JP6226322B2 - Method for producing radiopharmaceutical composition - Google Patents

Method for producing radiopharmaceutical composition Download PDF

Info

Publication number
JP6226322B2
JP6226322B2 JP2013219924A JP2013219924A JP6226322B2 JP 6226322 B2 JP6226322 B2 JP 6226322B2 JP 2013219924 A JP2013219924 A JP 2013219924A JP 2013219924 A JP2013219924 A JP 2013219924A JP 6226322 B2 JP6226322 B2 JP 6226322B2
Authority
JP
Japan
Prior art keywords
hic101
radiopharmaceutical composition
acid
eluent
radioactive fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013219924A
Other languages
Japanese (ja)
Other versions
JP2015081242A (en
Inventor
真登 桐生
真登 桐生
正人 外山
正人 外山
裕司 久下
裕司 久下
剣一 西嶋
剣一 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Medi Physics Co Ltd
Hokkaido University NUC
Original Assignee
Nihon Medi Physics Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi Physics Co Ltd, Hokkaido University NUC filed Critical Nihon Medi Physics Co Ltd
Priority to JP2013219924A priority Critical patent/JP6226322B2/en
Publication of JP2015081242A publication Critical patent/JP2015081242A/en
Application granted granted Critical
Publication of JP6226322B2 publication Critical patent/JP6226322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、放射性フッ素標識化合物を有効成分として含有する、放射性医薬組成物の製造方法に関する。   The present invention relates to a method for producing a radiopharmaceutical composition containing a radioactive fluorine-labeled compound as an active ingredient.

低酸素領域をインビボで検出する試みとして、放射性核種で標識した放射性標識化合物を用いた、単一光子放射断層撮影(SPECT)や陽電子放射断層撮影(PET)が行われている。   As an attempt to detect a hypoxic region in vivo, single photon emission tomography (SPECT) and positron emission tomography (PET) using a radiolabeled compound labeled with a radionuclide have been performed.

1−(2,2−ジヒドロキシメチル−3−フルオロプロピル)−2−ニトロイミダゾール(以下、「HIC101」と省略することもある。)は、生体内の低酸素領域を精度よく定量評価できる化合物の一つとして、本出願人らにより報告されている(特許文献1)。   1- (2,2-dihydroxymethyl-3-fluoropropyl) -2-nitroimidazole (hereinafter sometimes abbreviated as “HIC101”) is a compound that can accurately and quantitatively evaluate a hypoxic region in a living body. For example, it has been reported by the present applicants (Patent Document 1).

特許文献1には、[18F]HIC101の製造方法として、以下の方法が記載されている。すなわち、2,2−ジメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−5−(p−トルエンスルホニルオキシメチル)−1,3−ジオキサンを標識前駆体化合物とし、[18F]フッ素標識反応を行った後、塩酸でアセトナイド保護基を除去する。反応終了後、水とアセトニトリルとトリフルオロ酢酸とを含む溶離液と用いた高速カラムクロマトグラフィー(HPLC)を行い、[18F]HIC101の画分を分取する。当該画分に水を添加した液をSep−Pak(登録商標)HLB Plasに通液し、[18F]HIC101を吸着捕集させた後、エタノールを用いて溶出させることにより、[18F]HIC101を得る。 Patent Document 1 describes the following method as a method for producing [ 18 F] HIC101. That is, 2,2-dimethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -5- (p-toluenesulfonyloxymethyl) -1,3-dioxane is used as a labeled precursor compound, After [ 18 F] fluorine labeling reaction, the acetonide protecting group is removed with hydrochloric acid. After completion of the reaction, high-performance column chromatography (HPLC) using an eluent containing water, acetonitrile, and trifluoroacetic acid is performed, and a fraction of [ 18 F] HIC101 is collected. A solution obtained by adding water to the fraction was passed through a Sep-Pak (registered trademark) HLB Plas, and [ 18 F] HIC101 was adsorbed and collected, and then eluted with ethanol to obtain [ 18 F]. HIC101 is obtained.

国際公開第2013/042668パンフレットInternational Publication No. 2013/042668 Pamphlet

しかし、特許文献1記載の方法は、HPLCの溶離液に生体に有害なトリフルオロ酢酸を使用しており、製剤化した[18F]HIC101に有害なトリフルオロ酢酸が残留する懸念がある。また、特許文献1では、種々の副産物が発生する合成条件を採用する一方、製造した[18F]HIC101剤が、どのような不純物を含むかを明らかにしていない。そのため、特許文献1記載の方法で得られた[18F]HIC101剤は、臨床の現場でそのまま使用することができない。 However, the method described in Patent Document 1 uses trifluoroacetic acid harmful to living organisms as an eluent for HPLC, and there is a concern that harmful trifluoroacetic acid may remain in the formulated [ 18 F] HIC101. In addition, Patent Document 1 employs synthesis conditions in which various by-products are generated, but does not clarify what impurities the produced [ 18 F] HIC101 agent contains. Therefore, the [ 18 F] HIC101 agent obtained by the method described in Patent Document 1 cannot be used as it is in clinical practice.

本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、1−(2,2−ジヒドロキシメチル−3−フルオロプロピル)−2−ニトロイミダゾール(HIC101)の放射性フッ素標識体を臨床適用可能にするための技術を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a radioactive fluorine-labeled product of 1- (2,2-dihydroxymethyl-3-fluoropropyl) -2-nitroimidazole (HIC101). It is to provide a technique for enabling clinical application.

本発明者らは、2,2−ジメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−5−(p−トルエンスルホニルオキシメチル)−1,3−ジオキサン(以下、「標識前駆体化合物」ともいう。)から[18F]HIC101を合成した場合、主な不純物が、式(3)で表される1−(2,2−ジヒドロキシメチル−3−ヒドロキシプロピル)−2−ニトロイミダゾール(以下、「OH体」ともいう。)であることを知見した。 We have 2,2-dimethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -5- (p-toluenesulfonyloxymethyl) -1,3-dioxane (hereinafter, When [ 18 F] HIC101 is synthesized from “labeled precursor compound”), the main impurity is 1- (2,2-dihydroxymethyl-3-hydroxypropyl)-represented by the formula (3). It was found to be 2-nitroimidazole (hereinafter also referred to as “OH form”).

また、本発明者らは、トリフルオロ酢酸を使用しない溶離液によるクロマトグラフィー精製を行い、OH体の除去を試みた。その結果、HIC101、標識前駆体化合物の脱離基(トシル基)に由来するp−トルエンスルホン酸(以下、「トシル酸」という。)、及び、OH体の各保持時間が近接していることを新たに知見した。そして、HIC101とトシル酸とが分離可能なクロマトグラフィー条件を設定することにより、[18F]HIC101の粗生成物からOH体及びトシル酸の双方を分離かつ除去できることを見出し、本発明を完成させた。 The inventors of the present invention also performed chromatographic purification using an eluent that does not use trifluoroacetic acid, and attempted to remove the OH form. As a result, the retention times of HIC101, p-toluenesulfonic acid (hereinafter referred to as “tosylic acid”) derived from the leaving group (tosyl group) of the labeled precursor compound, and the OH form are close to each other. Newly discovered. Then, it was found that by setting the chromatography conditions under which HIC101 and tosylic acid can be separated, both the OH form and tosylic acid can be separated and removed from the crude product of [ 18 F] HIC101, thereby completing the present invention. It was.

すなわち、本発明の一態様は、下記一般式(1)で表される放射性フッ素標識化合物又はその塩を有効成分として含有する放射性医薬組成物の製造方法であって、下記式(2)で表される標識前駆体化合物から前記放射性フッ素標識化合物の粗生成物を得る合成工程と、前記放射性フッ素標識化合物を精製する精製工程と、を含み、前記精製工程において、オクタデシルシリル化シリカゲルを固定相とし、水とエタノールとの混液を溶離液として用いたクロマトグラフィーによる、前記放射性フッ素標識化合物とトシル酸との分離を実行する、放射性医薬組成物の製造方法である。   That is, one aspect of the present invention is a method for producing a radiopharmaceutical composition containing a radioactive fluorine-labeled compound represented by the following general formula (1) or a salt thereof as an active ingredient, which is represented by the following formula (2). A synthesis step of obtaining a crude product of the radiofluorine-labeled compound from the labeled precursor compound, and a purification step of purifying the radiofluorine-labeled compound. In the purification step, octadecylsilylated silica gel is used as a stationary phase. And a method for producing a radiopharmaceutical composition, wherein the separation of the radioactive fluorine-labeled compound and tosylic acid is performed by chromatography using a mixed solution of water and ethanol as an eluent.

一般式(1)中、Xは、放射性フッ素原子である。   In general formula (1), X is a radioactive fluorine atom.

式(2)中、Tsは、トシル基である。   In formula (2), Ts is a tosyl group.

ここで、本発明において「放射性フッ素」とは、フッ素の放射性同位体であり、具体的には、フッ素−18が用いられる。フッ素−18を用いることで、HIC101の体内分布を陽電子放射断層撮影(PET)により画像化することができる。   Here, in the present invention, “radioactive fluorine” is a radioactive isotope of fluorine, and specifically, fluorine-18 is used. By using fluorine-18, the distribution of HIC101 in the body can be imaged by positron emission tomography (PET).

本発明によれば、臨床適用可能なHIC101の放射性フッ素標識体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the radioactive fluorine labeled body of HIC101 applicable clinically can be provided.

非放射性1−(2,2−ジヒドロキシメチル−3−フルオロプロピル)−2−ニトロイミダゾール(HIC101)の合成スキームを示す図である。It is a figure which shows the synthetic scheme of non-radioactive 1- (2,2-dihydroxymethyl-3-fluoropropyl) -2-nitroimidazole (HIC101). 1−(2,2−ジヒドロキシメチル−3−ヒドロキシプロピル)−2−ニトロイミダゾールの合成スキームを示す図である。It is a figure which shows the synthetic scheme of 1- (2,2-dihydroxymethyl-3-hydroxypropyl) -2-nitroimidazole. 本発明の精製工程をコールドランで実行したクロマトグラフィーの一例である。It is an example of the chromatography which performed the refinement | purification process of this invention by cold run. 本発明の精製工程で実行したクロマトグラフィーの一例である。It is an example of the chromatography performed at the refinement | purification process of this invention. 本発明の製造方法で得られた放射性医薬組成物の分析結果の一例を示す図である。(a)がUV(220nm)の検出結果であり、(b)がRIの検出結果である。It is a figure which shows an example of the analysis result of the radiopharmaceutical composition obtained with the manufacturing method of this invention. (A) is a detection result of UV (220 nm), and (b) is a detection result of RI. 本発明の精製工程で実行したクロマトグラフィーの一例である。It is an example of the chromatography performed at the refinement | purification process of this invention. 本発明の製造方法で得られた放射性医薬組成物の分析結果の一例を示す図である。(a)がUV(325nm)の検出結果であり、(b)が(a)の拡大図であるIt is a figure which shows an example of the analysis result of the radiopharmaceutical composition obtained with the manufacturing method of this invention. (A) is a detection result of UV (325 nm), (b) is an enlarged view of (a). 本発明の製造方法で得られた放射性医薬組成物の分析結果の一例を示す図である。It is a figure which shows an example of the analysis result of the radiopharmaceutical composition obtained with the manufacturing method of this invention.

本発明は、上記一般式(1)で表される、1−(2,2−ジヒドロキシメチル−3−[18F]フルオロプロピル)−2−ニトロイミダゾール([18F]HIC101)又はその塩を有効成分として含有する放射性医薬組成物を製造する方法である。 The present invention relates to 1- (2,2-dihydroxymethyl-3- [ 18 F] fluoropropyl) -2-nitroimidazole ([ 18 F] HIC101) or a salt thereof represented by the general formula (1). This is a method for producing a radiopharmaceutical composition containing as an active ingredient.

本発明において「放射性医薬組成物」とは、[18F]HIC101を生体内への投与に適した形態で含む処方物であると定義することができる。この放射性医薬組成物は、非経口的に、即ち注射によって投与することが好ましく、水溶液であることがより好ましい。 In the present invention, the “radiopharmaceutical composition” can be defined as a formulation containing [ 18 F] HIC101 in a form suitable for in vivo administration. This radiopharmaceutical composition is preferably administered parenterally, ie by injection, and more preferably in an aqueous solution.

18F]HIC101は塩を形成していてもよい。塩としては、具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機塩や、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、p−トルエンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸塩が挙げられる。 [ 18 F] HIC101 may form a salt. Specific examples of the salt include inorganic salts such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, propionic acid, oxalic acid, malonic acid, Examples thereof include organic acid salts such as succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, aspartic acid, and glutamic acid.

本発明において「有効成分として含有する」とは、[18F]HIC101が薬効を発揮できる程度に含有されていればよく、具体的には、[18F]HICが所定範囲の放射能濃度で含有されていればよい。例えば、使用時における[18F]HIC101の放射能濃度を10〜1000MBq/mLとすることが好ましく、より好ましくは50〜500MBq/mLである。 In the present invention, “contained as an active ingredient” is sufficient if [ 18 F] HIC101 is contained to such an extent that it can exert a medicinal effect. Specifically, [ 18 F] HIC has a radioactivity concentration within a predetermined range. It should just be contained. For example, the radioactivity concentration of [ 18 F] HIC101 during use is preferably 10 to 1000 MBq / mL, and more preferably 50 to 500 MBq / mL.

本発明の製造方法は、上記式(2)で表される、2,2−ジメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−5−(p−トルエンスルホニルオキシメチル)−1,3−ジオキサン(標識前駆体化合物)から[18F]HIC101の粗生成物を得る合成工程と、[18F]HIC101を精製する精製工程とを含む。そして、精製工程において、オクタデシルシリル化シリカゲルを固定相とし、水とエタノールとの混液を溶離液として用いたクロマトグラフィーにより、[18F]HIC101とトシル酸との分離を実行する。 The production method of the present invention comprises 2,2-dimethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -5- (p-toluenesulfonyloxy) represented by the above formula (2). A synthesis step for obtaining a crude product of [ 18 F] HIC101 from methyl) -1,3-dioxane (labeled precursor compound), and a purification step for purifying [ 18 F] HIC101. In the purification step, [ 18 F] HIC101 and tosylic acid are separated by chromatography using octadecylsilylated silica gel as a stationary phase and a mixture of water and ethanol as an eluent.

[合成工程]
合成工程は、具体的には、以下の[18F]フッ素化工程と、脱保護工程とを含む。
([18F]フッ素化工程):標識前駆体と[18F]フッ化物イオンとを反応させて、下記式(4)で表される、2,2−ジメチル−5−[2−(2−ニトロ−1H−イミダゾール−1−イル)メチル]−5−([18F]フルオロメチル)−1,3−ジオキサン([18F]HIC101保護体)を得る。
(脱保護工程):酸存在下に[18F]HIC101保護体からアセトナイド保護基を除去して[18F]HIC101の粗生成物を得る。
[Synthesis process]
Specifically, the synthesis step includes the following [ 18 F] fluorination step and deprotection step.
([18 F] fluorination step): labeling precursor and [18 F] is reacted with a fluoride ion, represented by the following formula (4), 2,2-dimethyl-5- [2- (2 - nitro -1H- imidazol-1-yl) methyl] -5 - get ([18 F] fluoromethyl) -1,3-dioxan ([18 F] HIC101 protector).
(Deprotection step): The acetonide protecting group is removed from the protected [ 18 F] HIC101 in the presence of an acid to obtain a crude product of [ 18 F] HIC101.

標識前駆体化合物は、2−ブロモメチル−2−ヒドロキシメチル−1,3−プロパンジオールを出発物質とし、ジオールをアセトナイド保護した後、2−ニトロイミダゾール及びトシル基を導入して得ることができる。具体的には、例えば、特許文献1記載の方法により合成することができる。   The labeled precursor compound can be obtained by starting from 2-bromomethyl-2-hydroxymethyl-1,3-propanediol, acetonide-protecting the diol, and then introducing 2-nitroimidazole and a tosyl group. Specifically, for example, it can be synthesized by the method described in Patent Document 1.

18F]フッ化物イオンは、公知の方法により調製することができるが、例えば、以下の方法が挙げられる。まず、サイクロトロンにより[18O]水から[18F]フッ化物イオンを製造し、これを炭酸型の陰イオン交換樹脂に捕集する。次いで、炭酸カリウム水溶液を通液して[18F]フッ化物イオンを溶出する。これにより、[18F]フッ化物イオンを[18F]フッ化カリウム水溶液として得ることができる。 [ 18 F] fluoride ion can be prepared by a known method, and examples thereof include the following methods. First, [ 18 F] fluoride ions are produced from [ 18 O] water by a cyclotron and collected in a carbonate-type anion exchange resin. Next, an aqueous potassium carbonate solution is passed through to elute [ 18 F] fluoride ions. Thus, it is possible to obtain [18 F] fluoride ions as [18 F] potassium fluoride aqueous solution.

得られた[18F]フッ化物イオンは、[18F]フッ素化標識効率を向上させるため、以下の操作を加え、活性化させることが好ましい。すなわち、[18F]フッ化物イオンの溶出液にクリプトフィックス222(商品名。1,10−ジアザ−4,7,13,16,21,24−ヘキサオキサビシクロ[8.8.8]ヘキサコサン)を加え、アセトニトリルを用いて共沸する。これにより、[18F]フッ化物イオンを、炭酸カリウムとクリプトフィクス222との混合物として得ることができる。なお、クリプトフィックス222は、炭酸カリウム水溶液とともに陰イオン交換樹脂に通液させてもよい。 The obtained [ 18 F] fluoride ion is preferably activated by adding the following operation in order to improve the [ 18 F] fluorination labeling efficiency. That is, Cryptofix 222 (trade name: 1,10-diaza-4,7,13,16,21,24-hexoxabicyclo [8.8.8] hexacosane) was used as an elution solution of [ 18 F] fluoride ions. And azeotrope with acetonitrile. Thereby, [ 18 F] fluoride ion can be obtained as a mixture of potassium carbonate and cryptofix 222. Cryptofix 222 may be passed through an anion exchange resin together with an aqueous potassium carbonate solution.

このようにして得られた[18F]フッ化物イオンと標識前駆体化合物とを混合させて、[18F]フッ素化反応を行う。反応は、アセトニトリル、N,N−ジメチルホルムアミド又はジメチルスルホキシドのような非プロトン性溶媒等の適当な溶媒中に、20〜120℃の温度下に行うことが好ましい。反応終了後、溶媒を蒸散させることで、[18F]HIC101保護体を得る。 [ 18 F] fluorination reaction is performed by mixing the thus obtained [ 18 F] fluoride ion and the labeling precursor compound. The reaction is preferably carried out in a suitable solvent such as an aprotic solvent such as acetonitrile, N, N-dimethylformamide or dimethyl sulfoxide at a temperature of 20 to 120 ° C. After the reaction is completed, the [ 18 F] HIC101 protector is obtained by evaporating the solvent.

脱保護工程において使用できる酸は特に限定されないが、塩酸が好ましい。反応条件は、反応時間を短縮できる観点から、室温より高温下で行うことが好ましく、例えば、50〜100℃の温度下に行うことができる。   The acid that can be used in the deprotection step is not particularly limited, but hydrochloric acid is preferred. From the viewpoint of shortening the reaction time, the reaction conditions are preferably performed at a temperature higher than room temperature, for example, at a temperature of 50 to 100 ° C.

アセトナイド保護基の脱保護終了後は、酢酸ナトリウムなどの塩基を用いて中和をし、[18F]HIC101の粗生成物を得る。本明細書において「粗生成物」とは、未精製の[18F]HIC101であればよく、不純物として、少なくとも一種の無機化合物、又は、[18F]HIC101以外の有機化合物を含むものである。[18F]HIC101以外の有機化合物として、トシル酸や1−(2,2−ジヒドロキシメチル−3−ヒドロキシプロピル)−2−ニトロイミダゾール(OH体)が挙げられる。この粗生成物は、[18F]HIC101の溶液であることが好ましく、水溶液がより好ましい。 After completion of the deprotection of the acetonide protecting group, neutralization is performed using a base such as sodium acetate to obtain a crude product of [ 18 F] HIC101. In this specification, the “crude product” may be unpurified [ 18 F] HIC101, and includes at least one inorganic compound or an organic compound other than [ 18 F] HIC101 as an impurity. Examples of organic compounds other than [ 18 F] HIC101 include tosylic acid and 1- (2,2-dihydroxymethyl-3-hydroxypropyl) -2-nitroimidazole (OH form). This crude product is preferably a solution of [ 18 F] HIC101, more preferably an aqueous solution.

[精製工程]
精製工程では、合成工程で粗生成物として得られた[18F]HIC101の精製を行う。具体的には、オクタデシルシリル化シリカゲルを固定相とし、水とエタノールとの混液を溶離液として用いたクロマトグラフィーにより、[18F]HIC101とトシル酸との分離を実行する。そして、[18F]HIC101の画分を回収して、[18F]HIC101溶液を得る。これにより、トシル酸とともにOH体が除去された放射性医薬組成物を得ることができる。また、[18F]HIC101とトシル酸との分離度をさらに高めることにより、ロット間のばらつきなく安定して、OH体、トシル酸及びその他の非放射性不純物を除去することができる。
[Purification process]
In the purification step, [ 18 F] HIC101 obtained as a crude product in the synthesis step is purified. Specifically, [ 18 F] HIC101 and tosylic acid are separated by chromatography using octadecylsilylated silica gel as a stationary phase and a mixture of water and ethanol as an eluent. Then, the [ 18 F] HIC101 fraction is collected to obtain a [ 18 F] HIC101 solution. Thereby, the radiopharmaceutical composition from which the OH form was removed together with tosylic acid can be obtained. Further, by further increasing the degree of separation between [ 18 F] HIC101 and tosylic acid, it is possible to remove OH, tosylic acid and other non-radioactive impurities stably without variation among lots.

本発明において「クロマトグラフィー」とは、前述のとおり、固定相としてオクタデシルシリル化シリカゲルを使用し、溶離液として水とエタノールとの混液を使用するものであれば限定されないが、カラムクロマトグラフィーが好ましく、高速液体クロマトグラフィー(HPLC)がより好ましい。   In the present invention, “chromatography” is not limited as long as it uses octadecylsilylated silica gel as a stationary phase and a mixture of water and ethanol as an eluent, as described above, but column chromatography is preferable. High performance liquid chromatography (HPLC) is more preferable.

オクタデシルシリル化シリカゲルの粒子径は、2〜5μmのものを用いることができる。また、オクタデシルシリル化シリカゲルを充填するカラムは、内径が1mm〜20mmであり、長さが50〜250mmのものを使用することができる。   The particle diameter of the octadecylsilylated silica gel can be 2 to 5 μm. The column packed with octadecylsilylated silica gel may have an inner diameter of 1 mm to 20 mm and a length of 50 to 250 mm.

本発明においては、溶離液として、水とエタノールとの混液を用いる。エタノールは医薬品の残留溶媒ガイドラインにおいてクラス3の残留溶媒であり、安全性の観点から好ましい。溶離液の流速は、例えば、0.5〜5mL/分とすることができる。   In the present invention, a mixture of water and ethanol is used as the eluent. Ethanol is a class 3 residual solvent in the guidelines for residual solvents for pharmaceuticals, and is preferable from the viewpoint of safety. The flow rate of the eluent can be, for example, 0.5 to 5 mL / min.

溶離液中、水とエタノールとの比率は、制限されず、[18F]HIC101とトシル酸とが分離できる条件を設定すればよい。溶離液として水/エタノールの混液を用いた場合、トシル酸は、[18F]HIC101やOH体よりも保持時間が短い一方、テーリングの現象を起こす。そのため、HIC101とトシル酸との分離度を基準とし、クロマトグラフィー条件を設定することにより、トシル酸を除去しつつ、HIC101とOH体との分離を容易にすることができる。 The ratio of water and ethanol in the eluent is not limited, and it is only necessary to set conditions under which [ 18 F] HIC101 and tosylic acid can be separated. When a water / ethanol mixture is used as the eluent, tosylic acid has a shorter retention time than [ 18 F] HIC101 and OH, but causes a tailing phenomenon. Therefore, by setting the chromatographic conditions based on the degree of separation between HIC101 and tosylic acid, separation of HIC101 and OH form can be facilitated while removing tosylic acid.

好ましくは、HIC101の保持時間(T)とトシル酸の保持時間(T)との差が5分以上の条件(|T―T|≧5分)とする。これにより、OH体及びその他の非放射性不純物が除去された放射性医薬組成物を得ることができる。より好ましくは|T―T|≧10分とし、さらに好ましくは|T―T|≧20分とする。これにより、ロット間のばらつきなく安定して、OH体及びその他の非放射性不純物の除去が可能になる。|T―T|の上限は特に制限はないが、フッ素−18の崩壊による収量低下の防止の観点からは、|T―T|≦30分が実用的である。 Preferably, the retention time of HIC101 (T 1) and the retention time of the tosylate (T 2) and the difference is more than 5 minutes conditions of a (| ≧ 5 minutes | T 1 -T 2). Thereby, the radiopharmaceutical composition from which the OH form and other non-radioactive impurities are removed can be obtained. More preferably, | T 1 −T 2 | ≧ 10 minutes, and more preferably | T 1 −T 2 | ≧ 20 minutes. As a result, the OH body and other non-radioactive impurities can be removed stably without variation among lots. The upper limit of | T 1 −T 2 | is not particularly limited, but | T 1 −T 2 | ≦ 30 minutes is practical from the viewpoint of preventing yield reduction due to the decay of fluorine-18.

より具体的には、溶離液中のエタノールの含有率を8体積%以下にすることが好ましい。これにより、OH体及びその他の非放射性不純物が除去された放射性医薬組成物を得ることができる。また、溶離液中のエタノールの含有率を5体積%以下にすることがより好ましく、3体積%以下にすると更に好ましい。これにより、ロット間のばらつきなく安定して、OH体及びその他の非放射性化合物が除去された放射性医薬組成物を得ることができる。保持時間の上限は特に制限はないが、フッ素‐18の崩壊による収量低下の防止の観点からは、溶離液中のエタノールの含有率は3〜8体積%、好ましくは3〜5体積%の範囲が実用的である。   More specifically, the ethanol content in the eluent is preferably 8% by volume or less. Thereby, the radiopharmaceutical composition from which the OH form and other non-radioactive impurities are removed can be obtained. Further, the ethanol content in the eluent is more preferably 5% by volume or less, and further preferably 3% by volume or less. Thereby, the radiopharmaceutical composition from which the OH form and other non-radioactive compounds are removed stably without variation among lots can be obtained. The upper limit of the retention time is not particularly limited, but from the viewpoint of preventing yield reduction due to the decay of fluorine-18, the ethanol content in the eluent is in the range of 3 to 8% by volume, preferably 3 to 5% by volume. Is practical.

クロマトグラフィーの実行後、得られた[18F]HIC101溶液は、陰イオン交換樹脂に通液してもよい(二次精製工程)。これにより、トシル酸が確実に除去された放射性医薬組成物を得ることができる。陰イオン交換樹脂は、特に限定されないが、四級アンモニウム基が固定化されたものが好ましく、トリメチルアンモニウム基が固定化されたものがより好ましい。この場合において、四級アンモニウム基のカウンターアニオンは、塩化物イオンや炭酸イオンにすることができる。陰イオン交換樹脂に通液にする[18F]HIC101溶液の溶媒は、水とエタノールとの混液が好ましい。これにより、クロマトグラフィーで分取した[18F]HIC101画分を利用して、この二次精製工程を行うことができる。この場合、分取した[18F]HIC101画分をそのまま陰イオン交換樹脂に通液してもよいし、水又はエタノールを加えて、溶媒の極性を調整してもよい。 After the chromatography, the obtained [ 18 F] HIC101 solution may be passed through an anion exchange resin (secondary purification step). Thereby, the radiopharmaceutical composition from which tosylic acid was reliably removed can be obtained. The anion exchange resin is not particularly limited, but an anion exchange resin having a quaternary ammonium group immobilized thereon is preferred, and a trimethylammonium group immobilized is more preferred. In this case, the counter anion of the quaternary ammonium group can be a chloride ion or a carbonate ion. The solvent of the [ 18 F] HIC101 solution to be passed through the anion exchange resin is preferably a mixture of water and ethanol. Thereby, this secondary purification process can be performed using the [ 18 F] HIC101 fraction fractionated by chromatography. In this case, the fractionated [ 18 F] HIC101 fraction may be passed through an anion exchange resin as it is, or the polarity of the solvent may be adjusted by adding water or ethanol.

[調製工程]
調製工程では、精製工程で得られた[18F]HIC101溶液の濃縮を行い、クロマトグラフィーで使用したエタノール及び水などの溶媒を蒸散させる。本発明の放射性医薬組成物を注射剤として調製する場合は、濃縮後の残渣に、注射用水や生理食塩水を加えて[18F]HIC101の放射能濃度を調整してもよい。その後、メンブレンフィルターで滅菌濾過を行うことにより、[18F]HIC101を注射剤として得ることができる。
[Preparation process]
In the preparation step, the [ 18 F] HIC101 solution obtained in the purification step is concentrated, and a solvent such as ethanol and water used in chromatography is evaporated. When the radiopharmaceutical composition of the present invention is prepared as an injection, the radioactive concentration of [ 18 F] HIC101 may be adjusted by adding water for injection or physiological saline to the residue after concentration. Then, [ 18 F] HIC101 can be obtained as an injection by sterilizing filtration with a membrane filter.

調製工程では、[18F]HIC101とアスコルビン酸、又は、マンニトールとを混合する安定化工程を更に含んでいてもよい。これにより、[18F]HIC101の放射線分解を抑制し、使用時においても放射性不純物の少ない放射性医薬組成物を得ることができる。この安定化工程は、精製工程の後[18F]HIC101溶液の濃縮前に実行することが好ましい。 The preparation step may further include a stabilization step of mixing [ 18 F] HIC101 and ascorbic acid or mannitol. Thereby, the radiolysis of [ 18 F] HIC101 can be suppressed, and a radiopharmaceutical composition with few radioactive impurities can be obtained even during use. This stabilization step is preferably performed after the purification step and before concentration of the [ 18 F] HIC101 solution.

アスコルビン酸及びマンニトールの濃度は、本発明の製造方法により得られる放射性医薬組成物中、5〜70μmol/mLの範囲が好ましい。アスコルビン酸の濃度は、50〜70μmol/mLの範囲がより好ましく、マンニトールの濃度は、5〜15μmol/mLの範囲がより好ましい。   The concentration of ascorbic acid and mannitol is preferably in the range of 5 to 70 μmol / mL in the radiopharmaceutical composition obtained by the production method of the present invention. The concentration of ascorbic acid is more preferably in the range of 50 to 70 μmol / mL, and the concentration of mannitol is more preferably in the range of 5 to 15 μmol / mL.

アスコルビン酸及びマンニトールの添加方法は特に限定されないが、精製工程において、クロマトグラフィーの実行により得た[18F]HIC101画分、又は、二次精製工程の実行により得た、陰イオン交換樹脂からの溶出液に対し、アスコルビン酸及びマンニトールの溶液(好ましくは水溶液)を添加することができる。 The method for adding ascorbic acid and mannitol is not particularly limited. In the purification step, the [ 18 F] HIC101 fraction obtained by performing chromatography or the anion exchange resin obtained by performing the secondary purification step is used. A solution (preferably an aqueous solution) of ascorbic acid and mannitol can be added to the eluate.

なお、安定化工程は、調製工程以外の工程で実行することもできる。   In addition, a stabilization process can also be performed by processes other than a preparation process.

〔放射性医薬組成物〕
上記の製造方法を用いることにより、[18F]HIC101を有効成分として含有し、トシル酸を実質的に含有しない、放射性医薬組成物を提供することができる。
[Radiopharmaceutical composition]
By using the above production method, it is possible to provide a radiopharmaceutical composition containing [ 18 F] HIC101 as an active ingredient and substantially free of tosylic acid.

本発明において、「実質的に含有しない」とは、医薬として許容される不純物量であることをいう。好ましくは、高速液体クロマトグラフィー法で紫外可視吸光光度計により検出したとき、トシル酸の含量が検出限界値未満であればよい。検出波長は、200〜350nmを使用することが好ましい。固体相はオクタデシルシリル化シリカゲルを用いることが好ましい。溶離液としては、例えば、炭酸アンモニウム水溶液とアセトニトリルとの混液を用いることができる。トシル酸の分析条件の一例としては、以下が挙げられる。
・カラム:オクタデシルシリル化シリカゲル(内径4.6mm×長さ150mm,粒子径5μm)
・溶離液:50mmol/L炭酸アンモニウム水溶液/アセトニトリル=9/1
・流速:1mL/分
・検出器:紫外可視吸光光度計(波長220nm)
・トシル酸の保持時間:6〜7分
In the present invention, “substantially does not contain” means a pharmaceutically acceptable amount of impurities. Preferably, the content of tosylic acid should be less than the detection limit when detected by a UV-visible absorptiometer by high performance liquid chromatography. The detection wavelength is preferably 200 to 350 nm. The solid phase is preferably octadecylsilylated silica gel. As the eluent, for example, a mixed solution of an aqueous ammonium carbonate solution and acetonitrile can be used. Examples of tosylic acid analysis conditions include the following.
Column: Octadecylsilylated silica gel (inner diameter 4.6 mm × length 150 mm, particle diameter 5 μm)
Eluent: 50 mmol / L ammonium carbonate aqueous solution / acetonitrile = 9/1
・ Flow rate: 1 mL / min ・ Detector: UV-Vis spectrophotometer (wavelength 220 nm)
・ Tosylic acid retention time: 6-7 minutes

かかる組成物は、適宜、pH調節剤、製薬学的に許容される可溶化剤、安定剤又は酸化防止剤などの追加成分を含んでいてもよい。例えば、この放射性医薬組成物は、アスコルビン酸、又は、マンニトールを含有していてもよい。これらの濃度は、好ましくは、前述の調製工程で採用できる範囲とすることができる。   Such compositions may optionally contain additional components such as pH adjusters, pharmaceutically acceptable solubilizers, stabilizers or antioxidants. For example, this radiopharmaceutical composition may contain ascorbic acid or mannitol. These concentrations can preferably be in a range that can be employed in the above-described preparation step.

本発明の方法で得られた放射性医薬組成物は、精製工程で、有害なトリフルオロ酢酸を使用しておらず、OH体やトシル酸その他の非放射性不純物が除去されている。したがって、本発明の放射性医薬組成物は、安全性が高く、人体への投与が可能である。投与後、体内から放出される放射線をPET装置で検出することにより、体内の低酸素領域を非侵襲的に検出することができ、がんなどの疾患の診断や治療方針の決定を行うことが可能になる。   The radiopharmaceutical composition obtained by the method of the present invention does not use harmful trifluoroacetic acid in the purification step, and OH form, tosylic acid and other non-radioactive impurities are removed. Therefore, the radiopharmaceutical composition of the present invention is highly safe and can be administered to the human body. After administration, by detecting radiation emitted from the body with a PET device, it is possible to noninvasively detect hypoxic regions in the body, and to diagnose diseases such as cancer and determine treatment strategies It becomes possible.

以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。   EXAMPLES Hereinafter, although an Example is described and this invention is demonstrated in more detail, this invention is not limited to these content.

以下実施例で使用する2,2−ジメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−5−(p−トルエンスルホニルオキシメチル)−1,3−ジオキサン(化合物1,標識前駆体化合物)、及び、2,2−ジメチル−5−ヒドロキシメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−1,3−ジオキサン(化合物3)は、特許文献1(WO2013/042668)の実施例1の方法に従い合成した。
また、トシル酸は、和光純薬株式会社製のものを使用した。
実施例中、各化合物のNMRスペクトルによる分子構造は、NMRスペクトルは、NMR装置として、JNM−ECP−500(日本電子株式会社製)を使用して得た。共鳴周波数は、H−NMRでは500MHz、19F−NMRでは470MHzとした。溶媒は重クロロホルム又は重水を用い、重クロロホルムの場合はテトラメチルシランのシグナルδ0.00を参照として使用した。全ての化学シフトはデルタスケール(δ)上のppmであり、そしてシグナルの微細分裂については、略号(s:シングレット、d:ダブレット、m:マルチプレット)を用いて示した。
2,2-Dimethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -5- (p-toluenesulfonyloxymethyl) -1,3-dioxane (Compound 1) used in the following examples , Labeled precursor compound) and 2,2-dimethyl-5-hydroxymethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -1,3-dioxane (compound 3) The compound was synthesized according to the method of Example 1 of Patent Document 1 (WO2013 / 042668).
In addition, the tosylic acid manufactured by Wako Pure Chemical Industries, Ltd. was used.
In the examples, the molecular structure of each compound according to the NMR spectrum was obtained using JNM-ECP-500 (manufactured by JEOL Ltd.) as the NMR apparatus. The resonance frequency was 500 MHz for 1 H-NMR and 470 MHz for 19 F-NMR. As the solvent, deuterated chloroform or deuterated water was used. In the case of deuterated chloroform, the signal δ0.00 of tetramethylsilane was used as a reference. All chemical shifts are in ppm on the delta scale (δ), and signal fine splitting is indicated using abbreviations (s: singlet, d: doublet, m: multiplet).

[製造例1]非放射性1−(2,2−ジヒドロキシメチル−3−フルオロプロピル)−2−ニトロイミダゾール(HIC101)の合成
HIC101は、図1に示すスキームに従い合成した。
[Production Example 1] Synthesis of non-radioactive 1- (2,2-dihydroxymethyl-3-fluoropropyl) -2-nitroimidazole (HIC101) HIC101 was synthesized according to the scheme shown in FIG.

(ステップ1−1)2,2−ジメチル−5−フルオロメチル−5−[(2−ニトロ−1H−イミダゾール−1−イル)メチル]−1,3−ジオキサン(化合物2)の合成
化合物1(100mg,0.235mmol)をテトラヒドロフラン(3.5mL)に溶解し、テトラブチルアンモニウムフロリド・テトラフラン溶液(1.0mol/L溶液,0.24mL,0.24mmol)と、フッ化カリウム(17mg,0.293mmol)とを加え、加熱還流下で2時間撹拌した。反応終了後、溶媒を留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=2/1(v/v))にて精製を行い化合物2(57mg,収率89%)を得た。
(Step 1-1) Synthesis of 2,2-dimethyl-5-fluoromethyl-5-[(2-nitro-1H-imidazol-1-yl) methyl] -1,3-dioxane (Compound 2) Compound 1 ( 100 mg, 0.235 mmol) is dissolved in tetrahydrofuran (3.5 mL), tetrabutylammonium fluoride / tetrafuran solution (1.0 mol / L solution, 0.24 mL, 0.24 mmol), potassium fluoride (17 mg, 0.293 mmol) was added, and the mixture was stirred for 2 hours under heating to reflux. After completion of the reaction, the solvent was distilled off, and the resulting crude product was purified by silica gel column chromatography (eluent: hexane / ethyl acetate = 2/1 (v / v)) to obtain compound 2 (57 mg, yield). Rate 89%).

化合物2のH−NMR(溶媒:重クロロホルム):δ 7.23(d,J=0.9Hz,1H),7.18(d,J=0.9Hz,1H),4.80(s,2H),4.36(d,JH−F=47.2Hz,2H),3.83(d,J=12.6Hz,2H),3.64(d,J=12.6Hz,2H),1.45(s,3H),1.44(s,3H)。 1 H-NMR of compound 2 (solvent: deuterated chloroform): δ 7.23 (d, J = 0.9 Hz, 1H), 7.18 (d, J = 0.9 Hz, 1H), 4.80 (s , 2H), 4.36 (d, J H−F = 47.2 Hz, 2H), 3.83 (d, J = 12.6 Hz, 2H), 3.64 (d, J = 12.6 Hz, 2H). ), 1.45 (s, 3H), 1.44 (s, 3H).

(ステップ1−2)HIC101の合成
ステップ1−1で得た化合物2(57mg,0.209mmol)をメタノール(2mL)に溶解し、1mol/L塩酸(2mL)を加え、80℃で2時間加熱した。反応終了後、反応液を室温(25℃)まで冷却した後、溶媒を留去し、得られた粗生成物を酢酸エチルで洗浄することでHIC101(44mg,収率90%)を得た。
(Step 1-2) Synthesis of HIC101 Compound 2 (57 mg, 0.209 mmol) obtained in Step 1-1 was dissolved in methanol (2 mL), 1 mol / L hydrochloric acid (2 mL) was added, and the mixture was heated at 80 ° C. for 2 hours. did. After completion of the reaction, the reaction solution was cooled to room temperature (25 ° C.), the solvent was distilled off, and the resulting crude product was washed with ethyl acetate to obtain HIC101 (44 mg, yield 90%).

HIC101のH−NMR(溶媒:重水):δ 7.44(d,J=1.0Hz,1H),7.16(d,J=1.0Hz,1H),4.74(s,2H),4.48(d,JH−F=46.8Hz,2H),3.59−3.57(m,4H)。 1 H-NMR of HIC101 (solvent: heavy water): δ 7.44 (d, J = 1.0 Hz, 1H), 7.16 (d, J = 1.0 Hz, 1H), 4.74 (s, 2H) ), 4.48 (d, JH-F = 46.8 Hz, 2H), 3.59-3.57 (m, 4H).

[製造例2]1−(2,2−ジヒドロキシメチル−3−ヒドロキシプロピル)−2−ニトロイミダゾール(OH体)の合成
HIC101は、図2に示すスキームに従い合成した。
化合物3(50mg,0.184mmol)をメタノール(2mL)に溶解し、1mol/L塩酸(2mL)を加え、80℃で2時間加熱した。反応終了後、反応液を室温(25℃)まで冷却した後、溶媒を留去し、得られた粗生成物を酢酸エチルで洗浄することでOH体(56mg,定量)を得た。
OH体のH−NMR(溶媒:重水):δ 7.50(d,J=1.4Hz,1H),7.20(d,J=1.4Hz,1H),4.76(s,2H),3.59(s,6H)。
[Production Example 2] Synthesis of 1- (2,2-dihydroxymethyl-3-hydroxypropyl) -2-nitroimidazole (OH form) HIC101 was synthesized according to the scheme shown in FIG.
Compound 3 (50 mg, 0.184 mmol) was dissolved in methanol (2 mL), 1 mol / L hydrochloric acid (2 mL) was added, and the mixture was heated at 80 ° C. for 2 hr. After completion of the reaction, the reaction solution was cooled to room temperature (25 ° C.), the solvent was distilled off, and the resulting crude product was washed with ethyl acetate to obtain an OH form (56 mg, quantitative).
1 H-NMR of OH form (solvent: heavy water): δ 7.50 (d, J = 1.4 Hz, 1H), 7.20 (d, J = 1.4 Hz, 1H), 4.76 (s, 2H), 3.59 (s, 6H).

[実施例1]HIC101の精製条件の検討
製造例1で合成したHIC101、製造例2で合成したOH体、及びトシル酸を用い、以下の条件で、HPLCによる精製条件を検討した。
カラム:XBrigdeC18(内径3.0mm×長さ50mm,2.5μm)
カラム温度:25℃付近の一定温度(室温)
溶離液:水/エタノール混液。体積比は表1に示す。
流速: 3mL/分
検出波長:220nm、325nm
注入量:100μg/mL
HPLC装置:e2695型(セパレーションモジュール,ウォーターズ社製),2489型(UV検出器,ウォーターズ社製)
なお、比較のため、特許文献1の実施例9に示す精製条件の結果も併せて示した。
[Example 1] Examination of purification conditions for HIC101 Using HIC101 synthesized in Production Example 1, the OH form synthesized in Production Example 2, and tosylic acid, purification conditions by HPLC were examined under the following conditions.
Column: XBrigde C18 (inner diameter 3.0 mm × length 50 mm, 2.5 μm)
Column temperature: constant temperature around 25 ° C (room temperature)
Eluent: Water / ethanol mixture. The volume ratio is shown in Table 1.
Flow rate: 3 mL / min Detection wavelength: 220 nm, 325 nm
Injection volume: 100 μg / mL
HPLC apparatus: e2695 type (Separation module, manufactured by Waters), 2489 type (UV detector, manufactured by Waters)
For comparison, the results of the purification conditions shown in Example 9 of Patent Document 1 are also shown.

表1で示すように、溶離液として、エタノールの含有率が8体積%以下の水/エタノール混液を用いることで、HIC101とOH体とトシル酸とが分離できることが示された。   As shown in Table 1, it was shown that by using a water / ethanol mixed solution having an ethanol content of 8% by volume or less as the eluent, HIC101, OH form, and tosylic acid can be separated.

[実施例2]コールドランによるHIC101の精製
炭酸カリウム水溶液(7mg/mL、0.3mL)及びクリプトフィックス222(商品名、メルク社製)のアセトニトリル溶液(20mg/mL,0.7mL)を混合した。これをアルゴンガスの通気下110℃7.5分加熱して水を蒸発させた後、アセトニトリル(0.5mL×2)を加えて共沸、乾固した。ここに標識前駆体化合物(5mg,11.4μmol)を溶解したアセトニトリル溶液(0.3mL)を加え、110℃で10分加熱した。反応終了後、1mol/L塩酸(0.6mL)を加え、85℃で3分間加熱した。反応終了後、1mol/L酢酸ナトリウム水溶液(0.6mL)を加えた後、製造例1で合成したHIC101(1mg)を加え、実施例1のNo.2の条件下でHPLCを実行した。
[Example 2] Purification of HIC101 by cold run Potassium carbonate aqueous solution (7 mg / mL, 0.3 mL) and Cryptofix 222 (trade name, manufactured by Merck & Co.) acetonitrile solution (20 mg / mL, 0.7 mL) were mixed. . This was heated at 110 ° C. for 7.5 minutes under a stream of argon gas to evaporate water, and then acetonitrile (0.5 mL × 2) was added and azeotropically dried. The acetonitrile solution (0.3 mL) which melt | dissolved the label | marker precursor compound (5 mg, 11.4 micromol) was added here, and it heated at 110 degreeC for 10 minutes. 1 mol / L hydrochloric acid (0.6 mL) was added after completion | finish of reaction, and it heated at 85 degreeC for 3 minute (s). After completion of the reaction, 1 mol / L aqueous sodium acetate solution (0.6 mL) was added, and then HIC101 (1 mg) synthesized in Production Example 1 was added. HPLC was performed under 2 conditions.

得られたクロマトグラムを図3に示す。図3で示すとおり、保持時間11分のHIC101のピークが、トシル酸、OH体、及びその他の不純物のピークと明確に分離することが確認できた。   The obtained chromatogram is shown in FIG. As shown in FIG. 3, it was confirmed that the peak of HIC101 having a retention time of 11 minutes was clearly separated from peaks of tosylic acid, OH form, and other impurities.

[実施例3][18F]HIC101製剤の製造[1]
サイクロトロン(製品名HM‐18,住友重機械社製,照射条件25μA,20分)から取り出した[18F]フッ化物イオン含有[18O]水を、陰イオン交換カラム(Sep―Pak(登録商標) Accell Plus QMA Plus Light(商品名),日本ウォーターズ株式会社製)を炭酸カリウム水溶液で前処理したものに通液し、[18F]フッ化物イオンを吸着捕集した。次いで、該カラムに炭酸カリウム水溶液(7mg/mL、0.2mL)及びクリプトフィックス222(商品名、メルク社製)のアセトニトリル溶液(20mg/mL,0.7mL)を通液して、[18F]フッ化物イオンを溶出した。これを窒素の通気下120℃1分、140℃1分×3加熱して水を蒸発させた後、アセトニトリル(0.3mL×2)を加えて共沸、乾固した。ここに標識前駆体化合物(5mg,11.4μmol)を溶解したアセトニトリル溶液(0.9mL)を加え、110℃で10分加熱した。85℃で1分加熱して濃縮した後、1mol/L塩酸(0.6mL)加え、85℃で1分間加熱した。反応終了後、1mol/L酢酸ナトリウム水溶液(1.5mL)を加えた後、95℃で1分間加熱した。得られた残渣を用い、実施例1のNo.2の条件下(ただし、カラムは、XBrigdeC18のサイズが内径10mm×長さ250mm,粒子径が5μmのものを使用し、検出は、UV220nm、及び、放射線検出器(OKEN社製)を用いた。)でHPLC精製を行い、図4に示す保持時間11分のピークを[18F]HIC101画分として分取した。当該画分にアスコルビン酸水溶液(製品名ビタシミン注射液500mg(武田薬品社製、以下、「ビタシミン注射液」と省略することもある。)、0.4mL、アスコルビン酸100mg相当)を加えた後、濃縮し、残渣を生理食塩水で希釈して、[18F]HIC101製剤を放射能量2.05GBq,放射能濃度268MBq/mL,製造時間65分で得た。
[Example 3] [ 18 F] Production of HIC101 formulation [1]
[ 18 F] fluoride ion-containing [ 18 O] water taken out from the cyclotron (product name HM-18, manufactured by Sumitomo Heavy Industries, Ltd., irradiation condition 25 μA, 20 minutes) was added to an anion exchange column (Sep-Pak (registered trademark)). ) Accell Plus QMA Plus Light (trade name, manufactured by Nihon Waters Co., Ltd.) was pretreated with an aqueous potassium carbonate solution, and [ 18 F] fluoride ions were adsorbed and collected. Next, an aqueous solution of potassium carbonate (7 mg / mL, 0.2 mL) and a solution of Cryptofix 222 (trade name, manufactured by Merck) in acetonitrile (20 mg / mL, 0.7 mL) were passed through the column, and [ 18 F The fluoride ion was eluted. This was heated at 120 ° C. for 1 minute under nitrogen flow and 140 ° C. for 1 minute × 3 to evaporate the water, and then acetonitrile (0.3 mL × 2) was added and azeotroped to dryness. The acetonitrile solution (0.9 mL) which melt | dissolved the label | marker precursor compound (5 mg, 11.4 micromol) was added here, and it heated at 110 degreeC for 10 minutes. After concentrating by heating at 85 ° C. for 1 minute, 1 mol / L hydrochloric acid (0.6 mL) was added, and the mixture was heated at 85 ° C. for 1 minute. 1 mol / L sodium acetate aqueous solution (1.5 mL) was added after completion | finish of reaction, Then, it heated at 95 degreeC for 1 minute. Using the obtained residue, No. 1 in Example 1 was obtained. 2 (however, the column used was XBrigde C18 having an inner diameter of 10 mm × length of 250 mm and a particle diameter of 5 μm, and UV 220 nm and a radiation detector (manufactured by OKEN) were used for detection. HPLC purification was performed, and the peak having a retention time of 11 minutes shown in FIG. 4 was fractionated as the [ 18 F] HIC101 fraction. After adding an ascorbic acid aqueous solution (product name: Vitasimin injection solution 500 mg (manufactured by Takeda Pharmaceutical Co., Ltd., hereinafter, sometimes referred to as “vitacimin injection solution”), 0.4 mL, ascorbic acid 100 mg) to the fraction, After concentration, the residue was diluted with physiological saline to obtain a [ 18 F] HIC101 preparation with a radioactivity of 2.05 GBq, a radioactivity concentration of 268 MBq / mL, and a production time of 65 minutes.

得られた[18F]HIC101製剤のHPLC分析結果を図5に示す。分析条件は、以下のとおりである。
・カラム:XBrigdeC18(内径10mm×長さ250mm,2.5μm)
・溶離液:50mmol/L炭酸アンモニウム水溶液/アセトニトリル=9/1
・流速:0.5mL/分
・検出器:紫外可視吸光光度計(波長220nm,製品名SPD-10ATvp,島津製作所社製),放射線検出器(製品名RLC−700,アロカ社製)
The HPLC analysis result of the obtained [ 18 F] HIC101 preparation is shown in FIG. The analysis conditions are as follows.
Column: XBrigde C18 (inner diameter 10 mm × length 250 mm, 2.5 μm)
Eluent: 50 mmol / L ammonium carbonate aqueous solution / acetonitrile = 9/1
・ Flow rate: 0.5 mL / min ・ Detector: UV-visible absorptiometer (wavelength 220 nm, product name SPD-10ATvp, manufactured by Shimadzu Corporation), radiation detector (product name RLC-700, manufactured by Aloka)

図5(a)がUV220nmで検出した結果であり、図5(b)がRIで検出した結果である。図5(a)において保持時間0.7分はアスコルビン酸であり、保持時間12.7分は、ビタシミン注射液中に含まれる安定化剤のp−ヒドロキシ安息香酸メチルである。図5(a)で示すように、OH体及びトシル酸は検出されておらず、OH体及びトシル酸を実質的に含まない[18F]HIC101製剤が得られたことが示された。また、図5(b)の結果から、放射化学的純度が98.4%の[18F]HIC101製剤が得られたことが示された。 FIG. 5A shows the result of detection at UV 220 nm, and FIG. 5B shows the result of detection by RI. In FIG. 5 (a), the retention time of 0.7 minutes is ascorbic acid, and the retention time of 12.7 minutes is methyl p-hydroxybenzoate as a stabilizer contained in the bitacimine injection solution. As shown in FIG. 5 (a), OH form and tosylic acid were not detected, indicating that a [ 18 F] HIC101 preparation substantially free of OH form and tosylic acid was obtained. From the results of FIG. 5 (b), the radiochemical purity was shown that 98.4% of the [18 F] HIC101 formulation was obtained.

[実施例4][18F]HIC101製剤の製造[2]
実施例3と同様な方法で、[18F]フッ素化反応及び脱保護反応を行った。反応終了後、1mol/L酢酸ナトリウム水溶液(1.5mL)を加えた後、95℃で1分間加熱した。得られた残渣を用い、実施例1のNo.4の条件下(ただし、カラムは、XBrigdeC18のサイズが内径10mm×長さ250mm,粒子径が5μmのものを使用し、検出は、UV325nm、及び、放射線検出器(製品名RLC−700,アロカ社製)で行った。)でHPLC精製を行い、図6に示す保持時間25分の[18F]HIC101画分を分取した。次いで、陰イオン交換カラム(Sep―Pak(登録商標) Accell Plus QMA Plus Light(商品名),日本ウォーターズ株式会社製)を炭酸カリウム水溶液で前処理したものに通液し、溶出液にアスコルビン酸水溶液(ビタシミン注射液500mg(武田薬品社製)、0.4mL、アスコルビン酸100mg相当)を加えた後、濃縮し、残渣を生理食塩水で希釈して、[18F]HIC101製剤を放射能量3.70GBq,放射能濃度334.8MBq/mL,製造時間70分で得た。
[Example 4] [ 18 F] Production of HIC101 formulation [2]
In the same manner as in Example 3, [ 18 F] fluorination reaction and deprotection reaction were performed. 1 mol / L sodium acetate aqueous solution (1.5 mL) was added after completion | finish of reaction, Then, it heated at 95 degreeC for 1 minute. Using the obtained residue, No. 1 in Example 1 was obtained. 4 (however, the column is XBrigde C18 having an inner diameter of 10 mm × length of 250 mm and a particle diameter of 5 μm, and the detection is UV 325 nm and a radiation detector (product name RLC-700, Aroca) HPLC purification was carried out in step 1), and the [ 18 F] HIC101 fraction shown in FIG. Subsequently, an anion exchange column (Sep-Pak (registered trademark) Accel Plus QMA Plus Light (trade name), manufactured by Nihon Waters Co., Ltd.) was passed through a pre-treated solution with an aqueous potassium carbonate solution, and an ascorbic acid aqueous solution was used as the eluent. (Bitashimin injection 500 mg (manufactured by Takeda Pharmaceutical), 0.4 mL, ascorbic acid 100mg equivalent) was added, concentrated, and the residue was diluted with saline, [18 F] a HIC101 formulation radioactivity 3. 70 GBq, the radioactivity concentration was 334.8 MBq / mL, and the production time was 70 minutes.

得られた[18F]HIC101製剤のHPLC分析結果を図7、8に示す。分析条件は、紫外可視吸光光度計の波長を325nm以外にした以外は実施例3と同様にした。 The HPLC analysis result of the obtained [ 18 F] HIC101 preparation is shown in FIGS. The analysis conditions were the same as in Example 3 except that the wavelength of the ultraviolet-visible absorptiometer was other than 325 nm.

図7(a)がUV325nmで検出した結果であり、図7(b)は図7(a)の拡大図である。図8は、RIで検出した結果である。図7において保持時間1.5分はアスコルビン酸であり、保持時間1.6分及び2.4分はビタシミン注射液由来成分であり、保持時間7.6分は[18F]HIC101であり、保持時間15.1分は、ビタシミン注射液中に含まれる安定化剤のp−ヒドロキシ安息香酸メチルである。アスコルビン酸以外の保持時間2.6分のピークはブランク(溶離液由来のピーク)である。実施例3の方法では、ロットにより、トシル酸のピークや[18F]HIC101の近傍に構造未知の不純物ピークが確認される場合があったが、本実施例では、ロット間のばらつきなく図7で示すように、トシル酸は検出されず、[18F]HIC101の近傍にもピークは見られなかった。また、図8の結果から、放射化学的純度が97%以上の[18F]HIC101製剤が得られたことが示された。 FIG. 7A shows the result of detection at UV 325 nm, and FIG. 7B is an enlarged view of FIG. 7A. FIG. 8 shows the result of detection by RI. In FIG. 7, the retention time of 1.5 minutes is ascorbic acid, the retention times of 1.6 minutes and 2.4 minutes are components derived from bitacimine injection, and the retention time of 7.6 minutes is [ 18 F] HIC101. A retention time of 15.1 minutes is methyl p-hydroxybenzoate, a stabilizer, contained in a vitamincine injection. The peak with a retention time of 2.6 minutes other than ascorbic acid is blank (peak derived from the eluent). In the method of Example 3, the tosylic acid peak and the impurity peak of unknown structure may be confirmed in the vicinity of [ 18 F] HIC101 depending on the lot. As shown, no tosylic acid was detected and no peak was observed in the vicinity of [ 18 F] HIC101. Moreover, from the result of FIG. 8, it was shown that the [ 18 F] HIC101 preparation having a radiochemical purity of 97% or more was obtained.

[実施例5]安定化剤検討
実施例3と同様に製造した[18F]HIC101製剤(ロットA)、アスコルビン酸水溶液に代えてマンニトール水溶液(製品名マンニットT注15%(テルモ社製))を用いる以外は実施例3と同様にして製造した[18F]HIC101製剤(ロットB)、アスコルビン酸水溶液を添加しない以外は実施例3と同様にして製造した[18F]HIC101製剤(ロットC)をそれぞれ用意した。そして、実施例3と同様なHPLC条件で、製造直後及び製造2時間後の放射化学的純度を分析した。結果を表2に示す。
[Example 5] Examination of stabilizer [ 18 F] HIC101 preparation (lot A) produced in the same manner as in Example 3, an aqueous mannitol solution (product name: Mannit T Note 15% (manufactured by Terumo)) instead of an ascorbic acid aqueous solution ) example 3 was prepared in the same manner as in [18 F] HIC101 formulation except using (lot B), except for not adding the aqueous ascorbic acid solution was prepared in the same manner as in example 3 [18 F] HIC101 formulation (lot C) was prepared. The radiochemical purity immediately after the production and 2 hours after the production was analyzed under the same HPLC conditions as in Example 3. The results are shown in Table 2.

表2の結果から、アスコルビン酸又はマンニトールを用いることで、放射性不純物の発生を抑制できることが示された。   From the result of Table 2, it was shown that generation of radioactive impurities can be suppressed by using ascorbic acid or mannitol.

Claims (6)

下記一般式(1)で表される放射性フッ素標識化合物又はその塩を有効成分として含有する放射性医薬組成物の製造方法であって、
下記式(2)で表される標識前駆体化合物から前記放射性フッ素標識化合物の粗生成物を得る合成工程と、
前記放射性フッ素標識化合物を精製する精製工程と、
を含み、
前記精製工程において、オクタデシルシリル化シリカゲルを固定相とし、水とエタノールとの混液を溶離液として用いたクロマトグラフィーにより、前記放射性フッ素標識化合物とトシル酸との分離を実行する、放射性医薬組成物の製造方法。
〔式中、Xは、放射性フッ素原子である。〕
〔式中、Tsは、トシル基である。〕
A method for producing a radiopharmaceutical composition comprising a radioactive fluorine-labeled compound represented by the following general formula (1) or a salt thereof as an active ingredient,
A synthesis step of obtaining a crude product of the radioactive fluorine-labeled compound from a labeled precursor compound represented by the following formula (2);
A purification step of purifying the radioactive fluorine-labeled compound;
Including
In the purification step, a radiopharmaceutical composition is obtained by performing separation of the radioactive fluorine-labeled compound and tosylic acid by chromatography using octadecylsilylated silica gel as a stationary phase and a mixture of water and ethanol as an eluent. Production method.
[In formula, X is a radioactive fluorine atom. ]
[In the formula, Ts represents a tosyl group. ]
前記溶離液中の前記エタノールの含有率が8体積%以下である、請求項1に記載の放射性医薬組成物の製造方法。   The manufacturing method of the radiopharmaceutical composition of Claim 1 whose content rate of the said ethanol in the said eluent is 8 volume% or less. 前記溶離液中の前記エタノールの含有率が3〜5体積%である、請求項1又は2に記載の放射性医薬組成物の製造方法。   The manufacturing method of the radiopharmaceutical composition of Claim 1 or 2 whose content rate of the said ethanol in the said eluent is 3-5 volume%. 前記精製工程は、前記クロマトグラフィーの実行後に前記放射性フッ素標識化合物の溶液を陰イオン交換樹脂に通液する二次精製工程を含む、請求項1乃至3いずれか一項に記載の放射性医薬組成物の製造方法。   The radiopharmaceutical composition according to any one of claims 1 to 3, wherein the purification step includes a secondary purification step of passing the solution of the radioactive fluorine-labeled compound through an anion exchange resin after execution of the chromatography. Manufacturing method. 前記放射性フッ素標識化合物と、アスコルビン酸又はマンニトールとを混合する安定化工程を更に含む、請求項1乃至4いずれか一項に記載の放射性医薬組成物の製造方法。   The manufacturing method of the radiopharmaceutical composition as described in any one of Claims 1 thru | or 4 which further includes the stabilization process which mixes the said radioactive fluorine labeling compound, ascorbic acid, or mannitol. 前記安定化工程は、前記精製工程の後に実行する、請求項5に記載の放射性医薬組成物の製造方法 The method for producing a radiopharmaceutical composition according to claim 5, wherein the stabilization step is performed after the purification step .
JP2013219924A 2013-10-23 2013-10-23 Method for producing radiopharmaceutical composition Active JP6226322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219924A JP6226322B2 (en) 2013-10-23 2013-10-23 Method for producing radiopharmaceutical composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219924A JP6226322B2 (en) 2013-10-23 2013-10-23 Method for producing radiopharmaceutical composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017148759A Division JP6472493B2 (en) 2017-08-01 2017-08-01 Radiopharmaceutical composition

Publications (2)

Publication Number Publication Date
JP2015081242A JP2015081242A (en) 2015-04-27
JP6226322B2 true JP6226322B2 (en) 2017-11-08

Family

ID=53012048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219924A Active JP6226322B2 (en) 2013-10-23 2013-10-23 Method for producing radiopharmaceutical composition

Country Status (1)

Country Link
JP (1) JP6226322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523107B2 (en) * 2015-09-08 2019-05-29 日本メジフィジックス株式会社 Radioactive fluorine labeled precursor compound and method for producing radioactive fluorine labeled compound using the same
JP7159157B2 (en) * 2017-06-23 2022-10-24 日本メジフィジックス株式会社 Method for producing radioactive fluorine-labeled compound and method for producing radiopharmaceutical
WO2019151384A1 (en) * 2018-01-31 2019-08-08 国立大学法人千葉大学 Radioactive pharmaceutical
JP7100841B2 (en) 2018-03-07 2022-07-14 日本メジフィジックス株式会社 Method for producing radioactive pharmaceutical composition
JPWO2020202831A1 (en) * 2019-03-29 2020-10-08

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1894577A4 (en) * 2005-06-14 2012-03-28 Nihon Mediphysics Co Ltd Radioactive diagnostic imaging agent
JP5208328B1 (en) * 2011-09-22 2013-06-12 日本メジフィジックス株式会社 Radioactive fluorine-labeled compound

Also Published As

Publication number Publication date
JP2015081242A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6226322B2 (en) Method for producing radiopharmaceutical composition
JP5258583B2 (en) Method for producing radioactive diagnostic imaging agent
CN107261159B (en) Stabilization of radiopharmaceutical compositions using ascorbic acid
EP1978015B1 (en) Precursor compound of radioactive halogen labeled organic compound
JP2022136074A (en) Novel formulation and method of synthesis
CA2672262C (en) Radioactive diagnostic imaging agent
IL258148A (en) Method for producing flutemetamol
JP6472493B2 (en) Radiopharmaceutical composition
KR101842989B1 (en) Process for producing fluorinated compounds using alcohol solvent having carbonyl group
JP7424574B2 (en) Method for producing a radioactive fluorine-labeled compound and method for producing a radiopharmaceutical composition
JP7100841B2 (en) Method for producing radioactive pharmaceutical composition
Schoeps et al. Synthesis of racemic [α‐11C] amphetamine and [α‐11C] phenethylamine from [11C] nitroalkanes
JP6955347B2 (en) How to make flutemetamol
CN109400615B (en) Beta-amyloid targeted coumarin compound and preparation and application thereof
Brömmel et al. Synthesis and biological evaluation of PET tracers designed for imaging of calcium activated potassium channel 3.1 (K Ca 3.1) channels in vivo
US10695450B2 (en) Synthesis of a radioactive agent composition
WO2014163106A1 (en) Compound suitable for detection of vesicular acetylcholine transporter
JP2003026659A (en) Muscarinic acetylcholine neural system-labeling compound and method for producing the same
JP2014218454A (en) Styrylpyridine derivative compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6226322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250