JP6229881B2 - Manufacturing method of fiber reinforced composite molded product - Google Patents

Manufacturing method of fiber reinforced composite molded product Download PDF

Info

Publication number
JP6229881B2
JP6229881B2 JP2013236010A JP2013236010A JP6229881B2 JP 6229881 B2 JP6229881 B2 JP 6229881B2 JP 2013236010 A JP2013236010 A JP 2013236010A JP 2013236010 A JP2013236010 A JP 2013236010A JP 6229881 B2 JP6229881 B2 JP 6229881B2
Authority
JP
Japan
Prior art keywords
reinforced composite
fiber
thermoplastic resin
composite material
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013236010A
Other languages
Japanese (ja)
Other versions
JP2015093479A (en
Inventor
国島 武史
武史 国島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2013236010A priority Critical patent/JP6229881B2/en
Publication of JP2015093479A publication Critical patent/JP2015093479A/en
Application granted granted Critical
Publication of JP6229881B2 publication Critical patent/JP6229881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、繊維強化複合成形品の製造方法に関するものである。 The present invention relates to a method for producing a fiber-reinforced composite molded article .

例えばラックハウジング等の自動車部品や工作機械部品等の、各種機械部品の軽量化、高剛性化、高機能化等を目指して、これまで金属製であったこれらの部品を繊維強化複合材からなる繊維強化複合成形品に置き換えることが検討されている。
例えば繊維強化複合材のうち炭素繊維を用いた炭素繊維強化複合材としては近時、高温でのプレス加工や同種または異種の熱可塑性樹脂との溶着等が可能で、従来の熱硬化性樹脂を使用したいわゆるCFRP材(Carbon Fiber Reinforced Plastics)に比べて加工性や経済性に優れた、熱可塑性樹脂を用いたCFRTP材(Carbon Fiber Reinforced Thermo Plastics)が普及しつつある。CFRTP材は、炭素繊維のシート(織布、不織布、ストランド等)に、加熱して溶融させた熱可塑性樹脂を含浸させる等して作製される。
For example, these parts, which were previously made of metal, are made of fiber-reinforced composite materials, aiming to reduce the weight, rigidity, and functionality of various machine parts such as automotive parts such as rack housings and machine tool parts. Replacement with a fiber-reinforced composite molded article is under consideration.
For example, as a carbon fiber reinforced composite material using carbon fiber among fiber reinforced composite materials, press working at a high temperature or welding with the same or different thermoplastic resin is possible recently. CFRTP material (Carbon Fiber Reinforced Thermo Plastics) using a thermoplastic resin, which is superior in workability and economy compared to the so-called CFRP material (Carbon Fiber Reinforced Plastics) used, is becoming widespread. The CFRTP material is produced by impregnating a carbon fiber sheet (woven fabric, non-woven fabric, strand, etc.) with a thermoplastic resin heated and melted.

CFRTP材等の熱可塑性樹脂を用いた繊維強化複合材の利点の一つである、熱可塑性樹脂との溶着が可能である点を生かして、例えば特許文献1では、単層または複層の平板状の繊維強化複合材を金型内に仕込み、熱可塑性樹脂を射出成形して、繊維強化複合材と熱可塑性樹脂とを結合一体化させたり、複層の繊維強化複合材を熱可塑性樹脂を介して結合一体化させたりすることが記載されている。   Taking advantage of the fact that welding with a thermoplastic resin, which is one of the advantages of a fiber-reinforced composite material using a thermoplastic resin such as a CFRTP material, is possible, for example, Patent Document 1 discloses a single-layer or multi-layer flat plate. A fiber-reinforced composite material is placed in a mold and a thermoplastic resin is injection-molded to combine and integrate the fiber-reinforced composite material and the thermoplastic resin. It is described that they are coupled and integrated.

また特許文献2では、平板状の繊維強化複合材の片面を凹凸状に形成し、その面側に熱可塑性樹脂を射出成形することで、両者の一体化の強度を高めることが記載されている。   Further, Patent Document 2 describes that one side of a flat fiber reinforced composite material is formed in an uneven shape, and a thermoplastic resin is injection-molded on the side of the surface to increase the strength of the integration between the two. .

特開平6−15687号公報JP-A-6-15687 特開2010−274508号公報JP 2010-274508 A

さまざまな立体形状を有する部品を繊維強化複合成形品に置き換えるためには、そのもとになる繊維強化複合材を、例えば曲面、円弧状、角型、コの字型等の、曲げ部分を含む立体形状に成形する必要がある。
そのためには、例えば製造する繊維強化複合成形品の厚み分の複数の繊維強化複合材を重ね合わせ、熱プレスを用いて加圧下で熱可塑性樹脂の融点付近まで加熱して、各繊維強化複合材中の熱可塑性樹脂を溶融一体化させることで、重ね合わせた繊維強化複合材を熱可塑性樹脂によって一体化させて平板状のプリプレグを作製したのち、当該プリプレグを再び融点付近まで加熱して熱可塑性樹脂を軟化ないし溶融させた状態で、金型を用いて上記繊維強化複合成形品の立体形状にプレス成形すること等が考えられる。
In order to replace a part having various three-dimensional shapes with a fiber reinforced composite molded product, the fiber reinforced composite material used as the base includes a bent portion such as a curved surface, an arc shape, a square shape, a U shape, etc. It is necessary to form into a three-dimensional shape.
For that purpose, for example, a plurality of fiber reinforced composite materials corresponding to the thickness of the fiber reinforced composite molded article to be manufactured are stacked, and heated to near the melting point of the thermoplastic resin under pressure using a hot press, and each fiber reinforced composite material After the thermoplastic resin inside is melted and integrated, the laminated fiber reinforced composite material is integrated with the thermoplastic resin to produce a flat plate-shaped prepreg, and then the prepreg is heated again to the vicinity of the melting point for thermoplasticity. It is conceivable to press-mold the resin-reinforced composite molded article into a three-dimensional shape using a mold while the resin is softened or melted.

またプリプレグは、特許文献1、2に記載の射出成形法を利用して作製してもよい。
しかしかかる方法では、特にプレス成形の際に、一体化させた繊維強化複合材が層間ではく離しやすく、はく離すると繊維強化複合成形品の強度や耐衝撃性、ヒートショック性等が低下するといった問題を生じる。
はく離の主な原因は、平板状の繊維強化複合材の、面方向の伸縮量が小さいことと、プレス成形時の加熱によって熱可塑性樹脂が軟化ないし溶融して層間の結合力が低下することにある。
Further, the prepreg may be produced using the injection molding method described in Patent Documents 1 and 2.
However, with such a method, particularly during press molding, the integrated fiber reinforced composite material is easy to peel off between the layers, and if peeled off, the strength, impact resistance, heat shock resistance, etc. of the fiber reinforced composite molded product deteriorate. Produce.
The main cause of peeling is that the flat fiber-reinforced composite material has a small amount of expansion and contraction in the surface direction, and the thermoplastic resin softens or melts due to heating during press molding, resulting in a decrease in bonding strength between layers. is there.

すなわちプリプレグをプレス成形によって曲げた際に、曲げ方向の外側の繊維強化複合材には面方向に伸長する方向の応力が加わり、内側の繊維強化複合材には逆に面方向に圧縮する方向の応力が加わる。
ところが個々の繊維強化複合材は、これらの応力に応じて面方向に十分に伸縮できないため内部に応力を蓄積し、加熱によって熱可塑性樹脂が軟化ないし溶融して層間の結合力が小さくなった際に、蓄積した応力によって変形を生じて層間ではく離しやすくなる。
That is, when the prepreg is bent by press molding, the outer fiber reinforced composite material in the bending direction is subjected to stress in the direction of extending in the plane direction, and the inner fiber reinforced composite material is compressed in the surface direction. Stress is applied.
However, since individual fiber reinforced composite materials cannot sufficiently expand and contract in the surface direction according to these stresses, stress accumulates inside, and when the thermoplastic resin softens or melts due to heating, the bond strength between the layers decreases In addition, deformation is caused by the accumulated stress, and the layers are easily separated.

特に繊維強化複合材をごく小さい半径で曲げた部分などの、プレス成形時に応力が蓄積されやすい部分において層間でのはく離を生じやすい。
また、特に射出成型法を利用して熱可塑性樹脂を追加する場合は、相対的に強化繊維の割合が少なくなるため、繊維強化複合成形品の強度が低下するという問題もある。
本発明の目的は、少なくとも2層の繊維強化複合材層からなり、曲げ部分を含む立体形状を有する上、層間でのはく離とそれに伴う種々の問題を生じるおそれのない繊維強化複合成形品の製造方法を提供することにある。
In particular, separation between layers tends to occur in a portion where stress is easily accumulated during press molding, such as a portion where a fiber reinforced composite material is bent with a very small radius.
In particular, when a thermoplastic resin is added using an injection molding method, there is a problem that the strength of the fiber-reinforced composite molded product is lowered because the proportion of reinforcing fibers is relatively reduced.
An object of the present invention is to produce a fiber reinforced composite molded article comprising at least two fiber reinforced composite layers, having a three-dimensional shape including a bent portion, and having no risk of peeling between layers and various problems associated therewith. It is to provide a method.

上記課題を解決するため、本発明は、繊維シートに熱可塑性樹脂を含浸させてなり、曲げ部分を含む立体形状を有する少なくとも2層が積層され、熱可塑性樹脂を介して一体化された繊維強化複合材層(2)、および積層された少なくとも2層の繊維強化複合材層を貫通して層間の結合を補強するフィラー(3)を含む繊維強化複合成形品(1)の製造方法であって、
前記繊維強化複合材層のもとになる少なくとも2層の繊維強化複合材を積層し、一体化させて形成した平板状のプリプレグを、曲げ部分を含む立体形状にプレス成形する工程、および
プレス成形の前後いずれかの段階のプリプレグに、フィラーを含む、繊維シートに含浸させた熱可塑性樹脂よりもメルトフローレートが大きい熱可塑性樹脂を射出成形する工程
を含む繊維強化複合成形品の製造方法である(請求項)。
In order to solve the above-mentioned problems, the present invention is a fiber reinforcement in which a fiber sheet is impregnated with a thermoplastic resin, and at least two layers having a three-dimensional shape including a bent portion are laminated and integrated through a thermoplastic resin. A method for producing a fiber reinforced composite molded article (1) comprising a composite material layer (2) and a filler (3) that penetrates at least two laminated fiber reinforced composite material layers and reinforces bonding between the layers. ,
Process wherein a fiber-reinforced composite material layer at least 2-layered fiber reinforced composite material comprising the original stacked and press-forming a flat prepreg which is formed by integrating, in the three-dimensional shape including a bent portion, and the press molding Is a method for producing a fiber-reinforced composite molded article comprising a step of injection molding a thermoplastic resin having a higher melt flow rate than a thermoplastic resin impregnated in a fiber sheet, including a filler in a prepreg at any stage before and after (Claim 1 ).

レス成形の工程では、少なくとも2つのプリプレグを結合させることもできる(請求項)。
さらにプレス成形後に射出成形する場合には、当該射出成形の工程で、熱可塑性樹脂からなる構造部分(8)〜(10)(12)を一体に成形してもよい(請求項)。
In the process of up press forming, it is also possible to combine at least two prepregs (claim 2).
Further in the case of injection molding after press molding is a process of the injection molding, structural part made of a thermoplastic resin (8) to (10) (12) may be molded integrally (claim 3).

なおこの項において、括弧内の数字等は、後述する実施形態における対応構成要素の参照符号を表すものであるが、これらの参照符号により特許請求の範囲を限定する趣旨ではない。   In this section, numbers in parentheses represent reference numerals of corresponding components in the embodiments described later, but the scope of the claims is not limited by these reference numerals.

請求項1記載の発明によれば、積層された少なくとも2層の繊維強化複合材層が熱可塑性樹脂によって一体化されているとともに、当該少なくとも2層の結合が、両層を貫通させたフィラーによって補強されているため、層間ではく離が生じるのを防止して、はく離による強度や耐衝撃性、ヒートショック性等の低下のない繊維強化複合成形品を製造できる。 According to the first aspect of the present invention, at least two laminated fiber reinforced composite material layers are integrated by the thermoplastic resin, and the bonding of the at least two layers is made by the filler penetrating both layers. Since it is reinforced, separation between layers can be prevented, and a fiber-reinforced composite molded product can be produced without deteriorating strength, impact resistance, heat shock resistance, etc. due to separation .

また、プレス成形の工程と射出成形の工程の2つの工程を経ることにより、繊維強化複合材層のもとになる少なくとも2層の繊維強化複合材を、それぞれの繊維強化複合材中に含まれる熱可塑性樹脂に加えて、射出成形によって繊維強化複合材間、および繊維強化複合材中に浸透させた熱可塑性樹脂、ならびに積層された少なくとも2層の繊維強化複合材を貫通するフィラーによって強固に結合して、はく離等を生じることなしに、繊維強化複合成形製品を製造できる。 In addition, at least two layers of fiber reinforced composite material, which are the basis of the fiber reinforced composite material layer, are included in each fiber reinforced composite material by passing through two steps of a press molding process and an injection molding process. In addition to thermoplastic resin, it is bonded firmly by injection molding between the fiber reinforced composite material and between the fiber reinforced composite material and the filler that penetrates the laminated fiber reinforced composite material. to, without causing peeling or the like, can be produced fiber reinforced composite molded product.

また特にプレス成形後に射出成形する場合には、プレス成形の工程で射出成形用の金型を利用し、当該金型の型締め力を利用してプレス成形したのち、フィラーを含む熱可塑性樹脂を射出成形できるため、繊維強化複合成形品を、より少ない工程で簡単かつ効率よく製造できる。
さらに、熱可塑性樹脂とともにフィラーをも追加しているため、強化繊維の割合は低下するものの、フィラーの補強効果で、繊維強化複合成形品の強度が低下するのを防止することもできる。
In particular, when injection molding is performed after press molding, a mold for injection molding is used in the press molding process, press molding is performed using the clamping force of the mold, and a thermoplastic resin containing a filler is then used. because be injection molded, the fiber-reinforced composite molded article can be produced easily and efficiently with fewer steps.
Furthermore, since the filler is added together with the thermoplastic resin, the proportion of the reinforcing fiber is reduced, but the reinforcing effect of the filler can also prevent the strength of the fiber-reinforced composite molded product from being reduced.

しかも、繊維シートに含浸させた熱可塑性樹脂よりもメルトフローレートが大きい熱可塑性樹脂とフィラーとを射出成形することにより、当該熱可塑性樹脂とフィラーとを、繊維強化複合材の層間、および繊維強化複合材中により一層良好に浸透させて、層間でのはく離をさらに良好に防止できる。
請求項記載の発明によれば、1つのプリプレグをプレス成形するだけでは形成しえない、より複雑な立体形状を有する繊維強化複合成形品を製造できる。
Moreover, by injection molding a thermoplastic resin and a filler having a higher melt flow rate than the thermoplastic resin impregnated into the fiber sheet, the thermoplastic resin and the filler are made into the interlayer of the fiber-reinforced composite material and the fiber reinforcement. Penetration into the composite material can be further improved, and separation between layers can be further prevented.
According to the invention described in claim 2 , it is possible to manufacture a fiber-reinforced composite molded article having a more complicated three-dimensional shape, which cannot be formed only by press-molding one prepreg.

また射出成形の工程で、互いに熱溶着させたプリプレグ間にもフィラーを貫通させて結合を補強できる。
請求項記載の発明によれば、繊維強化複合材層と構造部分とが一体に形成された複雑な繊維強化複合成形品を、より少ない工程で簡単かつ効率よく製造できる。
また繊維強化複合材層と構造部分とを、熱可塑性樹脂によって一体化できる。
Also, in the injection molding process, the filler can be penetrated between the prepregs that are heat-welded to each other to reinforce the bond.
According to the invention described in claim 3, a complex fiber-reinforced composite molded product in which the fiber-reinforced composite material layer and the structural portion are integrally formed can be easily and efficiently manufactured with fewer steps.
Further, the fiber reinforced composite material layer and the structural portion can be integrated with a thermoplastic resin.

本発明の製造方法によって製造される繊維強化複合成形品の、実施の形態の一例の一部を拡大した断面図である。It is sectional drawing which expanded a part of example of embodiment of the fiber reinforced composite molded product manufactured by the manufacturing method of this invention. 図(a)(b)はそれぞれ、図1の繊維強化複合成形品を製造する工程の一例を説明する概略図である。FIGS. (A) and (b) are each a schematic diagram illustrating an example of a process for producing the fiber-reinforced composite molded article of FIG. 図(a)は、本発明の製造方法によって製造される繊維強化複合成形品の、実施の形態の他の例を示す断面図、図(b)は、図(a)の一部を拡大した断面図である。Fig. (A) is a cross-sectional view showing another example of the embodiment of the fiber-reinforced composite molded article produced by the production method of the present invention, and Fig. (B) is an enlarged view of part of Fig. (A). It is sectional drawing. 図3(a)(b)の繊維強化複合成形品の斜視図である。FIG. 4 is a perspective view of the fiber-reinforced composite molded product of FIGS. 3 (a) and 3 (b). 図(a)(b)はそれぞれ、図3(a)(b)の繊維強化複合成形品を製造する工程の一例を説明する断面図である。FIGS. (A) and (b) are cross-sectional views illustrating an example of a process for manufacturing the fiber-reinforced composite molded article of FIGS. 3 (a) and 3 (b).

図1は、本発明の製造方法によって製造される繊維強化複合成形品の、実施の形態の一例の一部を拡大した断面図である。また図2(a)(b)はそれぞれ、図1の繊維強化複合成形品を製造する工程の一例を説明する概略図である。
図1を参照して、この例の繊維強化複合成形品1は、繊維シートに熱可塑性樹脂を含浸させてなり、湾曲形状を有する複数層が積層され、熱可塑性樹脂を介して一体化された繊維強化複合材層2からなる。
FIG. 1 is an enlarged cross-sectional view of a part of an example of an embodiment of a fiber-reinforced composite molded product manufactured by the manufacturing method of the present invention. 2 (a) and 2 (b) are schematic views for explaining an example of a process for producing the fiber-reinforced composite molded product of FIG.
Referring to FIG. 1, a fiber reinforced composite molded article 1 of this example is formed by impregnating a fiber sheet with a thermoplastic resin, and a plurality of layers having a curved shape are laminated and integrated through a thermoplastic resin. It consists of a fiber reinforced composite material layer 2.

また積層された複数層の繊維強化複合材層2は、そのうち少なくとも2層の繊維強化複合材層2をランダムに貫通させたフィラー3によって層間の結合が補強されて、当該層間でのはく離や、それによる強度や耐衝撃性、ヒートショック性等の低下が防止されている。
図1の例の繊維強化複合成形品1は、例えば図2(a)を参照して、繊維強化複合材層2のもとになる複数層の繊維強化複合材を積層し、一体化させて形成した平板状のプリプレグ4を、まず所定の立体形状にプレス成形したのち、白矢印で示すようにフィラー3を含む熱可塑性樹脂を射出成形することで製造できる。
In addition, the laminated fiber reinforced composite material layer 2 of the laminated layers is reinforced by the filler 3 that randomly penetrates at least two of the fiber reinforced composite material layers 2 among them, peeling between the layers, This prevents the strength, impact resistance, heat shock resistance, and the like from being lowered.
A fiber reinforced composite molded article 1 in the example of FIG. 1 is formed by laminating and integrating a plurality of layers of fiber reinforced composite materials as a basis of the fiber reinforced composite material layer 2 with reference to FIG. The formed flat prepreg 4 can be manufactured by first press-molding it into a predetermined three-dimensional shape and then injection-molding a thermoplastic resin containing the filler 3 as indicated by white arrows.

あるいは図2(b)を参照して、繊維強化複合材層2のもとになる複数層の繊維強化複合材を積層し、一体化させて形成した平板状のプリプレグ4に対し、まず白矢印で示すようにフィラー3を含む熱可塑性樹脂を射出成形したのち、所定の立体形状にプレス成形しても、図1の例の繊維強化複合成形品1を製造できる。
いずれの場合も、繊維強化複合材層2のもとになる複数層の繊維強化複合材を、それぞれの繊維強化複合材中に含まれる熱可塑性樹脂に加えて、射出成形によって繊維強化複合材間、および繊維強化複合材中に浸透させた熱可塑性樹脂、ならびに積層された少なくとも2層の繊維強化複合材を貫通するフィラー3によってより強固に結合させて、製造途中でのはく離等を生じることなく、図1の例の繊維強化複合成形品1を製造できる。
Alternatively, referring to FIG. 2 (b), a white arrow is first applied to a flat prepreg 4 formed by laminating and integrating a plurality of layers of fiber reinforced composite material that is the basis of the fiber reinforced composite material layer 2. As shown in Fig. 1, the fiber reinforced composite molded article 1 shown in Fig. 1 can be manufactured by injection molding a thermoplastic resin containing the filler 3 and then press molding it into a predetermined three-dimensional shape.
In any case, a plurality of layers of fiber reinforced composite material that is the basis of the fiber reinforced composite material layer 2 is added to the thermoplastic resin contained in each fiber reinforced composite material, and the fiber reinforced composite material is injected by injection molding. , And a thermoplastic resin permeated into the fiber reinforced composite material, and a filler 3 penetrating the laminated at least two layers of the fiber reinforced composite material, so that there is no separation during the production. The fiber reinforced composite molded article 1 of the example of FIG. 1 can be manufactured.

プレス成形の工程では、平板状のプリプレグ4を、例えばオーブンや赤外線ヒータを用いて熱可塑性樹脂の融点付近まで加熱して軟化ないし溶融させた状態で、金型を用いて所定の立体形状にプレス成形すればよい。
またプレス成形後に射出成形する場合は、プレス成形の工程で射出成形用の金型を使用し、当該金型の型締め力を利用してプリプレグ4をプレス成形したのち、フィラー3を含む熱可塑性樹脂を射出成形することで、繊維強化複合成形品1を、より少ない工程で簡単かつ効率よく製造できる。
In the press molding process, the flat prepreg 4 is heated to the vicinity of the melting point of the thermoplastic resin using, for example, an oven or an infrared heater and softened or melted, and then pressed into a predetermined three-dimensional shape using a mold. What is necessary is just to shape | mold.
When injection molding is performed after press molding, a mold for injection molding is used in the press molding process, the prepreg 4 is press-molded using the clamping force of the mold, and the thermoplastic containing the filler 3 is then used. By injection molding the resin, the fiber reinforced composite molded product 1 can be easily and efficiently manufactured with fewer steps.

繊維強化複合材層2のもとになる繊維シートとしては、例えば炭素繊維、ガラス繊維、アラミド繊維等の種々の繊維からなる織布、不織布、ストランド等が挙げられる。繊維シートの種類は、繊維強化複合成形品1の立体形状や構造等に応じて適宜変更できる。
また繊維シートに含浸させる熱可塑性樹脂としては、ポリアミド66、ポリフェニレンサルファイド(PPS)、熱可塑性ポリウレタン(TPU)、ポリエーテルエーテルケトン(PEEK)等の、一般的な熱可塑性樹脂が挙げられる。熱可塑性樹脂の種類は、繊維強化複合成形品1に求められる強度や耐熱性等に応じて適宜変更できる。
Examples of the fiber sheet on which the fiber reinforced composite material layer 2 is based include woven fabrics, nonwoven fabrics, strands, and the like made of various fibers such as carbon fibers, glass fibers, and aramid fibers. The type of the fiber sheet can be appropriately changed according to the three-dimensional shape and structure of the fiber reinforced composite molded article 1.
Examples of the thermoplastic resin impregnated into the fiber sheet include general thermoplastic resins such as polyamide 66, polyphenylene sulfide (PPS), thermoplastic polyurethane (TPU), and polyetheretherketone (PEEK). The kind of thermoplastic resin can be appropriately changed according to the strength, heat resistance, and the like required for the fiber-reinforced composite molded article 1.

射出成形する熱可塑性樹脂としては、繊維シートに含浸させる熱可塑性樹脂と良好な相溶性を有する同種または異種の熱可塑性樹脂が挙げられる。特に同種の熱可塑性樹脂が好ましい。
ただし、射出成形する熱可塑性樹脂としては、繊維シートに含浸させる熱可塑性樹脂よりもメルトフローレートが大きいものを選択して用いる必要がある
Examples of the thermoplastic resin to be injection-molded include the same type or different types of thermoplastic resins having good compatibility with the thermoplastic resin impregnated in the fiber sheet. The same kind of thermoplastic resin is particularly preferable.
However, as the thermoplastic resin to be injection molded, it is necessary to select and use a resin having a higher melt flow rate than the thermoplastic resin impregnated into the fiber sheet.

メルトフローレートが大きく流動性に優れた熱可塑性樹脂を射出成形することで、当該熱可塑性樹脂とフィラー3とを、繊維強化複合材の層間、および繊維強化複合材中に良好に浸透させて、層間でのはく離をさらに良好に防止できる。
かかる効果の点で、射出成形する熱可塑性樹脂としては、メルトフローレートが30g/10min以上、特に50g/10min以上であるものを用いるのが好ましい。メルトフローレートがこの範囲未満では、熱可塑性樹脂とフィラー3とを、繊維強化複合材の層間、および繊維強化複合材中に良好に浸透させて、層間でのはく離を防止する効果が得られないおそれがある。
By injection-molding a thermoplastic resin having a large melt flow rate and excellent fluidity, the thermoplastic resin and the filler 3 are satisfactorily permeated into the interlayer of the fiber reinforced composite material and the fiber reinforced composite material, Peeling between layers can be prevented even better.
In view of this effect, it is preferable to use a thermoplastic resin to be injection-molded having a melt flow rate of 30 g / 10 min or more, particularly 50 g / 10 min or more. If the melt flow rate is less than this range, the thermoplastic resin and the filler 3 can be satisfactorily permeated into the fiber-reinforced composite material and between the fiber-reinforced composite material, and the effect of preventing separation between layers cannot be obtained. There is a fear.

フィラー3としては、積層された少なくとも2層の繊維強化複合材層2を貫通して両層間の結合を補強しうる、繊維状または板状の種々のフィラーが挙げられる。
特に長繊維状の炭素繊維が好ましい。炭素繊維はそれ自体が高強度である上、長繊維とすることで2層以上の積層された繊維強化複合材層2を貫通できるため、結合の補強効果に優れている。
Examples of the filler 3 include various fillers in the form of fibers or plates that can penetrate at least two laminated fiber reinforced composite material layers 2 and reinforce the bonding between the two layers.
In particular, long-fiber carbon fibers are preferred. Since carbon fiber itself has high strength and can be penetrated through two or more laminated fiber-reinforced composite material layers 2 by making it into a long fiber, it has an excellent bonding reinforcing effect.

炭素繊維等の長繊維状の繊維の繊維長は、上記の効果を得るために、繊維強化複合材層2の厚み以上で、かつ2mm以下であるのが好ましい。繊維長が2mm以下であるのが好ましいのは、射出成形によって、繊維をできるだけスムースかつ均一に、繊維強化複合材層2中に分散させるためである。
平板状のプリプレグ4は、従来同様に、例えば繊維シートに熱可塑性樹脂を含浸させてなる繊維強化複合材を複数層、重ね合わせた状態で、熱プレスを用いて加圧下で熱可塑性樹脂の融点付近まで加熱して、各繊維強化複合材中の熱可塑性樹脂を溶融一体化させることで、重ね合わせた繊維強化複合材を熱可塑性樹脂によって一体化させて形成できる。
In order to obtain the above effect, the fiber length of the long fiber such as carbon fiber is preferably not less than the thickness of the fiber reinforced composite material layer 2 and not more than 2 mm. The fiber length is preferably 2 mm or less in order to disperse the fibers in the fiber-reinforced composite material layer 2 as smoothly and uniformly as possible by injection molding.
The plate-shaped prepreg 4 has a melting point of the thermoplastic resin under pressure using a hot press in a state where a plurality of fiber reinforced composite materials obtained by impregnating a fiber sheet with a thermoplastic resin, for example, are overlapped as in the past. By heating up to the vicinity and melt-integrating the thermoplastic resin in each fiber-reinforced composite material, the overlapped fiber-reinforced composite material can be integrated and formed with the thermoplastic resin.

図3(a)は、本発明の製造方法によって製造される繊維強化複合成形品の、実施の形態の他の例の断面図、図3(b)は、図3(a)の一部を拡大した断面図である。また図4は、図3(a)(b)の繊維強化複合成形品の斜視図である。
図3(a)(b)、および図4を参照して、この例の繊維強化複合成形品1は、円筒体5を備えている。また円筒体5は、その半周分の円弧状の断面形状を有し、かつ円弧の両端を、円筒体5の軸方向の全長に亘って径方向外方へ折曲させて平板状の接続部6とした2つの半筒体7を、当該接続部6の側面同士で結合させて形成されている。
FIG. 3 (a) is a cross-sectional view of another example of the embodiment of the fiber reinforced composite molded article manufactured by the manufacturing method of the present invention, and FIG. 3 (b) is a part of FIG. 3 (a). It is expanded sectional drawing. FIG. 4 is a perspective view of the fiber-reinforced composite molded product of FIGS. 3 (a) and 3 (b).
With reference to FIGS. 3A and 3B and FIG. 4, the fiber-reinforced composite molded article 1 of this example includes a cylindrical body 5. The cylindrical body 5 has an arc-shaped cross-sectional shape corresponding to a half circumference, and both ends of the circular arc are bent radially outward over the entire axial length of the cylindrical body 5 to form a flat plate-like connecting portion. The two half cylinders 7, which are 6, are formed by joining the side surfaces of the connection portion 6.

かかる接続部6を含む半筒体7の全体は、繊維シートに熱可塑性樹脂を含浸させてなる複数層が積層され、熱可塑性樹脂を介して一体化された繊維強化複合材層2からなる。
また積層された複数層の繊維強化複合材層2は、そのうち少なくとも2層の繊維強化複合材層2をランダムに貫通させたフィラー3によって層間の結合が補強されて、当該層間でのはく離や、それによる強度や耐衝撃性、ヒートショック性等の低下が防止されている。
The entire semi-cylindrical body 7 including the connection portion 6 includes a fiber reinforced composite material layer 2 in which a plurality of layers obtained by impregnating a fiber sheet with a thermoplastic resin are laminated and integrated through the thermoplastic resin.
In addition, the laminated fiber reinforced composite material layer 2 of the laminated layers is reinforced by the filler 3 that randomly penetrates at least two of the fiber reinforced composite material layers 2 among them, peeling between the layers, This prevents the strength, impact resistance, heat shock resistance, and the like from being lowered.

また接続部6の側面を構成し、接続部6同士を結合させるべく互いに積層された2層の繊維強化複合材層2も、熱可塑性樹脂を介して一体化されているとともに、かかる2層を含む繊維強化複合材層2をランダムに貫通させたフィラー3によって結合が補強されており、これによって半筒体7同士のはく離も防止されている。
結合された状態で円筒体5の径方向外方に突出する接続部6は、リブ8によって被覆されている。リブ8は、円筒体5の軸方向の全長に亘って設けられている。これにより、接続部6同士の結合をさらに補強して、はく離をより一層確実に防止できる。
Further, the two fiber reinforced composite material layers 2 constituting the side surface of the connecting portion 6 and laminated to bond the connecting portions 6 to each other are also integrated with each other through the thermoplastic resin. Bonds are reinforced by fillers 3 that are randomly penetrated through the fiber-reinforced composite material layer 2 that is included, thereby preventing the half cylinders 7 from being separated from each other.
The connecting portion 6 that protrudes radially outward of the cylindrical body 5 in the coupled state is covered with a rib 8. The rib 8 is provided over the entire axial length of the cylindrical body 5. Thereby, the coupling | bonding of the connection parts 6 is further reinforced and peeling can be prevented still more reliably.

円筒体5の外周の、2つのリブ8の周方向の中間位置には、当該円筒体5の軸方向の全長に亘って、リブ9がリブ8と平行に設けられている。また円筒体5の外周の、軸方向の両端とその中間位置には、リブ8、9と直交させて、円筒体5の全周に亘る円環状のリブ10が設けられている。
リブ8〜10は、いずれも構造部分として、円筒体5を形成する熱可塑性樹脂と一体の熱可塑性樹脂によって形成されている。
At an intermediate position in the circumferential direction of the two ribs 8 on the outer periphery of the cylindrical body 5, a rib 9 is provided in parallel with the rib 8 over the entire axial length of the cylindrical body 5. In addition, annular ribs 10 are provided over the entire circumference of the cylindrical body 5 so as to be orthogonal to the ribs 8 and 9 at both ends in the axial direction of the outer periphery of the cylindrical body 5 and at intermediate positions thereof.
Each of the ribs 8 to 10 is formed of a thermoplastic resin integral with the thermoplastic resin forming the cylindrical body 5 as a structural portion.

円筒体5の内周は、接続部6を径方向外方へ折曲させて生じた凹部11を含めて、当該凹部11を埋めるように、被覆12によって被覆されている。これにより円筒体5の内周を平滑化して、例えば他部材との摺動特性等を向上できる。
被覆12は、構造部分として、円筒体5を形成する熱可塑性樹脂と一体の熱可塑性樹脂によって形成されている。
The inner periphery of the cylindrical body 5 is covered with a coating 12 so as to fill the concave portion 11 including the concave portion 11 generated by bending the connecting portion 6 radially outward. Thereby, the inner periphery of the cylindrical body 5 can be smoothed, and for example, sliding characteristics with other members can be improved.
The coating 12 is formed of a thermoplastic resin integral with the thermoplastic resin forming the cylindrical body 5 as a structural portion.

かかる繊維強化複合成形品は、例えば自動車のラックハウジング等の、各種ハウジングとして使用することができる。
図5(a)(b)はそれぞれ、半筒体7のもとになる2つの平板状のプリプレグ4を、当該半筒体7の形状にプレス成形するとともに結合させ、さらにフィラーを含む熱可塑性樹脂を射出成形して円筒体5を形成して、図3(a)(b)の繊維強化複合成形品を製造する工程の一例を説明する断面図である。
Such a fiber-reinforced composite molded product can be used as various housings such as a rack housing of an automobile.
5 (a) and 5 (b), respectively, two flat prepregs 4 that form the base of the semi-cylindrical body 7 are press-molded and bonded to the shape of the semi-cylindrical body 7, and further a thermoplastic containing a filler. It is sectional drawing explaining an example of the process which forms the cylinder 5 by injection-molding resin, and manufactures the fiber reinforced composite molded product of Fig.3 (a) (b).

図5(a)を参照して、この例では、かかるプレス成形、及び射出成型の工程を実施するために、射出成型用の金型13を用いる。
金型13は、円筒体5の内径に対応する外径を有する円柱状の内型14と、2組の外型15とを備えている。
また外型15には、それぞれ型締めの際に互いに当接させる合わせ面16が設けられているとともに、当該合わせ面16から凹入させて、円筒体5の外径に対応する内径と、円筒体5の軸方向の全長に対応する長さを有する、半周分の円弧状の凹部17が形成されている。
Referring to FIG. 5 (a), in this example, an injection mold 13 is used to perform the press molding and injection molding processes.
The mold 13 includes a columnar inner mold 14 having an outer diameter corresponding to the inner diameter of the cylindrical body 5 and two sets of outer molds 15.
Further, the outer mold 15 is provided with a mating surface 16 to be brought into contact with each other at the time of clamping, and is recessed from the mating surface 16 so as to have an inner diameter corresponding to the outer diameter of the cylindrical body 5 and a cylinder. A semicircular arc-shaped concave portion 17 having a length corresponding to the entire axial length of the body 5 is formed.

また外型15には、凹部17と連通させて、リブ8〜10に対応する凹溝18〜20も形成されている。すなわち凹部17の、合わせ面16での開口部には、リブ8の半分の厚み分の深さを有し、かつ凹部17の全長に亘る凹溝18が形成されている。
また凹部17の最奥部には、リブ9に対応する、凹部17の全長に亘る凹溝19が形成されている。さらに凹部17の、円筒体5の軸方向の複数か所には、リブ10に対応する円弧状の凹溝20が形成されている。
The outer mold 15 is also formed with concave grooves 18 to 20 corresponding to the ribs 8 to 10 so as to communicate with the concave portion 17. That is, in the opening of the concave portion 17 at the mating surface 16, a concave groove 18 having a depth corresponding to half the thickness of the rib 8 and extending over the entire length of the concave portion 17 is formed.
In addition, a concave groove 19 corresponding to the rib 9 and extending over the entire length of the concave portion 17 is formed in the innermost portion of the concave portion 17. Further, arc-shaped concave grooves 20 corresponding to the ribs 10 are formed at a plurality of locations in the concave portion 17 in the axial direction of the cylindrical body 5.

さらに、図では右側の外型15には、図示しない射出成型機のノズルの先端と接続されて、金型13内に、フィラーを含む熱可塑性樹脂を注入するためのゲート21が設けられている。
かかる金型13を使用して、図3(a)(b)の繊維強化複合成形品を製造するには、まず半筒体7のもとになる2つの平板状のプリプレグ4を用意する。
Further, in the drawing, the right outer mold 15 is connected to the tip of a nozzle of an injection molding machine (not shown) and is provided with a gate 21 for injecting a thermoplastic resin containing a filler into the mold 13. .
In order to manufacture the fiber-reinforced composite molded article shown in FIGS. 3A and 3B using such a mold 13, first, two flat prepregs 4 that are the basis of the half cylinder 7 are prepared.

平板状のプリプレグ4は、従来同様に、例えば繊維シートに熱可塑性樹脂を含浸させてなる繊維強化複合材を複数層、重ね合わせた状態で、熱プレスを用いて加圧下で熱可塑性樹脂の融点付近まで加熱して、各繊維強化複合材中の熱可塑性樹脂を溶融一体化させることで、重ね合わせた繊維強化複合材を熱可塑性樹脂によって一体化させて形成できる。
次いで用意した2つの平板状のプリプレグ4を、例えばオーブンや赤外線ヒータを用いて熱可塑性樹脂の融点付近まで加熱して軟化ないし溶融させた状態で、それぞれ内型14と2組の外型15との間に挿入する。
The plate-shaped prepreg 4 has a melting point of the thermoplastic resin under pressure using a hot press in a state where a plurality of fiber reinforced composite materials obtained by impregnating a fiber sheet with a thermoplastic resin, for example, are overlapped as in the past. By heating up to the vicinity and melt-integrating the thermoplastic resin in each fiber-reinforced composite material, the overlapped fiber-reinforced composite material can be integrated and formed with the thermoplastic resin.
Next, the prepared two flat prepregs 4 are heated to the vicinity of the melting point of the thermoplastic resin using, for example, an oven or an infrared heater, and softened or melted. Insert between.

次いで図5(b)を参照して、2組の外型15を、間に内型14を挟んでそれぞれの合わせ面16同士で合わせて型締めすることにより、それぞれのプリプレグ4を半筒体7の形状にプレス成形するとともに、接続部6で互いに結合させる。
そして図中に白矢印で示すように金型13内に、ゲート21を通して、フィラー3を含む熱可塑性樹脂を注入する。
Next, referring to FIG. 5 (b), the two sets of outer molds 15 are clamped together with the mating surfaces 16 sandwiching the inner mold 14 therebetween, so that each prepreg 4 is a semi-cylindrical body. 7 and press-molded into the shape of 7 and joined to each other at the connecting portion 6.
Then, as indicated by white arrows in the figure, a thermoplastic resin containing the filler 3 is injected into the mold 13 through the gate 21.

そうすると、繊維強化複合材層2のもとになる複数層の繊維強化複合材を、それぞれの繊維強化複合材中に含まれる熱可塑性樹脂に加えて、射出成形によって繊維強化複合材間、および繊維強化複合材中に浸透させた熱可塑性樹脂、ならびに積層された少なくとも2層の繊維強化複合材を貫通するフィラー3によってより強固に結合させて、製造途中でのはく離等を生じることなしに、円筒体5のもとになる半筒体7を形成できる。   Then, in addition to the thermoplastic resin contained in each fiber reinforced composite material, a plurality of layers of fiber reinforced composite materials that are the basis of the fiber reinforced composite material layer 2 are injected between the fiber reinforced composite materials and fibers. The thermoplastic resin infiltrated into the reinforced composite material and the filler 3 penetrating the laminated at least two layers of fiber reinforced composite material are more firmly bonded to each other without causing separation during the production. The half cylinder 7 which becomes the basis of the body 5 can be formed.

またそれとともに、接続部6の側面を構成し、接続部6同士を結合させるべく積層された2層の繊維強化複合材を、熱可塑性樹脂を介して結合させるとともに、かかる2層を含む繊維強化複合材を貫通するフィラー3によって結合を補強して、半筒体7同士を、はく離等を生じることなしに一体化できる。
そのため、1つのプリプレグ4をプレス成形するだけでは形成しえない円筒体5を形成できる。
Along with that, the two-layer fiber reinforced composite material that forms the side surface of the connection portion 6 and is laminated to bond the connection portions 6 to each other is bonded through a thermoplastic resin, and the fiber reinforcement including the two layers is also provided. The bonding is reinforced by the filler 3 penetrating the composite material, so that the half cylinders 7 can be integrated without causing separation or the like.
Therefore, it is possible to form a cylindrical body 5 that cannot be formed only by pressing one prepreg 4.

また、例えば従来はプレス成形、インサート成形、溶着の3工程を要するとともに、それぞれ別の装置を必要としていた円筒体5の形成を、1つの金型13を用いて、上記のように一連の流れで形成でき、生産性を向上できる。
しかも、従来法では層間でのはく離が生じやすかった、接続部6の基部などでのはく離を、熱可塑性樹脂による結合と、フィラー3による結合の補強によって確実に防止できる。
In addition, for example, conventionally, three steps of press molding, insert molding, and welding are required, and the formation of the cylindrical body 5 that requires separate apparatuses is performed using a single mold 13 as described above. Can improve productivity.
In addition, it is possible to reliably prevent the separation at the base portion of the connection portion 6 and the like by the bonding by the thermoplastic resin and the reinforcement by the filler 3, which are easy to cause separation between layers in the conventional method.

また熱可塑性樹脂は、凹溝18〜20内や、凹部11内にも充てんされるため、構造部分としてのリブ8〜10や被覆12を、繊維強化複合材層2からなる円筒体5と同時、かつ一体に形成できる。
繊維強化複合材層2のもとになる繊維シート、繊維シートに含浸させる熱可塑性樹脂、射出成形する熱可塑性樹脂、およびフィラー3としては、先に説明したものを用いることができる。
In addition, since the thermoplastic resin is also filled in the concave grooves 18 to 20 and the concave portion 11, the ribs 8 to 10 and the coating 12 as the structural portion are simultaneously formed with the cylindrical body 5 made of the fiber reinforced composite material layer 2. And can be formed integrally.
As the fiber sheet that becomes the basis of the fiber reinforced composite material layer 2, the thermoplastic resin impregnated in the fiber sheet, the thermoplastic resin that is injection-molded, and the filler 3, those described above can be used.

本発明の構成は、以上で説明した各図の例には限定されず、熱可塑性樹脂を用いた繊維強化複合材からなり、種々の立体形状や構造を有する繊維強化複合成形品の製造に適用することができる。また本発明によれば、従来は形成しえなかった立体形状や構造を有する繊維強化複合成形品を製造することも可能である。 The configuration of the present invention is not limited to the examples in the drawings described above, and is composed of a fiber reinforced composite material using a thermoplastic resin, and is applied to the manufacture of fiber reinforced composite molded products having various three-dimensional shapes and structures. can do. In addition, according to the present invention, it is also possible to manufacture a fiber-reinforced composite molded product having a three-dimensional shape and structure that could not be formed conventionally.

1:繊維強化複合成形品、2:繊維強化複合材層、3:フィラー、4:プリプレグ、5:円筒体、6:接続部、7:半筒体、8〜10:リブ、11:凹部、12:被覆、13:金型、14:内型、15:外型、16:合わせ面、17:凹部、18〜20:凹溝、21:ゲート   1: Fiber reinforced composite molded product, 2: Fiber reinforced composite material layer, 3: Filler, 4: Pre-preg, 5: Cylindrical body, 6: Connection part, 7: Half-cylindrical body, 8-10: Rib, 11: Recessed part, 12: coating, 13: mold, 14: inner mold, 15: outer mold, 16: mating surface, 17: recessed portion, 18-20: recessed groove, 21: gate

Claims (3)

繊維シートに熱可塑性樹脂を含浸させてなり、曲げ部分を含む立体形状を有する少なくとも2層が積層され、熱可塑性樹脂を介して一体化された繊維強化複合材層、および積層された少なくとも2層の繊維強化複合材層を貫通して層間の結合を補強するフィラーを含む繊維強化複合成形品の製造方法であって、
前記繊維強化複合材層のもとになる少なくとも2層の繊維強化複合材を積層し、一体化させて形成した平板状のプリプレグを、曲げ部分を含む立体形状にプレス成形する工程、および
プレス成形の前後いずれかの段階のプリプレグに、フィラーを含む、繊維シートに含浸させた熱可塑性樹脂よりもメルトフローレートが大きい熱可塑性樹脂を射出成形する工程
を含む繊維強化複合成形品の製造方法。
A fiber-reinforced composite material layer obtained by impregnating a fiber sheet with a thermoplastic resin, laminated with at least two layers having a three-dimensional shape including a bent portion, and integrated through the thermoplastic resin, and at least two layers laminated A method for producing a fiber-reinforced composite molded article comprising a filler that penetrates the fiber-reinforced composite material layer and reinforces the bonding between the layers,
A step of press-molding a flat prepreg formed by laminating and integrating at least two layers of fiber-reinforced composite material that is the basis of the fiber-reinforced composite material layer into a three-dimensional shape including a bent portion; and
A process of injection-molding a thermoplastic resin containing a filler and having a higher melt flow rate than a thermoplastic resin impregnated in a fiber sheet into a prepreg at any stage before or after press molding
Fiber-reinforced method for producing a composite molded article comprising a.
プレス成形の工程で、少なくとも2つのプリプレグを結合させる請求項に記載の繊維強化複合成形品の製造方法。 In the press molding process, the manufacturing method of the fiber-reinforced composite molded article according to claim 1 for coupling at least two prepregs. プレス成形後に射出成形するとともに、当該射出成形の工程で、熱可塑性樹脂からなる構造部分を一体に成形する請求項1または2に記載の繊維強化複合成形品の製造方法。 The method for producing a fiber-reinforced composite molded article according to claim 1 or 2 , wherein the injection molding is performed after the press molding, and the structural portion made of the thermoplastic resin is integrally molded in the injection molding process.
JP2013236010A 2013-11-14 2013-11-14 Manufacturing method of fiber reinforced composite molded product Expired - Fee Related JP6229881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236010A JP6229881B2 (en) 2013-11-14 2013-11-14 Manufacturing method of fiber reinforced composite molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236010A JP6229881B2 (en) 2013-11-14 2013-11-14 Manufacturing method of fiber reinforced composite molded product

Publications (2)

Publication Number Publication Date
JP2015093479A JP2015093479A (en) 2015-05-18
JP6229881B2 true JP6229881B2 (en) 2017-11-15

Family

ID=53196213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236010A Expired - Fee Related JP6229881B2 (en) 2013-11-14 2013-11-14 Manufacturing method of fiber reinforced composite molded product

Country Status (1)

Country Link
JP (1) JP6229881B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041343B1 (en) * 2015-09-18 2021-04-02 Snecma COMPOSITE MATERIAL PART
JP6572822B2 (en) * 2016-05-12 2019-09-11 トヨタ自動車株式会社 Method for producing fiber reinforced thermoplastic resin structure
JP6580610B2 (en) * 2017-01-27 2019-09-25 本田技研工業株式会社 Resin component for small vehicle and method for manufacturing resin component for small vehicle
CN107271250B (en) * 2017-08-09 2023-05-16 济南大学 Mould for pressing friction and wear test sample
JP6798973B2 (en) * 2017-12-28 2020-12-09 本田技研工業株式会社 Vehicle resin parts
JP7512919B2 (en) * 2021-02-02 2024-07-09 トヨタ自動車株式会社 Hybrid molded body, molding device, and molding method
JP7302753B2 (en) * 2021-05-14 2023-07-04 日本精工株式会社 Cage manufacturing method and rolling bearing manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946082A (en) * 1995-05-19 1997-02-14 Toray Ind Inc Case for electric/electronic apparatus and its manufacture
JP3859321B2 (en) * 1997-09-25 2006-12-20 プレス工業株式会社 Method of welding fiber reinforced resin moldings
JP2971445B1 (en) * 1998-05-22 1999-11-08 川崎重工業株式会社 Composite material structure
JP2007076081A (en) * 2005-09-13 2007-03-29 Hirotec Corp Injection molding method
JP2007307778A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Laminated structure comprising fiber reinforced resin and its manufacturing method
JP2012071595A (en) * 2010-08-31 2012-04-12 Toray Ind Inc Method of manufacturing composite molded object

Also Published As

Publication number Publication date
JP2015093479A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6229881B2 (en) Manufacturing method of fiber reinforced composite molded product
JP6369720B2 (en) Manufacturing method of rack housing
CN105722661B (en) The method for manufacturing component by organic plates
JP6233048B2 (en) Rack housing manufacturing method and rack housing
WO2015136452A1 (en) Composite structure and manufacturing method thereof
WO2014142189A1 (en) Composite structure of fiber-reinforced plastic sheet and metal sheet, and method for manufacturing same
US20140094077A1 (en) Heat curable composite textile
JP6341156B2 (en) Resin bonded body, resin bonded body manufacturing method, and vehicle structure
CN115768684A (en) Bicycle frame and method of manufacturing the same
KR20200127486A (en) Integrated structure and method of different kinds materials
KR102358826B1 (en) Production of multishell composite-material components with reinforcement structure bonded thereto
CN108621531B (en) Method for manufacturing composite structure
CN110116522B (en) Prepreg part comprising a main layer and a reinforcement layer
CN106573420B (en) Composite fiber composition and method for producing composite fiber composition
CN110549649B (en) Method for producing a component made of composite material
KR101327634B1 (en) Manufacturing method of long fiber thermoplastic complex material
CN107708989B (en) Composite component for a vehicle, in particular a motor vehicle, and method for producing a composite component
KR102398676B1 (en) 3d structure and manufacturing method thereof
CN110901076B (en) Assembling of sub-components by compression molding
US20230182439A1 (en) Molded article and method of producing same
US10981337B2 (en) Bonding of thermoplastic components to a thermoset component
JP2017065218A (en) Manufacturing method of composite material
JP6610859B2 (en) Composite member and method for manufacturing the composite member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171004

R150 Certificate of patent or registration of utility model

Ref document number: 6229881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees