JP6223564B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6223564B2
JP6223564B2 JP2016523553A JP2016523553A JP6223564B2 JP 6223564 B2 JP6223564 B2 JP 6223564B2 JP 2016523553 A JP2016523553 A JP 2016523553A JP 2016523553 A JP2016523553 A JP 2016523553A JP 6223564 B2 JP6223564 B2 JP 6223564B2
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
damper
freezer
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523553A
Other languages
Japanese (ja)
Other versions
JPWO2015182698A1 (en
Inventor
雄亮 田代
雄亮 田代
孔明 仲島
孔明 仲島
藤塚 正史
正史 藤塚
前田 剛
剛 前田
荒木 正雄
正雄 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015182698A1 publication Critical patent/JPWO2015182698A1/en
Application granted granted Critical
Publication of JP6223564B2 publication Critical patent/JP6223564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、冷蔵庫に関するものであり、特に冷凍室及び該冷凍室以外の貯蔵室(冷蔵室等の冷凍室とは温度帯の異なる貯蔵室)を備えた冷蔵庫に関するものである。  The present invention relates to a refrigerator, and more particularly to a refrigerator provided with a freezing room and a storage room other than the freezing room (a storage room having a temperature range different from that of a freezing room such as a refrigeration room).

従来より、冷凍室及び該冷凍室以外の貯蔵室(冷蔵室等の冷凍室とは温度帯の異なる貯蔵室)を備えた冷蔵庫が知られている。このような従来の冷蔵庫は、各貯蔵室に連通する風路に冷凍サイクルの蒸発器(冷却器)と庫内ファンとを設置し、1つの蒸発器及び1つの庫内ファンを用いて各貯蔵室を冷却している。具体的には、冷凍室が設定温度よりも高くなった際、冷凍サイクルの圧縮機及び庫内ファンが駆動する。また、冷凍室以外の貯蔵室が設定温度よりも高くなった際、当該貯蔵室の冷気供給口に設けられたダンパを開き、当該貯蔵室を設定温度以下に低下させ、その後にダンパを閉じるという制御を行う。このため、冷凍室及び該冷凍室以外の貯蔵室を備えた従来の冷蔵庫は、庫内負荷が小さい状態においても、ダンパが開いているときには冷凍室への冷気の供給量が少なくなって冷凍室の温度変動が大きくなってしまい、冷凍室の温度を低下させるために圧縮機の駆動時間が長くなり、消費電力が増大してしまうという課題があった。  2. Description of the Related Art Conventionally, a refrigerator including a freezing room and a storage room other than the freezing room (a storage room having a temperature range different from that of a freezing room such as a refrigerator room) is known. In such a conventional refrigerator, an evaporator (cooler) of a refrigeration cycle and an internal fan are installed in an air passage communicating with each storage room, and each storage is performed using one evaporator and one internal fan. The room is cooling. Specifically, when the freezer compartment becomes higher than the set temperature, the compressor and the internal fan of the refrigeration cycle are driven. In addition, when a storage room other than the freezing room becomes higher than the set temperature, the damper provided at the cold air supply port of the storage room is opened, the storage room is lowered below the set temperature, and then the damper is closed. Take control. For this reason, the conventional refrigerator provided with a freezer compartment and a storage room other than the freezer compartment has a reduced amount of cold air supplied to the freezer compartment when the damper is open even when the internal load is small. As a result, the temperature fluctuation of the compressor becomes large, and the drive time of the compressor becomes long to reduce the temperature of the freezer compartment, resulting in an increase in power consumption.

そこで、冷凍室及び該冷凍室以外の貯蔵室を備えた従来の冷蔵庫には、冷凍室等の温度変動の抑制を図るため、「本体と、該本体に形成され、食品を冷蔵する冷蔵室と、前記本体後部側に形成された冷却室内に配置され、該冷却室を流通する空気を冷却して冷気を生成する冷却器と、前記冷蔵室奥側から前記冷蔵室内へ冷気を送り込むためのダクト部と、該ダクト部に冷気を送り込む送風ファンと、前記冷却室から前記ダクト部へ流れる冷気量を調整する冷蔵室用ダンパー装置と、外気温度を検知する外気温度検知手段と、前記冷蔵室の庫内温度を検知する冷蔵室温度検知手段と、前記送風ファンの動作及び前記冷蔵室用ダンパー装置の開度制御を実施する制御装置と、を備え、該制御装置は、前記外気温度検知手段によって検知された外気温度である外気実測温度に基づいて、前記冷蔵室用ダンパー装置の開度について特定開度を設定し、前記送風ファンを駆動させた状態において、前記冷蔵室温度検知手段によって検知された前記冷蔵室の庫内温度である冷蔵室実測温度と、所定の第1冷蔵室設定温度とを比較し、その比較の結果、前記冷蔵室実測温度が前記第1冷蔵室設定温度よりも高い場合、前記冷蔵室用ダンパー装置の開度を全開状態にし、前記送風ファンを駆動させた状態において、前記冷蔵室実測温度と、前記第1冷蔵室設定温度よりも小さい所定の第2冷蔵室設定温度とを比較し、その比較の結果、前記冷蔵室実測温度が前記第2冷蔵室設定温度より低い場合、前記冷蔵室用ダンパー装置の開度を前記特定開度の状態にする」というものが提案されている(例えば、特許文献1参照)。  Therefore, a conventional refrigerator provided with a freezing room and a storage room other than the freezing room is provided with a “main body, a refrigerating room that is formed in the main body and refrigerates food, in order to suppress temperature fluctuations in the freezing room and the like. A cooler that is disposed in a cooling chamber formed on the rear side of the main body, cools the air flowing through the cooling chamber to generate cool air, and a duct that feeds the cool air from the back side of the refrigerating chamber into the refrigerating chamber A cooling fan that adjusts the amount of cool air flowing from the cooling chamber to the duct, an outside air temperature detecting means that detects the outside air temperature, A refrigerating room temperature detecting means for detecting the internal temperature, and a control device for controlling the operation of the blower fan and the opening degree of the refrigerating room damper device, wherein the control device is controlled by the outside air temperature detecting means. Detected outside air The refrigerating room detected by the refrigerating room temperature detection means in a state where a specific opening is set for the opening of the refrigerating room damper device based on the actually measured outside air temperature and the blower fan is driven. When the measured temperature in the refrigerator compartment is higher than the set temperature in the first refrigerator compartment as a result of the comparison, the actual measured temperature in the refrigerator compartment, which is the internal temperature of the refrigerator, is compared with a predetermined first refrigerator compartment set temperature. In the state where the opening degree of the room damper device is fully opened and the blower fan is driven, the actual temperature of the refrigerator compartment is compared with a predetermined second refrigerator compartment temperature lower than the first refrigerator compartment preset temperature. As a result of the comparison, when the measured temperature in the refrigerator compartment is lower than the set temperature in the second refrigerator compartment, the opening degree of the damper device for the refrigerator compartment is set to the state of the specific opening degree ". (For example, See Patent Document 1).

特許第5631284号公報Japanese Patent No. 5613284

しかしながら、特許文献1に記載の冷蔵庫は、ダンパー装置の開き具合を調整して、冷蔵室への風量を調整する。つまり、特許文献1に記載の冷蔵庫は、ダンパー装置を冷蔵室風路の抵抗として動作させて、冷蔵室への風量自体を抑制する。その結果、特許文献1に記載の冷蔵庫は、例えば冷蔵室への風量を小さくする際、ダンパー装置の開き具合を小さくすることとなるので、つまり風路抵抗が大きくなるので、冷蔵室内の各位置で冷気が届かない領域が発生してしまう。このため、特許文献1に記載の冷蔵庫は、冷蔵室内に温度分布が発生し、特に冷蔵室扉部のポケット棚部分の冷却不足につながるといった課題があった。  However, the refrigerator of patent document 1 adjusts the opening degree of a damper apparatus, and adjusts the air volume to a refrigerator compartment. In other words, the refrigerator described in Patent Document 1 operates the damper device as a resistance of the refrigerator compartment air path, and suppresses the air volume itself to the refrigerator compartment. As a result, the refrigerator described in Patent Document 1 reduces the degree of opening of the damper device when, for example, reducing the air volume to the refrigerator compartment, that is, the air path resistance increases, so each position in the refrigerator compartment An area where cold air cannot reach will occur. For this reason, the refrigerator described in Patent Document 1 has a problem that temperature distribution occurs in the refrigerator compartment, and in particular, the pocket shelf portion of the refrigerator compartment door portion is insufficiently cooled.

本発明は、上述のような課題を解決するためになされたものであり、1つの蒸発器と1つの庫内ファンを有する冷蔵庫であって、各貯蔵室の温度変動を抑制しつつ、消費電力量を低減することができる冷蔵庫を得ることを目的とする。  The present invention has been made in order to solve the above-described problems, and is a refrigerator having one evaporator and one internal fan, and can reduce power consumption while suppressing temperature fluctuation of each storage room. It aims at obtaining the refrigerator which can reduce quantity.

本発明に係る冷蔵庫は、冷凍室及び該冷凍室以外の少なくとも1つの貯蔵室と、圧縮機、凝縮器、膨張機構、及び1つの蒸発器を有する冷凍サイクルと、前記冷凍室及び該冷凍室以外の前記貯蔵室に連通し、前記蒸発器が配置された風路と、前記風路に設けられ、前記蒸発器で冷却された空気を前記冷凍室及び該冷凍室以外の前記貯蔵室に供給する1つの庫内ファンと、前記風路における該冷凍室以外の前記貯蔵室の供給口に設けられ、該供給口を開閉するダンパと、庫内負荷に基づいて、少なくとも前記ダンパを制御する制御装置と、を備え、前記制御装置は、前記庫内負荷を確認する庫内負荷確認部と、前記庫内負荷が規定値以下の場合、前記ダンパの制御間隔である規定時間の間に前記供給口を開く開時間を求める開時間取得部と、前記冷凍室の負荷及び前記冷凍室以外の前記貯蔵室の負荷が規定値よりも大きいか否かを判定する判定部と、前記庫内負荷が規定値以下の場合、前記規定時間の間に前記供給口が前記開時間だけ開くように、前記ダンパを制御し、前記庫内負荷が規定値よりも大きい場合、前記冷凍室の負荷が規定値よりも大きい際には前記供給口が前記規定時間の間全閉となるように前記ダンパを制御し、前記冷凍室以外の前記貯蔵室の負荷が規定値よりも大きい際には前記供給口が前記規定時間の間全開となるように前記ダンパを制御するダンパ制御部と、を備えたものである。  The refrigerator according to the present invention includes a freezing room and at least one storage room other than the freezing room, a refrigerating cycle having a compressor, a condenser, an expansion mechanism, and one evaporator, and the freezing room and the freezing room. An air passage in which the evaporator is disposed, and air that is provided in the air passage and is cooled by the evaporator is supplied to the freezer compartment and the storage compartments other than the freezer compartment. One internal fan, a damper provided at a supply port of the storage chamber other than the freezer compartment in the air passage, and a damper that opens and closes the supply port, and a control device that controls at least the damper based on an internal load And the control device is configured to check the internal load, and, when the internal load is equal to or less than a predetermined value, the supply port during a specified time which is a control interval of the damper. Opening time acquisition part to find the opening time to open A determination unit that determines whether or not a load in the freezer compartment and a load in the storage room other than the freezer compartment are greater than a specified value, and the supply during the specified time when the internal load is equal to or less than a specified value The damper is controlled so that the opening is opened only for the opening time, and when the load in the refrigerator is larger than a specified value, the supply port is set to the specified time when the load in the freezer compartment is larger than the specified value. The damper is controlled so as to be fully closed, and when the load of the storage room other than the freezer is larger than a specified value, the damper is controlled so that the supply port is fully opened for the specified time. A damper control unit.

本発明は、庫内負荷が規定値以下の場合(庫内負荷が小さい場合)、ダンパの制御間隔である規定時間の間に供給口が開く時間を調整することにより、冷凍室以外の貯蔵室の温度を設定温度に保つ。つまり、本発明は、冷凍室以外の貯蔵室に対して、規定時間内に、当該貯蔵室の温度を一定にする風量の冷気だけを送り、当該貯蔵室の温度変動を抑制する。このため、本発明は、庫内負荷が小さい場合、規定時間内での冷凍室への冷気の供給量を従来よりも増加させることができるので、冷凍室の冷却能力を増加できる。このため、圧縮機の駆動時間を従来よりも低減できるので、従来よりも消費電力を低減できる。このとき、本発明は、冷凍室以外の貯蔵室への風量を小さくする際、規定時間内において供給口が開いている時間を短くすればよい。このため、本発明は、冷凍室以外の貯蔵室への風量を小さくする際、風路抵抗が大きくならないので、冷凍室以外の貯蔵室内において冷気が届かない領域が発生してしまうことを防止でき、冷凍室以外の貯蔵室内に温度分布が発生することも防止できる。  The present invention provides a storage room other than the freezer compartment by adjusting the opening time of the supply port during the specified time that is the control interval of the damper when the internal load is less than the specified value (when the internal load is small). Keep the temperature at the set temperature. That is, according to the present invention, only cool air having an air volume that keeps the temperature of the storage room constant is sent to a storage room other than the freezer room within a specified time, and temperature fluctuations of the storage room are suppressed. For this reason, the present invention can increase the amount of cold air supplied to the freezer compartment within a specified time when the internal load is small, so that the cooling capacity of the freezer compartment can be increased. For this reason, since the drive time of a compressor can be reduced rather than before, power consumption can be reduced rather than before. At this time, in the present invention, when the air volume to the storage room other than the freezing room is reduced, the time during which the supply port is open within the specified time may be shortened. For this reason, the present invention can prevent the occurrence of an area where cold air does not reach in the storage room other than the freezer compartment because the air path resistance does not increase when the air volume to the storage room other than the freezer room is reduced. It is also possible to prevent temperature distribution from occurring in the storage chamber other than the freezer.

また、本発明は、庫内負荷が規定値よりも大きい場合(庫内負荷が大きい場合)、冷凍室の負荷が規定値よりも大きい際には供給口が規定時間の間全閉となるようにダンパを制御し、冷凍室以外の貯蔵室の負荷が規定値よりも大きい際には供給口が規定時間の間全開となるようにダンパを制御する。このため、本発明は、庫内負荷が規定値よりも大きい場合でも、各貯蔵室の温度変動を抑制することができる(安定化と冷却性能を維持することができる)。  Further, according to the present invention, when the in-compartment load is larger than the specified value (when the in-compartment load is large), the supply port is fully closed for a specified time when the freezer compartment load is larger than the specified value. The damper is controlled so that when the load of the storage room other than the freezer compartment is larger than a specified value, the damper is controlled so that the supply port is fully opened for a specified time. For this reason, the present invention can suppress the temperature fluctuation of each storage room even when the internal load is larger than the specified value (stabilization and cooling performance can be maintained).

本発明の実施の形態に係る冷蔵庫100の冷凍サイクルの構成を説明する図である。It is a figure explaining the structure of the refrigerating cycle of the refrigerator 100 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫100の冷風回路を示した図である。It is the figure which showed the cold wind circuit of the refrigerator 100 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫100における冷蔵室ダンパ23の規定時間CTを説明する図である。It is a figure explaining regulation time CT of the refrigerator compartment damper 23 in the refrigerator 100 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷蔵庫100における冷蔵室ダンパ23の規定時間内での開時間制御を実行するまでのフロー図である。It is a flowchart until it performs open time control within the regulation time of the refrigerator compartment damper 23 in the refrigerator 100 which concerns on embodiment of this invention.

以下、本発明に係る冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。  Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

実施の形態.
図1は、本発明の実施の形態に係る冷蔵庫100の冷凍サイクルの構成を説明する図である。図1に基づいて、冷蔵庫100の冷凍サイクルの構成について説明する。
この冷蔵庫100は、蒸気圧縮式冷凍サイクルを利用して冷蔵庫100の庫内を設定温度まで冷却するものである。この冷凍サイクルは、圧縮機11と、凝縮器である凝縮パイプ14及び結露防止パイプ15と、ドライヤ16と、減圧機構であるキャピラリーチューブ17と、冷却器である1つの蒸発器18とが、配管にて接続されて構成されている。また、冷蔵庫100の冷凍サイクルには、キャピラリーチューブ17を流れる冷媒と、蒸発器18と圧縮機11との間における配管(吸入パイプ)を流れる冷媒とで熱交換させる熱交換部分19が設けられている。また、この冷凍サイクルには、蒸発器18の入口側の冷媒温度を測定する例えばサーミスタ等の温度センサー18aと、蒸発器18の出口側の冷媒温度を測定する例えばサーミスタ等の温度センサー18bとが設けられている。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of a refrigerator 100 according to an embodiment of the present invention. Based on FIG. 1, the structure of the refrigerating cycle of the refrigerator 100 is demonstrated.
The refrigerator 100 cools the inside of the refrigerator 100 to a set temperature using a vapor compression refrigeration cycle. In this refrigeration cycle, a compressor 11, a condensation pipe 14 and a dew condensation prevention pipe 15 as a condenser, a dryer 16, a capillary tube 17 as a decompression mechanism, and a single evaporator 18 as a cooler are connected by piping. Connected and configured. Further, the refrigeration cycle of the refrigerator 100 is provided with a heat exchange portion 19 for exchanging heat between the refrigerant flowing through the capillary tube 17 and the refrigerant flowing through a pipe (suction pipe) between the evaporator 18 and the compressor 11. Yes. The refrigeration cycle includes a temperature sensor 18a such as a thermistor that measures the refrigerant temperature on the inlet side of the evaporator 18, and a temperature sensor 18b such as a thermistor that measures the refrigerant temperature on the outlet side of the evaporator 18. Is provided.

圧縮機11は、例えば冷蔵庫100の背面下部に設けられた機械室内に配置されている。圧縮機11は、冷媒を圧縮して高温・高圧の冷媒とするものであり、インバータで駆動され、状況に応じて運転容量が制御されるようになっている。  The compressor 11 is arrange | positioned, for example in the machine room provided in the back lower part of the refrigerator 100. FIG. The compressor 11 compresses the refrigerant into a high-temperature and high-pressure refrigerant, is driven by an inverter, and the operation capacity is controlled according to the situation.

凝縮パイプ14は、冷蔵庫100の天面、側面及び背面等に断熱材を介して埋設されている凝縮パイプを示す。また、凝縮パイプ14は、ドレン蒸発のためのホットパイプも含む。  The condensing pipe 14 indicates a condensing pipe embedded in the top surface, side surface, back surface, and the like of the refrigerator 100 via a heat insulating material. The condensation pipe 14 also includes a hot pipe for drain evaporation.

結露防止パイプ15は、凝縮パイプ14とドライヤ16との間に接続されている。この結露防止パイプ15は、冷蔵庫100本体の前面部分における露付き防止用に設けられている。  The condensation prevention pipe 15 is connected between the condensation pipe 14 and the dryer 16. This dew condensation prevention pipe 15 is provided for preventing dew condensation on the front portion of the refrigerator 100 main body.

ドライヤ16は、結露防止パイプ15とキャピラリーチューブ17との間に接続されている。このドライヤ16は、冷蔵庫100の冷凍サイクル内のゴミや金属粉等を圧縮機11へ流入させないためのフィルターや、冷凍サイクル内の水分を吸着する吸着部材等で構成されている。  The dryer 16 is connected between the dew condensation prevention pipe 15 and the capillary tube 17. The dryer 16 includes a filter that prevents dust, metal powder, and the like in the refrigeration cycle of the refrigerator 100 from flowing into the compressor 11, an adsorption member that adsorbs moisture in the refrigeration cycle, and the like.

キャピラリーチューブ17は、ドライヤ16と蒸発器18との間に接続されている。このキャピラリーチューブ17は、ドライヤ16を流れてきた冷媒を減圧する減圧機構として作用する。  The capillary tube 17 is connected between the dryer 16 and the evaporator 18. The capillary tube 17 acts as a pressure reducing mechanism for reducing the pressure of the refrigerant flowing through the dryer 16.

蒸発器18は、キャピラリーチューブ17と熱交換部分19の吸入パイプ側との間に接続されている。この蒸発器18は、例えば冷蔵庫100の背面側に設けられた蒸発器設置室にて、庫内空気を冷却するものである。蒸発器18の上方には1つの庫内ファン20が設けられており、庫内ファン20により蒸発器18から冷風が供給されるとともに、冷風は各貯蔵室へ送風される。  The evaporator 18 is connected between the capillary tube 17 and the suction pipe side of the heat exchange portion 19. The evaporator 18 cools the air in the cabinet in an evaporator installation chamber provided on the back side of the refrigerator 100, for example. One internal fan 20 is provided above the evaporator 18, and cool air is supplied from the evaporator 18 by the internal fan 20, and the cool air is blown to each storage chamber.

熱交換部分19は、キャピラリーチューブ17を流れる冷媒と、圧縮機11へ吸入する冷媒と、の間で熱交換を行わせる部分である。  The heat exchanging portion 19 is a portion that exchanges heat between the refrigerant flowing through the capillary tube 17 and the refrigerant sucked into the compressor 11.

また、例えば冷蔵庫100の例えば背面上部には、この冷蔵庫100の運転を制御するマイコン等を備えた制御装置10が設けられている。また、制御装置10は、庫内負荷確認部10a、開時間取得部10b、判定部10c、及びダンパ制御部10dを備えている。庫内負荷確認部10aは、冷蔵庫100の庫内負荷が規定値以下であるか否かを確認するものである。開時間取得部10bは、庫内負荷が規定値以下の場合、冷蔵室ダンパ23の制御間隔である規定時間の間に、冷蔵室22の供給口2を開く開時間を求めるものである。なお、冷蔵室ダンパ23及び冷蔵室22の供給口2については、図2で後述する。判定部10cは、冷凍室21の負荷及び冷蔵室22(冷凍室21以外の貯蔵室)の負荷が規定値よりも大きいか否かを判定するものである。ダンパ制御部10dは、冷蔵室ダンパ23を制御するものである。  Further, for example, a control device 10 including a microcomputer or the like for controlling the operation of the refrigerator 100 is provided on the upper surface of the refrigerator 100, for example. Moreover, the control apparatus 10 is provided with the internal load confirmation part 10a, the open time acquisition part 10b, the determination part 10c, and the damper control part 10d. The in-compartment load confirmation unit 10a confirms whether the in-compartment load of the refrigerator 100 is equal to or less than a specified value. The open time acquisition unit 10b obtains an open time for opening the supply port 2 of the refrigerator compartment 22 during a prescribed time which is a control interval of the refrigerator compartment damper 23 when the internal load is equal to or less than a prescribed value. The supply port 2 of the refrigerator compartment damper 23 and the refrigerator compartment 22 will be described later with reference to FIG. The determination part 10c determines whether the load of the freezer compartment 21 and the load of the refrigerator compartment 22 (storage rooms other than the freezer compartment 21) are larger than a regulation value. The damper control unit 10d controls the refrigerator compartment damper 23.

このように構成される冷蔵庫100において、圧縮機11にて高温高圧となった冷媒は、凝縮パイプ14、結露防止パイプ15で外気(もしくは一部冷蔵庫内)に放熱する。十分に放熱した冷媒がキャピラリーチューブ17にて減圧され低温低圧となり、蒸発器18にて各貯蔵室からの戻り空気から吸熱し、再び圧縮機11にて圧縮され高温・高圧となる。  In the refrigerator 100 configured as described above, the refrigerant that has become high temperature and pressure in the compressor 11 radiates heat to the outside air (or partially in the refrigerator) through the condensation pipe 14 and the dew condensation prevention pipe 15. The sufficiently radiated refrigerant is depressurized in the capillary tube 17 to become low-temperature and low-pressure, absorbs heat from the return air from each storage chamber in the evaporator 18 and is compressed again in the compressor 11 to become high-temperature and high-pressure.

図2は、本発明の実施の形態に係る冷蔵庫100の冷風回路を示した図である。
冷蔵庫100は、冷凍室21と、該冷凍室21以外の貯蔵室として冷蔵室22を備えている。なお、図2では冷凍室21と冷蔵室22の2つの貯蔵室のみを記載しているが、これに加え製氷室、野菜室及び切り替え室等が冷凍室21と冷蔵室22と並列に、もしくは冷蔵室22に直列に設置されている(図示せず)場合もある。図2では冷蔵庫100内で最も容積の大きい貯蔵室である冷蔵室22と最も温度帯の低い冷凍室21を記載し説明する。
FIG. 2 is a diagram showing a cold air circuit of refrigerator 100 according to the embodiment of the present invention.
The refrigerator 100 includes a freezer compartment 21 and a refrigerator compartment 22 as a storage compartment other than the freezer compartment 21. In FIG. 2, only two storage rooms, that is, the freezing room 21 and the refrigerating room 22 are illustrated, but in addition to this, an ice making room, a vegetable room, a switching room, and the like are arranged in parallel with the freezing room 21 and the refrigerating room 22 or It may be installed in series in the refrigerator compartment 22 (not shown). In FIG. 2, the refrigerator compartment 22 which is the storage chamber with the largest volume in the refrigerator 100 and the freezer compartment 21 with the lowest temperature zone will be described and described.

これら貯蔵室には、蒸発器18及び庫内ファン20が設けられた風路1が供給口を介して連通している。つまり、蒸発器18によって冷却された冷気(冷却された空気)は、庫内ファン20により各貯蔵室へ送風される。より詳しくは、庫内ファン20からの冷気は各貯蔵室へ分岐され、全風量の一部が冷凍室21に、他の一部が冷蔵室22に供給され、再び蒸発器18に戻る。  The air passage 1 provided with the evaporator 18 and the internal fan 20 communicates with these storage chambers via a supply port. That is, the cool air (cooled air) cooled by the evaporator 18 is blown to each storage chamber by the internal fan 20. More specifically, the cold air from the internal fan 20 is branched to each storage room, a part of the total air volume is supplied to the freezing room 21, the other part is supplied to the refrigerating room 22, and returns to the evaporator 18 again.

風路1における冷蔵室22の供給口2には、該供給口2を開閉する冷蔵室ダンパ23が設けられている。この冷蔵室ダンパ23は、制御装置10によって、開閉が時間制御される構成となっている。つまり、制御装置10は、冷蔵室ダンパ23の開時間を制御することにより、規定時間CTの間に供給口2が開く開時間を調整(制御)することができる。つまり、冷蔵室22は、冷蔵室ダンパ23の開時間の制御によって、規定時間CT内での冷風量が調整され冷蔵室温度を調整される。ここで、冷蔵室22の温度は冷蔵室22に設けられた例えばサーミスタ等の温度センサー22bで測定される。そして、制御装置10の開時間取得部10bは、測定された温度に基づいて、冷蔵室ダンパ23の規定時間CT内での必要開時間を求める(予測する)。つまり、規定時間CT内にどの程度の時間だけ供給口2を開けば、冷蔵室22の温度を一定にすることができるかを求める(予測する)。また、制御装置10のダンパ制御部10dは、規定時間CTの間に当該必要開時間だけ供給口2が開くように、冷蔵室ダンパ23を制御する。ここで、上記必要開時間の予測は、例えばPI制御(比例積分制御)などの予測技術を用いて行う。なお、開時間中、冷蔵室ダンパ23による供給口2の開口率は、風路抵抗が大きくなって冷蔵室22内において冷気が届かない領域が発生しない程度に設定する。冷蔵室ダンパ23による供給口2の開口率は、例えば全開に設定される。  The supply port 2 of the refrigerator compartment 22 in the air path 1 is provided with a refrigerator compartment damper 23 that opens and closes the supply port 2. The refrigerator compartment damper 23 is configured such that the opening and closing are time-controlled by the control device 10. That is, the control device 10 can adjust (control) the opening time during which the supply port 2 opens during the specified time CT by controlling the opening time of the refrigerator compartment damper 23. That is, in the refrigerator compartment 22, the amount of cold air within the specified time CT is adjusted and the refrigerator compartment temperature is adjusted by controlling the opening time of the refrigerator compartment damper 23. Here, the temperature of the refrigerator compartment 22 is measured by a temperature sensor 22 b such as a thermistor provided in the refrigerator compartment 22. And the open time acquisition part 10b of the control apparatus 10 calculates | requires (predicts) the required open time within the regulation time CT of the refrigerator compartment damper 23 based on the measured temperature. That is, it is calculated (predicted) how long the supply port 2 can be opened within the specified time CT to keep the temperature of the refrigerator compartment 22 constant. Moreover, the damper control part 10d of the control apparatus 10 controls the refrigerator compartment damper 23 so that the supply port 2 opens only for the required opening time during the specified time CT. Here, the required opening time is predicted using a prediction technique such as PI control (proportional integral control). During the opening time, the opening ratio of the supply port 2 by the refrigerator compartment damper 23 is set to such an extent that the air path resistance becomes large and a region where the cold air does not reach in the refrigerator compartment 22 does not occur. The opening ratio of the supply port 2 by the refrigerator compartment damper 23 is set to fully open, for example.

具体的には、本実施の形態では、下記式(1)を用いて、冷蔵室ダンパ23の規定時間CT内での必要開時間を求めている。
MV=Kp×[1+{1/(TI×S)}]×EV…(1)
ここで、MVは、操作量であり、冷蔵室ダンパ23の規定時間CT内での開時間である。EVは、制御偏差であり、冷蔵室22の設定温度と冷蔵室22に設けられた温度センサー22bの測定値との差である。また、Kpは比例ゲインであり、TIは積分時間であり、Sはラプラス演算子である。
Specifically, in the present embodiment, the required opening time within the specified time CT of the refrigerator compartment damper 23 is obtained using the following formula (1).
MV = Kp × [1+ {1 / (TI × S)}] × EV (1)
Here, MV is an operation amount, and is the open time of the refrigerator compartment damper 23 within the specified time CT. EV is a control deviation and is a difference between the set temperature of the refrigerator compartment 22 and the measured value of the temperature sensor 22b provided in the refrigerator compartment 22. Kp is a proportional gain, TI is an integration time, and S is a Laplace operator.

また、冷凍室21の温度は、冷凍室21に設けられた例えばサーミスタ等の温度センサー21bで測定される。
なお、風路1における冷凍室21の供給口にダンパを有する場合も、本発明の効果を有することは可能である。
Further, the temperature of the freezer compartment 21 is measured by a temperature sensor 21 b such as a thermistor provided in the freezer compartment 21.
In addition, even when it has a damper in the supply port of the freezer compartment 21 in the air path 1, it is possible to have the effect of this invention.

次に、規定時間CTについて説明する。規定時間CTは、制御装置10が冷蔵室ダンパ23を制御する制御間隔の最少時間である。規定時間CTが短いほど制御性は向上するが、規定時間CTは、任意の時間とすることができる。  Next, the specified time CT will be described. The specified time CT is the minimum time of the control interval for the control device 10 to control the refrigerator compartment damper 23. Although the controllability is improved as the specified time CT is shorter, the specified time CT can be set to an arbitrary time.

図3は、本発明の実施の形態に係る冷蔵庫100における冷蔵室ダンパ23の規定時間CTを説明する図である。なお、図3の横軸は規定時間CTを示しており、右側へ向かうに従って規定時間CTが大きくなることを示している。また、図3の縦軸は入力(投入電力)を示しており、上側に向かうに従って入力が大きくなることを示している。  FIG. 3 is a diagram for explaining the prescribed time CT of the refrigerator compartment damper 23 in the refrigerator 100 according to the embodiment of the present invention. In addition, the horizontal axis of FIG. 3 has shown the regulation time CT, and has shown that regulation time CT becomes large as it goes to the right side. Moreover, the vertical axis | shaft of FIG. 3 has shown the input (input electric power), and has shown that an input becomes large as it goes upwards.

図3に示すように、規定時間CTが短い(つまり制御間隔が短い)ほど、冷蔵室ダンパ23の駆動回数が増加するため、冷蔵室ダンパ23の開閉に必要な入力(図3中のダンパ入力)が増加する。一方で、規定時間CTが短いほど、各貯蔵室の温度変動を抑制でき、後述するように冷凍室21への風量が増加するため、圧縮機11の平均入力(図3中の圧縮機入力)は低下する。このため、図3に示すように、冷蔵室ダンパ23等の駆動装置の入力及び圧縮機11の入力等の総和である冷蔵庫100全入力は、最小値を持つ。つまり、この全入力が最少となる規定時間CTで冷蔵室ダンパ23を動作させることにより、冷蔵庫100の消費電力をより低減できる。このため、本実施の形態では、全入力が最少となる規定時間CTを採用している。なお、この規定時間CTは、冷蔵庫100の運転条件、内容積及び断熱構造により異なる。冷蔵室ダンパ23の駆動回数を考慮すると、規定時間CTは、5分程度が望ましい。  As shown in FIG. 3, as the specified time CT is shorter (that is, the control interval is shorter), the number of times the refrigerator compartment damper 23 is driven increases. Therefore, the input necessary for opening and closing the refrigerator compartment damper 23 (the damper input in FIG. 3). ) Will increase. On the other hand, as the specified time CT is shorter, the temperature fluctuation of each storage room can be suppressed, and the air volume to the freezer room 21 increases as will be described later, so the average input of the compressor 11 (compressor input in FIG. 3) Will decline. For this reason, as shown in FIG. 3, the refrigerator 100 full input which is the sum total of the input of the drive device such as the refrigerator compartment damper 23 and the input of the compressor 11 has the minimum value. That is, the power consumption of the refrigerator 100 can be further reduced by operating the refrigerator compartment damper 23 for the specified time CT in which all inputs are minimized. For this reason, in the present embodiment, a specified time CT that minimizes all inputs is adopted. The specified time CT differs depending on the operating conditions, the internal volume, and the heat insulating structure of the refrigerator 100. Considering the number of driving times of the refrigerator compartment damper 23, the specified time CT is preferably about 5 minutes.

次に、冷蔵庫100の安定時における規定時間CT内での供給口2の開時間について説明する。なお、冷蔵庫100の安定時とは、後述する庫内負荷が規定値以下の状態、つまり庫内負荷が基準値に対して小さい状態である。  Next, the opening time of the supply port 2 within the specified time CT when the refrigerator 100 is stable will be described. In addition, the stable time of the refrigerator 100 is a state in which the internal load described later is equal to or less than a specified value, that is, a state in which the internal load is smaller than the reference value.

冷蔵庫100の制御装置10は、冷凍室21が設定温度以上となったときに圧縮機11を起動し、設定温度以下に下がると停止する。冷蔵庫100の消費電力量の低減には、全入力の大半を占める圧縮機11を停止させることが必要である。そのため、冷凍室21への冷却能力を増やす、つまり冷凍室21への供給風量を極力増やすことで、短時間で冷凍室21を設定温度以下にし、圧縮機11の運転時間を抑制する。  The control device 10 of the refrigerator 100 starts the compressor 11 when the freezer compartment 21 becomes equal to or higher than the set temperature, and stops when the temperature falls below the set temperature. In order to reduce the power consumption of the refrigerator 100, it is necessary to stop the compressor 11 that occupies most of all inputs. Therefore, by increasing the cooling capacity to the freezer compartment 21, that is, by increasing the amount of air supplied to the freezer compartment 21 as much as possible, the freezer compartment 21 is brought to the set temperature or less in a short time and the operation time of the compressor 11 is suppressed.

従来の冷蔵庫では、冷蔵室ダンパ23の開閉において、冷蔵室ダンパ23の開時に冷蔵室22の温度を低下させるための風量Qraが冷蔵室22に供給される。その際、冷凍室21へは全風量QからQraを引いたQfa=Q−Qraだけ冷風が供給されるため、冷凍室21の温度は一定若しくは上昇する。  In the conventional refrigerator, when the refrigerator compartment damper 23 is opened and closed, an air volume Qra for reducing the temperature of the refrigerator compartment 22 is supplied to the refrigerator compartment 22 when the refrigerator compartment damper 23 is opened. At this time, since the cold air is supplied to the freezer compartment 21 by Qfa = Q−Qra obtained by subtracting Qra from the total airflow Q, the temperature of the freezer compartment 21 is constant or rises.

冷蔵室22が設定温度まで冷却された後、冷蔵室ダンパ23は閉となり、冷凍室21に全風量Qが送風されるため、冷凍室21は設定温度まで冷却され、その後圧縮機11が停止する。  After the refrigerator compartment 22 is cooled to the set temperature, the refrigerator compartment damper 23 is closed, and the total air volume Q is blown into the freezer compartment 21, so that the refrigerator compartment 21 is cooled to the preset temperature, and then the compressor 11 is stopped. .

一方、本実施の形態に係る冷蔵庫100では、制御装置10は、冷蔵室ダンパ23を制御することにより、規定時間CTの間に供給口2が開く開時間を制御する。つまり、本実施の形態に係る冷蔵庫100は、規定時間CTの間、冷蔵室22の温度を一定に保つだけの風量Qrbの冷気を冷蔵室22に供給する。冷蔵室22の温度低下量から明らかなように、Qrb<Qraで、その結果、本実施の形態では冷凍室21への風量はQfb=Q−Qrbで、Qfb>Qfaとなる。このため、冷凍室21の温度は、従来の冷凍室21の温度変化に対して早く低下する。このため、本実施の形態に係る冷蔵庫100は、圧縮機11の運転と停止の比率を示す運転率が、従来より改善する結果を発明者らは得ている。なお、この低減率は、冷蔵庫100の運転条件や内容積、断熱構造により異なる。  On the other hand, in the refrigerator 100 according to the present embodiment, the control device 10 controls the open time during which the supply port 2 opens during the specified time CT by controlling the refrigerator compartment damper 23. That is, the refrigerator 100 according to the present embodiment supplies the refrigeration chamber 22 with the cold air of the air volume Qrb that keeps the temperature of the refrigeration chamber 22 constant for the specified time CT. As is apparent from the amount of temperature decrease in the refrigerator compartment 22, Qrb <Qra. As a result, in the present embodiment, the air volume to the freezer compartment 21 is Qfb = Q−Qrb and Qfb> Qfa. For this reason, the temperature of the freezer compartment 21 falls quickly with respect to the temperature change of the conventional freezer compartment 21. For this reason, as for the refrigerator 100 which concerns on this Embodiment, the inventors have obtained the result that the operation rate which shows the ratio of the driving | operation of the compressor 11 and a stop is improved conventionally. In addition, this reduction rate changes with the driving | running conditions, internal volume, and heat insulation structure of the refrigerator 100. FIG.

ここで、本実施の形態に係る冷蔵庫100では、冷蔵室22への冷気の供給量(風量)を小さくする際、規定時間CT内において供給口2が開いている時間を短くすればよい。このため、本実施の形態に係る冷蔵庫100は、冷蔵室22への風量を小さくする際、風路抵抗が大きくならないので、冷蔵室22内において冷気が届かない領域が発生してしまうことを防止でき、冷蔵室22内に温度分布が発生することも防止できる。  Here, in the refrigerator 100 according to the present embodiment, when the supply amount (air volume) of the cold air to the refrigerator compartment 22 is reduced, the time during which the supply port 2 is open within the specified time CT may be shortened. For this reason, the refrigerator 100 according to the present embodiment prevents the occurrence of a region where the cold air does not reach in the refrigerator compartment 22 because the air path resistance does not increase when the air volume to the refrigerator compartment 22 is reduced. It is possible to prevent the temperature distribution from occurring in the refrigerator compartment 22.

上述のように、規定時間CTが短ければ短いほど冷蔵室22の温度一定制御が可能だが、その分、冷蔵室ダンパ23の動作回数が増える。このため、冷蔵室ダンパ23の駆動入力が増加し、冷蔵室ダンパ23が寿命等により壊れる可能性が増加する。また、冷蔵室ダンパ23の動作回数が増加すると、冷蔵室ダンパ23を動作させるモータの発熱量も増加して庫内負荷となり、冷蔵庫100の消費電力量が増加する。このため、冷蔵庫100の全入力が最少となる規定時間CTを採用することにより、さらなる消費電力量の削減が可能となる。また、発明者らは前述した冷蔵室22以外の貯蔵室に対しても同様の制御を行うことで、一層の改善結果を得ている。  As described above, as the specified time CT is shorter, the constant temperature control of the refrigerator compartment 22 is possible. However, the number of operations of the refrigerator compartment damper 23 increases accordingly. For this reason, the drive input of the refrigerator compartment damper 23 increases, and the possibility that the refrigerator compartment damper 23 will be broken by a lifetime etc. increases. Moreover, if the frequency | count of operation | movement of the refrigerator compartment damper 23 increases, the emitted-heat amount of the motor which operates the refrigerator compartment damper 23 will also increase, and it will become an internal load, and the power consumption of the refrigerator 100 will increase. For this reason, the power consumption can be further reduced by adopting the specified time CT in which the total input of the refrigerator 100 is minimized. In addition, the inventors have obtained a further improvement result by performing the same control for the storage chambers other than the refrigerator compartment 22 described above.

以上から、安定時には冷凍室21を除く冷蔵室22を含む各貯蔵室に対し、規定時間CTの間に供給口2が開く開時間を制御し、冷凍室21への風量を増加させることで消費電力量の削減が可能となる。  From the above, when the storage room including the refrigerator compartment 22 excluding the freezer compartment 21 is stable, the opening time during which the supply port 2 opens during the specified time CT is controlled, and the air volume to the freezer compartment 21 is increased. The amount of electric power can be reduced.

なお、上記では冷蔵室22のダンパ制御を記載したが、複数の貯蔵室が同時に上記ダンパ制御を行う場合、他の貯蔵室のダンパ制御時の外乱を受け、貯蔵室の温度制御性が悪化する可能性がある。そのため、設定温度が高い貯蔵室の供給口(冷気供給口)に設けられたダンパから順に、制御を開始すること望ましい。これは、設定温度が高い貯蔵室ほど、蒸発器18(冷却器)への流入空気温度が高くなり、蒸発器18(冷却器)より供給される冷風温度に与える影響が大きく、外乱となりやすいためである。  In addition, although damper control of the refrigerator compartment 22 was described above, when a plurality of storage chambers perform the damper control at the same time, the temperature controllability of the storage chamber deteriorates due to disturbance during damper control of other storage chambers. there is a possibility. Therefore, it is desirable to start the control in order from the damper provided at the supply port (cold air supply port) of the storage room having a high set temperature. This is because the higher the set temperature, the higher the temperature of the air flowing into the evaporator 18 (cooler) and the greater the influence on the cold air temperature supplied from the evaporator 18 (cooler). It is.

この際、冷蔵室22は最大の内容量を持つ貯蔵室であるため、まず冷蔵室22の供給口2に設けられた冷蔵室ダンパ23の制御を開始し、その後、設定温度が高い貯蔵室の供給口(冷気供給口)に設けられたダンパから順に制御を開始してもよい。一例として、冷蔵室22、製氷室、切替室、冷凍室21、野菜室を有する冷蔵庫にて、制御対象の順位を記載する。一般的に最も設定温度が高い貯蔵室は野菜室であるが、貯蔵室の容積は冷蔵室22が最大である。そのため、優先順位は、冷蔵室22を最優先とする。次は設定温度の高い野菜室である。製氷室と切替室はユーザーの設定により任意温度に調整できるので、設定温度にて順位を決めるが、製氷室は一般的に冷凍室とほぼ近い温度のため、優先順位は低い。  At this time, since the refrigerating room 22 is a storage room having the maximum internal capacity, the control of the refrigerating room damper 23 provided at the supply port 2 of the refrigerating room 22 is started first, and then the storage room having a high set temperature is started. You may start control in an order from the damper provided in the supply port (cold air supply port). As an example, in the refrigerator having the refrigerator compartment 22, the ice making room, the switching room, the freezer room 21, and the vegetable room, the order of control objects is described. In general, the storage room having the highest set temperature is the vegetable room, but the refrigerator room 22 has the largest volume of the storage room. Therefore, priority is given to the refrigerator compartment 22 as the highest priority. Next is a vegetable room with a high set temperature. Since the ice making room and the switching room can be adjusted to an arbitrary temperature according to user settings, the order is determined by the set temperature. However, since the ice making room is generally close to the freezing room, the priority is low.

次に、冷蔵庫100の庫内負荷の検出例を説明する。  Next, an example of detecting the load in the refrigerator 100 will be described.

(1−1)圧縮機の運転状態に基づく庫内負荷の検出
本実施の形態の圧縮機11は、冷凍室21の温度センサー21bによって検出される温度に基づいて、運転/停止を制御されるとともに、運転中においては、冷凍室21の温度と設定温度との乖離状態及び運転時間に応じて、その回転数が制御される。このため、圧縮機11の運転状態は、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。そこで、庫内負荷として、圧縮機11の回転数f、又は圧縮機11への入力電力Wを用いることができる。圧縮機11の回転数fが所定の閾値より大きい場合(入力電力Wが大きい場合)には、庫内負荷が高い状態であり、圧縮機11の回転数が所定の閾値より小さい場合(入力電力Wが小さい場合)には、庫内負荷が低い状態である。制御装置10は、圧縮機11の運転を制御する際に取得する回転数f又は入力電力Wを取得し、その値と予めマイコンに記憶された閾値とを比較することにより、庫内負荷が閾値Qa(規定値)以下であるか否かを判定する。この庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-1) Detection of in-compartment load based on operation state of compressor Compressor 11 of the present embodiment is controlled to be operated / stopped based on the temperature detected by temperature sensor 21b of freezer compartment 21. At the same time, during operation, the number of rotations is controlled according to the deviation state between the temperature of the freezer compartment 21 and the set temperature and the operation time. For this reason, it can be said that the operation state of the compressor 11 is one of the indexes indicating the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the internal load. Therefore, the rotation speed f of the compressor 11 or the input power W to the compressor 11 can be used as the internal load. When the rotation speed f of the compressor 11 is larger than a predetermined threshold value (when the input power W is large), the internal load is high and the rotation speed of the compressor 11 is smaller than the predetermined threshold value (input power). When W is small, the in-compartment load is low. The control device 10 acquires the rotation speed f or the input power W acquired when controlling the operation of the compressor 11, and compares the value with a threshold value stored in advance in the microcomputer, whereby the load in the warehouse is a threshold value. It is determined whether or not Qa (specified value) or less. The internal load confirmation unit 10a determines whether or not the internal load is equal to or less than the threshold value Qa (specified value).

(1−2)蒸発器の出入り口温度差に基づく庫内負荷の検出
本実施の形態に係る蒸発器18への流入空気温度が高いということは、庫内負荷が大きい状態であることを示しており、この場合には、蒸発器18の出口側と入口側の冷媒で温度差ΔTeが生じる。このため、蒸発器18の出口側と入口側の温度差ΔTeは、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。そこで、庫内負荷として、蒸発器18の出口側と入口側の温度差ΔTeを用いることができる。制御装置10は、蒸発器18の入口側に設けられた温度センサー18aと出口側に設けられた温度センサー18bからの出力を取得し、これらの温度差ΔTeと、予めマイコンに記憶された閾値とを比較することにより、庫内負荷が閾値Qa以下であるか否かを判定する。温度センサー18a,18bを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-2) Detection of in-compartment load based on evaporator inlet / outlet temperature difference The high temperature of the air flowing into the evaporator 18 according to the present embodiment indicates that the in-compartment load is large. In this case, a temperature difference ΔTe is generated between the refrigerant on the outlet side and the inlet side of the evaporator 18. For this reason, it can be said that the temperature difference ΔTe between the outlet side and the inlet side of the evaporator 18 is one of indexes indicating the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the internal load. Therefore, the temperature difference ΔTe between the outlet side and the inlet side of the evaporator 18 can be used as the internal load. The control device 10 acquires outputs from the temperature sensor 18a provided on the inlet side of the evaporator 18 and the temperature sensor 18b provided on the outlet side, and the temperature difference ΔTe and a threshold value stored in advance in the microcomputer. Is compared to determine whether or not the internal load is equal to or less than the threshold value Qa. The internal load confirmation unit 10a determines whether or not the internal load using the temperature sensors 18a and 18b is equal to or less than a threshold value Qa (specified value).

(1−3)冷蔵室の扉開閉回数Rrに基づく庫内負荷の検出
冷蔵室22の扉22aを開放すると、外気が冷蔵室22に流入するとともに冷気が外部へと流出し、冷蔵室22の温度が上昇して冷却負荷が大きくなる。冷蔵室22は冷蔵庫100内で最も容積が大きい領域であり、冷蔵室22を所定の温度に冷却するために必要な冷風量も多くなる。このため、冷蔵室22の扉開閉回数Rrは、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。そこで、庫内負荷として、単位時間当たりの扉開閉回数Rrを用いることができる。制御装置10は、冷蔵室22の扉開閉センサー22cからの出力を受けて単位時間当たりの扉開閉回数Rrをカウントし、予めマイコンに記憶された所定の閾値と扉開閉回数Rrとを比較することにより、庫内負荷が閾値Qa以下であるか否かを判断する。冷蔵室22の扉開閉センサー22cを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-3) Detection of inside load based on door opening / closing frequency Rr of refrigerator compartment When the door 22a of the refrigerator compartment 22 is opened, outside air flows into the refrigerator compartment 22 and cold air flows out to the outside. The temperature rises and the cooling load increases. The refrigerator compartment 22 is an area having the largest volume in the refrigerator 100, and the amount of cold air necessary for cooling the refrigerator compartment 22 to a predetermined temperature is also increased. For this reason, it can be said that the door opening / closing frequency Rr of the refrigerator compartment 22 is one of the indexes indicating the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the load in the warehouse. Therefore, the door opening / closing frequency Rr per unit time can be used as the internal load. The control device 10 receives the output from the door opening / closing sensor 22c of the refrigerator compartment 22, counts the door opening / closing frequency Rr per unit time, and compares the predetermined threshold stored in the microcomputer in advance with the door opening / closing frequency Rr. Thus, it is determined whether the internal load is equal to or less than the threshold value Qa. The internal load confirmation unit 10a determines whether or not the internal load using the door opening / closing sensor 22c of the refrigerator compartment 22 is equal to or less than a threshold value Qa (specified value).

(1−4)冷凍室の扉開閉回数Rfに基づく庫内負荷の検出
同様にして、冷凍室21の扉21aの扉開閉回数Rfも、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。つまり、先にも述べたように、本実施の形態の圧縮機11は、冷凍室21の温度センサー21bによって検出される温度に基づいて、運転及び停止が制御される。そこで、冷蔵室22における扉開閉回数Rrと同様にして、庫内負荷として、単位時間当たりの扉開閉回数Rfを用いることができる。冷凍室21に設けられた扉開閉センサー21cを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-4) Detection of in-compartment load based on door opening / closing frequency Rf of freezer compartment Similarly, the door opening / closing frequency Rf of the door 21a of the freezing chamber 21 is also the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the warehouse. It can be said that it is one of the indexes indicating the internal load. That is, as described above, the operation and stop of the compressor 11 of the present embodiment are controlled based on the temperature detected by the temperature sensor 21b of the freezer compartment 21. Therefore, the door opening / closing frequency Rf per unit time can be used as the internal load in the same manner as the door opening / closing frequency Rr in the refrigerator compartment 22. The internal load confirmation unit 10a determines whether the internal load using the door opening / closing sensor 21c provided in the freezer compartment 21 is equal to or less than a threshold value Qa (specified value).

(1−5)冷蔵室の扉開放時間τrに基づく庫内負荷の検出
前述のように、冷蔵室22の扉22aを開放すると、冷蔵室22の温度が上昇して冷却負荷が大きくなる。このため、冷蔵室22の扉開放時間τr(単位時間当たりに扉22aが開放されていた時間の累積時間)は、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。そこで、庫内負荷として、冷蔵室22の扉開放時間τrを用いることができる。制御装置10は、扉開閉センサー22cからの出力を受けて、扉22aが開放されている時間をカウントし、累積する。そして、単位時間当たりの扉開放時間τrと、予めマイコンに記憶された所定の閾値とを比較することにより、庫内負荷が閾値Qa以下であるか否かを判断する。冷蔵室22に設けられた扉開閉センサー22cを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-5) Detection of inside load based on door opening time τr of refrigerator compartment As described above, when the door 22a of the refrigerator compartment 22 is opened, the temperature of the refrigerator compartment 22 rises and the cooling load increases. For this reason, the door opening time τr of the refrigerating room 22 (accumulated time of the time when the door 22a is opened per unit time) is an index indicating the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the load in the warehouse. It can be said that it is one. Therefore, the door opening time τr of the refrigerator compartment 22 can be used as the internal load. In response to the output from the door opening / closing sensor 22c, the control device 10 counts and accumulates the time during which the door 22a is opened. Then, by comparing the door opening time τr per unit time with a predetermined threshold value stored in advance in the microcomputer, it is determined whether or not the internal load is equal to or less than the threshold value Qa. The internal load confirmation unit 10a determines whether the internal load using the door opening / closing sensor 22c provided in the refrigerator compartment 22 is equal to or less than a threshold value Qa (specified value).

(1−6)冷凍室の扉開放時間τfに基づく庫内負荷の検出
同様にして、冷凍室21の扉21aの扉開放時間τfも、冷蔵庫100の冷凍サイクルの全体的な冷却負荷、つまり庫内負荷を示す指標の1つであるといえる。そこで、冷蔵室22における扉開放時間τrと同様にして、庫内負荷として、単位時間当たりの扉開放時間τfを用いることができる。冷凍室21に設けられた扉開閉センサー21cを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-6) Detection of in-compartment load based on door opening time τf of freezer room Similarly, the door opening time τf of the door 21a of the freezing room 21 is also the overall cooling load of the refrigeration cycle of the refrigerator 100, that is, the warehouse. It can be said that it is one of the indexes indicating the internal load. Therefore, the door opening time τf per unit time can be used as the internal load in the same manner as the door opening time τr in the refrigerator compartment 22. The internal load confirmation unit 10a determines whether the internal load using the door opening / closing sensor 21c provided in the freezer compartment 21 is equal to or less than a threshold value Qa (specified value).

(1−7)冷蔵室温度Trに基づく庫内負荷の検出
冷蔵室22に設けられた温度センサー22bの検出温度が高温であるほど、冷蔵室22の庫内負荷が大きい状態であるといえる。そこで、庫内負荷として、冷蔵室温度Trを用いることができる。制御装置10は、冷蔵室22の温度センサー22bからの出力を受けて、冷蔵室温度Trと、予めマイコンに記憶された所定の閾値とを比較することにより、庫内負荷が閾値Qa以下であるか否かを判断する。冷蔵室22に設けられた温度センサー22bを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-7) Detection of internal load based on refrigerator compartment temperature Tr It can be said that the higher the temperature detected by the temperature sensor 22b provided in the refrigerator compartment 22, the greater the internal load of the refrigerator compartment 22. Therefore, the refrigerator compartment temperature Tr can be used as the internal load. The control device 10 receives the output from the temperature sensor 22b of the refrigerating room 22 and compares the refrigerating room temperature Tr with a predetermined threshold value stored in advance in the microcomputer, so that the internal load is equal to or lower than the threshold value Qa. Determine whether or not. The internal load confirmation unit 10a determines whether the internal load using the temperature sensor 22b provided in the refrigerator compartment 22 is equal to or less than a threshold value Qa (specified value).

(1−8)冷凍室の温度低下量に基づく庫内負荷の検出
冷凍室21に、比較的温度が高くて大きな食材が投入されている場合には、冷凍室21の温度低下の速度は遅くなる傾向にある。このような場合には、冷凍室21における冷却負荷が大きい状態であるといえる。そこで、庫内負荷として、単位時間当たりの冷凍室21の温度低下量を用いることができる。制御装置10は、冷凍室21の温度センサー21bからの出力を受けて単位時間当たりの温度低下量を算出し、その温度低下量と、予めマイコンに記憶された所定の閾値とを比較することにより、庫内負荷が閾値Qa以下であるか否かを判断する。冷凍室21に設けられた温度センサー21bを用いての庫内負荷が閾値Qa(規定値)以下であるか否かの判定は、庫内負荷確認部10aが行う。
(1-8) Detection of internal load based on amount of temperature decrease in freezer compartment When the freezer compartment 21 has a relatively high temperature and a large amount of food is charged, the temperature reduction speed of the freezer compartment 21 is slow. Tend to be. In such a case, it can be said that the cooling load in the freezer compartment 21 is large. Therefore, the amount of temperature drop in the freezer compartment 21 per unit time can be used as the internal load. The control device 10 receives an output from the temperature sensor 21b of the freezer compartment 21 and calculates a temperature decrease amount per unit time, and compares the temperature decrease amount with a predetermined threshold value stored in advance in the microcomputer. Then, it is determined whether or not the internal load is equal to or less than the threshold value Qa. The internal load confirmation unit 10a determines whether the internal load using the temperature sensor 21b provided in the freezer compartment 21 is equal to or less than a threshold value Qa (specified value).

以上説明した庫内負荷検出手段の検出例は、いずれも、追加部品を設けることなく実現可能なものであり、冷蔵庫100の部品点数を増加させることもない。  Any of the detection examples of the in-compartment load detecting means described above can be realized without providing additional parts, and the number of parts of the refrigerator 100 is not increased.

次に、上記の庫内負荷が閾値Qa(規定値)よりも大きい状態における冷蔵室ダンパ23の制御について記す。庫内負荷が閾値Qa(規定値)よりも大きい状態を検知した際、冷蔵庫100の制御装置10は、図4に示すフローに従って冷蔵室ダンパ23を制御する。なお、図4は、本発明の実施の形態に係る冷蔵庫100における安定時の冷蔵室ダンパ23の規定時間CT内での開時間制御を実行するまでのフロー図であるが、冷蔵室以外の貯蔵室に対しても同様の判定を行うことで、本実施の形態に係る冷蔵庫100における安定時の開時間制御が成り立つ。  Next, control of the refrigerating room damper 23 in a state where the above-mentioned load in the store is larger than the threshold value Qa (specified value) will be described. When detecting that the load in the refrigerator is larger than the threshold value Qa (specified value), the control device 10 of the refrigerator 100 controls the refrigerator compartment damper 23 according to the flow shown in FIG. FIG. 4 is a flow chart until the open time control within the specified time CT of the refrigerator compartment damper 23 at the stable time in the refrigerator 100 according to the embodiment of the present invention, but storage other than the refrigerator compartment is performed. By performing the same determination for the room, the open time control at the stable time in the refrigerator 100 according to the present embodiment is established.

制御装置10は、庫内負荷が閾値Qa(規定値)よりも大きい場合(ステップS1)、冷蔵室22の冷蔵室温度Trと設定温度Trmとを比較する(ステップS2)。この比較は、制御装置10の判定部10cが行う。Tr≦Trmのとき、庫内負荷は冷蔵室22ではなく冷凍室21のため、つまり、冷凍室21の負荷が規定値よりも大きい状態であるため、制御装置10のダンパ制御部10dは、冷蔵室ダンパ23を制御して、規定時間CTの間、常に供給口2を閉(全閉)とする(ステップS3)。これにより、冷蔵庫100の庫内ファン20からのほぼ全風量を冷凍室21に供給でき、負荷に対して早急に対処し冷凍室21を設定温度まで冷却できる。なおこの際、庫内ファン20及び圧縮機11のうちの少なくとも一方の回転数を上げることを同時に行い冷却速度を高めても良い(ステップS4のNoからステップS5)。  When the internal load is larger than the threshold value Qa (specified value) (step S1), the control device 10 compares the refrigerating room temperature Tr of the refrigerating room 22 with the set temperature Trm (step S2). This comparison is performed by the determination unit 10c of the control device 10. When Tr ≦ Trm, the internal load is not the refrigerator compartment 22 but the freezer compartment 21, that is, the load of the freezer compartment 21 is larger than the specified value. Therefore, the damper controller 10d of the control device 10 The chamber damper 23 is controlled so that the supply port 2 is always closed (fully closed) during the specified time CT (step S3). As a result, almost the entire air volume from the internal fan 20 of the refrigerator 100 can be supplied to the freezer compartment 21, and the freezer compartment 21 can be cooled to the set temperature by quickly dealing with the load. At this time, the cooling speed may be increased by simultaneously increasing the rotational speed of at least one of the internal fan 20 and the compressor 11 (No in step S4 to step S5).

冷凍室21が設定温度まで冷却された後(ステップS4のYes)、制御装置10のダンパ制御部10dは、冷蔵室ダンパ23に対して安定時と同等の制御を行う(ステップS6)。  After the freezer compartment 21 is cooled to the set temperature (Yes in Step S4), the damper control unit 10d of the control device 10 performs the same control as that in the stable state for the refrigerator compartment damper 23 (Step S6).

一方、ステップS2においてTr>Trmのとき、庫内負荷は冷蔵室22のため、つまり、冷蔵室22の負荷が規定値よりも大きい状態であるため、制御装置10のダンパ制御部10dは、冷蔵室ダンパ23を制御して、供給口2を規定時間CTの間、常に全開とする(ステップS11)。これにより冷蔵室22の負荷に対する対処を行い、冷蔵室22が設定温度まで冷却される。この際、庫内ファン20及び圧縮機11のうちの少なくとも一方の回転数を上げることを同時に行い冷却速度を高めても良い(ステップS12のNoからステップS13)。冷凍室21が設定温度まで冷却された後(ステップS12のYes)、制御装置10のダンパ制御部10dは、冷蔵室ダンパ23に対して安定時と同等の制御を行う(ステップS14)。  On the other hand, when Tr> Trm in step S2, the internal load is in the refrigerator compartment 22, that is, the load in the refrigerator compartment 22 is larger than the specified value, so that the damper controller 10d of the control device 10 The chamber damper 23 is controlled so that the supply port 2 is always fully opened during the specified time CT (step S11). As a result, the load on the refrigerator compartment 22 is dealt with, and the refrigerator compartment 22 is cooled to the set temperature. At this time, the cooling speed may be increased by simultaneously increasing the rotational speed of at least one of the internal fan 20 and the compressor 11 (No from step S12 to step S13). After the freezer compartment 21 is cooled to the set temperature (Yes in Step S12), the damper control unit 10d of the control device 10 performs the same control as that in the stable state on the refrigerator compartment damper 23 (Step S14).

以上のように、本実施の形態に係る冷蔵庫100においては、庫内負荷が規定値以下の場合(庫内負荷が小さい場合)、ダンパの制御間隔である規定時間の間に供給口が開く時間を調整することにより、冷凍室21以外の貯蔵室の供給口が設定温度によって開閉される従来構造とは異なるようにして、冷凍室21以外の貯蔵室の温度を設定温度に保つ。つまり、本実施の形態に係る冷蔵庫100は、冷凍室21以外の貯蔵室に対して、規定時間CTの間、当該貯蔵室の温度を一定にする風量の冷気だけを送り、当該貯蔵室の温度変動を抑制する。このため、本実施の形態に係る冷蔵庫100は、庫内負荷が小さい場合、冷凍室21への冷気の供給量を従来よりも増加させることができるので、冷凍室21の温度変動を抑制できる。このため、圧縮機11の駆動時間が従来よりも低減できるので、従来よりも消費電力を低減できる。  As described above, in refrigerator 100 according to the present embodiment, when the in-compartment load is equal to or less than the specified value (when the in-compartment load is small), the time for the supply port to open during the specified time that is the damper control interval. By adjusting the above, the temperature of the storage room other than the freezer compartment 21 is kept at the preset temperature so that the supply port of the storage room other than the freezer compartment 21 is opened and closed by the preset temperature. That is, the refrigerator 100 according to the present embodiment sends only cool air of an air volume that keeps the temperature of the storage room constant for a specified time CT to the storage rooms other than the freezing room 21, and the temperature of the storage room Suppress fluctuations. For this reason, since the refrigerator 100 which concerns on this Embodiment can increase the supply amount of the cold air to the freezer compartment 21 compared with the past, when the load in a warehouse is small, it can suppress the temperature fluctuation of the freezer compartment 21. FIG. For this reason, since the drive time of the compressor 11 can be reduced compared with the past, power consumption can be reduced compared with the past.

このとき、本実施の形態に係る冷蔵庫100においては、冷凍室21以外の貯蔵室への風量を小さくする際、規定時間CT内において供給口が開いている時間を短くすればよい。このため、本実施の形態に係る冷蔵庫100は、冷凍室21以外の貯蔵室への風量を小さくする際、風路抵抗が大きくならないので、冷凍室21以外の貯蔵室内において冷気が届かない領域が発生してしまうことを防止でき、冷凍室21以外の貯蔵室内に温度分布が発生することも防止できる。  At this time, in the refrigerator 100 according to the present embodiment, when the air volume to the storage room other than the freezer room 21 is reduced, the time during which the supply port is open within the specified time CT may be shortened. For this reason, the refrigerator 100 according to the present embodiment does not increase the air path resistance when reducing the air volume to the storage room other than the freezing room 21, so that there is an area where cold air does not reach in the storage room other than the freezing room 21. Generation | occurrence | production can be prevented, and it can also prevent that temperature distribution generate | occur | produces in storage rooms other than the freezer compartment 21. FIG.

また、本実施の形態に係る冷蔵庫100は、庫内負荷が規定値よりも大きい場合(庫内負荷が大きい場合)、冷凍室21の負荷が規定値よりも大きい際には供給口が規定時間の間全閉となるようにダンパを制御し、冷凍室21以外の貯蔵室の負荷が規定値よりも大きい際には供給口が規定時間の間全開となるようにダンパを制御する。このため、本実施の形態に係る冷蔵庫100は、庫内負荷が規定値よりも大きい場合でも、各貯蔵室の温度変動を抑制することができる(安定化と冷却性能を維持することができる)。  In addition, in refrigerator 100 according to the present embodiment, when the in-compartment load is larger than a specified value (when the in-compartment load is large), when the load in freezer compartment 21 is larger than the specified value, the supply port has a specified time. The damper is controlled so as to be fully closed during the period, and when the load of the storage room other than the freezing room 21 is larger than the specified value, the damper is controlled so that the supply port is fully opened during the specified time. For this reason, the refrigerator 100 which concerns on this Embodiment can suppress the temperature fluctuation of each storeroom, even when the load in a warehouse is larger than a regulation value (it can maintain stabilization and cooling performance). .

1 風路、2 供給口、10 制御装置、10a 庫内負荷確認部、10b 開時間取得部、10c 判定部、10d ダンパ制御部、11 圧縮機、14 凝縮パイプ、15
結露防止パイプ、16 ドライヤ、17 キャピラリーチューブ、18 蒸発器、18a 温度センサー、18b 温度センサー、19 熱交換部分、20 庫内ファン、21
冷凍室、21a 扉、21b 温度センサー、21c 扉開閉センサー、22 冷蔵室、22a 扉、22b 温度センサー、22c 扉開閉センサー、23 冷蔵室ダンパ、100 冷蔵庫。
DESCRIPTION OF SYMBOLS 1 Air path, 2 Supply port, 10 Control apparatus, 10a Internal load confirmation part, 10b Open time acquisition part, 10c Judgment part, 10d Damper control part, 11 Compressor, 14 Condensation pipe, 15
Condensation prevention pipe, 16 dryer, 17 capillary tube, 18 evaporator, 18a temperature sensor, 18b temperature sensor, 19 heat exchanging part, 20 fan in chamber, 21
Freezer room, 21a door, 21b temperature sensor, 21c door open / close sensor, 22 refrigerator compartment, 22a door, 22b temperature sensor, 22c door open / close sensor, 23 refrigerator compartment damper, 100 refrigerator.

Claims (13)

冷凍室及び該冷凍室以外の少なくとも1つの貯蔵室と、
圧縮機、凝縮器、膨張機構、及び1つの蒸発器を有する冷凍サイクルと、
前記冷凍室及び該冷凍室以外の前記貯蔵室に連通し、前記蒸発器が配置された風路と、
前記風路に設けられ、前記蒸発器で冷却された空気を前記冷凍室及び該冷凍室以外の前記貯蔵室に供給する1つの庫内ファンと、
前記風路における該冷凍室以外の前記貯蔵室の供給口に設けられ、該供給口を開閉するダンパと、
庫内負荷に基づいて、少なくとも前記ダンパを制御する制御装置と、
を備え、
前記制御装置は、
前記庫内負荷を確認する庫内負荷確認部と、
前記庫内負荷が規定値以下の場合、前記ダンパの制御間隔である規定時間の間に前記供給口を開く開時間を求める開時間取得部と、
前記冷凍室の負荷及び前記冷凍室以外の前記貯蔵室の負荷が規定値よりも大きいか否かを判定する判定部と、
前記庫内負荷が規定値以下の場合、前記規定時間の間に前記供給口が前記開時間だけ開くように、前記ダンパを制御し、
前記庫内負荷が規定値よりも大きい場合、前記冷凍室の負荷が規定値よりも大きい際には前記供給口が前記規定時間の間全閉となるように前記ダンパを制御し、前記冷凍室以外の前記貯蔵室の負荷が規定値よりも大きい際には前記供給口が前記規定時間の間全開となるように前記ダンパを制御するダンパ制御部と、
を備えた冷蔵庫。
A freezing room and at least one storage room other than the freezing room;
A refrigeration cycle having a compressor, a condenser, an expansion mechanism, and one evaporator;
Communicating with the freezer compartment and the storage compartment other than the freezer compartment, and an air passage in which the evaporator is disposed;
One internal fan that is provided in the air passage and supplies the air cooled by the evaporator to the freezer and the storage room other than the freezer;
A damper provided at a supply port of the storage chamber other than the freezing chamber in the air path, and opening and closing the supply port;
A control device for controlling at least the damper based on the load in the cabinet;
With
The controller is
An internal load confirmation unit for confirming the internal load;
When the internal load is equal to or less than a specified value, an opening time acquisition unit that calculates an opening time for opening the supply port during a specified time that is a control interval of the damper;
A determination unit for determining whether a load of the freezer compartment and a load of the storage compartment other than the freezer compartment are greater than a specified value;
When the internal load is less than a specified value, the damper is controlled so that the supply port opens only during the specified time during the specified time,
When the internal load is larger than a specified value, the damper is controlled so that the supply port is fully closed during the specified time when the freezer load is larger than a specified value, A damper control unit that controls the damper so that the supply port is fully open during the specified time when the load of the storage chamber other than is greater than a specified value;
Refrigerator equipped with.
請求項1に記載の冷蔵庫であって、
前記規定時間は、当該冷蔵庫の全入力が最小となる時間である冷蔵庫。
The refrigerator according to claim 1,
The specified time is a refrigerator in which all inputs of the refrigerator are minimized.
前記冷凍室以外の前記貯蔵室及び前記ダンパを複数備え、
前記冷凍室以外の前記貯蔵室は、冷蔵室と、該冷蔵室とは異なる少なくとも1つの貯蔵室とであり、
前記ダンパ制御部は、
始めに前記冷蔵室の前記供給口に設けられた前記ダンパの制御を開始し、その後に前記冷蔵室とは異なる前記貯蔵室の前記供給口に設けられた前記ダンパの制御を開始する構成である請求項1又は請求項2に記載の冷蔵庫。
A plurality of the storage chambers and the dampers other than the freezing chamber,
The storage room other than the freezer room is a refrigeration room and at least one storage room different from the refrigeration room,
The damper control unit
First, control of the damper provided at the supply port of the refrigerator compartment is started, and then control of the damper provided at the supply port of the storage chamber different from the refrigerator compartment is started. The refrigerator according to claim 1 or 2.
前記冷蔵室とは異なる前記貯蔵室を複数備え、
前記ダンパ制御部は、
これらの前記貯蔵室の前記供給口に設けられた前記ダンパを制御する際、設定温度の高い前記貯蔵室に対応する前記ダンパから順に、制御を開始する構成である請求項3に記載の冷蔵庫。
A plurality of the storage rooms different from the refrigeration room,
The damper control unit
The refrigerator according to claim 3, wherein when controlling the damper provided in the supply port of the storage chamber, the control is started in order from the damper corresponding to the storage chamber having a high set temperature.
前記冷凍室以外の前記貯蔵室及び前記ダンパを複数備え、
前記ダンパ制御部は、設定温度の高い前記貯蔵室の前記供給口に設けられた前記ダンパから順に、制御を開始する構成である請求項1又は請求項2に記載の冷蔵庫。
A plurality of the storage chambers and the dampers other than the freezing chamber,
The refrigerator according to claim 1 or 2, wherein the damper control unit is configured to start control in order from the damper provided at the supply port of the storage chamber having a high set temperature.
前記冷凍室以外の前記貯蔵室の温度を検出する温度センサーを備え、
前記判定部は、
前記庫内負荷が規定値よりも大きい状態において、前記温度センサーの検出温度と規定値とを比較し、
前記温度センサーの検出温度が規定値以下の場合、前記冷凍室の負荷が規定値よりも大きいと判定し、
前記温度センサーの検出温度が規定値よりも大きい場合、前記冷凍室以外の前記貯蔵室の負荷が規定値よりも大きいと判定する構成である請求項1〜請求項5のいずれか一項に記載の冷蔵庫。
A temperature sensor for detecting the temperature of the storage chamber other than the freezer;
The determination unit
In a state where the internal load is larger than a specified value, the temperature detected by the temperature sensor is compared with a specified value,
When the detected temperature of the temperature sensor is less than or equal to a specified value, it is determined that the freezer load is greater than a specified value,
6. The configuration according to claim 1, wherein when the detected temperature of the temperature sensor is higher than a specified value, the load of the storage room other than the freezer is determined to be higher than a specified value. Refrigerator.
前記庫内負荷確認部は、前記圧縮機の回転数又は前記圧縮機の入力電力に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。   The said internal load confirmation part is the structure which confirms the said internal load based on the rotation speed of the said compressor, or the input electric power of the said compressor. refrigerator. 前記蒸発器の入口側の冷媒温度を測定する温度センサーと、
前記蒸発器の出口側の冷媒温度を測定する温度センサーと、
を備え、
前記庫内負荷確認部は、前記蒸発器の出口側の冷媒と入口側の冷媒との温度差に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。
A temperature sensor for measuring the refrigerant temperature on the inlet side of the evaporator;
A temperature sensor for measuring the refrigerant temperature on the outlet side of the evaporator;
With
7. The internal load confirmation unit is configured to confirm the internal load based on a temperature difference between the refrigerant on the outlet side and the refrigerant on the inlet side of the evaporator. The refrigerator according to item.
前記貯蔵室の扉の開閉状態を検出する扉開閉センサーを備え、
前記庫内負荷確認部は、前記扉の単位時間当たりの開閉回数に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。
A door opening / closing sensor for detecting an opening / closing state of the door of the storage room;
The refrigerator according to any one of claims 1 to 6, wherein the internal load confirmation unit is configured to confirm the internal load based on the number of times the door is opened and closed per unit time.
前記貯蔵室の扉の開閉状態を検出する扉開閉センサーを備え、
前記庫内負荷確認部は、前記扉の単位時間当たりの累積開放時間に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。
A door opening / closing sensor for detecting an opening / closing state of the door of the storage room;
The refrigerator according to any one of claims 1 to 6, wherein the internal load confirmation unit is configured to confirm the internal load based on an accumulated opening time per unit time of the door.
前記冷凍室以外の前記貯蔵室の温度を検出する温度センサーを備え、
前記庫内負荷確認部は、前記貯蔵室の温度に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。
A temperature sensor for detecting the temperature of the storage chamber other than the freezer;
The refrigerator according to any one of claims 1 to 6, wherein the internal load confirmation unit is configured to confirm the internal load based on a temperature of the storage chamber.
前記冷凍室の温度を検出する冷凍室温度センサーを備え、
前記庫内負荷確認部は、前記冷凍室の単位時間当たりの温度低下量に基づいて、前記庫内負荷を確認する構成である請求項1〜請求項6のいずれか一項に記載の冷蔵庫。
A freezer temperature sensor for detecting the temperature of the freezer;
The refrigerator according to any one of claims 1 to 6, wherein the internal load confirmation unit is configured to confirm the internal load based on a temperature decrease amount per unit time of the freezer.
前記制御装置は、
前記庫内負荷が規定値よりも大きい場合、前記圧縮機及び前記庫内ファンのうちの少なくとも一方の回転数を増加させる構成である請求項1〜請求項12のいずれか一項に記載の冷蔵庫。
The controller is
The refrigerator according to any one of claims 1 to 12, wherein when the internal load is larger than a specified value, the rotational speed of at least one of the compressor and the internal fan is increased. .
JP2016523553A 2014-05-28 2015-05-28 refrigerator Active JP6223564B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014109937 2014-05-28
JP2014109937 2014-05-28
PCT/JP2015/065386 WO2015182698A1 (en) 2014-05-28 2015-05-28 Refrigerator

Publications (2)

Publication Number Publication Date
JPWO2015182698A1 JPWO2015182698A1 (en) 2017-04-20
JP6223564B2 true JP6223564B2 (en) 2017-11-01

Family

ID=54699021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523553A Active JP6223564B2 (en) 2014-05-28 2015-05-28 refrigerator

Country Status (5)

Country Link
JP (1) JP6223564B2 (en)
CN (1) CN106415165B (en)
AU (1) AU2015268480B2 (en)
SG (1) SG11201609295YA (en)
WO (1) WO2015182698A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990526A (en) * 2017-12-29 2019-07-09 众智光电科技股份有限公司 Energy-saving refrigerator
CN110006204A (en) * 2018-01-04 2019-07-12 众智光电科技股份有限公司 Energy-saving refrigerator
CN109764600A (en) * 2018-12-18 2019-05-17 合肥美的电冰箱有限公司 Refrigerator and its control method
JP2020118336A (en) * 2019-01-23 2020-08-06 日立グローバルライフソリューションズ株式会社 refrigerator
CN109974372A (en) * 2019-03-22 2019-07-05 青岛海尔电冰箱有限公司 Refrigerator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150769A (en) * 1975-06-20 1976-12-24 Hitachi Ltd An air quantity control device for a refrigerator
JPH07113504B2 (en) * 1990-09-25 1995-12-06 三菱電機株式会社 refrigerator
JPH0593571A (en) * 1991-10-02 1993-04-16 Matsushita Refrig Co Ltd Refrigerator
JPH0989435A (en) * 1995-09-27 1997-04-04 Matsushita Refrig Co Ltd Refrigerator
JP3399243B2 (en) * 1996-08-08 2003-04-21 三菱電機株式会社 Freezer refrigerator
JPH10288440A (en) * 1997-04-14 1998-10-27 Matsushita Refrig Co Ltd Refrigerator
KR100434385B1 (en) * 2002-01-28 2004-06-04 엘지전자 주식회사 Air distribution system of Refrigerator
CN1779395B (en) * 2004-11-18 2010-05-05 乐金电子(天津)电器有限公司 Refrigerator
US7665320B2 (en) * 2005-11-30 2010-02-23 General Electric Company Damper assembly and methods for a refrigeration device
JP5753743B2 (en) * 2011-07-19 2015-07-22 日立アプライアンス株式会社 refrigerator
JP5709705B2 (en) * 2011-09-14 2015-04-30 三菱電機株式会社 Freezer refrigerator
JP5912746B2 (en) * 2012-03-28 2016-04-27 アクア株式会社 refrigerator
CN102901320B (en) * 2012-08-06 2014-12-24 海信容声(广东)冰箱有限公司 Control method of refrigerator applicable to high-temperature environment

Also Published As

Publication number Publication date
SG11201609295YA (en) 2016-12-29
JPWO2015182698A1 (en) 2017-04-20
AU2015268480A1 (en) 2016-11-24
CN106415165B (en) 2019-04-02
CN106415165A (en) 2017-02-15
AU2015268480B2 (en) 2017-07-20
WO2015182698A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP6223564B2 (en) refrigerator
JP4954484B2 (en) Cooling storage
KR101916727B1 (en) Refrigerator and controlling method thereof
JP5826317B2 (en) refrigerator
JP2014020715A (en) Refrigerator
JP2014122780A (en) Container refrigeration device
WO2005038365A1 (en) Cooling storage
WO2012169182A1 (en) Freezer
JP6309710B2 (en) Freezer refrigerator
JP5506760B2 (en) refrigerator
AU2014303819B2 (en) Refrigerator
JP4334971B2 (en) Cooling storage
JP2014029246A (en) Container refrigerating apparatus
KR101687237B1 (en) Refrigerator and controlling method thereof
JP5377720B2 (en) Open showcase
KR101620178B1 (en) A refrigerator and a control method the same
JP5008440B2 (en) Cooling storage
JP5579290B1 (en) refrigerator
JP2012078077A (en) Refrigerating device
JP2011237154A (en) Open showcase
JP6307846B2 (en) Refrigeration system
JP7351735B2 (en) refrigerator
JP5421526B2 (en) Cooling storage
KR101651329B1 (en) Refrigerator and control method the same
JP2020139639A (en) refrigerator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250