水素を検出できることを示している。   Numbers 12 to 39 in Table 1 indicate that the hydrogen buffer film is palladium with a thickness of 10 nm, and the hydrogen detection material is titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, The results when using any of the rhodium oxides are shown. Titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, rhodium oxidation with a thickness of 10 nm to 500 nm It is shown that hydrogen in the material can be detected by using any of the materials.

水素バッファー膜を厚さ10nmのパラジウムとし、水素検出物質に65nmのタングステン酸化物を用いて前述の水素検出試験を行った時(表1の番号2)の、水素を導入する前と、水素を3時間および6時間導入した後の、タングステン酸化物表面の写真を図2に示す。図2に示すように、水素を導入する前のタングステン酸化物表面は、全面が薄い青色であったが、定電位カソード分極を行うことで、半円状の作用電極面の反対側に相当するタングステン酸化物の色が、時間が経つにつれて徐々に濃い色へと変化していることが分かる。このことは、作用電極面から厚さ方向に水素濃度が増加し、タングステン酸化物に水素が侵入することで可視紫外反射スペクトルが変化することを示している。   The hydrogen buffer film is made of palladium with a thickness of 10 nm and the hydrogen detection test using the 65 nm tungsten oxide as the hydrogen detection substance (No. 2 in Table 1) before introducing hydrogen, A photograph of the tungsten oxide surface after 3 hours and 6 hours of introduction is shown in FIG. As shown in FIG. 2, the entire surface of the tungsten oxide before introducing hydrogen was light blue, but by performing constant potential cathode polarization, it corresponds to the opposite side of the semicircular working electrode surface. It can be seen that the color of the tungsten oxide gradually changes to a darker color over time. This indicates that the visible ultraviolet reflection spectrum changes as the hydrogen concentration increases in the thickness direction from the working electrode surface and hydrogen enters the tungsten oxide.

色調が変化した図2中の任意の点Aにおける、RGBカラーモードのR値(赤色)の時間変化を、図3に示す。図3に示すように、点AにおけるR値は、水素を純鉄に導入し始めると同時に減少し始め、6時間で30程度変化したことが分かる。図3より、タングステン酸化物とパラジウムとで構成される水素検出器の純鉄中の水素への応答性が高く、連続的な水素分布の測定が可能であることを示している。   FIG. 3 shows the time change of the R value (red) in the RGB color mode at an arbitrary point A in FIG. 2 where the color tone has changed. As shown in FIG. 3, it can be seen that the R value at point A started to decrease at the same time as hydrogen began to be introduced into pure iron and changed about 30 in 6 hours. FIG. 3 shows that the hydrogen detector composed of tungsten oxide and palladium has high responsiveness to hydrogen in pure iron, and continuous hydrogen distribution measurement is possible.

このように、水素を純鉄内に導入することでタングステン酸化物の色調が変化しており、タングステン酸化物とパラジウムとで構成される水素検出器が、単色光による分光分析のみならず、光学顕微鏡等で撮影された静止画あるいは動画や、拡散光源を水素検出物質に照射した際の目視観察やカメラ、ビデオカメラ撮影等で得られる静止画あるいは動画によって、水素の検出を評価できることを示している。   In this way, the color tone of tungsten oxide is changed by introducing hydrogen into pure iron, and the hydrogen detector composed of tungsten oxide and palladium can be used not only for spectroscopic analysis by monochromatic light but also for optical. Shows that hydrogen detection can be evaluated by still images or movies taken with a microscope, etc., or still images or movies obtained by visual observation when a diffused light source is irradiated with a hydrogen detection substance, or by a camera or video camera. Yes.

本発明に係る鉄鋼材料中の水素の検出器は、水素脆化が懸念される鉄鋼材料の、大気腐食環境および高圧水素ガス環境における水素侵入モニタリング用の水素検出器として利用可能である。
The hydrogen detector in the steel material according to the present invention can be used as a hydrogen detector for hydrogen intrusion monitoring in an atmospheric corrosion environment and a high-pressure hydrogen gas environment of a steel material in which hydrogen embrittlement is a concern.

Claims (5)

水素バッファー膜と水素検出物質とを有し、
前記水素バッファー膜は、厚さが2nm以上150nm以下であり、測定対象の鉄鋼材料表面に接触するよう、前記鉄鋼材料と前記水素検出物質との間に設けられ、
前記水素検出物質は、厚さが30nm以上70nm以下であり、タングステン酸化物、チタン酸化物、バナジウム酸化物、モリブデン酸化物、ニッケル酸化物、クロム酸化物、イリジウム酸化物、ロジウム酸化物からなる群より選ばれるいずれかであり、
前記鉄鋼材料中に含まれる水素の濃度に応じて前記水素検出物質の可視紫外反射スペクトルが変化するよう構成されていることを
特徴とする鉄鋼材料中の水素の検出器。
A hydrogen buffer membrane and a hydrogen detection substance,
The hydrogen buffer film has a thickness of 2 nm or more and 150 nm or less, and is provided between the steel material and the hydrogen detection substance so as to contact the surface of the steel material to be measured.
The hydrogen detection material has a thickness of 30 nm to 70 nm and is made of tungsten oxide, titanium oxide, vanadium oxide, molybdenum oxide, nickel oxide, chromium oxide, iridium oxide, rhodium oxide. Any one selected from
Detector of the hydrogen in the steel material, characterized in that the ultraviolet-visible reflection spectrum of the hydrogen detection material according to the concentration of hydrogen contained in the steel material is configured to change.
前記鉄鋼材料中に含まれる水素が前記水素検出物質と混合することで、前記水素検出物質の可視紫外反射スペクトルが変化することを特徴とする請求項1記載の鉄鋼材料中の水素の検出器。 The detector for hydrogen in a steel material according to claim 1, wherein a visible ultraviolet reflection spectrum of the hydrogen detection substance is changed by mixing hydrogen contained in the steel material with the hydrogen detection substance. 前記水素バッファー膜の室温における水素拡散係数が 1.0×10-9 m2・s-1以下であることを特徴とする請求項1または2記載の鉄鋼材料中の水素の検出器。 3. The detector for hydrogen in a steel material according to claim 1, wherein the hydrogen diffusion coefficient of the hydrogen buffer film at room temperature is 1.0 × 10 −9 m 2 · s −1 or less. 前記水素バッファー膜がパラジウム、ニッケルからなる群より選ばれるいずれかであることを特徴とする請求項1乃至のいずれか1項に記載の鉄鋼材料中の水素の検出器。 The detector for hydrogen in a steel material according to any one of claims 1 to 3 , wherein the hydrogen buffer film is one selected from the group consisting of palladium and nickel. 前記水素検出物質がタングステン酸化物、前記水素バッファー膜がパラジウムであることを特徴とする請求項1乃至4のいずれか1項に記載の鉄鋼材料中の水素の検出器。
The detector for hydrogen in a steel material according to any one of claims 1 to 4, wherein the hydrogen detection substance is tungsten oxide, and the hydrogen buffer film is palladium.
JP2016143319A 2016-07-21 2016-07-21 Detector of hydrogen in steel materials Active JP6229986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143319A JP6229986B1 (en) 2016-07-21 2016-07-21 Detector of hydrogen in steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143319A JP6229986B1 (en) 2016-07-21 2016-07-21 Detector of hydrogen in steel materials

Publications (2)

Publication Number Publication Date
JP6229986B1 true JP6229986B1 (en) 2017-11-15
JP2018013424A JP2018013424A (en) 2018-01-25

Family

ID=60321175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143319A Active JP6229986B1 (en) 2016-07-21 2016-07-21 Detector of hydrogen in steel materials

Country Status (1)

Country Link
JP (1) JP6229986B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240023164A (en) 2021-08-02 2024-02-20 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Membrane sensor and hydrogen detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201143A (en) * 1985-03-04 1986-09-05 Agency Of Ind Science & Technol Gas sensor
US20040037740A1 (en) * 2000-05-05 2004-02-26 Ping Liu Pd/v2o5 device for colorimetric h2 detection
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element
JP2007278744A (en) * 2006-04-04 2007-10-25 Japan Atomic Energy Agency Hydrogen gas detection material and coating method therefor
JP2010210243A (en) * 2009-03-06 2010-09-24 Atsumi Tec:Kk Hydrogen sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201143A (en) * 1985-03-04 1986-09-05 Agency Of Ind Science & Technol Gas sensor
US20040037740A1 (en) * 2000-05-05 2004-02-26 Ping Liu Pd/v2o5 device for colorimetric h2 detection
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element
JP2007278744A (en) * 2006-04-04 2007-10-25 Japan Atomic Energy Agency Hydrogen gas detection material and coating method therefor
JP2010210243A (en) * 2009-03-06 2010-09-24 Atsumi Tec:Kk Hydrogen sensor

Also Published As

Publication number Publication date
JP2018013424A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
Ikeuba et al. SVET and SIET study of galvanic corrosion of Al/MgZn2 in aqueous solutions at different pH
Ma et al. Shadow electrochemiluminescence microscopy of single mitochondria
Honesty et al. Shell‐isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu (100), Cu (111), and Cu (poly)
Ogle et al. The cathodic dissolution of Al, Al2Cu, and Al alloys
Wu et al. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique
Kreitmeier et al. Local degradation at membrane defects in polymer electrolyte fuel cells
Comotti et al. The pit transition potential in the repassivation of aluminium alloys
Yuan et al. A critical review of fundamentals and applications of electrochemical development and imaging of latent fingerprints
Merola et al. In situ nano-to microscopic imaging and growth mechanism of electrochemical dissolution (eg, corrosion) of a confined metal surface
Abd Rabbo et al. A study of the interaction of oxide-coated aluminium with chloride solution using secondary ion mass spectrometry
Kim et al. Surface Enhanced Raman Scattering on Non‐SERS Active Substrates and In Situ Electrochemical Study based on a Single Gold Microshell
da Silva et al. SPR biosensors based on gold and silver nanoparticle multilayer films
CN107937957B (en) Preparation method of surface-enhanced Raman substrate and application of substrate in detection of animal viruses
JP6229986B1 (en) Detector of hydrogen in steel materials
Patty et al. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide
Hanasaki et al. Threshold-free evaluation of near-surface diffusion and adsorption-dominated motion from single-molecule tracking data of single-stranded DNA through total internal reflection fluorescence microscopy
Ter-Ovanessian et al. Passivity breakdown of Ni-Cr alloys: From anions interactions to stable pits growth
Wang et al. Effects of chloride ions on passive oxide films formed on Cr-Fe-Co-Ni (-Mo) multi-principal element alloy surfaces
Ahmadi et al. Fabrication of counter electrode of electrochemical CO gas sensor by electrophoretic deposition of MWCNT
Hoshi et al. Communication—The pH Detection of Magnesium Dissolution during Anodic Polarization with Channel Flow Double Electrode
Rostami et al. Development of an enhanced porosity AgAgCl reference electrode with improved stability
Wickman et al. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy
JPH01129156A (en) Electrochemical sensor for hydrogen
Vasilyeva et al. Ti/TiO2 indicator electrodes formed by plasma electrolytic oxidation for potentiometric analysis
Zhou et al. In situ pH monitoring in turbid coastal waters based on self-electrodeposition Ir/IrO2 electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6229986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250