JP6228088B2 - Blood coagulation test chip - Google Patents

Blood coagulation test chip Download PDF

Info

Publication number
JP6228088B2
JP6228088B2 JP2014189761A JP2014189761A JP6228088B2 JP 6228088 B2 JP6228088 B2 JP 6228088B2 JP 2014189761 A JP2014189761 A JP 2014189761A JP 2014189761 A JP2014189761 A JP 2014189761A JP 6228088 B2 JP6228088 B2 JP 6228088B2
Authority
JP
Japan
Prior art keywords
coagulation
solution
flow path
channel
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189761A
Other languages
Japanese (ja)
Other versions
JP2016061676A (en
Inventor
勝義 林
勝義 林
鈴代 井上
鈴代 井上
弦 岩崎
弦 岩崎
松浦 伸昭
伸昭 松浦
弘 小泉
弘 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014189761A priority Critical patent/JP6228088B2/en
Publication of JP2016061676A publication Critical patent/JP2016061676A/en
Application granted granted Critical
Publication of JP6228088B2 publication Critical patent/JP6228088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、血液の凝固能の測定に用いられる血液凝固検査チップに関するものである。   The present invention relates to a blood coagulation test chip used for measuring blood coagulation ability.

凝固活性は、臨床検査の重要な項目であり、特にその一つの凝固活性指標であるプロトロンビン時間(血液凝固時間:PT(Prothrombin time))は、外因系の凝固因子への感度が高いと考えられており、外因系の凝固因子の欠損のスクリーニングや、肝機能の異常、さらに経口の抗凝血薬療法のモニタリングなどに用いられる指標である。   Coagulation activity is an important item in clinical examinations, and prothrombin time (blood clotting time: PT), which is one of the indicators of clotting activity, is considered to be highly sensitive to exogenous clotting factors. It is an index used for screening for deficiency of exogenous coagulation factors, abnormal liver function, and monitoring of oral anticoagulant therapy.

従来、血液凝固時間の測定には、かくはん抵抗方式、光散乱方式、熱伝導方式、水晶振動子方式などの方法が発明されているが、一般にかくはん抵抗方式と光散乱方式が多く用いられている(例えば、非特許文献1参照)。   Conventionally, methods such as a stirring resistance method, a light scattering method, a heat conduction method, and a crystal resonator method have been invented for measuring the blood coagulation time. Generally, the stirring resistance method and the light scattering method are often used. (For example, refer nonpatent literature 1).

かくはん抵抗方式は、サンプルを活性化剤と一緒に導入してフィンで攪拌し、攪拌の抵抗の上昇から血液凝固時間を測定する方法である。   The stirring resistance method is a method in which a sample is introduced together with an activator and stirred with fins, and the blood coagulation time is measured from the increase in stirring resistance.

光散乱方式は、試験用容器内で、血漿に凝固活性化を促す成分を含む試薬を混合し、容器に対し光を入射させ、その散乱光の光量変化を測定して血液凝固時間を測定する方法である。散乱光量から血液凝固時間を得る方法としては、散乱光量をそのまま利用する方法、散乱光量の微分値を利用する方法、散乱光量がある一定値に達するまでの時間を求める方法がある。   In the light scattering method, a reagent containing a component that promotes clotting activation is mixed in plasma in a test container, light is incident on the container, and the change in the amount of scattered light is measured to measure the blood clotting time. Is the method. As a method of obtaining the blood coagulation time from the scattered light amount, there are a method of using the scattered light amount as it is, a method of using a differential value of the scattered light amount, and a method of obtaining a time until the scattered light amount reaches a certain value.

最近では、屈折率変化を用いて血液の凝固能を測定する手法も提案されている。この屈折率変化を用いて血液の凝固能を測定する手法では、マイクロ流路内における異なる地点の屈折率変化と時間、溶液の移動距離から流速を算出し、その流速が血漿の凝固活性度の違いにより変化することを利用して血液凝固を検査する(例えば、特許文献1〜3参照)。   Recently, a method for measuring the coagulation ability of blood using a refractive index change has been proposed. In this method of measuring the coagulation ability of blood using this change in refractive index, the flow rate is calculated from the change in refractive index at different points in the microchannel, the time, and the distance traveled by the solution, and the flow rate is the amount of plasma clotting activity. The blood coagulation is inspected by utilizing the change due to the difference (see, for example, Patent Documents 1 to 3).

また、従来の血液凝固検査は、血液凝固カスケードの最終生成物であるフィブリンによる物理的、光学的変化を捉えることにより行われてきたが、近年ではフィブリンと同時に生成される低屈折率成分の屈折率と血液の凝固能との間に相関があることが報告されている(例えば、非特許文献1,2)。   In addition, conventional blood coagulation tests have been performed by capturing physical and optical changes caused by fibrin, which is the final product of the blood coagulation cascade. It has been reported that there is a correlation between the rate and the coagulation ability of blood (for example, Non-Patent Documents 1 and 2).

特開2011−232137号公報JP 2011-232137 A 特開2013−053959号公報JP 2013-053959 A 特開2013−053960号公報JP 2013-053960 A

Inoue et al.,「SUB-SECOND DETERMINATION OF BIOGENIC PROTEIN POLYMERIZATION ACTIVITY USING FLOW INDUCED REFRACTIVE INDEX “VALLEY”」,Micro TAS 2013,pp.230-232.年10月発表)Inoue et al., “SUB-SECOND DETERMINATION OF BIOGENIC PROTEIN POLYMERIZATION ACTIVITY USING FLOW INDUCED REFRACTIVE INDEX“ VALLEY ””, Micro TAS 2013, pp.230-232. Hayashi et al.,「POLYMERIZATION OF BIOLOGICAL MOLECULES IN A MICROCHANNEL GENERATES BOTH HIGH AND LOW-REFRACTIVE INDEX INGREDIENTS」,Micro TAS 2013,pp.898-900.Hayashi et al., `` POLYMERIZATION OF BIOLOGICAL MOLECULES IN A MICROCHANNEL GENERATES BOTH HIGH AND LOW-REFRACTIVE INDEX INGREDIENTS '', Micro TAS 2013, pp.898-900.

屈折率変化を用いて血液の凝固能を測定する手法では、マイクロ流路内における異なる地点の屈折率変化と時間、溶液の移動距離から流速を算出し、その流速が血漿の凝固活性度の違いにより変化することを利用して血液凝固を検査する。この場合、マイクロ流路を備える血液凝固検査チップを用い、流路に血漿と凝固試薬(凝固活性化剤)を流しながら、表面プラズモン共鳴(SPR)測定法で屈折率の変化を観測する。   In the method of measuring the coagulation ability of blood using refractive index change, the flow rate is calculated from the refractive index change at different points in the microchannel, the time, and the distance traveled by the solution, and the flow rate is the difference in plasma clotting activity. The blood coagulation is examined by utilizing the change due to the above. In this case, a blood coagulation test chip having a microchannel is used, and a change in refractive index is observed by a surface plasmon resonance (SPR) measurement method while flowing plasma and a coagulation reagent (coagulation activator) through the channel.

従来の血液凝固検査チップにおいては、流路に先ず凝固活性化溶液として凝固試薬を流し、次に被検査溶液として血漿を流し、流路内で血漿と凝固試薬とを直列に接触させ、その血漿と凝固試薬とが接触した面を界面とし、この界面で凝固反応を生じさせていた。そして、その界面付近で生じる屈折率の変化をSPR測定法で観測していた。   In a conventional blood coagulation test chip, a coagulation reagent is first flowed as a coagulation activation solution in the flow path, then plasma is flowed as a solution to be tested, and the plasma and the coagulation reagent are contacted in series in the flow path. The surface where the coagulation reagent and the coagulation reagent contacted was used as an interface, and a coagulation reaction was caused at this interface. And the change of the refractive index which arises in the vicinity of the interface was observed by the SPR measuring method.

SPR測定法で屈折率の変化を観測する場合、一般に流路の底面の全体を金薄膜としたガラス等の基板を用いるが、この流路の底面の屈折率の変化を観測する領域(センシング部分)の全体に、血漿もしくは凝固反応による生成物であるフィブリンが触れることにより、センシング部分が汚染され、感度が変化して行くという問題があった。また、流路の断面方向で凝固反応が生じるため、流路断面方向にフィブリンが形成され、流路が汚れやすい、詰まりやすいという問題があった。このような理由から、従来の血液凝固検査チップでは、血液の凝固能の測定を繰り返して行くうちに、測定精度が低下してしまうという問題が生じていた。   When observing a change in the refractive index by the SPR measurement method, a substrate made of glass or the like in which the entire bottom surface of the channel is made of a gold thin film is generally used. ), The sensing part is contaminated by the contact of plasma or fibrin, which is a product of a coagulation reaction, and the sensitivity changes. In addition, since a solidification reaction occurs in the cross-sectional direction of the flow path, fibrin is formed in the cross-sectional direction of the flow path, and there is a problem that the flow path is easily contaminated and clogged. For these reasons, the conventional blood coagulation test chip has a problem in that the measurement accuracy decreases as the measurement of blood coagulation ability is repeated.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、センシング部分や流路内の汚染を抑制し、測定精度の低下を抑えることができる血液凝固検査チップを提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to provide a blood coagulation test chip capable of suppressing contamination in the sensing portion and the flow path and suppressing a decrease in measurement accuracy. Is to provide.

このような目的を達成するために本発明は、被検査溶液が導入される第1の導入口と、凝固活性化溶液が導入される第2の導入口と、第1の導入口から導入された被検査溶液が流れる第1の流路と、第2の導入口から導入された凝固活性化溶液が流れる第2の流路と、第1の流路を流れる被検査溶液と第2の流路を流れる凝固活性化溶液とが流入し、この流入した被検査溶液と凝固活性化溶液とがその流れ方向に沿って接しながら流れる第3の流路と、第3の流路を流れる被検査溶液と凝固活性化溶液が導出される導出口とを備え、第1の導入口から導入された被検査溶液および第2の導入口から導入された凝固活性化溶液は、導出口から吸引されることによって第3の流路に流入し、第3の流路に流入した被検査溶液と凝固活性化溶液とは、第3の流路の中央部で接し、その接した面を界面とし、この界面で凝固反応を起こしながら、第3の流路を導出口に向かって流れ、第3の流路の底面の一部に、界面付近で生じる屈折率の変化を観測する領域として金薄膜が形成され、少なくとも第1の流路の底面および第3の流路の底面の屈折率の変化を観測する領域以外の領域に、生体分子が吸着し難い材料の薄膜として酸化チタン薄膜が形成されていることを特徴とする。 In order to achieve such an object, the present invention is introduced from the first introduction port into which the solution to be inspected is introduced, the second introduction port into which the coagulation activating solution is introduced, and the first introduction port. A first flow path through which the solution to be tested flows, a second flow path through which the coagulation activation solution introduced from the second introduction port flows, and a solution to be tested and a second flow through the first flow path A coagulation activating solution flowing through the channel, and a third channel that flows in contact with the sample solution to be tested and the coagulation activating solution that are in contact with each other along the flow direction; A solution and a lead-out port through which the coagulation activation solution is led out, and the solution to be inspected introduced from the first introduction port and the coagulation activation solution introduced from the second introduction port are sucked from the lead-out port As a result, the solution to be inspected and the coagulation activating solution that flowed into the third flow path and flowed into the third flow path A contact is made at the center of the third flow path, and the contacted surface serves as an interface. While causing a coagulation reaction at this interface, the third flow path flows toward the outlet, and the bottom surface of the third flow path is A region in which a thin gold film is formed as a region for observing a change in refractive index generated near the interface, and at least a region other than a region for observing a change in refractive index on the bottom surface of the first channel and the bottom surface of the third channel In addition, a titanium oxide thin film is formed as a thin film of a material that hardly adsorbs biomolecules .

このような特徴を有する本発明では、第1の導入口から導入された被検査溶液および第2の導入口から導入された凝固活性化溶液を導出口から吸引することによって第3の流路に流入させると、この第3の流路に流入した被検査溶液と凝固活性化溶液とが第3の流路の中央部で接し、その接した面を界面とし、この界面で凝固反応を起こしながら、第3の流路を導出口に向かって流れて行く。 In the present invention having such a feature, the solution to be inspected introduced from the first inlet and the coagulation activation solution introduced from the second inlet are sucked from the outlet to the third flow path. When infused, the solution to be inspected and the coagulation activating solution that have flowed into the third flow path come into contact with each other at the center of the third flow path , and the contacted surface serves as an interface while causing a coagulation reaction at this interface. Then, it flows through the third channel toward the outlet.

本発明において、被検査溶液と凝固活性化溶液との界面で生じる凝固反応による生成物は、第3の流路の中央部のみで生成され、流れて行く。これにより、被検査溶液と凝固活性化溶液との界面付近で生じる屈折率の変化を観測する領域(センシング部分)には、その一部にしか凝固反応による生成物が触れず、センシング部分の汚染が抑制されるものとなる。また、流路の内壁の汚染も抑制されるものとなる。また、センシング部分を第3の流路の底面の凝固活性化溶液が流れる側の面に形成すれば、センシング部分に被検査溶液が触れることもない。   In the present invention, the product resulting from the coagulation reaction generated at the interface between the solution to be inspected and the coagulation activating solution is generated and flows only at the center of the third flow path. As a result, the region where the change in refractive index observed near the interface between the solution to be inspected and the coagulation activation solution (sensing part) is touched only by a part of the product due to the coagulation reaction, and the sensing part is contaminated. Is suppressed. Further, contamination of the inner wall of the flow path is also suppressed. In addition, if the sensing portion is formed on the surface of the bottom surface of the third flow path where the coagulation activating solution flows, the sensing solution does not touch the sensing portion.

本発明では、第3の流路の底面の一部に、界面付近で生じる屈折率の変化を観測する領域を形成し、少なくとも第1の流路の底面および第3の流路の底面の屈折率の変化を観測する領域以外の領域に、生体分子が吸着し難い材料の薄膜を形成する。このようにすることにより、流路の底面に吸着する生体分子や凝固物の量が減り、流路の底面に積層される生体分子や凝固物の厚みが薄くなり、センシング部分や流路内の汚染をさらに抑制することが可能となる。生体分子が吸着し難い材料としては、チタン及びチタン合金、コバルト−クロム合金などが挙げられるが、本発明では、屈折率の変化を観測する領域を金薄膜とし、屈折率の変化を観測する領域以外の領域に酸化チタン薄膜を形成するようにする。 In the present invention, a region for observing a change in refractive index that occurs near the interface is formed in a part of the bottom surface of the third channel, and at least the bottom surface of the first channel and the bottom surface of the third channel are refracted. A thin film of a material that is difficult for biomolecules to adsorb is formed in a region other than the region where the rate change is observed . This reduces the amount of biomolecules and coagulum adsorbed on the bottom surface of the flow path, reduces the thickness of biomolecules and coagulum stacked on the bottom surface of the flow path, Contamination can be further suppressed. Examples of materials that are difficult to adsorb biomolecules include titanium, titanium alloys, and cobalt-chromium alloys . In the present invention, a region in which a change in refractive index is observed is a gold thin film, and a region in which a change in refractive index is observed. A titanium oxide thin film is formed in the other region.

また、本発明において、屈折率の変化を観測する領域の上にフィブリノゲン等の吸着を抑制することのできる生体適合性の高いポリマーを修飾するようにしてもよい。 Further, in the present invention may be modified polymer having high biocompatibility that can suppress the adsorption of fibrinogen or the like is formed on a region to observe the change of refractive Oriritsu.

本発明によれば、第1の導入口から被検査溶液を導入して第1の流路に流し、第2の導入口から凝固活性化溶液を導入して第2の流路に流し、第1の流路を流れる被検査溶液と第2の流路を流れる凝固活性化溶液とを第3の流路に流入させ、この第3の流路を被検査溶液と凝固活性化溶液とがその流れ方向に沿って接しながら流れるようにしたので、被検査溶液と凝固活性化溶液との界面で生じる凝固反応による生成物が第3の流路の中央部のみで生成されるものとなり、センシング部分や流路内の汚染を抑制して、測定精度の低下を抑えることができるようになる。   According to the present invention, the solution to be inspected is introduced from the first inlet and flows into the first channel, the coagulation activating solution is introduced from the second inlet and flows into the second channel, The solution to be tested flowing through the first channel and the coagulation activating solution flowing through the second channel are caused to flow into the third channel, and the solution to be tested and the coagulation activating solution are passed through the third channel. Since it is made to flow while contacting along the flow direction, a product due to a coagulation reaction occurring at the interface between the solution to be inspected and the coagulation activating solution is generated only at the center portion of the third flow path, and the sensing portion In addition, it is possible to suppress contamination in the flow path and to suppress a decrease in measurement accuracy.

本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 本発明の原理において血漿と凝固試薬とが第3の流路の中央部で接して流れて行く様子を示す図である。It is a figure which shows a mode that plasma and the coagulation reagent flow in contact with the center part of the 3rd flow path in the principle of this invention. 実施の形態の血液凝固検査チップを構成する流路基板を示す図である。It is a figure which shows the flow-path board | substrate which comprises the blood coagulation test | inspection chip | tip of embodiment. 実施の形態の血液凝固検査チップを構成する測定用基板を示す図である。It is a figure which shows the board | substrate for a measurement which comprises the blood coagulation test | inspection chip | tip of embodiment. 流路基板と測定用基板とを組み合わせた状態を示す側断面図である。It is a sectional side view which shows the state which combined the flow-path board | substrate and the measurement board | substrate. 実施の形態の血液凝固検査チップにおいて血漿と凝固試薬とが第3の流路の中央部で接して流れて行く様子を示す図である。It is a figure which shows a mode that plasma and the coagulation reagent flow in contact with the center part of the 3rd flow path in the blood coagulation test chip | tip of embodiment. 血漿と凝固試薬を実施の形態の血液凝固検査チップの流路内に導入したときのある時間の屈折率を示す図である。It is a figure which shows the refractive index of a certain time when plasma and a coagulation reagent are introduce | transduced in the flow path of the blood coagulation test chip | tip of embodiment.

〔発明の原理〕
本発明において、血液凝固検査チップは、被検査溶液が導入される第1の導入口と、凝固活性化溶液が導入される第2の導入口と、第1の導入口から導入された被検査溶液が流れる第1の流路と、第2の導入口から導入された凝固活性化溶液が流れる第2の流路と、第1の流路を流れる被検査溶液と第2の流路を流れる凝固活性化溶液とが流入し、この流入した被検査溶液と凝固活性化溶液とがその流れ方向に沿って接しながら流れる第3の流路と、第3の流路を流れる被検査溶液と凝固活性化溶液が導出される導出口とを備えた構成とする。
[Principle of the Invention]
In the present invention, the blood coagulation test chip includes a first introduction port through which a solution to be examined is introduced, a second introduction port through which a coagulation activation solution is introduced, and a test sample introduced from the first introduction port. A first flow path through which the solution flows, a second flow path through which the coagulation activation solution introduced from the second introduction port flows, and a solution to be tested and a second flow path through the first flow path. The coagulation activating solution flows in, the inflowed test solution and the coagulation activating solution flow in contact with each other along the flow direction, the test solution flowing in the third channel and the coagulation. It is set as the structure provided with the outlet port from which activation solution is derived | led-out.

このよう構成を有する本発明では、第1の導入口から導入された被検査溶液および第2の導入口から導入された凝固活性化溶液を導出口から吸引することによって第3の流路に流入させ、第3の流路に流入させた被検査溶液と凝固活性化溶液とを第3の流路の中央部で接するものとし、その接した面を界面とし、この界面で凝固反応を起こしながら、被検査溶液と凝固活性化溶液とが第3の流路を導出口に向かって流れて行くようにする。 In the present invention having such a configuration, the solution to be inspected introduced from the first inlet and the coagulation activation solution introduced from the second inlet are sucked into the third flow path by being sucked from the outlet. The solution to be inspected and the coagulation activating solution that have flowed into the third channel are brought into contact with each other at the center of the third channel, and the contacted surface serves as an interface, while causing a coagulation reaction at this interface. The solution to be inspected and the coagulation activating solution are allowed to flow through the third channel toward the outlet.

例えば、図1に示すように、チップ1に第1の導入口2と第2の導入口3と導出口4とを設け、第1の導入口2と第2の導入口3と導出口4とをY字状の流路(Y字流路)5でつなぎ、第1の導入口2と連通する流路5−1を第1の流路、第2の導入口3と連通する流路5−2を第2の流路、導出口4と連通する流路5−3を第3の流路とする。そして、導出口4と吸引ポンプ6との間をチューブ7で接続し、吸引ポンプ6を用いて流路5内を吸引した状態で、ピペット8を用いて第1の導入口2から被検査溶液として血漿10を導入し、ピペット9を用いて第2の導入口3から凝固活性化溶液として凝固試薬11を導入する。   For example, as shown in FIG. 1, the chip 1 is provided with a first inlet 2, a second inlet 3, and an outlet 4, and the first inlet 2, the second inlet 3, and the outlet 4. Are connected by a Y-shaped flow path (Y-shaped flow path) 5, and a flow path 5-1 communicating with the first introduction port 2 is communicated with the first flow path and the second introduction port 3. 5-2 is a second flow path, and a flow path 5-3 communicating with the outlet 4 is a third flow path. Then, the outlet 4 and the suction pump 6 are connected by a tube 7, and the solution to be inspected from the first inlet 2 using the pipette 8 with the suction pump 6 sucking the flow path 5. The plasma 10 is introduced as follows, and the coagulation reagent 11 is introduced as a coagulation activation solution from the second inlet 3 using the pipette 9.

すると、第1の導入口2から導入された血漿10は第1の流路5−1を流れ、第2の導入口3から導入された凝固試薬11は第2の流路5−2を流れ、第3の流路5−3に流入する。そして、第3の流路5−3に流入した血漿10と凝固試薬11とは、第3の流路5−3の中央部で接し、その接した面を界面12(図2参照)として導出口4に向かって流れて行く。すなわち、血漿10と凝固試薬11とが、第3の流路5−3内をその流れ方向に沿って接しながら、導出口4に向かって流れて行く。 Then, the plasma 10 introduced from the first inlet 2 flows through the first flow path 5-1, and the coagulation reagent 11 introduced from the second inlet 3 flows through the second flow path 5-2. , Flows into the third flow path 5-3. Then, the plasma 10 and the coagulation reagent 11 that have flowed into the third flow path 5-3 come into contact with each other at the center of the third flow path 5-3 , and the contacted surface serves as an interface 12 (see FIG. 2) . It flows toward the outlet 4. That is, the plasma 10 and the coagulation reagent 11 flow toward the outlet 4 while contacting the inside of the third flow path 5-3 along the flow direction.

この場合、血漿10と凝固試薬11とは界面12で接するため、界面12で凝固反応が起こる。そこで、第3の流路5−3の底面に界面12付近で生じる屈折率の変化を観測する領域をセンシング部分13として形成するようにして、このセンシング部分13で観測される屈折率の変化をもとに血漿10の凝固能を決定する。すなわち、血漿10の凝固能は、屈折率の変化が大きい場合に高い。この屈折率の変化をもとに血漿10の凝固能を血液の凝固能として決定する。   In this case, since the plasma 10 and the coagulation reagent 11 are in contact with each other at the interface 12, a coagulation reaction occurs at the interface 12. Therefore, a region for observing a change in the refractive index generated near the interface 12 is formed as the sensing portion 13 on the bottom surface of the third flow path 5-3, and the change in the refractive index observed in the sensing portion 13 is determined. Based on this, the coagulation ability of plasma 10 is determined. That is, the clotting ability of plasma 10 is high when the change in refractive index is large. Based on this change in refractive index, the coagulation ability of plasma 10 is determined as the coagulation ability of blood.

なお、屈折率の変化を検出する検出器としては、例えば表面プラズモン共鳴(SPR)測定装置を用いる。SPR測定装置は、LED等の光源と偏光板、集光レンズ、CCDカメラから構成されている。   For example, a surface plasmon resonance (SPR) measuring device is used as a detector for detecting a change in refractive index. The SPR measurement device is composed of a light source such as an LED, a polarizing plate, a condenser lens, and a CCD camera.

〔実施の形態〕
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図3は本実施の形態の血液凝固検査チップを構成する流路基板を示す図であり、図3(a)は平面図、図3(b)は図3(a)におけるA−A線断面図である。
Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a view showing a flow path substrate constituting the blood coagulation test chip of the present embodiment, FIG. 3 (a) is a plan view, and FIG. 3 (b) is a cross-sectional view taken along line AA in FIG. 3 (a). FIG.

この流路基板201はポリジメチルシロキサン(PDMS)を用いて作製されており、第1の導入口202と第2の導入口203と導出口204とをつなぐY字状の流路(Y字流路)205が流路基板201の下面に形成されている。   The flow path substrate 201 is made of polydimethylsiloxane (PDMS), and has a Y-shaped flow path (Y-shaped flow) connecting the first inlet 202, the second inlet 203, and the outlet 204. A channel 205 is formed on the lower surface of the channel substrate 201.

なお、流路205の高さhは50μm、幅wは0.5mmとされている。また、第1の導入口202、第2の導入口203および導出口204は、流路基板201の上面に開口している。   The flow path 205 has a height h of 50 μm and a width w of 0.5 mm. Further, the first introduction port 202, the second introduction port 203, and the outlet port 204 are opened on the upper surface of the flow path substrate 201.

図4は本実施の形態の血液凝固検査チップを構成する測定用基板であり、図4(a)は平面図、図4(b)は図4(a)におけるB−B線断面図である。   FIG. 4 is a measurement substrate constituting the blood coagulation test chip of the present embodiment, FIG. 4 (a) is a plan view, and FIG. 4 (b) is a cross-sectional view taken along line BB in FIG. 4 (a). .

この測定用基板206の材質はガラス(BK7)とされている。測定用基板206の上面には、流路基板201に形成されている流路205に対応する位置に、その平面形状を流路205の平面形状と同じとした金属薄膜209が形成されている。金属薄膜209は金薄膜207と酸化チタン薄膜208とから構成されている。   The material of the measurement substrate 206 is glass (BK7). On the upper surface of the measurement substrate 206, a metal thin film 209 is formed at a position corresponding to the flow path 205 formed in the flow path substrate 201, the planar shape of which is the same as the planar shape of the flow path 205. The metal thin film 209 is composed of a gold thin film 207 and a titanium oxide thin film 208.

金薄膜207は、血漿と凝固試薬との界面付近で生じる屈折率の変化を観測する領域(センシング部分(SPR観測領域))として、第3の流路205−3の平面形状に対応する領域の一部(凝固試薬が流れる面側)に形成されており、酸化チタン薄膜208は、流路205の平面形状に対応する領域のSPR観測領域を除く全ての領域に形成されている。   The gold thin film 207 serves as an area (sensing portion (SPR observation area)) for observing a change in refractive index that occurs near the interface between the plasma and the coagulation reagent, in an area corresponding to the planar shape of the third channel 205-3. The titanium oxide thin film 208 is formed in a part (on the side where the coagulation reagent flows), and the titanium oxide thin film 208 is formed in all regions except the SPR observation region corresponding to the planar shape of the flow path 205.

図5は流路基板201と測定用基板206とを組み合わせた状態を示す側断面図である。本実施の形態の血液凝固検査チップ200は、図3に示した流路基板201と図4に示した測定用基板206とを、反応性イオンエッチング装置を用いて酸素プラズマで処理した後に、流路205の平面形状と金属薄膜209の平面形状とが合致するように貼り合わせて作製される。   FIG. 5 is a side sectional view showing a state in which the flow path substrate 201 and the measurement substrate 206 are combined. The blood coagulation test chip 200 of the present embodiment is obtained by treating the flow path substrate 201 shown in FIG. 3 and the measurement substrate 206 shown in FIG. 4 with oxygen plasma using a reactive ion etching apparatus. The channel 205 is manufactured by bonding so that the planar shape of the path 205 and the planar shape of the metal thin film 209 match.

この血液凝固検査チップ200は、血液凝固検査装置の主要部品として用いられ、SPR測定装置に設置される。また、導出口204には内径が1mmのチューブが接続され、このチューブには吸引ポンプが接続される。また、血漿や凝固試薬を血液凝固検査チップ200に分注するための分注装置が設けられる。この血液凝固検査チップ200を用いた血液凝固検査装置の構成については図示していない。   The blood coagulation test chip 200 is used as a main part of the blood coagulation test apparatus, and is installed in the SPR measurement apparatus. A tube having an inner diameter of 1 mm is connected to the outlet port 204, and a suction pump is connected to this tube. In addition, a dispensing device for dispensing plasma or a coagulation reagent to the blood coagulation test chip 200 is provided. The configuration of the blood coagulation test apparatus using the blood coagulation test chip 200 is not shown.

〔血液凝固検査〕
この血液凝固検査チップ200を用いて血液凝固検査を行う場合、吸引ポンプを動作させ、続いて2種類の溶液を同時に滴下可能なピペットを用いて、第1の導入口202に血漿を第2の導入口203に凝固試薬を同時に滴下する。
[Blood coagulation test]
When a blood coagulation test is performed using the blood coagulation test chip 200, the suction pump is operated, and then the plasma is supplied to the first inlet 202 using the pipette capable of simultaneously dropping two kinds of solutions. A coagulation reagent is simultaneously dropped into the introduction port 203.

すると、図6に示すように、第1の導入口202から導入された血漿は第1の流路205−1を流れ、第2の導入口203から導入された凝固試薬は第2の流路205−2を流れ、第3の流路205−3に流入する。そして、第3の流路205−3に流入した凝固試薬と血漿とは、第3の流路205−3の中央部で接し、その接した面を界面とし、この界面で凝固反応を起こしながら、導出口204に向かって流れて行く。 Then, as shown in FIG. 6, the plasma introduced from the first introduction port 202 flows through the first flow path 205-1 and the coagulation reagent introduced from the second introduction port 203 passes through the second flow path. It flows through 205-2 and flows into the third flow path 205-3. The coagulation reagent and plasma that have flowed into the third flow path 205-3 come into contact with each other at the center of the third flow path 205-3 , and the contacted surface serves as an interface, which causes a coagulation reaction. However, it flows toward the outlet 204.

なお、図6において、301は血漿であり、302は凝固試薬である。また、303は血漿と凝固試薬との界面である。304はSPRを観測するラインであり、このSPRを観測するライン304が第3の流路205−3を跨ぐように、血液凝固検査チップ200はマウントされている。   In FIG. 6, 301 is plasma and 302 is a coagulation reagent. Reference numeral 303 denotes an interface between plasma and a coagulation reagent. Reference numeral 304 denotes a line for observing SPR, and the blood coagulation test chip 200 is mounted such that the line 304 for observing SPR straddles the third flow path 205-3.

図7に血漿と凝固試薬を血液凝固検査チップ200の流路205内に導入したときのある時間の屈折率を示す。図7の横軸はSPR観測点を示しており、縦軸は各SPR観測点での屈折率変化を示している。   FIG. 7 shows a refractive index for a certain time when plasma and a coagulation reagent are introduced into the flow path 205 of the blood coagulation test chip 200. The horizontal axis in FIG. 7 indicates the SPR observation point, and the vertical axis indicates the refractive index change at each SPR observation point.

SPR観測点が「0」の位置は血漿と凝固試薬との界面が形成されている位置であり、すなわち凝固反応が起こっている位置である。図7のn1は凝固反応によって生じた低屈折率成分の屈折率であり、n2は凝固試薬の屈折率である。n1の屈折率が得られたのは凝固活性率が86%の血漿を用いた場合である。凝固活性率が43%の血漿ではn3の屈折率が得られる。凝固試薬の屈折率n2を基準にn1,n3の屈折率との差をとったものがそれぞれΔn12、Δn32である。 The position where the SPR observation point is “0” is a position where an interface between plasma and a coagulation reagent is formed, that is, a position where a coagulation reaction occurs. In FIG. 7, n1 is the refractive index of the low refractive index component generated by the coagulation reaction, and n2 is the refractive index of the coagulation reagent. The refractive index of n1 was obtained when plasma with a clotting activity rate of 86% was used. In plasma with a clotting activity rate of 43%, a refractive index of n3 is obtained. Δn 12 and Δn 32 are obtained by taking the difference from the refractive indexes of n1 and n3 based on the refractive index n2 of the coagulation reagent.

このように凝固活性率が半分になると屈折率差も約1/2になり、この差は凝固活性率の高さによって変化する。低屈折率成分の屈折率n1と凝固試薬の屈折率n2との差を指標に血液の凝固能の測定を行うことができる。また、血漿の屈折率は低屈折率成分のそれより高いことを確認しているため、SPR観測領域に凝固試薬が流れていないことが確認することができる。さらに、本測定を繰り返し行ったところ、凝固試薬の屈折率n2、低屈折率成分の屈折率n1に変化は認められなかった。これはすなわち、SPR観測領域(金薄膜207)の表面が汚染されないことを意味している。   Thus, when the coagulation activity rate is halved, the refractive index difference is also halved, and this difference changes depending on the height of the coagulation activity rate. Blood coagulation ability can be measured using the difference between the refractive index n1 of the low refractive index component and the refractive index n2 of the coagulation reagent as an index. Moreover, since it is confirmed that the refractive index of plasma is higher than that of the low refractive index component, it can be confirmed that the coagulation reagent does not flow in the SPR observation region. Furthermore, when this measurement was repeated, no change was observed in the refractive index n2 of the coagulation reagent and the refractive index n1 of the low refractive index component. This means that the surface of the SPR observation region (gold thin film 207) is not contaminated.

金薄膜207の表面の汚染は血漿中に含まれる成分の吸着および凝固物の付着によると考えられるが、本実施の形態のように金薄膜207が形成されているSPR観測領域上に血漿が流れないような送液方法をとることで、金薄膜207の汚染を抑制し、繰り返し血液の凝固能の測定を行うことができる。   Contamination on the surface of the gold thin film 207 is considered to be due to adsorption of components contained in plasma and adhesion of coagulum, but plasma flows over the SPR observation region where the gold thin film 207 is formed as in this embodiment. By adopting such a liquid feeding method, contamination of the gold thin film 207 can be suppressed and blood coagulation ability can be repeatedly measured.

なお、流路205の底面の金薄膜207を除く領域に酸化チタン薄膜208を形成する代わりに、金薄膜207上にフィブリノゲン等の吸着を抑制することのできる生体適合性の高いポリマーを修飾するようにしてもよい。   Instead of forming the titanium oxide thin film 208 in the region excluding the gold thin film 207 on the bottom surface of the channel 205, a highly biocompatible polymer capable of suppressing adsorption of fibrinogen or the like is modified on the gold thin film 207. It may be.

また、流路205の底面の金薄膜207を除く領域に酸化チタン薄膜208を形成せず、ガラス基板のままとすることも考えられるが、金薄膜205を除く領域に酸化チタン薄膜208を形成して積極的に生体分子が吸着し難くすることによって、より大きな効果を得ることができる。   In addition, it is conceivable that the titanium oxide thin film 208 is not formed in the region excluding the gold thin film 207 on the bottom surface of the flow path 205 but is left as a glass substrate, but the titanium oxide thin film 208 is formed in the region excluding the gold thin film 205. By making the biomolecules difficult to adsorb positively, a greater effect can be obtained.

また、上述した実施の形態では、被検査溶液を血漿とし、血液の凝固能を血液の凝固能として測定するようにしたが、被検査溶液は血漿に限定されるものではない。   In the above-described embodiment, the test solution is plasma and the blood coagulation ability is measured as blood coagulation ability. However, the test solution is not limited to plasma.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…チップ、2…第1の導入口、3…第2の導入口、4…導出口、5…流路、5−1…第1の流路、5−2…第2の流路、5−3…第3の流路、10…血漿、11…凝固試薬、12…界面、13…センシング部分、200…血液凝固検査チップ、201…流路基板、202…第1の導入口、203…第2の導入口、204…導出口、205…流路、205−1…第1の流路、205−2…第2の流路、205−3…第3の流路、206…測定用基板、207…金薄膜(センシング部分(SPR観測領域))、208…酸化チタン薄膜、209…金属薄膜、301…血漿、302…凝固試薬、303…界面。   DESCRIPTION OF SYMBOLS 1 ... Chip, 2 ... 1st inlet, 3 ... 2nd inlet, 4 ... Outlet, 5 ... Channel, 5-1 ... 1st channel, 5-2 ... 2nd channel, 5-3 ... 3rd flow path, 10 ... Plasma, 11 ... Coagulation reagent, 12 ... Interface, 13 ... Sensing part, 200 ... Blood coagulation test chip, 201 ... Flow path substrate, 202 ... 1st introduction port, 203 ... second inlet, 204 ... outlet, 205 ... channel, 205-1 ... first channel, 205-2 ... second channel, 205-3 ... third channel, 206 ... measurement 207 ... Gold thin film (sensing part (SPR observation region)), 208 ... Titanium oxide thin film, 209 ... Metal thin film, 301 ... Plasma, 302 ... Coagulation reagent, 303 ... Interface.

Claims (3)

被検査溶液が導入される第1の導入口と、
凝固活性化溶液が導入される第2の導入口と、
前記第1の導入口から導入された被検査溶液が流れる第1の流路と、
前記第2の導入口から導入された凝固活性化溶液が流れる第2の流路と、
前記第1の流路を流れる被検査溶液と前記第2の流路を流れる凝固活性化溶液とが流入し、この流入した被検査溶液と凝固活性化溶液とがその流れ方向に沿って接しながら流れる第3の流路と、
前記第3の流路を流れる被検査溶液と凝固活性化溶液が導出される導出口とを備え、
前記第1の導入口から導入された被検査溶液および前記第2の導入口から導入された凝固活性化溶液は、前記導出口から吸引されることによって前記第3の流路に流入し、
前記第3の流路に流入した被検査溶液と凝固活性化溶液とは、前記第3の流路の中央部で接し、その接した面を界面とし、この界面で凝固反応を起こしながら、前記第3の流路を前記導出口に向かって流れ、
前記第3の流路の底面の一部に、前記界面付近で生じる屈折率の変化を観測する領域として金薄膜が形成され、
少なくとも前記第1の流路の底面および前記第3の流路の底面の前記屈折率の変化を観測する領域以外の領域に、生体分子が吸着し難い材料の薄膜として酸化チタン薄膜が形成されている
ことを特徴とする血液凝固検査チップ。
A first inlet through which a solution to be inspected is introduced;
A second inlet through which the coagulation activating solution is introduced;
A first flow path through which the solution to be inspected introduced from the first introduction port flows;
A second flow path through which the coagulation activation solution introduced from the second introduction port flows;
The test solution flowing through the first channel and the coagulation activating solution flowing through the second channel flow in, and the inspected solution and the coagulation activating solution flowing in contact with each other along the flow direction. A third flow channel flowing;
A solution to be inspected flowing through the third flow path and a lead-out port through which the coagulation activating solution is led out ,
The solution to be inspected introduced from the first inlet and the coagulation activation solution introduced from the second inlet flow into the third flow path by being sucked from the outlet.
The solution to be inspected and the coagulation activating solution that have flowed into the third flow path are in contact with each other at the center of the third flow path, and the contacted surface serves as an interface. Flowing through the third channel toward the outlet,
A gold thin film is formed on a part of the bottom surface of the third flow path as a region for observing a change in refractive index generated near the interface,
A titanium oxide thin film is formed as a thin film of a material that hardly absorbs biomolecules at least in a region other than the region where the change in refractive index is observed on the bottom surface of the first channel and the bottom surface of the third channel. blood coagulation test chip, characterized in that there.
請求項1に記載された血液凝固検査チップにおいて、
前記屈折率の変化を観測する領域の上に、生体分子の吸着を抑制するこができる生体適合性の高いポリマーが修飾されている
ことを特徴とする血液凝固検査チップ。
The blood coagulation test chip according to claim 1,
A blood coagulation test chip characterized in that a polymer having high biocompatibility capable of suppressing the adsorption of biomolecules is modified on the region where the change in refractive index is observed .
請求項1又は2に記載された血液凝固検査チップにおいて、
前記屈折率の変化を観測する領域は、前記第3の流路の底面の前記凝固活性化溶液が流れる側の面に形成されている
ことを特徴とする血液凝固検査チップ。
In the blood coagulation test chip according to claim 1 or 2 ,
The blood coagulation test chip is characterized in that the region for observing the change in refractive index is formed on a surface of the bottom surface of the third flow channel on the side where the coagulation activation solution flows .
JP2014189761A 2014-09-18 2014-09-18 Blood coagulation test chip Active JP6228088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189761A JP6228088B2 (en) 2014-09-18 2014-09-18 Blood coagulation test chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189761A JP6228088B2 (en) 2014-09-18 2014-09-18 Blood coagulation test chip

Publications (2)

Publication Number Publication Date
JP2016061676A JP2016061676A (en) 2016-04-25
JP6228088B2 true JP6228088B2 (en) 2017-11-08

Family

ID=55795971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189761A Active JP6228088B2 (en) 2014-09-18 2014-09-18 Blood coagulation test chip

Country Status (1)

Country Link
JP (1) JP6228088B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504011A (en) * 1994-10-21 1996-04-02 International Technidyne Corporation Portable test apparatus and associated method of performing a blood coagulation test
JP2003181255A (en) * 2001-12-21 2003-07-02 Minolta Co Ltd Microchip, inspection device using microchip and mixing method
US20070102362A1 (en) * 2003-09-01 2007-05-10 Kazuhiro Iida Chip
JP5592144B2 (en) * 2010-04-27 2014-09-17 日本電信電話株式会社 Coagulation activity measuring apparatus and measuring method
JP5818325B2 (en) * 2012-08-22 2015-11-18 日本電信電話株式会社 Blood coagulation measurement method

Also Published As

Publication number Publication date
JP2016061676A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
CN107076733B (en) Universal coagulation assay based on microfluidic chip
JP5592144B2 (en) Coagulation activity measuring apparatus and measuring method
Yeom et al. Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: A comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood
US20110045993A1 (en) Microfluidic device for assessing object/test material interactions
TW201341779A (en) Method and apparatus for measurement of blood information
Kang et al. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models
CN102762991A (en) Microchip for platelet examination and platelet examination device using same
JP5592324B2 (en) Coagulation activity measuring apparatus and measuring method
Meyer dos Santos et al. A novel μ-fluidic whole blood coagulation assay based on Rayleigh surface-acoustic waves as a point-of-care method to detect anticoagulants
JP2010071710A (en) Analysis device and method
JP2018169400A (en) Apparatus and method for determining blood sedimentation rate and other parameters associated therewith
JP5254751B2 (en) Microchip
JP5818325B2 (en) Blood coagulation measurement method
JP5941220B2 (en) Blood coagulation test method
TWI487904B (en) Measuring apparatus and method for blood
JP2013257154A (en) Measurement chip
JP2008039615A (en) Separation device and method, and analysis method
JP6228089B2 (en) Blood coagulation test chip
JP6228088B2 (en) Blood coagulation test chip
US10481145B1 (en) Devices and methods for measuring blood coagulation
JP5833716B1 (en) Blood coagulation test method and flow channel chip for blood coagulation test
CN115672421A (en) Microfluidic resistor anti-platelet function detection method and microchip adopting same
JP5758949B2 (en) Blood coagulation test method
EP2799880A1 (en) Apparatus and method for measuring hemostatic function using blood mobility
JP2009276075A (en) Method for measuring flowability of material component-containing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171012

R150 Certificate of patent or registration of utility model

Ref document number: 6228088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150