JP6227613B2 - Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus - Google Patents

Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus Download PDF

Info

Publication number
JP6227613B2
JP6227613B2 JP2015204523A JP2015204523A JP6227613B2 JP 6227613 B2 JP6227613 B2 JP 6227613B2 JP 2015204523 A JP2015204523 A JP 2015204523A JP 2015204523 A JP2015204523 A JP 2015204523A JP 6227613 B2 JP6227613 B2 JP 6227613B2
Authority
JP
Japan
Prior art keywords
power supply
power
error rate
overcurrent
overcurrent protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015204523A
Other languages
Japanese (ja)
Other versions
JP2017077128A (en
Inventor
一浩 山根
一浩 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2015204523A priority Critical patent/JP6227613B2/en
Publication of JP2017077128A publication Critical patent/JP2017077128A/en
Application granted granted Critical
Publication of JP6227613B2 publication Critical patent/JP6227613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、例えば誤り率測定装置、スペクトラムアナライザなどの各種計測器の過電流検出回路及び過電流保護回路と過電流検出方法及び過電流保護方法に関する。   The present invention relates to an overcurrent detection circuit, an overcurrent protection circuit, an overcurrent detection method, and an overcurrent protection method for various measuring instruments such as an error rate measurement device and a spectrum analyzer.

従来、装置に過電流が流れたことを検出する過電流検出装置としては、例えば下記特許文献1に開示されるものが知られている。   Conventionally, as an overcurrent detection device that detects that an overcurrent has flowed through the device, for example, a device disclosed in Patent Document 1 below is known.

特許文献1に開示される過電流検出装置は、図2に示すように、装置51に電力を供給する線路52に抵抗器53を直列接続し、基準電圧発生手段54が出力する基準電圧と抵抗器53の電圧とを比較手段55にて比較し、抵抗器53の電圧が基準電圧を越えた時にアラーム信号を発生するものである。   As shown in FIG. 2, the overcurrent detection device disclosed in Patent Document 1 includes a resistor 53 connected in series to a line 52 that supplies power to the device 51, and a reference voltage and resistance output by a reference voltage generation unit 54. The voltage of the resistor 53 is compared by the comparison means 55, and an alarm signal is generated when the voltage of the resistor 53 exceeds the reference voltage.

特開平02−106120号公報JP 02-106120 A

ところで、近年における計測器(例えば誤り率測定装置、スペクトラムアナライザなど)は、大規模化や高性能化によって機器全体の消費電力が増加する反面、半導体プロセスの発展に伴ってデバイスの駆動電圧が下がってきている。このため、電圧降下の影響が無視できないと状況にある。   By the way, in recent measuring instruments (for example, error rate measuring devices, spectrum analyzers, etc.), the power consumption of the entire device increases due to the increase in scale and performance, but the drive voltage of the device decreases with the development of semiconductor processes. It is coming. For this reason, the situation is that the influence of the voltage drop cannot be ignored.

このため、上述した特許文献1に開示されるような電圧降下を起こす(シャント)抵抗器53を用いず、過電流を検出して計測器(装置51)を過電流から保護することが望まれる。   For this reason, it is desired to detect the overcurrent and protect the measuring instrument (device 51) from the overcurrent without using the (shunt) resistor 53 that causes a voltage drop as disclosed in Patent Document 1 described above. .

そこで、本発明は上記問題点に鑑みてなされたものであって、電圧降下を起こす抵抗器を用いずに過電流を検出し、過電流から誤り率測定装置を保護することができる誤り率測定装置の過電流保護回路及び過電流保護方法を提供することを目的としている。 The present invention was made in view of the above problems, and detect an overcurrent without using a resistor to cause a voltage drop, error rate measurements can protect the error rate measuring device from overcurrent and its object is to provide an overcurrent protection times Michi及 beauty overcurrent protection method of the apparatus.

上記目的を達成するため、本発明の請求項1に記載された誤り率測定装置の過電流保護回路は、電源2から電源供給線路4を介して各負荷に応じた電源が供給され、被測定物に試験信号を入力したときの誤り率を測定する誤り率測定装置の過電流保護回路において、
前記電源供給線路上の前記各負荷に供給される電源の電源種毎の2つの検出点間における電位差を検出して電位差信号を出力する電位差検出部5と、
前記電源種毎に設定回数が予め設定されており、前記電位差検出部から入力される前記電位差信号のそれぞれに対し、予め決められた変換係数を掛け合わせて前記電源種毎の電流値に換算し、換算した前記電源種毎の電流値と予め設定される前記電源種毎の設定電流とを比較し、換算した何れかの電流値が当該電流値の電源種と対応する前記設定電流を超え、前記設定電流を超える電流値が当該電流値の電源種に対応する前記設定回数を超えたときに過電流有りと判別し、前記各負荷に応じた電源の供給を遮断して過電流から前記各負荷を保護する演算処理部7とを備えたことを特徴とする。
To achieve the above object, the overcurrent protection circuit of the error rate measuring apparatus according to claim 1 of the present invention, the power supply in accordance with the power source 2 to the load through the power supply line 4 are fed, to be measured In the overcurrent protection circuit of the error rate measurement device that measures the error rate when a test signal is input to an object ,
A potential difference detection unit 5 that detects a potential difference between two detection points for each power source type of power supplied to each load on the power supply line and outputs a potential difference signal;
The set number of times is set in advance for each power source type, and each potential difference signal input from the potential difference detection unit is multiplied by a predetermined conversion coefficient to be converted into a current value for each power source type. The converted current value for each power supply type is compared with a preset current for each power supply type set in advance, and any converted current value exceeds the set current corresponding to the power supply type of the current value , When the current value exceeding the set current exceeds the set number of times corresponding to the power source type of the current value, it is determined that there is an overcurrent, and the supply of power according to each load is shut off to An arithmetic processing unit 7 for protecting a load is provided.

請求項に記載された誤り率測定装置の過電流保護回路は、請求項1の誤り率測定装置の過電流保護回路において、
前記過電流有りと判別したときに、その旨を表示する表示部8を備えたことを特徴とする。
The overcurrent protection circuit of the error rate measuring device according to claim 2 is the overcurrent protection circuit of the error rate measuring device of claim 1 ,
When it is determined that the overcurrent is present, a display unit 8 is provided for displaying the fact.

請求項に記載された誤り率測定装置の過電流保護回路は、請求項1又は2誤り率測定装置の過電流保護回路において、
前記電源供給線路4は、前記電源2に接続されるAC−DC電源装置4aと、該AC−DC電源装置と前記各負荷との間に接続されるDC−DC電源回路4bとを含むことを特徴とする。
Overcurrent protection circuit of the error rate measuring apparatus according to claim 3, in the overcurrent protection circuit of the error rate measuring apparatus according to claim 1 or 2,
The power supply line 4 includes an AC-DC power supply device 4a connected to the power supply 2, and a DC-DC power supply circuit 4b connected between the AC-DC power supply device and each load. Features.

請求項に記載された誤り率測定装置の過電流保護回路は、請求項1〜の何れかの誤り率測定装置の過電流保護回路において、
前記各負荷に供給される電源の電圧を電源種毎に検出する電圧検出部6を備えたことを特徴とする。
Overcurrent protection circuit of the error rate measuring apparatus according to claim 4, in the overcurrent protection circuit of any one of the error rate measuring apparatus according to claim 1 to 3,
A voltage detector 6 is provided for detecting the voltage of the power supplied to each load for each power source type.

請求項に記載された誤り率測定装置の過電流保護回路は、請求項1〜の何れかの誤り率測定装置の過電流保護回路において、
前記電源供給線路4に残留する線路抵抗を電流検出抵抗として用いることを特徴とする。
The overcurrent protection circuit of the error rate measuring device according to claim 5 is the overcurrent protection circuit of the error rate measuring device according to any one of claims 1 to 4 ,
The line resistance remaining in the power supply line 4 is used as a current detection resistor.

請求項に記載された誤り率測定装置の過電流保護方法は、電源2から電源供給線路4を介して各負荷に応じた電源が供給され、被測定物に試験信号を入力したときの誤り率を測定する誤り率測定装置の過電流保護方法において、
前記電源供給線路上の前記各負荷に供給される電源の電源種毎の2つの検出点間における電位差を検出して電位差信号を出力するステップと、
前記電源種毎に設定回数を設定するステップと、
前記電位差信号のそれぞれに対し、予め決められた変換係数を掛け合わせて前記電源種毎の電流値に換算し、換算した前記電源種毎の電流値と予め設定される前記電源種毎の設定電流とを比較し、換算した何れかの電流値が当該電流値の電源種と対応する前記設定電流を超え、前記設定電流を超える電流値が当該電流値の電源種に対応する前記設定回数を超えたときに過電流有りと判別し、前記各負荷に応じた電源の供給を遮断して過電流から前記各負荷を保護するステップとを含むことを特徴とする。
請求項に記載された誤り率測定装置の過電流保護方法は、請求項誤り率測定装置の過電流保護方法において、
前記過電流有りのと判別したときに、その旨を表示するステップをさらに含むことを特徴とする。
請求項に記載された誤り率測定装置の過電流保護方法は、請求項6又は7誤り率測定装置の過電流保護方法において、
前記電源供給線路4に残留する線路抵抗を電流検出抵抗として用いるステップを含むことを特徴とする。
The overcurrent protection method of the error rate measuring apparatus according to claim 6 is an error when a power supply corresponding to each load is supplied from the power supply 2 via the power supply line 4 and a test signal is input to the device under test. In the overcurrent protection method of the error rate measuring device for measuring the rate ,
Detecting a potential difference between two detection points for each power source type of power supplied to each load on the power supply line and outputting a potential difference signal;
Setting a set number of times for each power source type;
Each potential difference signal is multiplied by a predetermined conversion coefficient to be converted into a current value for each power supply type, and the converted current value for each power supply type and a preset current for each power supply type set in advance. Any of the converted current values exceeds the set current corresponding to the power type of the current value, and the current value exceeding the set current exceeds the set number of times corresponding to the power type of the current value. And determining that there is an overcurrent, and shutting off the supply of power according to each load to protect each load from the overcurrent .
Overcurrent protection method of the error rate measuring apparatus according to claim 7, in the overcurrent protection method of the error rate measuring apparatus according to claim 6,
When it is determined that the overcurrent is present, the method further includes a step of displaying the fact.
Overcurrent protection method of the error rate measuring apparatus according to claim 8, in the overcurrent protection method of the error rate measuring apparatus according to claim 6 or 7,
The step of using the line resistance remaining in the power supply line 4 as a current detection resistance is included.

本発明によれば、電源供給線路を電流検出抵抗として利用して負荷電流を検出するので、従来の電圧降下を起こす抵抗器を用いずに過電流を検出することができる。また、過電流を検出したときに、誤り率測定装置の各負荷に応じた電源の供給を遮断するので、過電流から誤り率測定装置を保護することができる。 According to the present invention, since the load current is detected using the power supply line as a current detection resistor, it is possible to detect an overcurrent without using a conventional resistor that causes a voltage drop. In addition, when the overcurrent is detected, the supply of power according to each load of the error rate measuring device is cut off, so that the error rate measuring device can be protected from the overcurrent.

本発明に係る計測器の過電流検出回路を含む過電流保護回路のブロック図である。It is a block diagram of an overcurrent protection circuit including an overcurrent detection circuit of a measuring instrument according to the present invention. 特許文献1に開示される従来の過電流検出回路の一例を示す図である。It is a figure which shows an example of the conventional overcurrent detection circuit disclosed by patent document 1. FIG.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

本発明は、信号を高速処理するために数十アンペアの大電流が流れ、シャント抵抗が挿入しにくい誤り率測定装置に採用され、線路抵抗の劣化などにより、過負荷やショート(電源の保護回路が働かない状態)が発生して誤り率測定装置に過電流が流れたことを検出し、過電流から誤り率測定装置(以下、計測器と言う)を保護する過電流保護回路及び過電流保護方法を提供するものである。 The present invention, signals a large current flows in the tens amperes for high-speed processing, are employed in the error rate measuring equipment infusible difficulty inserting a shunt resistance, due to deterioration of the line resistance, overload or short ( Overcurrent protection circuit that protects the error rate measurement device (hereinafter referred to as measuring instrument) from overcurrent by detecting that an overcurrent has flowed through the error rate measurement device due to the occurrence of a power supply protection circuit not working And an overcurrent protection method.

本発明が採用される計測器は、例えばベース基板となるマザーボードに対して、複数の計測モジュールが着脱可能に接続される構成である。本例における計測モジュールは、後述するAC−DC電源装置4aを実装した電源モジュール、DC−DC電源回路4b、電位差検出部5、電圧検出部6を実装した回路モジュール、演算処理部7を実装した演算モジュール、被測定物(DUT)の測定を行う測定部3を実装した測定モジュール、表示部8を実装した表示モジュールなどで構成することができる。計測モジュールは適宜増設が可能であり、被測定物の計測内容に応じて必要な計測モジュールがマザーボードに接続される。   A measuring instrument in which the present invention is adopted has a configuration in which a plurality of measuring modules are detachably connected to a motherboard serving as a base substrate, for example. The measurement module in this example is equipped with a power supply module mounted with an AC-DC power supply device 4a described later, a DC-DC power supply circuit 4b, a potential difference detection unit 5, a circuit module mounted with a voltage detection unit 6, and an arithmetic processing unit 7. An arithmetic module, a measurement module on which the measurement unit 3 for measuring a device under test (DUT) is mounted, a display module on which the display unit 8 is mounted, and the like can be used. Measurement modules can be added as appropriate, and necessary measurement modules are connected to the motherboard according to the measurement contents of the object to be measured.

図1に示すように、過電流保護回路1は、電源2と計測器の各負荷(図示の例では、測定部3)との間の電源供給線路4に接続され、電位差検出部5、電圧検出部6、演算処理部7、表示部8を備えて構成される。   As shown in FIG. 1, the overcurrent protection circuit 1 is connected to a power supply line 4 between a power source 2 and each load of the measuring instrument (in the example shown, the measurement unit 3), and is connected to a potential difference detection unit 5, a voltage A detection unit 6, an arithmetic processing unit 7, and a display unit 8 are provided.

尚、図1において、各部を接続する実線は電源供給線を示し、各部を接続する破線は信号線や制御線を示している。また、図1の例では、電位差検出部5と電圧検出部6によって過電流検出回路を構成している。   In FIG. 1, a solid line connecting each part indicates a power supply line, and a broken line connecting each part indicates a signal line or a control line. In the example of FIG. 1, the potential difference detection unit 5 and the voltage detection unit 6 constitute an overcurrent detection circuit.

電源2は、例えば商用電源からなり、AC100Vの交流電源を電源供給線路4(後述する電源変換部4AのAC−DC電源装置4a)に供給する。   The power supply 2 is composed of, for example, a commercial power supply, and supplies AC 100V AC power to the power supply line 4 (AC-DC power supply device 4a of the power conversion unit 4A described later).

測定部3は、電源2から電源供給線路4を介して供給される直流電源を駆動電源として、ユーザの所望する各種測定を行う。例えば誤り率測定装置の測定部3の場合には、被測定物に試験信号(例えばPRBSパターンなど)を入力したときの誤り率を測定する。   The measurement unit 3 performs various measurements desired by the user using a DC power source supplied from the power source 2 via the power supply line 4 as a driving power source. For example, in the case of the measurement unit 3 of the error rate measuring apparatus, the error rate when a test signal (for example, a PRBS pattern) is input to the device under test is measured.

電源供給線路4は、電源2と計測器の測定部3との間、電源2と計測器の周辺回路(電位差検出部5、電圧検出部6、演算処理部7、表示部8を含む)との間を接続するものである。本例の電源供給線路4は、例えば配線、ネジ止め端子、各種コネクタ、バックプレーン、マザーボードなどの他、電源2から供給される電源を必要な駆動電源に変換する電源変換部4Aも含まれる。電源変換部4Aは、図1に示すように、電源2に接続されるAC−DC電源装置4aと、AC−DC電源装置4aと測定部3との間に接続されるDC−DC電源回路4bから構成される。そして、AC−DC電源装置4aとDC−DC電源回路4bとの間は、例えば配線、ネジ止め端子、コネクタなどを含む電源供給線路4を介して接続される。また、DC−DC電源回路4bと測定部3との間は、例えば配線、ハードメトリックコネクタ、バックプレーン、マザーボードなどを含む電源供給線路4を介して接続される。   The power supply line 4 is connected between the power source 2 and the measuring unit 3 of the measuring instrument, the peripheral circuit of the power source 2 and the measuring instrument (including the potential difference detecting unit 5, the voltage detecting unit 6, the arithmetic processing unit 7, and the display unit 8). Between the two. The power supply line 4 of this example includes, for example, a power conversion unit 4A that converts power supplied from the power supply 2 into necessary drive power in addition to wiring, screw terminals, various connectors, a backplane, a motherboard, and the like. As shown in FIG. 1, the power conversion unit 4A includes an AC-DC power supply device 4a connected to the power supply 2, and a DC-DC power supply circuit 4b connected between the AC-DC power supply device 4a and the measurement unit 3. Consists of The AC-DC power supply device 4a and the DC-DC power supply circuit 4b are connected via a power supply line 4 including, for example, wiring, screw terminals, connectors, and the like. Further, the DC-DC power supply circuit 4b and the measurement unit 3 are connected via a power supply line 4 including, for example, wiring, a hard metric connector, a backplane, a motherboard, and the like.

尚、図示はしないが、電源供給線路4は、図1における電位差検出部5、電圧検出部6、演算処理部7、表示部8を含む計測器の周辺回路と電源2との間を接続する線路も含むものである。また、AC−DC電源装置4aとDC−DC電源回路4bとの間を接続する電源供給線路4には、例えば20〜30cmの長さで電気抵抗率の小さい線(例えば米国ワイヤゲージ規格:AWG10以下)が用いられる。   Although not shown, the power supply line 4 connects the peripheral circuit of the measuring instrument including the potential difference detection unit 5, the voltage detection unit 6, the arithmetic processing unit 7 and the display unit 8 in FIG. The track is also included. The power supply line 4 connecting the AC-DC power supply device 4a and the DC-DC power supply circuit 4b has a length of, for example, 20 to 30 cm and a low electrical resistivity (for example, US wire gauge standard: AWG10). The following is used:

AC−DC電源装置4aは、電源2からの交流電源(AC100V)を直流電源(例えば±12V)に変換する。AC−DC電源装置4aにて変換された直流電源は、電源供給線路4を介してDC−DC電源回路4bに供給される。   The AC-DC power supply device 4a converts an AC power supply (AC100V) from the power supply 2 into a DC power supply (for example, ± 12V). The DC power converted by the AC-DC power supply device 4 a is supplied to the DC-DC power supply circuit 4 b through the power supply line 4.

尚、AC−DC電源装置4aにて変換された直流電源の一部は、この直流電源による電源電圧を必要とする負荷に供給される場合もある。また、電源2が直流電源の場合には、電源2からDC−DC電源回路4bに直流電源を供給し、AC−DC電源装置4aの構成を省くことができる。   Note that a part of the direct-current power converted by the AC-DC power supply device 4a may be supplied to a load that requires a power supply voltage by the direct-current power. When the power source 2 is a DC power source, the DC power source can be supplied from the power source 2 to the DC-DC power source circuit 4b, and the configuration of the AC-DC power source device 4a can be omitted.

DC−DC電源回路4bは、AC−DC電源装置4aから電源供給線路4を介して供給される直流電源を、計測器の各負荷(測定部3の他、電位差検出部5、電圧検出部6、演算処理部7、表示部8を含む周辺回路)毎の電源種に応じた直流電源(例えば±5V、±3.3V)に変換する。DC−DC電源回路4bにて変換された直流電源による電源電圧は、それぞれ対応する負荷に供給される。   The DC-DC power supply circuit 4b supplies the DC power supplied from the AC-DC power supply device 4a via the power supply line 4 to each load of the measuring instrument (in addition to the measurement unit 3, the potential difference detection unit 5, the voltage detection unit 6). , A DC power source (for example, ± 5 V, ± 3.3 V) corresponding to the power source type for each arithmetic processing unit 7 and peripheral circuit including the display unit 8. The power supply voltage by the direct-current power converted by the DC-DC power supply circuit 4b is supplied to the corresponding load.

そして、本例の過電流保護回路1を採用した計測器では、AC−DC電源装置4aとDC−DC電源回路4bを組み合わせ、配線やコネクタ、バックプレーン、マザーボードなどの電源供給線路4を経由して測定部3や周辺回路に各種電源電圧が供給される。   And in the measuring instrument which employs the overcurrent protection circuit 1 of this example, the AC-DC power supply device 4a and the DC-DC power supply circuit 4b are combined, and the power supply line 4 such as a wiring, a connector, a backplane, or a mother board is used. Thus, various power supply voltages are supplied to the measurement unit 3 and peripheral circuits.

電位差検出部5は、電源供給線路4上の監視が必要な箇所に設けられ、2つの検出点間における電位差を検出するもので、例えば差動増幅器などで構成することができる。図1の電位差検出部5は、電源供給線路4において、AC−DC電源装置4aの出力側の検出点P1とDC−DC電源回路4bの入力側の検出点P2との間の電位差、DC−DC電源回路4bの出力側の検出点P3と測定部3の入力側の検出点P4との間の電位差をそれぞれ検出する。電位差検出部5にて検出された検出点P1−P2間の電位差信号と検出点P3−P4間の電位差信号は、信号線を介して演算処理部7に入力される。   The potential difference detection unit 5 is provided at a place where monitoring on the power supply line 4 is necessary, detects a potential difference between two detection points, and can be configured by, for example, a differential amplifier. The potential difference detection unit 5 in FIG. 1 includes a potential difference between the output detection point P1 of the AC-DC power supply 4a and the input detection point P2 of the DC-DC power supply circuit 4b in the power supply line 4, DC− The potential difference between the detection point P3 on the output side of the DC power supply circuit 4b and the detection point P4 on the input side of the measurement unit 3 is detected. The potential difference signal between the detection points P1 and P2 detected by the potential difference detection unit 5 and the potential difference signal between the detection points P3 and P4 are input to the arithmetic processing unit 7 via a signal line.

電圧検出部6は、電源供給線路4上の監視が必要な箇所の電圧を検出するもので、例えばA/D変換器や電圧コンパレータで構成することができる。図1の電圧検出部6は、電源供給線路4において、AC−DC電源装置4aの出力側の検出点P1の電圧、DC−DC電源回路4bの入力側の検出点P2の電圧、DC−DC電源回路4bの出力側の検出点P3の電圧、測定部3の入力側の検出点P4の電圧をそれぞれ検出する。電圧検出部6にて検出された各検出点P1〜P4の電圧信号は、信号線を介して演算処理部7に入力される。   The voltage detection unit 6 detects a voltage at a location on the power supply line 4 that needs to be monitored, and can be configured by an A / D converter or a voltage comparator, for example. 1 includes a voltage at the detection point P1 on the output side of the AC-DC power supply device 4a, a voltage at the detection point P2 on the input side of the DC-DC power supply circuit 4b, and the DC-DC in the power supply line 4. The voltage at the detection point P3 on the output side of the power supply circuit 4b and the voltage at the detection point P4 on the input side of the measurement unit 3 are detected. The voltage signals at the detection points P1 to P4 detected by the voltage detection unit 6 are input to the arithmetic processing unit 7 through signal lines.

尚、特に図示はしないが、電位差検出部5は、図1の接続構成に限定されるものではなく、AC−DC電源装置4aやDC−DC電源回路4bと周辺回路との間における電源供給線路4上の入力側と出力側の検出点間の電位差も検出する。同様に、電圧検出部6は、AC−DC電源装置4aやDC−DC電源回路4bと周辺回路との間における電源供給線路4上の入力側と出力側の検出点の電圧も検出する。   Although not particularly illustrated, the potential difference detection unit 5 is not limited to the connection configuration in FIG. 1, and a power supply line between the AC-DC power supply device 4 a or the DC-DC power supply circuit 4 b and the peripheral circuit. 4 also detects a potential difference between detection points on the input side and the output side. Similarly, the voltage detection unit 6 also detects the voltage at the detection point on the input side and the output side on the power supply line 4 between the AC-DC power supply device 4a or the DC-DC power supply circuit 4b and the peripheral circuit.

演算処理部7は、例えばCPU,RAM,ROM,FPGAなどで構成される。演算処理部7は、電位差検出部5からの電位差信号に対し、予め決められた変換係数を掛け合わせて電流値に換算し、換算した電流値と設定電流とを比較し、換算した電流値が設定電流を超えたときに、過電流有り(異常有り)と判断する。そして、演算処理部7は、過電流有りと判断したときに、過電流による異常が有る旨を表示部8にメッセージ表示する。   The arithmetic processing unit 7 is composed of, for example, a CPU, RAM, ROM, FPGA and the like. The arithmetic processing unit 7 multiplies the potential difference signal from the potential difference detection unit 5 by a predetermined conversion coefficient to convert it to a current value, compares the converted current value with the set current, and the converted current value is When the set current is exceeded, it is determined that there is an overcurrent (abnormal). When the arithmetic processing unit 7 determines that there is an overcurrent, the arithmetic processing unit 7 displays a message on the display unit 8 that there is an abnormality due to the overcurrent.

尚、演算処理部7は、設定電流を超える電流値が設定時間や設定回数を超えたときに、過電流有り(異常有り)と判断し、その旨を表示部8にメッセージ表示するようにしても良い。   The arithmetic processing unit 7 determines that there is an overcurrent (abnormality) when the current value exceeding the set current exceeds the set time or the set number of times, and displays a message to that effect on the display unit 8. Also good.

また、設定電流、設定時間、設定回数は、それぞれ電源種毎に予め設定されるものである。変換係数は、電圧値を電流値に変換する際の係数であり、電位差や電圧を検出する区間における電源供給線路4の線路抵抗、電位差検出部5や電圧検出部6のゲインのバラツキによって決まる値である。   The set current, the set time, and the set number of times are set in advance for each power supply type. The conversion coefficient is a coefficient for converting a voltage value into a current value, and is a value determined by variations in the line resistance of the power supply line 4 and the gains of the potential difference detection unit 5 and the voltage detection unit 6 in a section in which a potential difference or voltage is detected. It is.

さらに、演算処理部7は、電圧検出部6から入力される各検出点P1〜P4の電圧信号をモニタし、このモニタした各検出点P1〜P4の電圧信号の電圧値を表示部8の表示画面上に表示制御する。その際、演算処理部7は、自己診断として、モニタした各検出点P1〜P4の電圧値と、予め電源種毎に設定された設定電圧とを比較し、各検出点P1〜P4の何れかの電圧値が設定電圧を超えたときに、電圧異常と判断し、その旨を表示部8にメッセージ表示する。   Further, the arithmetic processing unit 7 monitors the voltage signals of the detection points P1 to P4 input from the voltage detection unit 6, and displays the voltage values of the monitored voltage signals of the detection points P1 to P4 on the display unit 8. Display control on the screen. At that time, as a self-diagnosis, the arithmetic processing unit 7 compares the voltage value of each of the detected detection points P1 to P4 with a set voltage set in advance for each power supply type, and selects one of the detection points P1 to P4. When the voltage value exceeds the set voltage, it is determined that the voltage is abnormal, and a message to that effect is displayed on the display unit 8.

また、演算処理部7は、電源2から計測器の各負荷に電源電圧を供給している際の履歴(電源種毎の過電流の有無、モニタした電圧値の履歴)を逐次記憶保持する。これにより、計測器の各負荷への電源電圧の供給状態、過電流や異常の有無などを、逐次記憶保持された履歴から知ることができる。   In addition, the arithmetic processing unit 7 sequentially stores and holds a history of supplying power supply voltage from the power supply 2 to each load of the measuring instrument (presence of overcurrent for each power supply type, history of monitored voltage value). Thereby, the supply state of the power supply voltage to each load of the measuring instrument, the presence / absence of overcurrent and abnormality, and the like can be known from the history stored and held sequentially.

表示部8は、例えば液晶表示器などで構成される。表示部8は、演算処理部7による処理結果として、過電流による異常や電圧異常の有無と、モニタした各検出点P1〜P4の電圧値とを表示画面上に表示する。具体的には、演算処理部7が過電流有り(異常有り)や電圧異常と判断すると、その旨を表示部8の表示画面上にメッセージ表示して利用者に警告を促す。これに対し、演算処理部7が過電流による異常や電圧異常が無いと判断したときは、計測器の各負荷に電源電圧が正常に供給されている旨を表示部8の表示画面上にメッセージ表示する。これにより、利用者は、計測器を使用する際に、表示部8の表示内容から過電流による異常や電圧異常の有無を知ることができる。また、各検出点P1〜P4の電圧値を表示画面上にモニタ表示する。これにより、各検出点P1〜P4の電圧をモニタすることができる。   The display unit 8 is composed of, for example, a liquid crystal display. The display unit 8 displays on the display screen the presence / absence of abnormality due to overcurrent or voltage abnormality and the monitored voltage values of the respective detection points P1 to P4 as the processing result of the arithmetic processing unit 7. Specifically, when the arithmetic processing unit 7 determines that there is an overcurrent (abnormality) or a voltage abnormality, a message to that effect is displayed on the display screen of the display unit 8 to prompt the user to warn. On the other hand, when the arithmetic processing unit 7 determines that there is no abnormality due to overcurrent or voltage abnormality, a message on the display screen of the display unit 8 indicates that the power supply voltage is normally supplied to each load of the measuring instrument. indicate. Thereby, when using a measuring instrument, the user can know the presence or absence of abnormality due to overcurrent or voltage abnormality from the display content of the display unit 8. In addition, the voltage values of the detection points P1 to P4 are displayed on a monitor screen. Thereby, the voltage of each detection point P1-P4 can be monitored.

尚、図1では、過電流による異常や電圧異常の有無を表示部8の表示画面上にメッセージ表示して利用者に知らせる構成としたが、この構成に限定されるものではない。例えば表示部8の一部としてLEDランプ(例えば赤色に点灯(点滅)するLEDランプ)を設け、演算処理部7が過電流による異常や電圧異常が有ると判断したときに、LEDランプを点灯(点滅)するようにしてもよい。また、例えばブザーやスピーカなどの報知部を別途設け、演算処理部7が過電流による異常や電圧異常が有ると判断したときに、その旨を音によって利用者に知らせることもできる。さらに、報知部と表示部8とを併用する構成としてもよい。   In FIG. 1, a configuration is used in which a message is displayed on the display screen of the display unit 8 to notify the user of the presence or absence of abnormality due to overcurrent or voltage, but the present invention is not limited to this configuration. For example, an LED lamp (for example, an LED lamp that lights (flashes red) in red) is provided as a part of the display unit 8, and the LED lamp is turned on when the arithmetic processing unit 7 determines that there is an abnormality due to overcurrent or a voltage abnormality ( (Flashing). In addition, for example, a notification unit such as a buzzer or a speaker may be provided separately, and when the arithmetic processing unit 7 determines that there is an abnormality due to overcurrent or a voltage abnormality, the user can be notified by sound. Furthermore, it is good also as a structure which uses a alerting | reporting part and the display part 8 together.

次に、上記構成による過電流保護回路(過電流検出回路を含む)1を用いた計測器の過電流検出方法と過電流保護方法について説明する。   Next, an overcurrent detection method and an overcurrent protection method for a measuring instrument using the overcurrent protection circuit (including an overcurrent detection circuit) 1 having the above configuration will be described.

電源供給線路4におけるAC−DC電源装置4aは、電源2から交流電源が供給されると、その交流電源を直流電源に変換し、電源供給線路4を介してDC−DC電源回路4bに出力する。DC−DC電源回路4bは、AC−DC電源装置4aから入力される直流電源を、各負荷の電源種に応じた直流電源に変換する。そして、DC−DC電源回路4bにて変換された各負荷の電源種に応じた直流電源は、電源供給線路4を介して対応する負荷に供給される。図1の例では、負荷の一例として測定部3を示しており、DC−DC電源回路4bから電源供給線路4を介して測定部3の電源種に応じた直流電源が測定部3に供給される。   When AC power is supplied from the power supply 2, the AC-DC power supply device 4 a in the power supply line 4 converts the AC power into DC power and outputs the DC power to the DC-DC power circuit 4 b via the power supply line 4. . The DC-DC power supply circuit 4b converts the DC power input from the AC-DC power supply device 4a into DC power corresponding to the power supply type of each load. The DC power corresponding to the power type of each load converted by the DC-DC power supply circuit 4 b is supplied to the corresponding load via the power supply line 4. In the example of FIG. 1, the measurement unit 3 is shown as an example of a load, and DC power corresponding to the power type of the measurement unit 3 is supplied to the measurement unit 3 from the DC-DC power supply circuit 4 b via the power supply line 4. The

上記のように、各負荷の電源種に応じた直流電流が供給されている状態で、電位差検出部5は、電源供給線路4におけるAC−DC電源装置4aの出力側の検出点P1とDC−DC電源回路4bの入力側の検出点P2との間の電位差、DC−DC電源回路4bの出力側の検出点P3と測定部3の入力側の検出点P4との間の電位差をそれぞれ検出する。同様に、電位差検出部5は、AC−DC電源装置4aやDC−DC電源回路4bと周辺回路との間における電源供給線路4上の入力側と出力側の検出点間の電位差も検出する。   As described above, in a state where a direct current corresponding to the power source type of each load is supplied, the potential difference detector 5 detects the detection point P1 on the output side of the AC-DC power supply device 4a in the power supply line 4 and the DC−. A potential difference between the detection point P2 on the input side of the DC power supply circuit 4b and a potential difference between the detection point P3 on the output side of the DC-DC power supply circuit 4b and the detection point P4 on the input side of the measurement unit 3 are detected. . Similarly, the potential difference detection unit 5 also detects a potential difference between input-side and output-side detection points on the power supply line 4 between the AC-DC power supply device 4a or the DC-DC power supply circuit 4b and the peripheral circuit.

また、電圧検出部6は、電位差検出部5による電位差の検出に並行して、電源供給線路4におけるAC−DC電源装置4aの出力側の検出点P1の電圧、DC−DC電源回路4bの入力側の検出点P2の電圧、DC−DC電源回路4bの出力側の検出点P3の電圧、測定部3の入力側の検出点P4の電圧をそれぞれ検出する。同様に、電圧検出部6は、AC−DC電源装置4aやDC−DC電源回路4bと周辺回路との間における電源供給線路4上の入力側と出力側の検出点の電圧も検出する。   Further, the voltage detection unit 6 is configured to detect the voltage difference at the output side of the AC-DC power supply device 4a in the power supply line 4 and the input to the DC-DC power supply circuit 4b in parallel with the detection of the potential difference by the potential difference detection unit 5. The voltage at the detection point P2 on the side, the voltage at the detection point P3 on the output side of the DC-DC power supply circuit 4b, and the voltage at the detection point P4 on the input side of the measurement unit 3 are detected. Similarly, the voltage detection unit 6 also detects the voltage at the detection point on the input side and the output side on the power supply line 4 between the AC-DC power supply device 4a or the DC-DC power supply circuit 4b and the peripheral circuit.

演算処理部7は、電位差検出部5から入力される各検出点間の電位差信号のそれぞれに対し変換係数を掛け合わせて電流値に換算し、換算した電流値と設定電流とを比較し、換算した何れかの電流値が設定電流を超えたときに、過電流有り(異常有り)と判断して表示部8にメッセージ表示する。尚、演算処理部7は、設定電流を超える電流値が設定時間や設定回数を超えたときに、過電流有り(異常有り)と判断して表示部8にメッセージ表示しても良い。そして、演算処理部7は、設定電流を超える電流値が設定時間や設定回数を超えると、AC−DC電源装置4aの出力を断に切り替え、計測器の測定部3を含む各負荷を過電流から保護する。   The arithmetic processing unit 7 multiplies each of the potential difference signals between the detection points input from the potential difference detection unit 5 by the conversion coefficient to convert it into a current value, compares the converted current value with the set current, When any of the current values exceeds the set current, it is determined that there is an overcurrent (abnormality) and a message is displayed on the display unit 8. The arithmetic processing unit 7 may determine that there is an overcurrent (abnormality) and display a message on the display unit 8 when the current value exceeding the set current exceeds the set time or the set number of times. When the current value exceeding the set current exceeds the set time or the set number of times, the arithmetic processing unit 7 switches the output of the AC-DC power supply device 4a to off, and overloads each load including the measuring unit 3 of the measuring instrument. Protect from.

また、演算処理部7は、電圧検出部6から入力される各検出点の電圧信号をモニタし、このモニタした各検出点の電圧信号の電圧値を表示部8にモニタ表示する。その際、演算処理部7は、モニタした各検出点の電圧値と、予め電源種毎に設定された設定電圧とを比較し、各検出点の何れかの電圧値が設定電圧を超えたときに、電圧異常と判断し、その旨を表示部8にメッセージ表示する。   The arithmetic processing unit 7 monitors the voltage signal of each detection point input from the voltage detection unit 6 and displays the voltage value of the monitored voltage signal of each detection point on the display unit 8. At that time, the arithmetic processing unit 7 compares the monitored voltage value of each detection point with a set voltage set in advance for each power supply type, and when any voltage value of each detection point exceeds the set voltage. Then, it is determined that the voltage is abnormal, and a message to that effect is displayed on the display unit 8.

このように、本例の過電流保護回路1では、電源2の電源出力の直後と計測器の各負荷(図1では、測定部3のみを図示)直前との電位差を、各負荷に供給される電源の電源種毎に電位差検出部5にて検出する。そして、演算処理部7では、電位差検出部5にて検出した電源種毎の電位差に基づく電流と電源種毎の設定電流とを比較し、電源種毎の電位差に基づく電流の何れかが対応する設定電流を超えたときに過電流による異常有りと判別する。そして、過電流による異常有りと判別したときには、過電流による異常が有る旨を表示部8にメッセージ表示して利用者に警告を促す。さらに、過電流による異常が有るとき、又は過電流による異常の状態が設定時間や設定回数を超えた場合には、AC−DC電源装置4aの出力を断にし、計測器の各負荷を過電流から保護する。   As described above, in the overcurrent protection circuit 1 of this example, the potential difference between immediately after the power output of the power supply 2 and immediately before each load of the measuring instrument (only the measurement unit 3 is shown in FIG. 1) is supplied to each load. The potential difference detection unit 5 detects each power source type. Then, the arithmetic processing unit 7 compares the current based on the potential difference for each power source type detected by the potential difference detecting unit 5 with the set current for each power source type, and any of the currents based on the potential difference for each power source type corresponds. When the set current is exceeded, it is determined that there is an abnormality due to overcurrent. When it is determined that there is an abnormality due to overcurrent, a message is displayed on the display unit 8 to indicate that there is an abnormality due to overcurrent, and a warning is urged to the user. Furthermore, when there is an abnormality due to overcurrent, or when the state of abnormality due to overcurrent exceeds the set time or set number of times, the output of the AC-DC power supply device 4a is turned off and each load of the measuring instrument is overcurrent. Protect from.

これにより、従来のような電圧降下を起こす抵抗器を用いず、配線やコネクタ、バックプレーン、マザーボードなどの電源供給線路4に残留する線路抵抗を電流検出抵抗として利用することにより、負荷電流を容易に測定することができる。特に、数十アンペアの大電流が流れる箇所の負荷電流の測定や電圧降下が問題となる低電圧の電流測定に有利な回路を構築することができる。   As a result, the load current can be easily reduced by using the line resistance remaining in the power supply line 4 such as the wiring, the connector, the backplane, and the mother board as the current detection resistance without using a resistor that causes a voltage drop as in the prior art. Can be measured. In particular, it is possible to construct a circuit that is advantageous for measuring a load current at a location where a large current of several tens of amperes flows or for measuring a low voltage in which voltage drop is a problem.

また、電源供給線路4における複数の検出点P1〜P4における電圧を電圧検出部6にて検出し、複数の検出点P1〜P4の電圧を常時モニタするので、副次的効果として、電源供給線路4における線路抵抗の異常の有無を検出することができる。   Further, since the voltages at the plurality of detection points P1 to P4 in the power supply line 4 are detected by the voltage detector 6 and the voltages at the plurality of detection points P1 to P4 are constantly monitored, as a secondary effect, the power supply line 4 can detect the presence or absence of an abnormality in the line resistance.

さらに、電源供給線路4による残留線路抵抗を利用して計測器の各負荷に流れる電流を検出するので、線路抵抗のバラツキによる電流測定確度はあまり良くないが、容易かつ安価に実現することができる。その際、線路抵抗のバラツキは、演算処理部7にて負荷電流の演算時に補正すれば、測定確度の向上を図ることができる。   Furthermore, since the current flowing through each load of the measuring instrument is detected using the residual line resistance by the power supply line 4, the current measurement accuracy due to the variation in the line resistance is not so good, but can be realized easily and inexpensively. . At this time, if the variation in the line resistance is corrected at the time of calculation of the load current by the arithmetic processing unit 7, the measurement accuracy can be improved.

以上、本発明に係る計測器の過電流保護回路及び過電流保護方法の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。   The best mode of the overcurrent protection circuit and overcurrent protection method for a measuring instrument according to the present invention has been described above, but the present invention is not limited to the description and drawings according to this mode. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

1 過電流保護回路
2 電源
3 測定部
4 電源供給線路
4A 電源変換部
4a AC−DC電源装置
4b DC−DC電源回路
5 電位差検出部
6 電圧検出部
7 演算処理部
8 表示部
9 過電流検出回路
51 装置
52 線路
53 抵抗器
54 基準電圧発生手段
55 比較手段
P1,P2,P3,P4 検出点
DESCRIPTION OF SYMBOLS 1 Overcurrent protection circuit 2 Power supply 3 Measurement part 4 Power supply line 4A Power supply conversion part 4a AC-DC power supply device 4b DC-DC power supply circuit 5 Potential difference detection part 6 Voltage detection part 7 Arithmetic processing part 8 Display part 9 Overcurrent detection circuit 51 Device 52 Line 53 Resistor 54 Reference Voltage Generation Means 55 Comparison Means P1, P2, P3, P4 Detection Point

Claims (8)

電源(2)から電源供給線路(4)を介して各負荷に応じた電源が供給され、被測定物に試験信号を入力したときの誤り率を測定する誤り率測定装置の過電流保護回路において、
前記電源供給線路上の前記各負荷に供給される電源の電源種毎の2つの検出点間における電位差を検出して電位差信号を出力する電位差検出部(5)と、
前記電源種毎に設定回数が予め設定されており、前記電位差検出部から入力される前記電位差信号のそれぞれに対し、予め決められた変換係数を掛け合わせて前記電源種毎の電流値に換算し、換算した前記電源種毎の電流値と予め設定される前記電源種毎の設定電流とを比較し、換算した何れかの電流値が当該電流値の電源種と対応する前記設定電流を超え、前記設定電流を超える電流値が当該電流値の電源種に対応する前記設定回数を超えたときに過電流有りと判別し、前記各負荷に応じた電源の供給を遮断して過電流から前記各負荷を保護する演算処理部(7)とを備えたことを特徴とする誤り率測定装置の過電流保護回路。
In an overcurrent protection circuit of an error rate measuring device for measuring an error rate when power corresponding to each load is supplied from a power source (2) via a power supply line (4) and a test signal is input to a device under test ,
A potential difference detector (5) for detecting a potential difference between two detection points for each power source type of power supplied to each load on the power supply line and outputting a potential difference signal;
The set number of times is set in advance for each power source type, and each potential difference signal input from the potential difference detection unit is multiplied by a predetermined conversion coefficient to be converted into a current value for each power source type. The converted current value for each power supply type is compared with a preset current for each power supply type set in advance, and any converted current value exceeds the set current corresponding to the power supply type of the current value , When the current value exceeding the set current exceeds the set number of times corresponding to the power source type of the current value, it is determined that there is an overcurrent, and the supply of power according to each load is shut off to An overcurrent protection circuit for an error rate measuring device , comprising: an arithmetic processing unit (7) for protecting a load .
前記過電流有りと判別したときに、その旨を表示する表示部(8)を備えたことを特徴とする請求項1に記載の誤り率測定装置の過電流保護回路。 The overcurrent protection circuit for an error rate measuring apparatus according to claim 1, further comprising a display unit (8) for displaying the fact when it is determined that the overcurrent is present . 前記電源供給線路(4)は、前記電源(2)に接続されるAC−DC電源装置(4a)と、該AC−DC電源装置と前記各負荷との間に接続されるDC−DC電源回路(4b)とを含むことを特徴とする請求項1又は2記載の誤り率測定装置の過電流保護回路。 The power supply line (4) includes an AC-DC power supply device (4a) connected to the power supply (2), and a DC-DC power supply circuit connected between the AC-DC power supply device and the loads. The overcurrent protection circuit for an error rate measuring apparatus according to claim 1 or 2, characterized by comprising (4b) . 前記各負荷に供給される電源の電圧を電源種毎に検出する電圧検出部(6)を備えたことを特徴とする請求項1〜3の何れかに記載の誤り率測定装置の過電流保護回路。 The overcurrent protection of the error rate measuring device according to any one of claims 1 to 3, further comprising a voltage detection unit (6) for detecting a voltage of a power source supplied to each load for each power source type. circuit. 前記電源供給線路(4)に残留する線路抵抗を電流検出抵抗として用いることを特徴とする請求項1〜4の何れかに記載の誤り率測定装置の過電流保護回路。 The overcurrent protection circuit for an error rate measuring device according to any one of claims 1 to 4, wherein a line resistance remaining in the power supply line (4) is used as a current detection resistor . 電源(2)から電源供給線路(4)を介して各負荷に応じた電源が供給され、被測定物に試験信号を入力したときの誤り率を測定する誤り率測定装置の過電流保護方法において、In an overcurrent protection method of an error rate measuring device for measuring an error rate when power corresponding to each load is supplied from a power source (2) via a power supply line (4) and a test signal is input to a device under test ,
前記電源供給線路上の前記各負荷に供給される電源の電源種毎の2つの検出点間における電位差を検出して電位差信号を出力するステップと、Detecting a potential difference between two detection points for each power source type of power supplied to each load on the power supply line and outputting a potential difference signal;
前記電源種毎に設定回数を設定するステップと、Setting a set number of times for each power source type;
前記電位差信号のそれぞれに対し、予め決められた変換係数を掛け合わせて前記電源種毎の電流値に換算し、換算した前記電源種毎の電流値と予め設定される前記電源種毎の設定電流とを比較し、換算した何れかの電流値が当該電流値の電源種と対応する前記設定電流を超え、前記設定電流を超える電流値が当該電流値の電源種に対応する前記設定回数を超えたときに過電流有りと判別し、前記各負荷に応じた電源の供給を遮断して過電流から前記各負荷を保護するステップとを含むことを特徴とする誤り率測定装置の過電流保護方法。Each potential difference signal is multiplied by a predetermined conversion coefficient to be converted into a current value for each power supply type, and the converted current value for each power supply type and a preset current for each power supply type set in advance. Any of the converted current values exceeds the set current corresponding to the power type of the current value, and the current value exceeding the set current exceeds the set number of times corresponding to the power type of the current value. An overcurrent protection method for an error rate measuring apparatus, comprising: a step of determining that there is an overcurrent and shutting off a supply of power according to each load to protect each load from the overcurrent .
前記過電流有りと判別したときに、その旨を表示するステップをさらに含むことを特徴とする請求項6記載の誤り率測定装置の過電流保護方法。7. The method of overcurrent protection for an error rate measuring apparatus according to claim 6, further comprising a step of displaying when it is determined that the overcurrent is present. 前記電源供給線路(4)に残留する線路抵抗を電流検出抵抗として用いるステップを含むことを特徴とする請求項6又は7記載の誤り率測定装置の過電流保護方法。 The method for overcurrent protection of an error rate measuring device according to claim 6 or 7, further comprising the step of using the line resistance remaining in the power supply line (4) as a current detection resistance .
JP2015204523A 2015-10-16 2015-10-16 Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus Active JP6227613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015204523A JP6227613B2 (en) 2015-10-16 2015-10-16 Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015204523A JP6227613B2 (en) 2015-10-16 2015-10-16 Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus

Publications (2)

Publication Number Publication Date
JP2017077128A JP2017077128A (en) 2017-04-20
JP6227613B2 true JP6227613B2 (en) 2017-11-08

Family

ID=58551663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015204523A Active JP6227613B2 (en) 2015-10-16 2015-10-16 Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus

Country Status (1)

Country Link
JP (1) JP6227613B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106120A (en) * 1988-10-13 1990-04-18 Fujitsu Ltd Overcurrent detector
JPH06303728A (en) * 1993-04-09 1994-10-28 Sanyo Electric Co Ltd Overcurrent protective circuit for battery
JP2001119856A (en) * 1999-10-15 2001-04-27 Auto Network Gijutsu Kenkyusho:Kk Method and device for supplying power in vehicle
JP2001352674A (en) * 2000-06-08 2001-12-21 Nec Corp Power circuit
JP4735432B2 (en) * 2006-06-14 2011-07-27 株式会社島津製作所 Analysis device protection circuit
JP2011200035A (en) * 2010-03-19 2011-10-06 Aisin Seiki Co Ltd Vehicle overcurrent detector

Also Published As

Publication number Publication date
JP2017077128A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
US8587317B2 (en) Detecting device and detecting method for monitoring battery module
US10148203B2 (en) Motor driving apparatus including DC link voltage detection unit
JP2007139747A (en) Insulation inspecting device and insulation inspecting method
CN104348253A (en) Methods and systems for monitoring devices in a power distribution system
KR20080093559A (en) Apparatus and method of insulation resistance detection in earth leakage detecter
TWI583258B (en) Fault detection apparatus and fault detection method
JP6227613B2 (en) Overcurrent protection circuit and overcurrent protection method for error rate measuring apparatus
JP5431105B2 (en) Four-terminal resistance measuring device
JP6067098B2 (en) Method and apparatus for detecting glowing contact in power supply circuit
JP2016169984A (en) Poor connection detector
JP6491852B2 (en) Circuit element measuring device
KR102054937B1 (en) Device for Detecting Insulation Resistance
RU2313799C1 (en) Mode of controlling reduction of resistance of insulation in a line of feeding voltage to a load and an arrangement for its execution
JP2011252827A (en) Resistance value calculation device
JP5791347B2 (en) Resistance measuring device
KR200484477Y1 (en) Branch circuit measuring apparatus
KR100780898B1 (en) Monitoring device for an electric facilities
JP2014059802A (en) Facility control system and connector connection failure detecting method
JP5546986B2 (en) Insulation inspection equipment
JP2002148299A (en) Ground fault monitor
KR100445339B1 (en) ground detect apparatus of differential current for DC signal line and method theroof
JP4470809B2 (en) Electronic energy meter
JP2011169703A (en) Wattmeter
KR101829615B1 (en) Auxiliary Device for Inspecting Power Supply
JP2017075860A (en) Resistance measuring device and inspecting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250