JP6225750B2 - Valve timing control device - Google Patents

Valve timing control device Download PDF

Info

Publication number
JP6225750B2
JP6225750B2 JP2014037286A JP2014037286A JP6225750B2 JP 6225750 B2 JP6225750 B2 JP 6225750B2 JP 2014037286 A JP2014037286 A JP 2014037286A JP 2014037286 A JP2014037286 A JP 2014037286A JP 6225750 B2 JP6225750 B2 JP 6225750B2
Authority
JP
Japan
Prior art keywords
peripheral surface
driven
camshaft
fluid
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014037286A
Other languages
Japanese (ja)
Other versions
JP2015161231A (en
Inventor
祐司 野口
祐司 野口
丈雄 朝日
丈雄 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2014037286A priority Critical patent/JP6225750B2/en
Priority to CN201810934455.9A priority patent/CN109026250B/en
Priority to CN201580009553.6A priority patent/CN106062323B/en
Priority to US15/118,206 priority patent/US9903237B2/en
Priority to PCT/JP2015/053901 priority patent/WO2015129476A1/en
Publication of JP2015161231A publication Critical patent/JP2015161231A/en
Application granted granted Critical
Publication of JP6225750B2 publication Critical patent/JP6225750B2/en
Priority to US15/880,857 priority patent/US10066520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs

Description

本発明は、弁開閉時期制御装置に関し、詳しくは、内燃機関のクランクシャフトと同期回転する駆動側回転体と、弁開閉用のカムシャフトの軸端に連結され該カムシャフトと一体回転する従動側回転体とを有し、カムシャフトの回転軸芯と同軸芯上に制御弁機構を配置している構成の弁開閉時期制御装置に関する。   The present invention relates to a valve opening / closing timing control device, and more specifically, a drive side rotating body that rotates synchronously with a crankshaft of an internal combustion engine, and a driven side that is connected to a shaft end of a camshaft for valve opening / closing and rotates integrally with the camshaft. The present invention relates to a valve opening / closing timing control device having a structure in which a control valve mechanism is disposed on a coaxial shaft and a rotating shaft core of a camshaft.

上記のように構成された弁開閉時期制御装置として特許文献1には、駆動側回転体に従動側回転体を内包し、従動側回転体の内周側に流体導通部材(文献の符号は46)を嵌め込み、これをカムシャフト(文献の符号は10)の端部に当接させた状態で従動側回転体を筒状のネジ部材14により締結している。また、ネジ部材14の内部空間に制御弁機構94を備えている。   As a valve opening / closing timing control device configured as described above, Patent Document 1 includes a driven-side rotating body including a driven-side rotating body, and a fluid conducting member (reference number 46 is set on the inner peripheral side of the driven-side rotating body). ), And the driven rotating body is fastened by a cylindrical screw member 14 in a state where the camshaft is brought into contact with the end of a camshaft (reference numeral 10). A control valve mechanism 94 is provided in the internal space of the screw member 14.

この特許文献1では、カムシャフトに供給された作動油は、流体導通部材(文献の符号は46)を介して制御弁機構94に給排される。また、この特許文献1では、流体導通部材46が、カムシャフト側の端部の内周部分を抉り取った形状に成形され、外周側の軸芯方向での寸法が内周側より長くなっている。このような導体導通部材46の形状から、ネジ部材14で締結される場合には、外周部分がカムシャフト10の端部に当接することになる。尚、このカムシャウト側の端部の外周が、ラジアル軸受24として機能することになり、これに駆動側回転体のスプロケット22が回転自在に支持される。   In this Patent Document 1, the hydraulic oil supplied to the camshaft is supplied to and discharged from the control valve mechanism 94 via a fluid conducting member (reference numeral 46). Moreover, in this patent document 1, the fluid conduction member 46 is shape | molded in the shape which scraped off the inner peripheral part of the edge part by the side of a camshaft, and the dimension in the axial center direction of an outer peripheral side becomes longer than an inner peripheral side. Yes. Due to the shape of the conductor conducting member 46, when the screw member 14 is used, the outer peripheral portion comes into contact with the end of the camshaft 10. In addition, the outer periphery of the end portion on the cam shout side functions as a radial bearing 24, and the sprocket 22 of the driving side rotating body is rotatably supported by this.

また、特許文献2には、駆動側回転体(文献では、ハウジング)に対して従動側回転体(文献ではロータ)が内包されると共に、この従動側回転体が、フロントブッシングと、ベーンロータと、リアブッシングとを回転軸芯の方向に接触する状態で、センターボルトによりカムシャフトに連結した構成が記載されている。   Patent Document 2 includes a driven-side rotating body (a rotor in the document) with respect to a driving-side rotating body (in the document, a housing), and the driven-side rotating body includes a front bushing, a vane rotor, A configuration is described in which the rear bushing is connected to the camshaft by a center bolt in a state where the rear bushing is in contact with the direction of the rotation axis.

この特許文献2では、センターボルトに外嵌する状態で回転軸芯に沿う方向にスライド移動自在にスプールを支持することにより制御弁機構を構成している。この制御弁機構はリヤブッシングに対して回転軸芯と平行する姿勢で形成した導入油路から作動油が供給され、制御弁機構からの作動油が回転軸芯に直交する姿勢の第2排出油路から排出されるように構成されている。   In Patent Document 2, a control valve mechanism is configured by supporting a spool so as to be slidable in a direction along a rotation axis while being fitted around a center bolt. The control valve mechanism is supplied with hydraulic oil from an introduction oil passage formed in a posture parallel to the rotating shaft core with respect to the rear bushing, and the second discharged oil in a posture in which the hydraulic oil from the control valve mechanism is orthogonal to the rotating shaft core. It is configured to be discharged from the road.

ドイツ国特許出願公開102008057492号公報 (DE10 2008 057 492A1)German Patent Application Publication No. 102008057492 (DE10 2008 057 492A1) 特開2013‐245596号公報JP 2013-245596 A

従来からの弁開閉時期制御装置は、進角室と遅角室とに対する作動油の給排により、駆動側回転体と従動側回転体との相対回転位相を変更し、これにより内燃機関の吸気弁又は排気弁の開閉時期を設定するように構成されている。   Conventional valve opening / closing timing control devices change the relative rotational phase of the driving side rotating body and the driven side rotating body by supplying and discharging hydraulic oil to and from the advance angle chamber and the retard angle chamber. The opening / closing timing of the valve or the exhaust valve is set.

特許文献1及び特許文献2に記載されるように、従動側回転体の内部に制御弁機構を備えた弁開閉時期制御装置では、作動油を制御弁機構に供給するための油路を、カムシャフトから従動側回転体に亘る領域に形成している。しかしながら、単一の部材を用いて従動側回転体を構成し、この従動側回転体に油路を形成することを想定すると、油路を形成する加工が困難になる。このような理由から、各々の特許文献に記載されるように従動側回転体に内部ロータ等と中間部材(特許文献1では流体導通部材・符号は46:特許文献2ではリアブッシュ)を備え、これに油路を形成している。   As described in Patent Document 1 and Patent Document 2, in a valve opening / closing timing control device provided with a control valve mechanism inside a driven rotor, an oil passage for supplying hydraulic oil to the control valve mechanism is provided with a cam. It forms in the area | region ranging from a shaft to a driven side rotary body. However, if it is assumed that a driven-side rotator is formed using a single member and an oil passage is formed in the driven-side rotator, it is difficult to form the oil passage. For this reason, the driven rotor is provided with an inner rotor and the like and an intermediate member (fluid conducting member / reference numeral 46 in Patent Document 1: rear bush in Patent Document 2) as described in each patent document, An oil passage is formed in this.

このよう中間部材を用いる場合には、この中間部材を、従動側回転体の内部ロータ等とカムシャフトとの間に挟み込む位置に配置し、ボルト等の締結力により夫々を圧接させている。このように圧接させることにより、従動側回転体と中間部材との接合面、あるいは、中間部材とカムシャフトとの接合面での作動油のリークを抑制した状態での作動油の流れを可能にしている。   When such an intermediate member is used, the intermediate member is disposed at a position sandwiched between the internal rotor or the like of the driven-side rotating body and the camshaft, and is brought into pressure contact with a fastening force such as a bolt. By press-contacting in this way, it is possible to flow the hydraulic oil in a state in which the leakage of the hydraulic oil is suppressed at the joint surface between the driven rotor and the intermediate member or the joint surface between the intermediate member and the camshaft. ing.

しかしながら、特許文献1に記載されるように中間部材の外周部のみがカムシャフトに当接する構造であると、ボルト等による締結力がカムシャフトとの当接部分を拡径させる方向に作用し、この中間部材のうちカムシャフトに近い部位ほど半径が大きくなる現象を招くことがあった。   However, as described in Patent Document 1, when only the outer peripheral portion of the intermediate member is in contact with the camshaft, the fastening force by a bolt or the like acts in the direction of expanding the contact portion with the camshaft, Of these intermediate members, the closer to the camshaft, the greater the radius.

このように中間部材の端部が拡大するように変形すると、この変形に伴い中間部材の内径も、カムシャフト側ほど大径化するように拡大することになり、この中間部分の内周に形成される流路での流体のリーク量が増大することもあった。   When the end of the intermediate member is deformed so as to expand in this way, the inner diameter of the intermediate member increases with the deformation so as to increase toward the camshaft side, and is formed on the inner periphery of the intermediate portion. In some cases, the amount of fluid leakage in the flow path is increased.

このような不都合に対し、特許文献2のリアブッシュは、内周側から外周側の全面がカムシャフトに当接する構成であるため、前述した不都合を招くことはない。しかしながら、この特許文献2のリアブッシュはカムシャフトの回転軸芯に沿う方向に形成した導入油路により作動油を供給する構成であるため、リアブッシュの締結力が低い場合には、このリアブッシュの両端部分から作動油がリークすることもあり改善の余地がある。   In contrast to such inconvenience, the rear bushing of Patent Document 2 has a configuration in which the entire surface from the inner peripheral side to the outer peripheral side is in contact with the camshaft. However, since the rear bush of Patent Document 2 is configured to supply hydraulic oil through an introduction oil passage formed in a direction along the rotational axis of the camshaft, this rear bushing is used when the fastening force of the rear bushing is low. There is room for improvement because hydraulic oil may leak from both ends.

本発明の目的は、従動側回転体とカムシャフトとの間に配置される中間部材における流体のリークを抑制した弁開閉時期制御装置を合理的に構成する点にある。   An object of the present invention is to rationally configure a valve opening / closing timing control device that suppresses fluid leakage in an intermediate member disposed between a driven-side rotator and a camshaft.

本発明の特徴は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記駆動側回転体の内側に当該駆動側回転体と同軸芯で相対回転可能に配置された従動側回転体と、前記従動側回転体と前記カムシャフトとの間に連結される中間部材と、前記従動側回転体に取付られる取付部材と、前記駆動側回転体と前記従動側回転体との間に形成される進角室及び遅角室と、前記カムシャフトの回転軸芯と同軸芯上に配置される制御弁機構とを備え、前記進角室及び前記遅角室に対して前記制御弁機構を介して流体が選択的に流入される又は前記進角室及び遅角室から流出されることを許容する流路が形成され、前記進角室及び前記遅角室への流体の流入により前記駆動側回転体と前記従動側回転体との相対回転位相の変更を行う流路が形成され、
前記中間部材が、前記取付部材の外周面に当接する内径の内周面と、前記駆動側回転体の内周に当接する外周面と、前記従動側回転体に当接する第1側壁と、前記カムシャフトに当接する第2側壁とを有し、前記内周面に供給される流体を前記制御弁機構に送り出すための導出流路が前記第1側壁と前記第2側壁との中間位置で径方向に沿う姿勢で形成されている点にある。
A feature of the present invention is that a driving-side rotating body that rotates synchronously with a crankshaft of an internal combustion engine, a driven-side rotating body that is disposed on the inner side of the driving-side rotating body and is coaxially rotatable with the driving-side rotating body. An intermediate member connected between the driven-side rotator and the camshaft; an attachment member attached to the driven-side rotator; and the drive-side rotator and the driven-side rotator. An advance chamber and a retard chamber, and a control valve mechanism disposed on the same axis as the rotation axis of the camshaft, and the control valve mechanism is interposed between the advance chamber and the retard chamber. And a flow path is formed to allow fluid to selectively flow in or out of the advance chamber and the retard chamber, and the drive side is driven by the inflow of fluid into the advance chamber and the retard chamber. A flow path for changing the relative rotational phase between the rotating body and the driven rotating body is formed. It is,
The intermediate member has an inner peripheral surface that is in contact with the outer peripheral surface of the mounting member, an outer peripheral surface that is in contact with the inner periphery of the drive-side rotator, a first side wall that is in contact with the driven-side rotator, A second side wall abutting on the camshaft, and a lead-out flow path for sending the fluid supplied to the inner peripheral surface to the control valve mechanism has a diameter at an intermediate position between the first side wall and the second side wall. It is in a point formed in a posture along the direction.

この構成によると、中間部材の内周面から供給される流体を、この内周面に連通する導出流路を介して制御弁機構に供給することが可能となる。つまり、この構成では、中間部材の第2側壁とカムシャフトとの間、あるいは、中間部材の第1側壁と従動側回転体の間において、回転軸芯に沿う方向に流体を流す流路が形成されないので、これらの境界位置で流体がリークする不都合を解消できる。
ここで、中間部材の内周面に対して全周に亘る環状溝を形成し、この環状溝を介して外部に流体を供給する構成と比較すると、本発明の構成では、中間部材の内周面に導出流路を孔状に形成するため、取付部材の外周面との境界に流体が接する領域を環状溝より小さくできる。この理由から、中間部材の内周面と取付部材の外周面との間で回転軸芯に沿う方向に流体がリークする不都合も解消できる。
従って、従動側回転体とカムシャフトとの間に配置される中間部材における流体のリークを抑制した弁開閉時期制御装置が構成された。
According to this configuration, it is possible to supply the fluid supplied from the inner peripheral surface of the intermediate member to the control valve mechanism via the outlet flow channel communicating with the inner peripheral surface. That is, in this configuration, a flow path is formed between the second side wall of the intermediate member and the camshaft, or between the first side wall of the intermediate member and the driven-side rotator so that fluid flows in the direction along the rotation axis. Therefore, the inconvenience that the fluid leaks at these boundary positions can be solved.
Here, in comparison with a configuration in which an annular groove is formed over the entire inner circumferential surface of the intermediate member and fluid is supplied to the outside through the annular groove, the configuration of the present invention has an inner circumference of the intermediate member. Since the outlet channel is formed in a hole shape on the surface, the area where the fluid contacts the boundary with the outer peripheral surface of the mounting member can be made smaller than the annular groove. For this reason, the inconvenience that the fluid leaks in the direction along the rotation axis between the inner peripheral surface of the intermediate member and the outer peripheral surface of the mounting member can be eliminated.
Accordingly, a valve opening / closing timing control device that suppresses fluid leakage in the intermediate member arranged between the driven-side rotator and the camshaft is configured.

本発明は、前記導出流路が、前記内周面から前記外周面に達しても良い。   In the present invention, the outlet channel may reach the outer peripheral surface from the inner peripheral surface.

これによると、中間部材の外周面と、駆動側回転体の内周面との間に流体を供給することが可能となり、中間部材と駆動側回転体との間に流体を潤滑油として供給し、円滑な相対回転を実現する。   According to this, it becomes possible to supply fluid between the outer peripheral surface of the intermediate member and the inner peripheral surface of the driving side rotating body, and supply fluid as lubricating oil between the intermediate member and the driving side rotating body. Realize smooth relative rotation.

本発明は、前記第1側壁に対して、流体が供給される溝部が形成されても良い。   In the present invention, a groove to which a fluid is supplied may be formed on the first side wall.

これによると、連結ボルトによる連結力が低下した場合や、熱膨張率の差により中間部材と従動側回転体との間に隙間が形成される状況であっても、流体が溝部から第1側壁と従動側回転体との間に圧力を作用させ、中間部材と従動側回転体とを離間させる方向に力を作用させるため、中間部材と従動側回転体との位置関係の安定化を可能にする。   According to this, even when the connection force by the connection bolt is reduced or when a gap is formed between the intermediate member and the driven-side rotating body due to a difference in thermal expansion coefficient, the fluid flows from the groove portion to the first side wall. Since the pressure is applied between the intermediate member and the driven-side rotator, and the force is applied in the direction separating the intermediate member and the driven-side rotator, the positional relationship between the intermediate member and the driven-side rotator can be stabilized. To do.

弁開閉時期制御装置の断面図である。It is sectional drawing of a valve opening / closing timing control apparatus. 図1のII-II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のIII-III線断面図である。It is the III-III sectional view taken on the line of FIG. 図1のIV-IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 連結ボルトと内部ロータとアダプタとの斜視図である。It is a perspective view of a connecting bolt, an internal rotor, and an adapter.

以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1及び図2に示すように、内燃機関としてのエンジンEのクランクシャフト1と同期回転する外部ロータ20(駆動側回転体の一例)と、エンジンEの燃焼室の吸気カムシャフト5と同軸芯で一体回転する内部ロータ30(従動側回転体の一例)とを、吸気カムシャフト5の回転軸芯Xを中心に相対回転自在に備えて弁開閉時期制御装置Aが構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in FIGS. 1 and 2, an external rotor 20 (an example of a drive side rotating body) that rotates synchronously with a crankshaft 1 of an engine E as an internal combustion engine, and an intake camshaft 5 coaxial with a combustion chamber of the engine E The valve opening / closing timing control device A is configured to include an internal rotor 30 (an example of a driven-side rotating body) that rotates integrally with the intake camshaft 5 so as to be relatively rotatable about the rotation axis X of the intake camshaft 5.

この弁開閉時期制御装置Aは、外部ロータ20に対して内部ロータ30を内包しており、この内部ロータ30の中心位置に回転軸芯Xと同軸芯に制御弁機構としての電磁制御弁40を備えている。弁開閉時期制御装置Aは、電磁制御弁40による作動油(流体の一例)の制御により外部ロータ20と内部ロータ30との相対回転位相を変更し、これにより吸気バルブ5Vの開閉時期の制御を行う。   This valve opening / closing timing control device A includes an internal rotor 30 with respect to the external rotor 20, and an electromagnetic control valve 40 as a control valve mechanism coaxially with the rotation axis X at the center position of the internal rotor 30. I have. The valve opening / closing timing control device A changes the relative rotational phase between the external rotor 20 and the internal rotor 30 by controlling the hydraulic oil (an example of fluid) by the electromagnetic control valve 40, thereby controlling the opening / closing timing of the intake valve 5V. Do.

図1にはエンジンE(内燃機関の一例)は、乗用車などの車両に備えられるものを示している。このエンジンEは、下部にクランクシャフト1を備え、クランクシャフト1の上部位置のシリンダブロック2に形成されたシリンダボアの内部にピストン3を収容し、このピストン3とクランクシャフト1とをコネクティングロッド4で連結した4サイクル型に構成されている。   FIG. 1 shows an engine E (an example of an internal combustion engine) provided in a vehicle such as a passenger car. The engine E includes a crankshaft 1 at a lower portion, and a piston 3 is accommodated in a cylinder bore formed in a cylinder block 2 at an upper position of the crankshaft 1. The piston 3 and the crankshaft 1 are connected by a connecting rod 4. It is configured as a connected 4-cycle type.

また、エンジンEの上部には、吸気カムシャフト5と排気カムシャフトとを備え、クランクシャフト1の駆動力で駆動される油圧ポンプP(流体圧ポンプの一例)を備えている。吸気カムシャフト5は回転により吸気バルブ5Vを開閉作動させるように構成されている。油圧ポンプPは、エンジンEのオイルパンに貯留される潤滑油を、供給流路8を介して作動油(流体の一例)として電磁制御弁40に供給するように構成されている。   In addition, an upper portion of the engine E includes an intake camshaft 5 and an exhaust camshaft, and includes a hydraulic pump P (an example of a fluid pressure pump) that is driven by the driving force of the crankshaft 1. The intake camshaft 5 is configured to open and close the intake valve 5V by rotation. The hydraulic pump P is configured to supply the lubricating oil stored in the oil pan of the engine E to the electromagnetic control valve 40 as hydraulic oil (an example of fluid) via the supply flow path 8.

エンジンEのクランクシャフト1に形成した出力スプロケット6と、タイミングスプロケット23Sとに亘ってタイミングチェーン7が巻回されている。これにより外部ロータ20はクランクシャフト1と同期回転するように構成されている。図面には示していないが、排気側のカムシャフトの前端にもスプロケットが備えられ、このスプロケットにもタイミングチェーン7が巻回されている。   The timing chain 7 is wound around the output sprocket 6 formed on the crankshaft 1 of the engine E and the timing sprocket 23S. As a result, the external rotor 20 is configured to rotate synchronously with the crankshaft 1. Although not shown in the drawings, a sprocket is also provided at the front end of the camshaft on the exhaust side, and a timing chain 7 is wound around the sprocket.

図2に示すように、弁開閉時期制御装置Aは、クランクシャフト1からの駆動力により外部ロータ20が駆動回転方向Sに向けて回転する。また、内部ロータ30が外部ロータ20に対して駆動回転方向Sと同方向に相対回転する方向を進角方向Saと称し、この逆方向を遅角方向Sbと称する。この弁開閉時期制御装置Aでは、相対回転位相が進角方向Saに変位する際に変位量の増大に伴い吸気圧縮比を高め、相対回転位相が遅角方向Sbに変位する際に変位量の増大に伴い吸気圧縮比を低減するようにクランクシャフト1と吸気カムシャフト5との関係が設定されている。   As shown in FIG. 2, in the valve opening / closing timing control device A, the external rotor 20 rotates in the driving rotation direction S by the driving force from the crankshaft 1. The direction in which the inner rotor 30 rotates relative to the outer rotor 20 in the same direction as the driving rotation direction S is referred to as an advance angle direction Sa, and the opposite direction is referred to as a retard angle direction Sb. In this valve opening / closing timing control device A, when the relative rotational phase is displaced in the advance direction Sa, the intake compression ratio is increased as the displacement amount is increased, and when the relative rotational phase is displaced in the retard direction Sb, the displacement amount is increased. The relationship between the crankshaft 1 and the intake camshaft 5 is set so as to reduce the intake compression ratio as it increases.

尚、この実施形態では、吸気カムシャフト5に弁開閉時期制御装置Aを備えているが、弁開閉時期制御装置Aを排気カムシャフトに備えることや、吸気カムシャフト5と排気カムシャフトとの双方に備えても良い。   In this embodiment, the intake camshaft 5 is provided with the valve opening / closing timing control device A. However, the valve opening / closing timing control device A is provided on the exhaust camshaft, and both the intake camshaft 5 and the exhaust camshaft are provided. You may be prepared for.

〔弁開閉時期制御装置〕
弁開閉時期制御装置Aは、図1〜図5に示すように外部ロータ20と内部ロータ30とを備えると共に、内部ロータ30と吸気カムシャフト5との間に挟み込まれる位置に中間部材としてブッシュ状のアダプタ37を備えている。この弁開閉時期制御装置Aでは外部ロータ本体21と内部ロータ本体31とがアルミニウム合金製であり、アダプタ37が鉄を含む鋼材で構成されている。
[Valve opening / closing timing control device]
As shown in FIGS. 1 to 5, the valve opening / closing timing control device A includes an external rotor 20 and an internal rotor 30, and has a bush shape as an intermediate member at a position sandwiched between the internal rotor 30 and the intake camshaft 5. Adapter 37 is provided. In this valve opening / closing timing control device A, the outer rotor body 21 and the inner rotor body 31 are made of an aluminum alloy, and the adapter 37 is made of a steel material containing iron.

外部ロータ20は、外部ロータ本体21と、フロントプレート22と、リヤプレート23とを有しており、これらが複数の締結ボルト24の締結により一体化されている。リヤプレート23の外周にはタイミングスプロケット23Sが形成されている。   The external rotor 20 includes an external rotor main body 21, a front plate 22, and a rear plate 23, which are integrated by fastening a plurality of fastening bolts 24. A timing sprocket 23 </ b> S is formed on the outer periphery of the rear plate 23.

フロントプレート22とリヤプレート23とに挟み込まれる位置に内部ロータ30が配置されている。外部ロータ本体21には、回転軸芯Xを基準にして径方向の内側に突出する複数の突出部21Tが一体的に形成されている。   An internal rotor 30 is disposed at a position sandwiched between the front plate 22 and the rear plate 23. The outer rotor body 21 is integrally formed with a plurality of protrusions 21T that protrude inward in the radial direction with respect to the rotation axis X.

内部ロータ30は、外部ロータ本体21の突出部21Tの突出端に密接する円柱状の内部ロータ本体31と、外部ロータ本体21の内周面に接触するように内部ロータ本体31の外周に突出して備えた複数(4つ)のベーン部32とを有している。   The inner rotor 30 protrudes on the outer periphery of the inner rotor body 31 so as to come into contact with the inner peripheral surface of the outer rotor body 21 and the cylindrical inner rotor body 31 that is in close contact with the protruding end of the protruding portion 21T of the outer rotor body 21. And a plurality of (four) vane portions 32 provided.

これにより、外部ロータ20に対し内部ロータ30を内包状態で配置することにより回転方向で隣接する突出部21Tの中間位置で、内部ロータ本体31の外周側に複数の流体圧室Cが形成される。そして、これらの流体圧室Cがベーン部32で仕切られることにより進角室Caと遅角室Cbとが形成される。   As a result, by disposing the inner rotor 30 in an encapsulated state with respect to the outer rotor 20, a plurality of fluid pressure chambers C are formed on the outer peripheral side of the inner rotor body 31 at an intermediate position between the protruding portions 21 </ b> T adjacent in the rotational direction. . These fluid pressure chambers C are partitioned by the vane portion 32 to form the advance chamber Ca and the retard chamber Cb.

また、内部ロータ30とアダプタ37(中間部材の一例)の中央部分には、回転軸芯Xを中心とする孔部が形成され、この孔部には鋼材で成る連結ボルト38(取付部材の一例)が挿通されている。連結ボルト38にはボルト頭部38Hと雄ネジ部38Sとが形成され、この雄ネジ部38Sが吸気カムシャフト5の雌ネジ部に螺合することにより、内部ロータ30が吸気カムシャフト5に連結される。   Further, a hole centering around the rotation axis X is formed in the central portion of the inner rotor 30 and the adapter 37 (an example of an intermediate member), and a connecting bolt 38 (an example of an attachment member) made of steel is formed in the hole. ) Is inserted. The connecting bolt 38 is formed with a bolt head portion 38H and a male screw portion 38S. The male screw portion 38S is screwed into the female screw portion of the intake camshaft 5, whereby the internal rotor 30 is connected to the intake camshaft 5. Is done.

内部ロータ30とアダプタ37との当接面、及び、アダプタ37と吸気カムシャフト5との当接面を貫く位置に回転軸芯Xと平行姿勢となる規制ピン39を嵌合させている。これにより、内部ロータ30とアダプタ37と吸気カムシャフト5とが回転軸芯Xを中心に一体回転する。   A regulation pin 39 that is parallel to the rotational axis X is fitted in a position that penetrates the contact surface between the inner rotor 30 and the adapter 37 and the contact surface between the adapter 37 and the intake camshaft 5. As a result, the internal rotor 30, the adapter 37, and the intake camshaft 5 rotate integrally around the rotation axis X.

連結ボルト38は、回転軸芯Xを中心にする筒状に形成され、この内部空間に電磁制御弁40が収容されている。この電磁制御弁40の構成は後述する。   The connecting bolt 38 is formed in a cylindrical shape centered on the rotation axis X, and the electromagnetic control valve 40 is accommodated in this internal space. The configuration of the electromagnetic control valve 40 will be described later.

図1に示すように、アダプタ37とフロントプレート22とに亘って外部ロータ20と内部ロータ30との相対回転位相(以下、相対回転位相と称する)を、後述する最遅角位相から中間ロック位相まで付勢力を作用させるトーションスプリング28が備えられている。   As shown in FIG. 1, the relative rotation phase (hereinafter referred to as the relative rotation phase) between the outer rotor 20 and the inner rotor 30 across the adapter 37 and the front plate 22 is changed from the most retarded phase, which will be described later, to the intermediate lock phase. A torsion spring 28 is provided to apply a biasing force.

また、外部ロータ20と内部ロータ30との相対回転位相を所定の位相にロック(固定)するロック機構Lを備えている。このロック機構Lは、1つのベーン部32に対し回転軸芯Xに沿う方向にガイド孔27により出退自在にガイドされるロック部材25と、このロック部材25を突出付勢するロックスプリングと、リヤプレート23に形成したロック凹部とを備えて構成されている。   Further, a lock mechanism L that locks (fixes) the relative rotational phase between the outer rotor 20 and the inner rotor 30 to a predetermined phase is provided. The lock mechanism L includes a lock member 25 that is guided by a guide hole 27 in a direction along the rotation axis X with respect to one vane portion 32, a lock spring that projects and urges the lock member 25, and A lock recess formed in the rear plate 23 is provided.

このロック機構Lは、相対回転位相が最遅角位相に達することにより、ロック部材25がロックスプリングの付勢力によりロック凹部に係合して、相対回転位相を最遅角位相に保持するように機能する。   The lock mechanism L is configured such that when the relative rotation phase reaches the most retarded phase, the lock member 25 is engaged with the lock recess by the urging force of the lock spring, and the relative rotation phase is held at the most retarded phase. Function.

〔弁開閉時期制御装置:油路構成〕
作動油の供給により相対回転位相を進角方向Saに変位させる空間が進角室Caであり、これとは逆に、作動油の供給により相対回転位相を遅角方向Sbに変位させる空間が遅角室Cbである。ベーン部32が進角方向Saの作動端(ベーン部32の進角方向Saの作動端の近傍の位相を含む)に達した状態での相対回転位相を最進角位相と称し、ベーン部32が遅角方向Sbの作動端(ベーン部32の遅角方向Sbの作動端の近傍の位相を含む)に達した状態での相対回転位相を最遅角位相と称する。
[Valve opening / closing timing control device: oil passage configuration]
The space in which the relative rotational phase is displaced in the advance direction Sa by the supply of hydraulic oil is the advance chamber Ca. Conversely, the space in which the relative rotational phase is displaced in the retard direction Sb by the supply of hydraulic oil is delayed. This is the corner chamber Cb. The relative rotational phase in a state in which the vane portion 32 has reached the operating end in the advance angle direction Sa (including the phase near the operation end of the vane portion 32 in the advance angle direction Sa) is referred to as the most advanced angle phase. The relative rotational phase in a state in which reaches the operating end in the retarding direction Sb (including the phase near the operating end of the vane portion 32 in the retarding direction Sb) is referred to as the most retarded phase.

内部ロータ本体31には進角室Caに連通する進角流路33と、遅角室Cbに連通する遅角流路34とが形成されている。また、ロック凹部に対して進角流路33が連通している。   The internal rotor body 31 is formed with an advance passage 33 that communicates with the advance chamber Ca and a retard passage 34 that communicates with the retard chamber Cb. The advance channel 33 communicates with the lock recess.

この弁開閉時期制御装置Aでは、相対回転位相が最遅角位相に達することによりロック機構Lがロック状態に達するように構成されている。このロック状態において進角室Caに作動油が供給される際にロック凹部に対して進角流路33から作動油が供給されることにより、ロックスプリングの付勢力に抗してロック部材25がロック凹部から離脱し、ロック状態が解除される。   This valve opening / closing timing control device A is configured such that the lock mechanism L reaches the locked state when the relative rotational phase reaches the most retarded phase. When hydraulic fluid is supplied to the advance chamber Ca in this locked state, the hydraulic fluid is supplied from the advance channel 33 to the lock recess, so that the lock member 25 is resisted against the urging force of the lock spring. The lock is released from the lock recess and the locked state is released.

〔電磁制御弁・油路構成〕
図1に示すように、電磁制御弁40は、スプール41と、スプールスプリング42と、電磁ソレノイド44とで構成されている。つまり、スプール41は、連結ボルト38の内部空間で回転軸芯Xに沿う方向にスライド移動自在に配置され、連結ボルト38にはスプール41の外端側の操作位置を決めるため止め輪で成るストッパー43が備えられている。また、スプールスプリング42は、このスプール41を吸気カムシャフト5から離間する方向に付勢力を作用させる。
[Electromagnetic control valve / oil path configuration]
As shown in FIG. 1, the electromagnetic control valve 40 includes a spool 41, a spool spring 42, and an electromagnetic solenoid 44. That is, the spool 41 is slidably disposed in the inner space of the connecting bolt 38 in the direction along the rotation axis X, and the connecting bolt 38 is a stopper formed of a retaining ring for determining the operation position on the outer end side of the spool 41. 43 is provided. Further, the spool spring 42 applies a biasing force in a direction in which the spool 41 is separated from the intake camshaft 5.

電磁ソレノイド44は、内部のソレノイドに供給された電力に比例した量だけ突出作動するプランジャ44aを備えており、このプランジャ44aの押圧力によりスプール41を操作する。また、弁開閉時期制御装置Aの外部に配置されている。   The electromagnetic solenoid 44 includes a plunger 44a that protrudes by an amount proportional to the electric power supplied to the internal solenoid, and operates the spool 41 by the pressing force of the plunger 44a. Further, it is arranged outside the valve timing control device A.

これにより、スプール41とスプールスプリング42とは、内部ロータ30と一体回転し、電磁ソレノイド44はエンジンEに支持されることにより回転不能となる。   As a result, the spool 41 and the spool spring 42 rotate together with the internal rotor 30, and the electromagnetic solenoid 44 becomes unrotatable by being supported by the engine E.

スプール41は、内端側(吸気シャフト5側)と外端側とにランド部41Aが形成され、これらのランド部41Aの中間位置の全周に環状となるグルーブ部41Bが形成されている。このスプール41の内部は中空に形成され、スプール41の突出端にはドレン孔41Dが形成されている。また、連結ボルト38から内部ロータ本体31に対して前述した複数(4つ)の進角流路33と、複数(4つ)の遅角流路34とが形成されている。   In the spool 41, land portions 41A are formed on the inner end side (the intake shaft 5 side) and the outer end side, and an annular groove portion 41B is formed around the entire circumference of these land portions 41A. The inside of the spool 41 is formed hollow, and a drain hole 41 </ b> D is formed at the protruding end of the spool 41. In addition, the plurality (four) of the advance angle channels 33 and the plurality (four) of the retard channels 34 are formed from the connecting bolt 38 to the inner rotor body 31.

つまり、進角流路33は、連結ボルト38の外周から内部ロータ本体31に穿設される形態で形成されている。特に、遅角流路34は、図1、図3、図4に示す如く、連結ボルト38の外周から、アダプタ37の環状凹部37Cと、アダプタ37の溝部37Gと、内部ロータ本体31に穿設される孔状部とで構成されている。   That is, the advance flow path 33 is formed in a form that is formed in the inner rotor main body 31 from the outer periphery of the connecting bolt 38. In particular, as shown in FIGS. 1, 3, and 4, the retarded flow path 34 is formed in the annular recess 37 </ b> C of the adapter 37, the groove 37 </ b> G of the adapter 37, and the inner rotor body 31 from the outer periphery of the connection bolt 38. It is comprised by the hole-shaped part made.

電磁ソレノイド44は、プランジャ44aをスプール41の外端に接当可能な位置に配置され、非通電状態では図1に示す非押圧位置に保持され、スプール41は同図に示す進角ポジションに保持される。また、電磁ソレノイド44に所定電力を通電する状態ではプランジャ44aが内端側の押圧位置に達しスプール41は遅角ポジションに保持される。更に、電磁ソレノイド44にこれより低い電力を通電することにより、プランジャ44aの突出量が制限され遅角ポジションと進角ポジションとの中間となる中立ポジションに保持される。   The electromagnetic solenoid 44 is disposed at a position where the plunger 44a can be brought into contact with the outer end of the spool 41, and is held at the non-pressing position shown in FIG. 1 in a non-energized state, and the spool 41 is held at the advance position shown in FIG. Is done. Further, in a state where a predetermined power is supplied to the electromagnetic solenoid 44, the plunger 44a reaches the inner end side pressing position, and the spool 41 is held at the retard position. Further, by energizing the electromagnetic solenoid 44 with a lower power, the protruding amount of the plunger 44a is limited, and the electromagnetic solenoid 44 is held at a neutral position that is intermediate between the retard position and the advance position.

吸気カムシャフト5を回転自在に支持するエンジン構成部材10には、油圧ポンプPからの作動油を供給する供給流路8が形成されている。   A supply flow path 8 for supplying hydraulic oil from the hydraulic pump P is formed in the engine constituent member 10 that rotatably supports the intake camshaft 5.

連結ボルト38の内部には、供給流路8からの作動油が供給される供給空間11が形成され、内部にはスプリングとボールとで成るチェック弁45を備えている。また、この連結ボルト38の外周には、チェック弁45からの作動油が供給される中間凹部38Aが全周に亘る環状に形成されている。更に、連結ボルト38においてスプール41の外部位置には、スプール41に作動油を供給する供給孔部38Bが形成されている。また、内部ロータ本体31の内周には供給孔部38Bに連通する環状溝部35が形成されている。   A supply space 11 to which hydraulic oil from the supply flow path 8 is supplied is formed inside the connecting bolt 38, and a check valve 45 made of a spring and a ball is provided inside. Further, an intermediate recess 38A to which hydraulic oil from the check valve 45 is supplied is formed on the outer periphery of the connecting bolt 38 in an annular shape over the entire periphery. Further, a supply hole 38 </ b> B for supplying hydraulic oil to the spool 41 is formed at a position outside the spool 41 in the connecting bolt 38. An annular groove 35 communicating with the supply hole 38B is formed on the inner periphery of the inner rotor body 31.

アダプタ37は、連結ボルト38の中間部分の外周面に当接する内径の内周面37Aと、リヤプレート23の内周に当接する外周面37Bと、内部ロータ本体31に当接する第1側壁37S1と、吸気カムシャフト5に当接する第2側壁37S2とを有している。   The adapter 37 includes an inner peripheral surface 37A having an inner diameter that contacts the outer peripheral surface of the intermediate portion of the connecting bolt 38, an outer peripheral surface 37B that contacts the inner periphery of the rear plate 23, and a first side wall 37S1 that contacts the inner rotor body 31. The second side wall 37S2 is in contact with the intake camshaft 5.

このアダプタ37は、連結ボルト38の中間凹部38Aから内周面37Aに供給される作動油を外周面37Bに送り出す放射状となる複数(4つ)の導出流路37Dがドリル加工により貫通状態で形成され、各々の導出流路37Dからの作動油を第1側壁37S1の方向に送り出すように回転軸芯Xと平行姿勢となる複数(4つ)の分岐流路37Eが形成されている。   In this adapter 37, a plurality of (four) outlet channels 37D are formed in a penetrating state by drilling so that hydraulic oil supplied from the intermediate recess 38A of the connecting bolt 38 to the inner peripheral surface 37A is sent to the outer peripheral surface 37B. In addition, a plurality (four) of branched flow paths 37E that are parallel to the rotation axis X are formed so as to send the hydraulic oil from each of the outlet flow paths 37D in the direction of the first side wall 37S1.

また、内部ロータ本体31には、複数(4つ)の分岐流路37Eに直線的に連通する複数(4つ)の延長流路35Aが前述した環状溝部35に連通する状態で形成されている。   The inner rotor body 31 is formed with a plurality (four) of extended channels 35A linearly communicating with the plurality (four) of branch channels 37E in a state of communicating with the annular groove 35 described above. .

アダプタ37の内周面37Aのうち第1側壁37S1側の一部を切り欠く形態で環状凹部37Cが形成されている。この環状凹部37Cは、連結ボルト38に孔状に形成された遅角流路34に連通する位置にある。また、第1側壁37S1には、環状凹部37Cから外周面37Bに亘る領域に複数の溝部37Gが放射状に形成されている。この溝部37Gは遅角流路34の一部を構成する。   An annular recess 37C is formed in a form in which a part of the inner peripheral surface 37A of the adapter 37 on the first side wall 37S1 side is cut out. The annular recess 37 </ b> C is located at a position communicating with the retarded channel 34 formed in the connection bolt 38 in a hole shape. The first side wall 37S1 is formed with a plurality of grooves 37G radially in a region extending from the annular recess 37C to the outer peripheral surface 37B. The groove portion 37G constitutes a part of the retarded channel 34.

これにより、油圧ポンプPからの作動油は供給流路8から供給空間11に供給され、更に、チェック弁45から中間凹部38Aに供給される。この中間凹部38Aに供給された作動油は、アダプタ37の内周面37Aから複数の導出流路37Dに送られ、これに連通する分岐流路37E、延長流路35A、環状溝部35、供給孔部38Bを順次介してスプール41のグルーブ部41Bに供給される。   As a result, the hydraulic oil from the hydraulic pump P is supplied from the supply flow path 8 to the supply space 11, and is further supplied from the check valve 45 to the intermediate recess 38 </ b> A. The hydraulic oil supplied to the intermediate recess 38A is sent from the inner peripheral surface 37A of the adapter 37 to the plurality of outlet channels 37D, and the branch channel 37E, the extension channel 35A, the annular groove 35, and the supply hole communicated therewith. It is supplied to the groove part 41B of the spool 41 via the part 38B sequentially.

このように作動油が供給されるため、スプール41が進角ポジションにある場合には、作動油が進角流路33から進角室Caに供給され、遅角室Cbの作動油は遅角流路34を介してスプール41の内部空間に戻される。前述したように遅角流路34が構成されているため、遅角室Cbの作動油は、内部ロータ本体31の遅角流路34から、アダプタ37の溝部37G(遅角流路34)と、アダプタ37の環状凹部37C(遅角流路34)と流れることになる。   Since the hydraulic oil is supplied in this way, when the spool 41 is in the advance position, the hydraulic oil is supplied from the advance channel 33 to the advance chamber Ca, and the hydraulic oil in the retard chamber Cb is retarded. It is returned to the internal space of the spool 41 through the flow path 34. As described above, since the retarded flow path 34 is configured, the hydraulic oil in the retarded angle chamber Cb flows from the retarded flow path 34 of the inner rotor body 31 to the groove 37G (retarded flow path 34) of the adapter 37. Then, it flows with the annular recess 37C (retarding flow path 34) of the adapter 37.

これにより相対回転位相は進角方向Saに変位する。尚、ロック機構Lがロック状態にある状況で進角室Caに作動油が供給された場合には、ロック凹部に作動油が供給されるため、この作動油の圧力によりロック部材25をロック凹部から離脱させ、ロック機構Lがロック解除状態に達した後に相対回転位相が進角方向Saに変位する。   As a result, the relative rotational phase is displaced in the advance angle direction Sa. When hydraulic oil is supplied to the advance chamber Ca in a state where the lock mechanism L is in the locked state, hydraulic oil is supplied to the lock recess, so that the lock member 25 is locked by the pressure of the hydraulic oil. The relative rotational phase is displaced in the advance direction Sa after the lock mechanism L reaches the unlocked state.

また、スプール41が遅角ポジションに操作された場合には、作動油が遅角流路34から遅角室Cbに供給され、進角室Caの作動油は進角流路33を介して直接的にスプール41の外端から排出される。また、遅角流路34に作動油が流れる場合には、アダプタ37の環状凹部37C(遅角流路34)から、アダプタ37の溝部37G(遅角流路34)と、内部ロータ本体31の遅角流路34とに作動油が流れ遅角室Cbに供給されることになる。これにより相対回転位相は遅角方向Sbに変位する。   Further, when the spool 41 is operated to the retard position, the hydraulic oil is supplied from the retard channel 34 to the retard chamber Cb, and the hydraulic oil in the advance chamber Ca is directly passed through the advance channel 33. Thus, it is discharged from the outer end of the spool 41. Further, when hydraulic oil flows through the retarded flow path 34, the groove 37 </ b> G (retarded flow path 34) of the adapter 37 and the inner rotor main body 31 from the annular recess 37 </ b> C (retarded flow path 34) of the adapter 37. The hydraulic fluid flows into the retarding flow path 34 and is supplied to the retarding chamber Cb. As a result, the relative rotational phase is displaced in the retarding direction Sb.

また、アダプタ37の内周面37Aに供給された作動油は、複数の導出流路37Dにより、このアダプタ37の外周面37Bに供給されることになり、この外周面37Bに外嵌するリヤプレート23の内周面との間で潤滑することになる。   Further, the hydraulic oil supplied to the inner peripheral surface 37A of the adapter 37 is supplied to the outer peripheral surface 37B of the adapter 37 through a plurality of outlet channels 37D, and the rear plate that is externally fitted to the outer peripheral surface 37B. Lubricating is performed between the inner peripheral surface of 23.

例えば、作動油の熱の作用により連結ボルト38が伸長する状況において、内部ロータ本体31が放熱した場合には、この内部ロータ本体31とアダプタ37との熱膨張率の差から内部ロータ本体31とアダプタ37との間に僅かな隙間が形成されることも考えられる。このように隙間が形成された場合には、回転軸芯Xに沿う方向で内部ロータ本体31とアダプタ37との位置が所定の位置に維持されないこともある。   For example, in the situation where the connecting bolt 38 extends due to the action of the heat of the hydraulic oil, if the internal rotor body 31 dissipates heat, the internal rotor body 31 and the adapter 37 A slight gap may be formed between the adapter 37 and the adapter 37. When the gap is formed in this way, the positions of the inner rotor main body 31 and the adapter 37 in the direction along the rotation axis X may not be maintained at a predetermined position.

このような不都合に対し、アダプタ37の第1側壁37S1に形成された溝部37Gに流れる作動油の圧力を、内部ロータ本体31とアダプタ37との間を離間させる方向に作用させるように構成されている。これにより、熱膨張率の差によって隙間ができる状況でも作動油の圧力を利用して内部ロータ本体31とアダプタ37とが不安定な位置関係になる現象を抑制することが可能となる。   For such inconvenience, the pressure of the hydraulic oil flowing in the groove 37G formed in the first side wall 37S1 of the adapter 37 is configured to act in a direction in which the inner rotor main body 31 and the adapter 37 are separated. Yes. This makes it possible to suppress the phenomenon that the internal rotor body 31 and the adapter 37 are in an unstable positional relationship by using the pressure of the hydraulic oil even in a situation where a gap is created due to the difference in thermal expansion coefficient.

〔実施形態の作用・効果〕
このように、本発明によると、アダプタ37を用いることにより、内部ロータ本体31に対して流路を形成するものと比較して流路の形成を容易にしている。また、アダプタ37に形成される流路を、例えば、回転軸芯Xに平行する姿勢で、吸気カムシャフト5から内部ロータ本体31に供給する貫通孔として形成した場合には、このアダプタ37と吸気カムシャフト5との境界部分、あるいは、アダプタ37と内部ロータ本体31との境界部分でリークする可能性がある。これに対して、本発明のように、内周面37Aから供給される作動油を、このアダプタ37において第1側壁37S1と第2側壁37S2との間に形成される導出流路37Dに供給することによりリークの可能性を低減し、相対回転位相の変位を確実に行えるようにしている。
[Operation / Effect of Embodiment]
As described above, according to the present invention, the use of the adapter 37 facilitates the formation of the flow path as compared with the case where the flow path is formed with respect to the internal rotor body 31. Further, when the flow path formed in the adapter 37 is formed as a through hole that is supplied from the intake camshaft 5 to the internal rotor body 31 in a posture parallel to the rotation axis X, for example, the adapter 37 and the intake air There is a possibility of leakage at a boundary portion between the camshaft 5 or a boundary portion between the adapter 37 and the inner rotor main body 31. On the other hand, as in the present invention, hydraulic oil supplied from the inner peripheral surface 37A is supplied to the outlet channel 37D formed between the first side wall 37S1 and the second side wall 37S2 in the adapter 37. As a result, the possibility of leakage is reduced and the displacement of the relative rotational phase can be reliably performed.

また、アダプタ37の内周面37Aに全周に亘る環状溝を形成し、この環状溝を介して外部に流体を供給する構成と比較すると、本発明の構成では、アダプタ37の内周面37Aに対して導出流路37Dを孔状に形成するため、連結ボルト38の外周面との境界に作動油が接する領域を環状溝より小さくする。この理由から、このアダプタ37の内周面37Aと連結ボルト38の外周面との間で回転軸芯Xに沿う方向に作動油がリークする不都合も解消できる。   Further, in comparison with a configuration in which an annular groove is formed on the inner peripheral surface 37A of the adapter 37 over the entire circumference and fluid is supplied to the outside through the annular groove, in the configuration of the present invention, the inner peripheral surface 37A of the adapter 37 is provided. On the other hand, in order to form the lead-out flow path 37D in a hole shape, the region where the hydraulic oil contacts the boundary with the outer peripheral surface of the connecting bolt 38 is made smaller than the annular groove. For this reason, the problem that hydraulic oil leaks in the direction along the rotation axis X between the inner peripheral surface 37A of the adapter 37 and the outer peripheral surface of the connecting bolt 38 can be eliminated.

また、導出流路37Dを内周面37Aから外周面37Bに亘る貫通孔として形成することにより、アダプタ37の外周面37Bと外部ロータ20との間に作動油を供給して相対回転位相の円滑な作動を実現する。   Further, by forming the lead-out flow path 37D as a through hole extending from the inner peripheral surface 37A to the outer peripheral surface 37B, hydraulic oil is supplied between the outer peripheral surface 37B of the adapter 37 and the external rotor 20 to smooth the relative rotational phase. Realization of operation.

更に、熱膨張率の差により、アダプタ37あるいは内部ロータ本体31の回転軸芯Xに沿う方向での位置が不安定になる状況でも、アダプタ37の溝部37Gに流れる作動油の圧力を利用して位置の安定化も実現する。   Furthermore, even when the position of the adapter 37 or the inner rotor main body 31 in the direction along the rotational axis X becomes unstable due to the difference in the coefficient of thermal expansion, the pressure of the hydraulic oil flowing in the groove 37G of the adapter 37 is used. Positional stabilization is also realized.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い。
[Another embodiment]
The present invention may be configured as follows in addition to the embodiment described above.

(a)アダプタ37に形成される導出流路37Dを、外周面37Bに達しない非貫通孔として形成する。つまり、内周面37Aからアダプタ37の半径方向の中間位置まで導出流路37Dを形成し、この中間位置から内部ロータ本体31の方向に作動油を導くように流路(実施形態では、分岐流路37Eに対応する)を形成しても良い。 (A) The outlet channel 37D formed in the adapter 37 is formed as a non-through hole that does not reach the outer peripheral surface 37B. That is, the outlet flow path 37D is formed from the inner peripheral surface 37A to the intermediate position in the radial direction of the adapter 37, and the flow path (in the embodiment, the branch flow) guides the hydraulic oil from the intermediate position toward the inner rotor body 31. (Corresponding to the path 37E) may be formed.

このように導出流路37Dを非貫通孔として形成する具体的な加工形態として、アダプタ37の内周面37Aに対して斜め方向(回転軸芯Xに対して傾斜する方向)からドリル加工を行うことが考えられる。また、実施形態に示した導出流路37Dと同様に貫通状態に形成した後に、この貫通状態の導出流路37Dの外周面側の開口をプラグ等により塞ぐことも考えられる。   As a specific processing form for forming the lead-out flow path 37D as a non-through hole in this way, drilling is performed from an oblique direction (a direction inclined with respect to the rotation axis X) with respect to the inner peripheral surface 37A of the adapter 37. It is possible. Moreover, after forming in the penetration state similarly to the derivation | leading-out flow path 37D shown in embodiment, it is also considered that the opening by the side of the outer peripheral surface of this derivation | leading-out flow path 37D is plugged.

(b)アダプタ37に対し、外周面37Bでの潤滑性を向上させるため、内周面37Aから外周面37Bに達する専用の貫通孔を形成する。これにより外周面37Bに対して作動油を積極的に供給して良好な潤滑を実現する。 (B) In order to improve the lubricity on the outer peripheral surface 37B, a dedicated through hole reaching from the inner peripheral surface 37A to the outer peripheral surface 37B is formed in the adapter 37. Thereby, the working oil is positively supplied to the outer peripheral surface 37B to realize good lubrication.

(c)アダプタ37の第1側壁37S1に対し、このアダプタ37と内部ロータ本体31との境界位置に作動油の圧力を作用させる専用の溝部37Gを形成する。このように溝部37Gを形成することにより、スプール41のポジションに拘わらず常に内部ロータ本体31とアダプタ37との間に圧力を作用させ、内部ロータ本体31とアダプタ37との位置が不安定になる不都合を抑制できる。 (C) For the first side wall 37S1 of the adapter 37, a dedicated groove 37G for applying the pressure of the hydraulic oil to the boundary position between the adapter 37 and the inner rotor main body 31 is formed. By forming the groove 37G in this way, pressure is always applied between the inner rotor body 31 and the adapter 37 regardless of the position of the spool 41, and the positions of the inner rotor body 31 and the adapter 37 become unstable. Inconvenience can be suppressed.

本発明は、従動側回転体とカムシャフトとの間に中間部材が挟み込まれる構成の弁開閉時期制御装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a valve opening / closing timing control device configured such that an intermediate member is sandwiched between a driven-side rotator and a camshaft.

1 クランクシャフト
5 カムシャフト(吸気カムシャフト)
20 駆動側回転体(外部ロータ)
30 従動側回転体(内部ロータ)
37 中間部材(アダプタ)
37A 内周面
37B 外周面
37D 導出流路
37G 溝部
37S1 第1側壁
27S2 第2側壁
38 取付部材(連結ボルト)
40 制御弁機構(電磁制御弁)
Ca 進角室
Cb 遅角室
E 内燃機関(エンジン)
X 回転軸芯
1 Crankshaft 5 Camshaft (Intake camshaft)
20 Drive-side rotating body (external rotor)
30 Driven side rotating body (internal rotor)
37 Intermediate member (adapter)
37A Inner peripheral surface 37B Outer peripheral surface 37D Derived flow path 37G Groove portion 37S1 First side wall 27S2 Second side wall 38 Mounting member (connection bolt)
40 Control valve mechanism (electromagnetic control valve)
Ca Lead angle chamber Cb Delay angle chamber E Internal combustion engine
X rotation axis

Claims (3)

内燃機関のクランクシャフトと同期回転する駆動側回転体と、
前記駆動側回転体の内側に当該駆動側回転体と同軸芯で相対回転可能に配置された従動側回転体と、
前記従動側回転体と前記カムシャフトとの間に連結される中間部材と、
前記従動側回転体に取付られる取付部材と、
前記駆動側回転体と前記従動側回転体との間に形成される進角室及び遅角室と、
前記カムシャフトの回転軸芯と同軸芯上に配置される制御弁機構とを備え、
前記進角室及び前記遅角室に対して前記制御弁機構を介して流体が選択的に流入される又は前記進角室及び遅角室から流出されることを許容する流路が形成され、前記進角室及び前記遅角室への流体の流入により前記駆動側回転体と前記従動側回転体との相対回転位相の変更を行う流路が形成され、
前記中間部材が、前記取付部材の外周面に当接する内径の内周面と、前記駆動側回転体の内周に当接する外周面と、前記従動側回転体に当接する第1側壁と、前記カムシャフトに当接する第2側壁とを有し、前記内周面に供給される流体を前記制御弁機構に送り出すための導出流路が前記第1側壁と前記第2側壁との中間位置で径方向に沿う姿勢で形成されている弁開閉時期制御装置。
A drive-side rotating body that rotates synchronously with the crankshaft of the internal combustion engine;
A driven-side rotator disposed on the inside of the drive-side rotator so as to be rotatable relative to the drive-side rotator and coaxially;
An intermediate member connected between the driven-side rotator and the camshaft;
An attachment member attached to the driven rotating body;
An advance chamber and a retard chamber formed between the drive side rotor and the driven side rotor,
A control valve mechanism disposed on the rotation axis and the coaxial axis of the camshaft;
A fluid passage is formed that allows fluid to selectively flow into or from the advance chamber and the retard chamber through the control valve mechanism with respect to the advance chamber and the retard chamber, A flow path for changing a relative rotational phase between the driving side rotating body and the driven side rotating body is formed by inflow of fluid into the advance chamber and the retard chamber,
The intermediate member has an inner peripheral surface that is in contact with the outer peripheral surface of the mounting member, an outer peripheral surface that is in contact with the inner periphery of the drive-side rotator, a first side wall that is in contact with the driven-side rotator, A second side wall abutting on the camshaft, and a lead-out flow path for sending the fluid supplied to the inner peripheral surface to the control valve mechanism has a diameter at an intermediate position between the first side wall and the second side wall. A valve opening / closing timing control device formed in a posture along the direction.
前記導出流路が、前記内周面から前記外周面に達する請求項1記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to claim 1, wherein the outlet channel reaches the outer peripheral surface from the inner peripheral surface. 前記第1側壁に対して、流体が供給される溝部が形成されている請求項1又は2記載の弁開閉時期制御装置。   The valve opening / closing timing control device according to claim 1, wherein a groove portion to which a fluid is supplied is formed on the first side wall.
JP2014037286A 2014-02-27 2014-02-27 Valve timing control device Expired - Fee Related JP6225750B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014037286A JP6225750B2 (en) 2014-02-27 2014-02-27 Valve timing control device
CN201810934455.9A CN109026250B (en) 2014-02-27 2015-02-13 Valve opening and closing timing control apparatus
CN201580009553.6A CN106062323B (en) 2014-02-27 2015-02-13 Valve arrangement for controlling timing
US15/118,206 US9903237B2 (en) 2014-02-27 2015-02-13 Valve opening and closing timing control apparatus
PCT/JP2015/053901 WO2015129476A1 (en) 2014-02-27 2015-02-13 Valve opening/closing timing control device
US15/880,857 US10066520B2 (en) 2014-02-27 2018-01-26 Valve opening and closing timing control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037286A JP6225750B2 (en) 2014-02-27 2014-02-27 Valve timing control device

Publications (2)

Publication Number Publication Date
JP2015161231A JP2015161231A (en) 2015-09-07
JP6225750B2 true JP6225750B2 (en) 2017-11-08

Family

ID=54008799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037286A Expired - Fee Related JP6225750B2 (en) 2014-02-27 2014-02-27 Valve timing control device

Country Status (4)

Country Link
US (2) US9903237B2 (en)
JP (1) JP6225750B2 (en)
CN (2) CN106062323B (en)
WO (1) WO2015129476A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217438B2 (en) 2014-02-14 2017-10-25 アイシン精機株式会社 Valve timing control device
JP6721334B2 (en) * 2015-12-28 2020-07-15 株式会社ミクニ Valve timing change device
JP2018080594A (en) * 2016-11-14 2018-05-24 アイシン精機株式会社 Valve opening/closing timing control device
WO2023077529A1 (en) * 2021-11-08 2023-05-11 舍弗勒技术股份两合公司 Camshaft phaser

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1993538A (en) * 2004-09-01 2007-07-04 日锻汽门株式会社 Phase varying device of engine
JP2008002324A (en) * 2006-06-21 2008-01-10 Hitachi Ltd Phase angle detector and valve timing controller of internal-combustion engine using the same
EP1972762B1 (en) * 2007-03-23 2011-08-03 Ford Global Technologies, LLC Phase adjusting device
DE102008057492A1 (en) 2008-11-15 2010-05-20 Daimler Ag Camshaft adjuster for phase shifting rotations of crankshaft and camshaft, has fastening unit for rotating around axis during fastening process, and fluid guiding groove arranged at radial inner side of fluid guiding unit
EP2400121B1 (en) * 2009-02-23 2014-07-02 Nittan Valve Co., Ltd. Phase-variable device for engine
JP5516938B2 (en) * 2009-02-26 2014-06-11 アイシン精機株式会社 Valve timing control device
JP5321911B2 (en) * 2009-09-25 2013-10-23 アイシン精機株式会社 Valve timing control device
JP2011236781A (en) * 2010-05-07 2011-11-24 Aisin Seiki Co Ltd Device for control of valve timing
JP5585832B2 (en) * 2010-09-10 2014-09-10 アイシン精機株式会社 Valve timing control device
JP5505257B2 (en) * 2010-10-27 2014-05-28 アイシン精機株式会社 Valve timing control device
US8695548B2 (en) * 2010-12-10 2014-04-15 Denso Corporation Valve timing control apparatus
JP5713823B2 (en) * 2011-07-08 2015-05-07 日立オートモティブシステムズ株式会社 Control valve used in valve timing control device
DE102011084059B4 (en) * 2011-10-05 2016-12-08 Schwäbische Hüttenwerke Automotive GmbH Control valve with integrated filter and camshaft phaser with the control valve
JP2013155711A (en) * 2012-01-31 2013-08-15 Aisin Seiki Co Ltd Valve opening/closing timing control apparatus
JP5626243B2 (en) * 2012-02-29 2014-11-19 株式会社デンソー Hydraulic valve timing adjustment device
JP5811358B2 (en) * 2012-05-24 2015-11-11 株式会社デンソー Valve timing adjustment device
DE102012213002A1 (en) * 2012-07-24 2014-01-30 Schwäbische Hüttenwerke Automotive GmbH Camshaft phaser with sealing sleeve
JP5979102B2 (en) * 2013-08-28 2016-08-24 アイシン精機株式会社 Valve timing control device
JP6217438B2 (en) 2014-02-14 2017-10-25 アイシン精機株式会社 Valve timing control device
JP6295720B2 (en) 2014-02-27 2018-03-20 アイシン精機株式会社 Valve timing control device

Also Published As

Publication number Publication date
CN109026250B (en) 2021-01-19
WO2015129476A1 (en) 2015-09-03
US10066520B2 (en) 2018-09-04
US9903237B2 (en) 2018-02-27
CN106062323A (en) 2016-10-26
US20180149045A1 (en) 2018-05-31
CN106062323B (en) 2018-09-18
JP2015161231A (en) 2015-09-07
US20170183983A1 (en) 2017-06-29
CN109026250A (en) 2018-12-18

Similar Documents

Publication Publication Date Title
JP6295720B2 (en) Valve timing control device
EP3165723B1 (en) Valve opening and closing timing control apparatus
JP2009138611A (en) Valve timing adjustment device
JP6225750B2 (en) Valve timing control device
JP6217587B2 (en) Valve timing control device
WO2016031808A1 (en) Valve timing control device
JP5991091B2 (en) Valve timing control device
US10378395B2 (en) Valve opening/closing timing control apparatus
JP6769253B2 (en) Valve opening / closing timing control device
JP2017008791A (en) Valve opening/closing timing controller
JP6369253B2 (en) Valve timing control device
US10174646B2 (en) Valve opening and closing timing control apparatus
EP3190274B1 (en) Valve opening and closing timing control apparatus
JP6273801B2 (en) Valve timing control device
JP6497430B2 (en) Valve timing control device
US20210172346A1 (en) Valve opening and closing timing control device
US11255227B2 (en) Valve opening and closing timing control device
JP7068495B2 (en) Solenoid valve and valve timing controller for internal combustion engine
JP2017089518A (en) Valve open/close timing control device
JP2019082113A (en) Control valve
WO2015079962A1 (en) Valve opening and closing timing control device
JP2017089517A (en) Valve open/close timing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R151 Written notification of patent or utility model registration

Ref document number: 6225750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees