JP6222390B2 - Glass for chemical strengthening - Google Patents

Glass for chemical strengthening Download PDF

Info

Publication number
JP6222390B2
JP6222390B2 JP2017033734A JP2017033734A JP6222390B2 JP 6222390 B2 JP6222390 B2 JP 6222390B2 JP 2017033734 A JP2017033734 A JP 2017033734A JP 2017033734 A JP2017033734 A JP 2017033734A JP 6222390 B2 JP6222390 B2 JP 6222390B2
Authority
JP
Japan
Prior art keywords
glass
less
compressive stress
sio
chemical strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017033734A
Other languages
Japanese (ja)
Other versions
JP2017122045A (en
Inventor
遠藤 淳
淳 遠藤
周作 秋葉
周作 秋葉
和孝 小野
和孝 小野
茂輝 澤村
茂輝 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JP2017122045A publication Critical patent/JP2017122045A/en
Application granted granted Critical
Publication of JP6222390B2 publication Critical patent/JP6222390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、携帯電話、携帯情報端末(PDA)等のモバイル機器、大型液晶テレビ、大型プラズマテレビなどの大型薄型テレビおよびタッチパネル等のディスプレイ装置のカバーガラス等に好適な化学強化用ガラスに関する。   The present invention relates to a glass for chemical strengthening suitable for a cover glass of a mobile device such as a mobile phone and a personal digital assistant (PDA), a large thin TV such as a large liquid crystal television and a large plasma television, and a display device such as a touch panel.

近年、モバイル機器、液晶テレビやタッチパネルなどのディスプレイ装置に対しては、ディスプレイの保護ならびに美観を高めるためのカバーガラス(保護ガラス)が用いられることが多くなっている。
このようなディスプレイ装置に対しては、薄型デザインによる差異化や移動のための負担の減少のため、軽量・薄型化が要求されている。そのため、ディスプレイ保護用に使用されるカバーガラスも薄くすることが要求されている。しかし、カバーガラスの厚さを薄くしていくと強度が低下し、据え置き型の場合には物体の飛来や落下による衝撃などにより、携帯機器の場合には使用中の落下などによりカバーガラス自身が割れてしまいディスプレイ装置を保護するという本来の役割を果たすことができなくなるという問題があった。
In recent years, for display devices such as mobile devices, liquid crystal televisions, and touch panels, a cover glass (protective glass) for protecting the display and enhancing aesthetics is often used.
Such a display device is required to be lightweight and thin in order to differentiate by a thin design and to reduce a burden for movement. Therefore, the cover glass used for display protection is also required to be thin. However, as the thickness of the cover glass decreases, the strength decreases.In the case of a stationary type, the cover glass itself is affected by the impact of flying or dropping of an object. There is a problem that the original function of protecting the display device cannot be achieved due to cracking.

上記問題を解決するためには、カバーガラスの強度を高めることが考えられ、その方法としてガラス表面に圧縮応力層を形成させる手法が一般的に知られている。
ガラス表面に圧縮応力層を形成させる手法としては、軟化点付近まで加熱したガラス板表面を風冷などにより急速に冷却する風冷強化法(物理強化法)と、ガラス転移点以下の温度でイオン交換によりガラス板表面のイオン半径が小さなアルカリ金属イオン(典型的にはLiイオン、Naイオン)をイオン半径のより大きいアルカリイオン(典型的にはKイオン)に交換する化学強化法が代表的である。
In order to solve the above problem, it is conceivable to increase the strength of the cover glass, and as a method therefor, a method of forming a compressive stress layer on the glass surface is generally known.
As a method for forming a compressive stress layer on the glass surface, an air cooling strengthening method (physical strengthening method) in which the glass plate surface heated to near the softening point is rapidly cooled by air cooling or the like, and ions at a temperature below the glass transition point. A chemical strengthening method in which an alkali metal ion (typically Li ion or Na ion) having a small ionic radius on the glass plate surface is exchanged for an alkali ion (typically K ion) having a larger ionic radius by exchange. is there.

前述したようにカバーガラスの厚さは薄いことが要求されている。しかしながら、カバーガラスとして要求される、厚みが2mmを下回るような薄いガラス板に対して風冷強化法を適用すると、表面と内部の温度差がつきにくいために圧縮応力層を形成することが困難であり、目的の高強度という特性を得ることができない。そのため、後者の化学強化法によって強化されたカバーガラスが通常用いられている。   As described above, the cover glass is required to be thin. However, when the air-cooling strengthening method is applied to a thin glass plate that is required as a cover glass and has a thickness of less than 2 mm, it is difficult to form a compressive stress layer because the temperature difference between the surface and the inside is difficult to occur. Therefore, the desired high strength characteristic cannot be obtained. Therefore, a cover glass reinforced by the latter chemical strengthening method is usually used.

このようなカバーガラスとしてはソーダライムガラスを化学強化したものが広く用いられている(たとえば特許文献1参照)。
ソーダライムガラスは安価であり、また化学強化によってガラス表面に形成した圧縮応力層の表面圧縮応力Sを200MPa以上にできるという特徴があるが、圧縮応力層の厚みtを30μm以上にすることが容易ではないという問題があった。
As such a cover glass, a soda-lime glass that has been chemically strengthened is widely used (see, for example, Patent Document 1).
Soda lime glass is inexpensive and has a feature that the surface compressive stress S of the compressive stress layer formed on the glass surface by chemical strengthening can be increased to 200 MPa or more, but the thickness t of the compressive stress layer can be easily increased to 30 μm or more. There was a problem that was not.

そこで、ソーダライムガラスとは異なるSiO−Al−NaO系ガラスを化学強化したものがこのようなカバーガラスとして提案されている(たとえば特許文献2参照)。
前記SiO−Al−NaO系ガラスには前記Sを200MPa以上にできるだけでなく、前記tを30μm以上にすることも可能であるという特徴がある。
Accordingly, (see for example Patent Document 2) in which different SiO 2 -Al 2 O 3 -Na 2 O -based glass obtained by chemically strengthening has been proposed as such a cover glass is a soda-lime glass.
The SiO 2 —Al 2 O 3 —Na 2 O glass has a feature that not only the S can be set to 200 MPa or more, but the t can be set to 30 μm or more.

特開2007−11210号公報JP 2007-11210 A 米国特許出願公開第2008/0286548号明細書US Patent Application Publication No. 2008/0286548

先に述べたような用途などにおいては通常、化学強化のためのイオン交換処理はナトリウム(Na)を含有するガラスを溶融カリウム塩に浸漬して行われ、当該カリウム塩としては硝酸カリウムまたは硝酸カリウムと硝酸ナトリウムの混合塩が使用される。
イオン交換処理ではガラス中のNaと溶融塩中のカリウム(K)のイオン交換が行われるので、同じ溶融塩を使用し続けながらイオン交換処理を繰り返すと溶融塩中のNa濃度が上昇する。
In applications such as those described above, ion exchange treatment for chemical strengthening is usually performed by immersing glass containing sodium (Na) in molten potassium salt, and the potassium salt may be potassium nitrate or potassium nitrate and nitric acid. A mixed salt of sodium is used.
In the ion exchange treatment, ion exchange between Na in the glass and potassium (K) in the molten salt is performed. Therefore, when the ion exchange treatment is repeated while continuing to use the same molten salt, the concentration of Na in the molten salt increases.

溶融塩中のNa濃度が高くなると化学強化されたガラスの表面圧縮応力Sが低下するので、化学強化ガラスのSが所望の値を下回らないように溶融塩中のNa濃度を厳しく管理し、また溶融塩の交換を頻繁に行う必要があるという問題があった。
このような溶融塩の交換の頻度は少しでも減らすことが求められており、本発明はこのような問題を解決できる化学強化用ガラスの提供を目的とする。
As the Na concentration in the molten salt increases, the surface compressive stress S of the chemically strengthened glass decreases, so the Na concentration in the molten salt is strictly controlled so that the S of the chemically strengthened glass does not fall below the desired value. There was a problem that it was necessary to frequently exchange the molten salt.
It is required to reduce the frequency of such molten salt exchange as much as possible, and the present invention aims to provide a glass for chemical strengthening that can solve such a problem.

本発明は、下記酸化物基準のモル百分率表示で、SiOを61〜77%、Alを7〜18%、MgOを3〜15%、CaOを0〜5%、ZrOを0〜4%、NaOを8〜18%、KOを0〜1.9%含有し、SiOおよびAlの含有量の合計が85%以下であり、MgOおよびCaOの含有量の合計が3〜15%であり、かつ、各成分の含有量を用いて下記式により算出されるRが0.66以上である化学強化用ガラス(以下、第1の発明ということがある。)を提供する。なお、ここで用いられるガラスを本発明の第1のガラスといい、また、たとえば次式におけるSiOはSiOのモル百分率表示含有量である。
R=0.029×SiO+0.021×Al+0.016×MgO−0.004×CaO+0.016×ZrO+0.029×NaO+0×KO−2.002。
本発明の第1のガラスのSiO、Al、MgO、CaO、ZrO、NaOおよびKOの含有量の合計は典型的には98.5%以上である。
The present invention, in a molar percentage based on the following oxides, the SiO 2 61~77%, Al 2 O 3 7 to 18% of MgO 3 to 15% 0 to 5% of CaO, a ZrO 2 0 to 4% Na 2 O of 8 to 18% K 2 O and containing from 0 to 1.9%, the total content of SiO 2 and Al 2 O 3 is at most 85%, containing MgO and CaO Chemical strengthening glass having a total amount of 3 to 15% and R calculated by the following formula using the content of each component is 0.66 or more (hereinafter sometimes referred to as the first invention). .)I will provide a. Incidentally, it referred to as the first glass of the present invention the glass used herein, also for example SiO 2 in the formula is a mole percentage display content of SiO 2.
R = 0.029 × SiO 2 + 0.021 × Al 2 O 3 + 0.016 × MgO−0.004 × CaO + 0.016 × ZrO 2 + 0.029 × Na 2 O + 0 × K 2 O−2.002.
The total content of SiO 2 , Al 2 O 3 , MgO, CaO, ZrO 2 , Na 2 O and K 2 O of the first glass of the present invention is typically 98.5% or more.

また、下記酸化物基準のモル百分率表示で、SiOを61〜77%、Alを9.1〜18%、MgOを3〜15%、CaOを0〜5%、ZrOを0〜4%、NaOを8〜18%、KOを0〜6%ならびにB、SrOおよびBaOのいずれか1成分以上を含有し、SiOおよびAlの含有量の合計が85%以下であり、MgOおよびCaOの含有量の合計が3〜15%であり、かつ、各成分の含有量を用いて下記式により算出されるR’が0.66以上である化学強化用ガラス(以下、第2の発明ということがある。)を提供する。なお、ここで用いられるガラスを本発明の第2のガラスという。
R’=0.029×SiO+0.021×Al+0.016×MgO−0.004×CaO+0.016×ZrO+0.029×NaO+0×KO+0.028×B+0.012×SrO+0.026×BaO−2.002。
本発明の第2のガラスのSiO、Al、MgO、CaO、ZrO、NaO、KO、B、SrOおよびBaOの含有量の合計は典型的には98.5%以上である。
In addition, in terms of the mole percentage based on the following oxide, SiO 2 is 61 to 77%, Al 2 O 3 is 9.1 to 18%, MgO is 3 to 15%, CaO is 0 to 5%, and ZrO 2 is 0. 4% 8 to 18% of Na 2 O, containing any one or more components of the K 2 O 0-6% and B 2 O 3, SrO and BaO, the content of SiO 2 and Al 2 O 3 Is 85% or less, the total content of MgO and CaO is 3 to 15%, and R ′ calculated by the following formula using the content of each component is 0.66 or more. A glass for chemical strengthening (hereinafter sometimes referred to as a second invention) is provided. In addition, the glass used here is called 2nd glass of this invention.
R ′ = 0.029 × SiO 2 + 0.021 × Al 2 O 3 + 0.016 × MgO−0.004 × CaO + 0.016 × ZrO 2 + 0.029 × Na 2 O + 0 × K 2 O + 0.028 × B 2 O 3 + 0.012 × SrO + 0.026 × BaO−2.002.
The total content of SiO 2 , Al 2 O 3 , MgO, CaO, ZrO 2 , Na 2 O, K 2 O, B 2 O 3 , SrO and BaO in the second glass of the present invention is typically 98. .5% or more.

また、下記酸化物基準のモル百分率表示で、SiOを61〜77%、Alを1〜18%、MgOを3〜15%、CaOを0〜5%、ZrOを0〜4%、NaOを8〜18%、KOを0〜1.9%ならびにB、SrO、BaO、ZnOおよびSnOのいずれか1成分以上を含有し、LiOを含まず、SiOおよびAlの含有量の合計が65〜85%、MgOおよびCaOの含有量の合計が3〜15%であり、かつ、各成分の含有量を用いて下記式により算出されるR”が0.66以上である化学強化用ガラス(以下、第3の発明ということがある。)を提供する。なお、ここで用いられるガラスを本発明の第3のガラスという。
R”=0.029×SiO+0.021×Al+0.016×MgO−0.004×CaO+0.016×ZrO+0.029×NaO+0×KO+0.028×B+0.012×SrO+0.026×BaO+0.019×ZnO+0.033×LiO+0.032×SnO−2.002。
本発明の第3のガラスのSiO、Al、MgO、CaO、ZrO、NaO、KO、B、SrO、BaO、ZnO、LiOおよびSnOの含有量の合計は典型的には98.5%以上である。
In addition, in terms of a molar percentage based on the following oxide, SiO 2 is 61 to 77%, Al 2 O 3 is 1 to 18%, MgO is 3 to 15%, CaO is 0 to 5%, ZrO 2 is 0 to 4%. %, Na 2 O 8-18%, K 2 O 0-1.9% and any one or more of B 2 O 3 , SrO, BaO, ZnO and SnO 2 are contained, and Li 2 O is included. The total content of SiO 2 and Al 2 O 3 is 65 to 85%, the total content of MgO and CaO is 3 to 15%, and the content of each component is used to calculate the following formula The glass for chemical strengthening (hereinafter sometimes referred to as the third invention) having R ″ of 0.66 or more is provided. The glass used here is referred to as the third glass of the present invention.
R ″ = 0.029 × SiO 2 + 0.021 × Al 2 O 3 + 0.016 × MgO−0.004 × CaO + 0.016 × ZrO 2 + 0.029 × Na 2 O + 0 × K 2 O + 0.028 × B 2 O 3 + 0.012 × SrO + 0.026 × BaO + 0.019 × ZnO + 0.033 × Li 2 O + 0.032 × SnO 2 -2.002.
Inclusion of SiO 2 , Al 2 O 3 , MgO, CaO, ZrO 2 , Na 2 O, K 2 O, B 2 O 3 , SrO, BaO, ZnO, Li 2 O and SnO 2 in the third glass of the present invention The total amount is typically greater than 98.5%.

また、下記酸化物基準のモル百分率表示で、SiOを62〜77%、Alを7〜18%、MgOを3〜15%、CaOを0〜5%、ZrOを0〜4%、NaOを8〜18%含有し、SiOおよびAlの含有量の合計が85%以下であり、MgOおよびCaOの含有量の合計が3〜15%であり、LiOおよびKOを含有しないものである化学強化用ガラス(以下、第4の発明ということがある。)を提供する。なお、KOを含有しないこのガラスを本発明の第4のガラスといい、本発明の第1、第2、第3および第4のガラスを本発明のガラスと総称する。 In addition, in terms of a molar percentage based on the following oxide, SiO 2 is 62 to 77%, Al 2 O 3 is 7 to 18%, MgO is 3 to 15%, CaO is 0 to 5%, ZrO 2 is 0 to 4%. %, Na 2 O 8 to 18%, the total content of SiO 2 and Al 2 O 3 is 85% or less, the total content of MgO and CaO is 3 to 15%, Li 2 Provided is a glass for chemical strengthening that does not contain O and K 2 O (hereinafter sometimes referred to as a fourth invention). Incidentally, it referred to as a fourth glass of the present invention the glass not containing K 2 O, the first present invention, the second, collectively referred to as the glass of the present invention the third and fourth glass.

本発明者は、溶融カリウム塩にNa含有ガラスを浸漬して化学強化ガラスとするイオン交換を何度も繰り返すことにより溶融カリウム塩中のNa濃度が上昇し、それとともに化学強化ガラスの表面圧縮応力が小さくなっていく現象とNa含有ガラスの組成との間に関係があるのではないかと考え、次のような実験を行った。   The present inventor increased the Na concentration in the molten potassium salt by immersing the Na-containing glass in the molten potassium salt and repeatedly performing ion exchange to obtain the chemically strengthened glass, along with the surface compressive stress of the chemically strengthened glass. Considering that there is a relationship between the phenomenon of decreasing and the composition of Na-containing glass, the following experiment was conducted.

まず、表1〜3にモル%表示で示す組成を有し、厚みが1.5mm、大きさが20mm×20mmであり、両面が酸化セリウムで鏡面研磨された29種のガラス板を用意した。
これらガラスのガラス転移点Tg(単位:℃)およびヤング率E(単位:GPa)を同表に示す。
なお、*を付しているものは組成から計算して求めたものである。
Tgは次のようにして測定した。すなわち、示差熱膨張計を用いて、石英ガラスを参照試料として室温から5℃/分の割合で昇温した際のガラスの伸び率を屈伏点まで測定し、得られた熱膨張曲線における屈曲点に相当する温度をガラス転移点とした。
Eは、厚さが5〜10mm、大きさが3cm×3cmのガラス板について超音波パルス法により測定した。
これら29種のガラス板を、KNOの含有割合が100%であり温度が400℃である溶融カリウム塩に10時間浸漬するイオン交換を行って化学強化ガラス板とし、その表面圧縮応力CS1(単位:MPa)を測定した。なお、ガラスA27はモバイル機器のカバーガラスに使用されているガラスである。
また、これら29種のガラス板を、KNOの含有割合が95%、NaNOの含有割合が5%であり温度が400℃である溶融カリウム塩に10時間浸漬するイオン交換を行って化学強化ガラス板とし、その表面圧縮応力CS2(単位:MPa)を測定した。なお、CS1、CS2は折原製作所社製表面応力計FSM−6000にて測定した。
CS1、CS2をそれらの比r=CS2/CS1とともに表1〜3の該当欄に示す。
First, 29 types of glass plates having the compositions shown in mol% in Tables 1 to 3, having a thickness of 1.5 mm, a size of 20 mm × 20 mm, and mirror-polished on both sides with cerium oxide were prepared.
The glass transition point Tg (unit: ° C.) and Young's modulus E (unit: GPa) of these glasses are shown in the same table.
In addition, what attached | subjected * is calculated | required from the composition.
Tg was measured as follows. That is, using a differential thermal dilatometer, the elongation of the glass was measured up to the yield point when the temperature was raised from room temperature at a rate of 5 ° C./minute using quartz glass as a reference sample, and the bending point in the obtained thermal expansion curve. The temperature corresponding to was taken as the glass transition point.
E was measured by an ultrasonic pulse method on a glass plate having a thickness of 5 to 10 mm and a size of 3 cm × 3 cm.
These 29 kinds of glass plates were subjected to ion exchange immersed in molten potassium salt having a KNO 3 content ratio of 100% and a temperature of 400 ° C. for 10 hours to obtain chemically strengthened glass plates, and their surface compressive stress CS1 (unit: : MPa). Glass A27 is used for a cover glass of a mobile device.
These 29 kinds of glass plates were chemically strengthened by ion exchange by immersing them in molten potassium salt having a KNO 3 content of 95%, a NaNO 3 content of 5% and a temperature of 400 ° C. for 10 hours. It was set as the glass plate and the surface compressive stress CS2 (unit: MPa) was measured. CS1 and CS2 were measured with a surface stress meter FSM-6000 manufactured by Orihara Seisakusho.
CS1 and CS2 are shown in the corresponding columns of Tables 1 to 3 together with their ratio r = CS2 / CS1.

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

これらの結果から、前記式で算出したR(表1〜3に記載する。)と前記rとの間に高い相関があることを見出した。図1は、この点を明らかにするために横軸をR、縦軸をrとした作成した散布図であり、同図中の直線はr=1.033×R−0.0043、相関係数は0.97である。
なお、前記R’およびR”の値も表1〜3のRの欄の下に併記する。
From these results, it was found that there is a high correlation between R (described in Tables 1 to 3) calculated by the above formula and r. FIG. 1 is a scatter diagram in which the horizontal axis is R and the vertical axis is r in order to clarify this point, and the straight line in the figure is r = 1.033 × R−0.0043, phase relationship. The number is 0.97.
The values of R ′ and R ″ are also shown below the R column in Tables 1-3.

本発明者が見出した前記相関から、次のようなことがわかる。すなわち、溶融塩の交換頻度を少しでも減らすためには溶融塩中のNa濃度増加による表面圧縮応力Sの低下割合が小さいガラスすなわち前記rが大きいガラスを用いればよいが、そのためにはガラスの前記Rを大きくすればよいことがわかる。
また、従来使用されているガラスA27のrは0.65であるから、Rを0.66以上とすることによりrが概ね0.68以上となってガラスA27よりも明らかに大きくなり、溶融塩の交換頻度が顕著に減少し、あるいは溶融塩の管理を大幅に緩くすることが可能になる。
From the correlation found by the present inventors, the following can be understood. That is, in order to reduce the exchange frequency of the molten salt as much as possible, a glass with a small reduction rate of the surface compressive stress S due to an increase in Na concentration in the molten salt, that is, a glass with a large r may be used. It can be seen that R should be increased.
In addition, since r of the conventionally used glass A27 is 0.65, by setting R to 0.66 or more, r becomes approximately 0.68 or more and becomes clearly larger than the glass A27. The frequency of replacement is significantly reduced, or the management of molten salt can be greatly relaxed.

化学強化ガラスの強度は表面圧縮応力に強く依存し、表面圧縮応力が小さいほど化学強化ガラスの強度が低くなる。このため、化学強化処理によって得られる表面圧縮応力が溶融塩中のNa濃度が0%のときの表面圧縮応力に比べて68%以上すなわちrが0.68以上である必要がある。このことから、溶融塩中のNa濃度をCとすると、使用可能なCの範囲は以下の式を満たす範囲である。   The strength of the chemically strengthened glass strongly depends on the surface compressive stress. The smaller the surface compressive stress, the lower the strength of the chemically strengthened glass. For this reason, it is necessary that the surface compressive stress obtained by the chemical strengthening treatment is 68% or more, that is, r is 0.68 or more as compared with the surface compressive stress when the Na concentration in the molten salt is 0%. From this, when the Na concentration in the molten salt is C, the usable C range is a range satisfying the following formula.

0.68≦(r−1)×C/5+1
すなわち、C≦1.6/(1−r)でなければならない。
0.68 ≦ (r−1) × C / 5 + 1
That is, C ≦ 1.6 / (1-r).

rが0.68未満では、溶融塩中のNa濃度上昇による化学強化ガラスの表面圧縮応力Sの低下割合が大きいので、Na濃度が5.0%未満までの狭い範囲でしか使用できないため、交換頻度が多くなる。rが0.75、0.79および0.81の場合にはそれぞれNa濃度が6.4%以下、7.6%以下および8.4%以下のNa濃度の広い範囲で使用可能となり、rが0.75、0.79および0.81の場合には、rが0.68の場合に比べて交換頻度をそれぞれ78%、66%および59%に抑えることができる。したがって、rは好ましくは0.70以上、より好ましくは0.75以上、さらに好ましくは0.79以上、特に好ましくは0.81以上である。   When r is less than 0.68, the reduction rate of the surface compressive stress S of the chemically strengthened glass due to the increase of Na concentration in the molten salt is large, so the Na concentration can be used only in a narrow range of less than 5.0%. Increases frequency. When r is 0.75, 0.79 and 0.81, the Na concentration can be used in a wide range of Na concentrations of 6.4% or less, 7.6% or less and 8.4% or less, respectively. Can be suppressed to 78%, 66%, and 59% when r is 0.75, 0.79, and 0.81, respectively, compared to when r is 0.68. Therefore, r is preferably 0.70 or more, more preferably 0.75 or more, further preferably 0.79 or more, and particularly preferably 0.81 or more.

また、rが0.68未満では溶融塩中のNa濃度変化による化学強化ガラスの表面圧縮応力Sの変化が大きいので、表面圧縮応力の調整が難しくなり、溶融塩中のNa濃度の管理が厳しくなる。   If r is less than 0.68, the surface compressive stress S of the chemically strengthened glass is greatly changed due to the Na concentration change in the molten salt. Therefore, it becomes difficult to adjust the surface compressive stress, and the management of the Na concentration in the molten salt is severe. Become.

また、29種のガラスの中で最もrが大きいガラス1、ガラス2を他の27種のガラスと比べるとKOを含有しないという点で共通する。一方、Rを算出する前記式におけるKOに係る係数は0であり、同じアルカリ金属酸化物であるNaOに係る係数0.029に比べて著しく小さいことからこの点を説明することが可能である。
本発明はこのような経緯により想到したものである。
Further, the glass 1 and the glass 2 having the largest r among the 29 kinds of glasses are common in that they do not contain K 2 O when compared with the other 27 kinds of glasses. On the other hand, the coefficient relating to K 2 O in the above formula for calculating R is 0, which is significantly smaller than the coefficient 0.029 relating to Na 2 O which is the same alkali metal oxide. Is possible.
The present invention has been conceived based on such circumstances.

本発明によれば、溶融塩中のNa濃度上昇による化学強化ガラスの表面圧縮応力Sの低下割合を小さくできるので、溶融塩中のNa濃度の管理を緩やかにし、溶融塩の交換頻度を低減することができる。
また、最初のイオン交換処理で得られた化学強化ガラスのSに対する溶融塩交換直前での化学強化ガラスのSの低下割合が小さくなり、Sのロット間ばらつきを小さくできる。
According to the present invention, the rate of decrease in the surface compressive stress S of chemically strengthened glass due to an increase in Na concentration in the molten salt can be reduced. be able to.
Moreover, the decreasing rate of S of the chemically strengthened glass immediately before the molten salt exchange with respect to S of the chemically strengthened glass obtained by the first ion exchange treatment is reduced, and variation between S lots can be reduced.

ガラス組成から計算して求めたRと、溶融カリウム塩中のNa濃度増加による表面圧縮応力の低下割合rとの関係を示す図である。It is a figure which shows the relationship between R calculated | required from glass composition, and the fall rate r of the surface compressive stress by Na density | concentration increase in molten potassium salt. ガラス組成から計算して求めたR’と、溶融カリウム塩中のNa濃度増加による表面圧縮応力の低下割合rとの関係を示す図である。図中の直線はr=1.04 8×R’−0.0135、相関係数は0.98である。なお、この図の作成に用いたガラスは、表1〜3の29種のガラス、後述の表4、5の20種のガラス、後述の表6の7種のガラス23〜29、後述の表7の5種のガラス36〜40、後述の表8の6種のガラス41〜46、合計67種のガラスである。It is a figure which shows the relationship between R 'calculated by calculating from a glass composition, and the decreasing rate r of the surface compressive stress by the Na concentration increase in molten potassium salt. The straight line in the figure is r = 1.04 8 × R′−0.0135, and the correlation coefficient is 0.98. In addition, the glass used for preparation of this figure is 29 types of glasses of Tables 1-3, 20 types of glasses of Tables 4 and 5 described later, 7 types of glasses 23 to 29 of Table 6 described later, and a table described below. No. 7, 5 types of glass 36 to 40, 6 types of glass 41 to 46 of Table 8 described later, and a total of 67 types of glass. ガラス組成から計算して求めたR”と、溶融カリウム塩中のNa濃度増加による表面圧縮応力の低下割合rとの関係を示す図である。図中の直線はr=1.014×R”+0.0074、相関係数は0.95である。なお、この図の作成に用いたガラスは、表1〜3の29種のガラス、後述の表4、5の20種のガラス、後述の表6の7種のガラス23〜29、後述の表7の5種のガラス36〜40、後述の表8の6種のガラス41〜46、後述の表9の8種のガラス49、51〜55、57、58、後述の表10の8種のガラス59〜64、66、68、後述の表11の5種のガラス69、73、74、77、78、後述の表12の6種のガラス79〜82、84、85の合計94種のガラスである。It is a figure which shows the relationship between R "calculated | required from glass composition, and the fall rate r of the surface compressive stress by the Na density | concentration increase in molten potassium salt. The straight line in a figure is r = 1.014xR". +0.0074, correlation coefficient is 0.95. In addition, the glass used for preparation of this figure is 29 types of glasses of Tables 1-3, 20 types of glasses of Tables 4 and 5 described later, 7 types of glasses 23 to 29 of Table 6 described later, and a table described below. 5 glass 36-40 of No. 7, 6 types of glass 41-46 of Table 8 described later, 8 types of glass 49, 51-55, 57, 58 of Table 9 described later, 8 types of Table 10 described later A total of 94 glasses, including 59 to 64, 66 and 68, 5 types of glass 69, 73, 74, 77 and 78 in Table 11 described later, and 6 types of glass 79 to 82, 84 and 85 in Table 12 described later. It is.

本発明の製造方法によって製造される化学強化ガラス(以下、本発明の化学強化ガラスということがある。)の表面圧縮応力Sは典型的には200MPa以上であるが、カバーガラスなどにおいては400MPa以上であることが好ましく、より好ましくは550MPa以上、特に好ましくは700MPa超である。また、典型的にはSは1200MPa以下である。 本発明の化学強化ガラスの圧縮応力層厚みtは典型的には10μm以上、好ましくは30μm以上、より好ましくは40μm超である。また、典型的にはtは70μm以下である。   The surface compressive stress S of the chemically tempered glass produced by the production method of the present invention (hereinafter sometimes referred to as the chemically tempered glass of the present invention) is typically 200 MPa or more, but is 400 MPa or more in a cover glass or the like. More preferably, it is 550 MPa or more, and particularly preferably more than 700 MPa. Typically, S is 1200 MPa or less. The compressive stress layer thickness t of the chemically tempered glass of the present invention is typically 10 μm or more, preferably 30 μm or more, more preferably more than 40 μm. Typically, t is 70 μm or less.

本発明における溶融塩は、ガラス表層のNaと溶融塩中のKとをイオン交換できるものであれば特に限定されないが、たとえば溶融硝酸カリウム(KNO)が挙げられる。
溶融塩は前記イオン交換を行えるようにするためにはKを含有する溶融塩でなければならないが、本発明の目的を損なわないものであればそれ以外の制約はない。溶融塩としては先に述べた溶融KNOが通常使用されるが、KNO以外にNaNOを5%程度以下含有するものも一般的である。なお、Kを含有する溶融塩のKイオンの、陽イオン中の割合はモル比で0.7以上が典型的である。
ガラスに所望の表面圧縮応力を有する化学強化層(圧縮応力層)を形成するためのイオン交換処理条件はガラス板であればその厚みなどによっても異なるが、350〜550℃の溶融KNOに2〜20時間ガラス基板を浸漬させることが典型的である。経済的な観点からは350〜500℃、2〜16時間の条件で浸漬させることが好ましく、より好ましい浸漬時間は2〜10時間である。
本発明の製造方法においては典型的には、ガラスを溶融塩に浸漬するイオン交換処理を行って化学強化ガラスとした後その化学強化ガラスを溶融塩から取り出し、次に、別のガラスを溶融塩に浸漬して化学強化ガラスとした後その化学強化ガラスを溶融塩から取り出す、というようにイオン交換処理を繰り返す。
Molten salt in the present invention is not particularly limited as long as the K in Na and molten salt of the glass surface layer can be ion-exchanged include, for example, molten potassium nitrate (KNO 3).
The molten salt must be a K-containing molten salt so that the ion exchange can be performed, but there is no other limitation as long as the object of the present invention is not impaired. As the molten salt, the above-mentioned molten KNO 3 is usually used, but one containing about 5% or less of NaNO 3 in addition to KNO 3 is also common. The ratio of K ions in the molten salt containing K in the cation is typically 0.7 or more in terms of molar ratio.
Ion exchange treatment conditions for forming a chemically strengthened layer (compressive stress layer) having a desired surface compressive stress on glass vary depending on the thickness of the glass plate, but 2 for molten KNO 3 at 350 to 550 ° C. It is typical to immerse the glass substrate for ~ 20 hours. From an economical viewpoint, it is preferable to immerse on the conditions of 350-500 degreeC and 2 to 16 hours, and a more preferable immersion time is 2 to 10 hours.
In the production method of the present invention, typically, an ion exchange treatment in which glass is immersed in a molten salt is performed to obtain a chemically strengthened glass, and then the chemically strengthened glass is taken out from the molten salt, and then another glass is melted. The ion exchange treatment is repeated so that the chemically strengthened glass is taken out from the molten salt after being immersed in the glass.

これら厚みが0.4〜1.2mmであり本発明のガラスからなるガラス板を化学強化したものの圧縮応力層の厚みtは30μm以上、表面圧縮応力Sは550MPa以上であることが好ましく、典型的にはtは40〜60μm、Sは650〜820MPaである。   The thickness t of the compressive stress layer is preferably 30 μm or more and the surface compressive stress S is preferably 550 MPa or more, although the thickness is 0.4 to 1.2 mm and the glass plate made of the glass of the present invention is chemically strengthened. T is 40 to 60 μm, and S is 650 to 820 MPa.

本発明のディスプレイ装置用ガラス板は通常、本発明のガラスからなるガラス板について切断、穴あけ、研磨などの加工をして得られたガラス板を化学強化して得られる。
本発明のディスプレイ装置用ガラス板の厚みは典型的には0.3〜2mmであり、通常は0.4〜1.2mmである。
本発明のディスプレイ装置用ガラス板は典型的にはカバーガラスである。
The glass plate for a display device of the present invention is usually obtained by chemically strengthening a glass plate obtained by processing the glass plate made of the glass of the present invention by cutting, drilling or polishing.
The thickness of the glass plate for a display device of the present invention is typically from 0.3 to 2 mm, and usually from 0.4 to 1.2 mm.
The glass plate for a display device of the present invention is typically a cover glass.

前記本発明のガラスからなるガラス板の製造方法は特に限定されないが、たとえば種々の原料を適量調合し、約1400〜1700℃に加熱し溶融した後、脱泡、攪拌などにより均質化し、周知のフロート法、ダウンドロー法、プレス法などによって板状に成形し、徐冷後所望のサイズに切断して製造される。   The manufacturing method of the glass plate made of the glass of the present invention is not particularly limited. For example, various raw materials are prepared in appropriate amounts, heated to about 1400 to 1700 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is manufactured by forming into a plate shape by a float method, a downdraw method, a press method, etc., and after slow cooling, it is cut into a desired size.

本発明のガラスのガラス転移点Tgは400℃以上であることが好ましい。400℃未満ではイオン交換時に表面圧縮応力が緩和してしまい、十分な応力を得られないおそれがある。典型的には570℃以上である。   The glass transition point Tg of the glass of the present invention is preferably 400 ° C. or higher. If it is less than 400 ° C., the surface compressive stress is relaxed during ion exchange, and there is a possibility that sufficient stress cannot be obtained. It is typically 570 ° C or higher.

本発明のガラスのヤング率Eは66MPa以上であることが好ましい。66MPa未満では破壊靭性値が低くなり、ガラスが割れやすくなる。本発明のディスプレイ装置用ガラス板の製造に用いる場合などには本発明のガラスのEは67MPa以上であることが好ましく、より好ましくは68MPa以上、さらに好ましくは69MPa以上、特に好ましくは70MPa以上である。   The Young's modulus E of the glass of the present invention is preferably 66 MPa or more. If it is less than 66 MPa, the fracture toughness value becomes low and the glass tends to break. When used for producing the glass plate for a display device of the present invention, E of the glass of the present invention is preferably 67 MPa or more, more preferably 68 MPa or more, further preferably 69 MPa or more, particularly preferably 70 MPa or more. .

次に、本発明のガラスの組成について、特に断らない限りモル%表示含有量を用いて説明する。
SiOはガラスの骨格を構成する成分であり必須である。61%未満では、KNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、ガラス表面に傷がついた時にクラックが発生しやすくなる、耐候性が低下する、比重が大きくなる、または液相温度が上昇しガラスが不安定になる。好ましくは62%以上、典型的には63%以上である。なお、本発明の第4のガラスではSiOは62%以上である。
SiOが77%超では粘度が10dPa・sとなる温度T2または粘度が10dPa・sとなる温度T4が上昇しガラスの溶解または成形が困難となる、または耐候性が低下する。好ましくは76%以下、より好ましくは75%以下、さらに好ましくは74%以下、特に好ましくは73%以下である。
Next, the composition of the glass of the present invention will be described using the mol% display content unless otherwise specified.
SiO 2 is a component constituting the skeleton of glass and essential. If it is less than 61%, the change in the surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt increases, cracks are likely to occur when the glass surface is scratched, the weather resistance decreases, the specific gravity increases, Or liquidus temperature rises and glass becomes unstable. Preferably it is 62% or more, typically 63% or more. In the fourth glass of the present invention, SiO 2 is 62% or more.
If the SiO 2 content exceeds 77%, the temperature T2 at which the viscosity becomes 10 2 dPa · s or the temperature T4 at which the viscosity becomes 10 4 dPa · s increases, so that it becomes difficult to melt or mold the glass, or the weather resistance decreases. Preferably it is 76% or less, More preferably, it is 75% or less, More preferably, it is 74% or less, Most preferably, it is 73% or less.

Alはイオン交換性能および耐候性を向上させる成分であり必須である。1%未満ではイオン交換により所望の表面圧縮応力S、圧縮応力層厚みtが得られなくなる、または耐候性が低下する。好ましくは3%以上、より好ましくは4%以上、さらに好ましくは5%以上、特に好ましくは6%以上、典型的には7%以上である。18%超では、KNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、T2もしくはT4が上昇しガラスの溶解もしくは成形が困難となる、または液相温度が高くなり失透しやすくなる。好ましくは12%以下、より好ましくは11%以下、さらに好ましくは10%以下、特に好ましくは9%以下、典型的には8%以下である。
KNO溶融塩中のNaNO濃度による表面圧縮応力の変化を特に小さくしたい場合Alは6%未満であることが好ましい。
SiOおよびAlの含有量の合計は典型的には66〜83%である。
Al 2 O 3 is a component that improves ion exchange performance and weather resistance and is essential. If it is less than 1%, the desired surface compressive stress S and compressive stress layer thickness t cannot be obtained by ion exchange, or the weather resistance decreases. It is preferably 3% or more, more preferably 4% or more, further preferably 5% or more, particularly preferably 6% or more, and typically 7% or more. If it exceeds 18%, the change in the surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt becomes large, T2 or T4 rises, and it becomes difficult to melt or mold the glass, or the liquid phase temperature becomes high and devitrification occurs. It becomes easy. It is preferably 12% or less, more preferably 11% or less, further preferably 10% or less, particularly preferably 9% or less, and typically 8% or less.
When it is desired to particularly reduce the change in the surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt, the Al 2 O 3 content is preferably less than 6%.
The total content of SiO 2 and Al 2 O 3 is typically 66-83%.

MgOは溶融性を向上させる成分であり必須である。3%未満では溶融性またはヤング率が低下する。好ましくは4%以上、より好ましくは5%以上、さらに好ましくは6%以上である。溶融性を特に高めたい場合MgOは7%超であることが好ましい。
MgOが15%超ではKNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、液相温度が上昇し失透しやすくなる、またはイオン交換速度が低下する。好ましくは12%以下、より好ましくは11%以下、さらに好ましくは10%以下、特に好ましくは8%以下、典型的には7%以下である。
MgO is a component that improves the meltability and is essential. If it is less than 3%, the meltability or Young's modulus decreases. Preferably it is 4% or more, More preferably, it is 5% or more, More preferably, it is 6% or more. When it is particularly desired to improve the meltability, MgO is preferably more than 7%.
If MgO exceeds 15%, the change in the surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt increases, the liquidus temperature rises and the glass becomes easy to devitrify, or the ion exchange rate decreases. It is preferably 12% or less, more preferably 11% or less, still more preferably 10% or less, particularly preferably 8% or less, and typically 7% or less.

CaOは高温での溶融性を向上させる、または失透を起こりにくくするために5%まで含有してもよいが、KNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、またはイオン交換速度もしくはクラック発生に対する耐性が低下するおそれがある。CaOを含有する場合その含有量は、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下、最も好ましくは0.5%以下、典型的にはCaOを含有しない。 CaO may be contained up to 5% in order to improve the meltability at high temperature or to prevent devitrification, but the change in surface compressive stress due to the concentration of NaNO 3 in the KNO 3 molten salt increases, or There is a possibility that the resistance to ion exchange rate or crack generation may be reduced. When CaO is contained, its content is preferably 3% or less, more preferably 2% or less, further preferably 1.5% or less, particularly preferably 1% or less, most preferably 0.5% or less, Does not contain CaO.

CaOを含有する場合、MgOおよびCaOの含有量の合計は15%以下であることが好ましい。15%超ではKNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、またはイオン交換速度もしくはクラック発生に対する耐性が低下するおそれがある。好ましくは14%以下、より好ましくは13%以下、さらに好ましくは12%以下、特に好ましくは11%以下である。 When CaO is contained, the total content of MgO and CaO is preferably 15% or less. If it exceeds 15%, the change in surface compressive stress due to the concentration of NaNO 3 in the KNO 3 molten salt may be increased, or the resistance to ion exchange rate or crack generation may be reduced. Preferably it is 14% or less, More preferably, it is 13% or less, More preferably, it is 12% or less, Most preferably, it is 11% or less.

NaOはKNO溶融塩中のNaNO濃度による表面圧縮応力の変化を小さくする、イオン交換により表面圧縮応力層を形成させる、またはガラスの溶融性を向上させる成分であり、必須である。8%未満ではイオン交換により所望の表面圧縮応力層を形成することが困難となる、または、T2もしくはT4が上昇しガラスの溶解もしくは成形が困難となる。好ましくは9%以上、より好ましくは10%以上、さらに好ましくは11%以上、特に好ましくは12%以上である。NaOが18%超では耐候性が低下する、または圧痕からクラックが発生しやすくなる。好ましくは17%以下、より好ましくは16%以下、さらに好ましくは15%以下、特に好ましくは14%以下である。 Na 2 O is a component that reduces the change in surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt, forms a surface compressive stress layer by ion exchange, or improves the meltability of glass, and is essential. If it is less than 8%, it becomes difficult to form a desired surface compressive stress layer by ion exchange, or T2 or T4 rises and it becomes difficult to melt or form glass. Preferably it is 9% or more, More preferably, it is 10% or more, More preferably, it is 11% or more, Most preferably, it is 12% or more. If Na 2 O exceeds 18%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 17% or less, More preferably, it is 16% or less, More preferably, it is 15% or less, Most preferably, it is 14% or less.

Oは必須ではないがイオン交換速度を増大させる成分であり、6%まで含有してもよい。6%超ではKNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、圧痕からクラックが発生しやすくなる、または耐候性が低下する。好ましくは4%以下、より好ましくは3%以下、さらに好ましくは1.9%以下、特に好ましくは1%以
下、典型的にはKOを含有しない。なお、本発明の第4のガラスはKOを含有しない。
K 2 O is not essential, but is a component that increases the ion exchange rate, and may be contained up to 6%. If it exceeds 6%, the change in the surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt becomes large, cracks are likely to occur from the indentation, or the weather resistance is lowered. Preferably it is 4% or less, more preferably 3% or less, even more preferably 1.9% or less, particularly preferably 1% or less, and typically does not contain K 2 O. The fourth of the glass of the present invention does not contain K 2 O.

Oを含有する場合NaOおよびKOの含有量の合計ROは8.5〜20%であることが好ましい。20%超では耐候性が低下する、または圧痕からクラックが発生しやすくなる。好ましくは19%以下、より好ましくは18%以下、さらに好ましくは17%以下、特に好ましくは16以下である。また、ROが8.5%未満ではガラスの溶融性が低下する。好ましくは9%以上、より好ましくは10%以上、さらに好ましくは11%以下、特に好ましくは12%以上である。 The total content R 2 O of when Na 2 O and K 2 O containing K 2 O is preferably a 8.5 to 20%. If it exceeds 20%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 19% or less, More preferably, it is 18% or less, More preferably, it is 17% or less, Most preferably, it is 16 or less. Further, R 2 O is reduced meltability of the glass is less than 8.5%. Preferably it is 9% or more, More preferably, it is 10% or more, More preferably, it is 11% or less, Most preferably, it is 12% or more.

ZrOは必須成分ではないが、表面圧縮応力を大きくする、または耐候性を向上させる等のため、4%まで含有してもよい。4%超ではKNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、またはクラック発生に対する耐性が低下する。好ましくは2.5%以下、より好ましくは2%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、典型的にはZrOを含有しない。 ZrO 2 is not an essential component, but may be contained up to 4% in order to increase the surface compressive stress or improve the weather resistance. If it exceeds 4%, the change in surface compressive stress due to the concentration of NaNO 3 in the KNO 3 molten salt becomes large, or the resistance to cracking is reduced. Preferably 2.5% or less, 2% or more preferably less, more preferably 1% or less, particularly preferably 0.5% or less, typically do not contain ZrO 2.

本発明のガラスは本質的に以上で説明した成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は5%以下であることが好ましく、より好ましくは3%以下、特に好ましくは2%以下、典型的には1.5%未満である。以下、このような成分について例示的に説明する。   The glass of the present invention consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 5% or less, more preferably 3% or less, particularly preferably 2% or less, and typically less than 1.5%. is there. Hereinafter, such components will be exemplarily described.

SrOは高温での溶融性を向上させる、または失透を起こりにくくするために含有してもよいが、KNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、または、イオン交換速度もしくはクラック発生に対する耐性が低下するおそれがある。SrOの含有量は、好ましくは1%以下、より好ましくは0.5%以下、典型的にはSrOを含有しない。 SrO may be included in order to improve the meltability at high temperature or to prevent devitrification, but the change in surface compressive stress due to the concentration of NaNO 3 in the KNO 3 molten salt increases, or ion exchange There is a risk that the resistance to speed or cracking may be reduced. The SrO content is preferably 1% or less, more preferably 0.5% or less, and typically does not contain SrO.

BaOは高温での溶融性を向上させる、または失透を起こりにくくするために含有してもよいが、KNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、またはイオン交換速度もしくはクラック発生に対する耐性が低下するおそれがある。BaOの含有量は、好ましくは1%以下、より好ましくは0.5%以下、典型的にはBaOを含有しない。 BaO may be contained in order to improve the meltability at high temperature or to make devitrification less likely to occur. However, the change in surface compressive stress due to the NaNO 3 concentration in the KNO 3 molten salt increases, or the ion exchange rate. Or there exists a possibility that the tolerance with respect to crack generation may fall. The BaO content is preferably 1% or less, more preferably 0.5% or less, and typically does not contain BaO.

MgO、CaO、SrOおよびBaOの含有量の合計ROは15%以下であることが好ましい。15%超ではKNO溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなる、またはイオン交換速度もしくはクラック発生に対する耐性が低下するおそれがある。好ましくは14%以下、より好ましくは13%以下、さらに好ましくは12%以下、特に好ましくは11%以下である。 The total RO of the contents of MgO, CaO, SrO and BaO is preferably 15% or less. If it exceeds 15%, the change in surface compressive stress due to the concentration of NaNO 3 in the KNO 3 molten salt may be increased, or the resistance to ion exchange rate or crack generation may be reduced. Preferably it is 14% or less, More preferably, it is 13% or less, More preferably, it is 12% or less, Most preferably, it is 11% or less.

ZnOはガラスの高温での溶融性を向上するために含有してもよい場合があるが、その場合における含有量は好ましくは1%以下である。フロート法で製造する場合には0.5%以下にすることが好ましい。0.5%超ではフロート成型時に還元し製品欠点となるおそれがある。典型的にはZnOは含有しない。   ZnO may be contained in order to improve the melting property of the glass at a high temperature, but the content in that case is preferably 1% or less. When manufacturing by a float process, it is preferable to make it 0.5% or less. If it exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained.

は溶融性向上のために5%以下であることが好ましい。5%超では均質なガラスを得にくくなり、ガラスの成型が困難になるおそれがある。好ましくは4%以下、より好ましくは3%以下、さらに好ましくは1.7%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、典型的にはBは含有しない。
SrO、BaOまたはBを含有する場合前記R’が0.66以上であることが好ましい。
なお、本発明の第2のガラスはB、SrOおよびBaOのいずれか1成分以上を含有する。
B 2 O 3 is preferably 5% or less for improving the meltability. If it exceeds 5%, it is difficult to obtain homogeneous glass, and it may be difficult to mold the glass. Preferably it is 4% or less, more preferably 3% or less, still more preferably 1.7% or less, even more preferably 1% or less, particularly preferably 0.5% or less, and typically does not contain B 2 O 3 .
When SrO, BaO or B 2 O 3 is contained, the R ′ is preferably 0.66 or more.
The second glass of the present invention contains one or more components of B 2 O 3 , SrO and BaO.

TiOはガラス中に存在するFeイオンと共存することにより、可視光透過率を低下させ、ガラスを褐色に着色するおそれがあるので、含有するとしても1%以下であることが好ましく、典型的には含有しない。 Since TiO 2 coexists with Fe ions present in the glass, the visible light transmittance is lowered and the glass may be colored brown, so even if it is contained, it is preferably 1% or less. Does not contain.

LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した表面圧縮応力層を得られなくする成分であるので4.3%以下であることが好ましい。より好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1%以下、典型的にはLiOを含有しない。 Li 2 O is a component that lowers the strain point and easily causes stress relaxation, and as a result, makes it impossible to obtain a stable surface compressive stress layer. Therefore, it is preferably 4.3% or less. More preferably 3% or less, still more preferably 2% or less, particularly preferably 1% or less, and typically does not contain Li 2 O.

SnOは耐候性の向上等のために含有してもよいが、その場合でも含有量は3%以下であることが好ましい。より好ましくは2%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下、典型的にはSnOを含有しない。
なお、本発明の第3のガラスはB、SrO、BaO、ZnO、LiOおよびSnOのいずれか1成分以上を含有する。
SnO 2 may be contained for the purpose of improving weather resistance, but even in that case, the content is preferably 3% or less. More preferably, it is 2% or less, more preferably 1% or less, particularly preferably 0.5% or less, and typically does not contain SnO 2 .
The third glass of the present invention is B 2 O 3, SrO, BaO , ZnO, containing any one or more components of Li 2 O and SnO 2.

ガラスの溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。ただし、タッチパネルなどディスプレイ装置の視認性を上げるためには、可視域に吸収をもつFe、NiO、Crなど原料中の不純物として混入するような成分はできるだけ減らすことが好ましく、各々質量百分率表示で0.15%以下であることが好ましく、より好ましくは0.1%以下、特に好ましくは0.05%以下である。 As a fining agent for melting the glass, SO 3 , chloride, fluoride and the like may be appropriately contained. However, in order to increase the visibility of a display device such as a touch panel, it is preferable to reduce as much as possible the components that are mixed as impurities in the raw material such as Fe 2 O 3 , NiO, Cr 2 O 3 having absorption in the visible region, Each of them is preferably 0.15% or less, more preferably 0.1% or less, and particularly preferably 0.05% or less in terms of mass percentage.

本発明の第1のガラスにおいて前記Rは0.66以上とされるが、B、SrO、BaO、ZnO、LiOおよびSnOのいずれか1以上の成分を含有するときはこれら成分の含有量の合計は5モル%以下であることが好ましい。より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下であり、典型的には1.5%未満である。 In the first glass of the present invention, the R is 0.66 or more, but when any one or more of B 2 O 3 , SrO, BaO, ZnO, Li 2 O and SnO 2 is contained, these The total content of the components is preferably 5 mol% or less. More preferably 4% or less, still more preferably 3% or less, particularly preferably 2% or less, and typically less than 1.5%.

本発明の第2のガラスにおいて前記R’は0.66以上とされるが、ZnO、LiOおよびSnOのいずれか1以上の成分を含有するときはこれら成分の含有量の合計は5モル%以下であることが好ましい。より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下であり、典型的には1.5%未満である。 In the second glass of the present invention, R ′ is set to 0.66 or more, but when any one or more of ZnO, Li 2 O and SnO 2 is contained, the total content of these components is 5 It is preferable that it is below mol%. More preferably 4% or less, still more preferably 3% or less, particularly preferably 2% or less, and typically less than 1.5%.

本発明の第3のガラスにおいて前記R”は0.66以上とされるが、SiO、Al、MgO、CaO、ZrO、NaO、KO、B、SrO、BaO、ZnO、LiOおよびSnOの含有量の合計は95モル%超であることが好ましい。より好ましくは96%超、さらに好ましくは97%超、特に好ましくは98%超であり、典型的には98.5%以上である。 In the third glass of the present invention, the R ″ is 0.66 or more, but SiO 2 , Al 2 O 3 , MgO, CaO, ZrO 2 , Na 2 O, K 2 O, B 2 O 3 , SrO. The total content of BaO, ZnO, Li 2 O and SnO 2 is preferably more than 95 mol%, more preferably more than 96%, still more preferably more than 97%, particularly preferably more than 98%. Typically, it is 98.5% or more.

本発明においてガラスのイオン交換処理を繰り返す方法は特に限定されないが、たとえば次のようにして行う。すなわち、150〜600cmの大きさのNa含有ガラス板100枚を各ガラス板同士が接触しないように、スリットの付いた籠の各スリット間の隙間に1枚ずつガラス板を置く。400℃の溶融カリウム塩で満たした100000cmの大きさの槽に前記籠を8時間浸漬してイオン交換処理を行った後、その籠を取り出す。この後、別のガラス板を入れた籠を前記槽に浸漬してイオン交換処理を繰り返す。 In the present invention, the method for repeating the ion exchange treatment of the glass is not particularly limited, but for example, it is carried out as follows. That is, 100 glass plates each having a size of 150 to 600 cm 2 are placed one by one in the gaps between the slits of the scissors with slits so that the glass plates do not contact each other. The soot is immersed for 8 hours in a 100000 cm 3 tank filled with 400 ° C. molten potassium salt, and then the soot is taken out. Then, the ion exchange process is repeated by immersing the basket containing another glass plate in the tank.

表1のガラス1、2および表3のガラスA21は本発明のガラスの例であり、次のようにして作製した。すなわち、各成分の原料を表のSiOからKOまでの欄にモル%表示で示した組成となるように調合し、白金るつぼを用いて1550〜1650℃の温度で3〜5時間溶解した。溶解にあたっては、白金スターラを溶融ガラス中に挿入し、2時間撹拌してガラスを均質化した。次いで溶融ガラスを流し出して板状に成形し、毎分1℃の冷却速度で室温まで徐冷した。 Glasses 1 and 2 in Table 1 and glass A21 in Table 3 are examples of the glass of the present invention, and were prepared as follows. That is, the raw materials of each component were prepared so as to have a composition represented by mol% in the columns from SiO 2 to K 2 O in the table, and dissolved at a temperature of 1550 to 1650 ° C. for 3 to 5 hours using a platinum crucible. did. In melting, a platinum stirrer was inserted into the molten glass and stirred for 2 hours to homogenize the glass. Next, the molten glass was poured out and formed into a plate shape, which was gradually cooled to room temperature at a cooling rate of 1 ° C. per minute.

また、表4〜8のSiOからKOまでの欄にモル%表示で示した組成を有する例3〜29、36〜46のガラスおよび表9〜12のSiOからSnOまでの欄にモル%表示で示した組成を有する例49〜82、84、85のガラスを、前記ガラス1、2、A21を作製したのと同様にして作製した。 Moreover, columns of Examples 3 to 29 and 36 to 46 having compositions shown in mol% in the columns of SiO 2 to K 2 O in Tables 4 to 8 and columns of SiO 2 to SnO 2 in Tables 9 to 12 Glasses of Examples 49 to 82, 84 and 85 having the compositions shown in mol% were produced in the same manner as the glasses 1, 2 and A21 were produced.

これらガラスのTg(単位:℃)、ヤング率E(単位:MPa)、R、R’、R”、CS1(単位:MPa)、CS2(単位:MPa)、rを表に示す。なお、例13〜17、36〜38、41〜46、61、63、75、77〜82、84のTgおよび例13〜18、20、23〜25、28、36〜40、43〜46、79〜82のEは組成から計算または推定して求め、また例50、56、65、67、70〜72、75、76についてはCS1、CS2、rは正確には測定できず組成から計算または推定して求めた。例41、42のガラスは本発明のガラスではなくMgOが3%未満であり、ヤング率も低く、破壊強度が小さいおそれがある。   The Tg (unit: ° C.), Young's modulus E (unit: MPa), R, R ′, R ″, CS1 (unit: MPa), CS2 (unit: MPa), and r of these glasses are shown in the table. Tg of 13-17, 36-38, 41-46, 61, 63, 75, 77-82, 84 and Examples 13-18, 20, 23-25, 28, 36-40, 43-46, 79-82 E is calculated or estimated from the composition, and for Examples 50, 56, 65, 67, 70 to 72, 75, and 76, CS1, CS2, and r cannot be measured accurately and calculated or estimated from the composition. The glass of Examples 41 and 42 is not the glass of the present invention, but MgO is less than 3%, the Young's modulus is low, and the fracture strength may be small.

表6、7の例30〜35、表8の例47、48、表12の例83のガラスについては先に述べたような溶解は行わず、これらの表に示すTg、E、CS1、CS2、rは組成から計算または推定して求めた。   The glasses of Examples 30 to 35 in Tables 6 and 7, Examples 47 and 48 in Table 8, and Example 83 in Table 12 were not melted as described above, and Tg, E, CS1, and CS2 shown in these tables were not used. , R was calculated or estimated from the composition.

例53および62は本発明の実施例である。なお、例31、37〜40、43〜46、48、82、83は本発明の比較例、例1〜30、32〜36、41、42、47、49〜52、54〜61、63〜81、84、85は参考例である。 Examples 53 and 62 are examples of the present invention. Examples 31, 37 to 40, 43 to 46, 48 , 82 and 83 are comparative examples of the present invention, Examples 1 to 30, 32 to 36, 41 , 42, 47, 49 to 52, 54 to 61, 63 to Reference numerals 81, 84, and 85 are reference examples.

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

Figure 0006222390
Figure 0006222390

ディスプレイ装置のカバーガラスなどに利用できる。また、太陽電池基板や航空機用窓ガラスなどにも利用することができる。   It can be used as a cover glass for display devices. Moreover, it can utilize also for a solar cell board | substrate, an aircraft window glass, etc.

Claims (10)

下記酸化物基準のモル百分率表示で、SiOを66.6〜73%、Alを10.2〜16.7%、MgOを7%以下、CaOを0〜0.5%、ZrOを0〜4%、NaOを11〜14.6%、KOを0〜1.9%ならびにB、SrOおよびBaOのいずれか1成分以上を含有し、B4.2%以下であり、SiOおよびAlの含有量の合計が83%以下であり、かつ、各成分の含有量を用いて下記式により算出されるR’が0.66以上である化学強化用ガラス。
R’=0.029×SiO+0.021×Al+0.016×MgO−0.004×CaO+0.016×ZrO+0.029×NaO+0×KO+0.028×B+0.012×SrO+0.026×BaO−2.002
The following oxide-based molar percentage displays, SiO 2 66.6 to 73%, Al 2 O 3 10.2 to 16.7%, MgO 7% or less, CaO 0 to 0.5%, ZrO 2 to 0 to 4%, Na 2 O to 11 to 14.6 %, K 2 O to 0 to 1.9%, and any one or more of B 2 O 3 , SrO and BaO, and B 2 O 3 is 4.2 % or less, the total content of SiO 2 and Al 2 O 3 is 83 % or less, and R ′ calculated by the following formula using the content of each component is 0.00. A glass for chemical strengthening which is 66 or more.
R ′ = 0.029 × SiO 2 + 0.021 × Al 2 O 3 + 0.016 × MgO−0.004 × CaO + 0.016 × ZrO 2 + 0.029 × Na 2 O + 0 × K 2 O + 0.028 × B 2 O 3 + 0.012 × SrO + 0.026 × BaO−2.002
Feを質量百分率表示で0.15%以下含有する請求項1に記載の化学強化用ガラス。 The glass for chemical strengthening according to claim 1, which contains Fe 2 O 3 in a percentage by mass of 0.15% or less. SrOが0.5%以下である請求項1または2に記載の化学強化用ガラス。 The glass for chemical strengthening according to claim 1 or 2 , wherein SrO is 0.5% or less. ZnOが0.5%以下である請求項1〜のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 3 , wherein ZnO is 0.5% or less. SiO、Al、MgO、CaO、ZrO、NaO、KO、B、SrOおよびBaOの含有量の合計が98.5%以上である請求項1〜のいずれか1項に記載の化学強化用ガラス。 SiO 2, Al 2 O 3, MgO, CaO, of ZrO 2, Na 2 O, K 2 O, B 2 O 3, a total of SrO and BaO content is 98.5% or more claims 1-4 The glass for chemical strengthening according to any one of the above. LiOを含有しない請求項1〜のいずれか1項に記載の化学強化用ガラス。 Chemically strengthened glass according to any one of claims 1 to 5 containing no li 2 O. ZrOを含有しない請求項1〜のいずれか1項に記載の化学強化用ガラス。 Chemically strengthened glass according to any one of claims 1 to 6, not containing ZrO 2. 厚さが0.4〜1.2mmである請求項1〜のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 7 , which has a thickness of 0.4 to 1.2 mm. SO、塩化物、フッ化物を各々質量百分率表示で0.15%以下含有する請求項1〜のいずれか1項に記載の化学強化用ガラス。 SO 3, chlorides, chemically strengthened glass according to any one of claims 1 to 8 containing 0.15% or less in each mass percentage fluoride. ディスプレイ装置のカバーガラスに用いられる請求項1〜のいずれか1項に記載の化学強化用ガラス。 The glass for chemical strengthening according to any one of claims 1 to 9 , which is used for a cover glass of a display device.
JP2017033734A 2010-12-24 2017-02-24 Glass for chemical strengthening Active JP6222390B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010288255 2010-12-24
JP2010288255 2010-12-24
JP2011114783 2011-05-23
JP2011114783 2011-05-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015216295A Division JP6128186B2 (en) 2010-12-24 2015-11-04 Glass for chemical strengthening

Publications (2)

Publication Number Publication Date
JP2017122045A JP2017122045A (en) 2017-07-13
JP6222390B2 true JP6222390B2 (en) 2017-11-01

Family

ID=52121476

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2014147789A Active JP5612233B1 (en) 2010-12-24 2014-07-18 Glass for chemical strengthening
JP2015071169A Active JP5793256B1 (en) 2010-12-24 2015-03-31 Glass for chemical strengthening
JP2015113788A Active JP5793257B1 (en) 2010-12-24 2015-06-04 Glass for chemical strengthening
JP2015141264A Pending JP2015231946A (en) 2010-12-24 2015-07-15 Glass for chemical reinforcement
JP2015216295A Active JP6128186B2 (en) 2010-12-24 2015-11-04 Glass for chemical strengthening
JP2016225206A Withdrawn JP2017036211A (en) 2010-12-24 2016-11-18 Chemically strengthened glass
JP2017033734A Active JP6222390B2 (en) 2010-12-24 2017-02-24 Glass for chemical strengthening
JP2017120533A Active JP6465163B2 (en) 2010-12-24 2017-06-20 Glass for chemical strengthening

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2014147789A Active JP5612233B1 (en) 2010-12-24 2014-07-18 Glass for chemical strengthening
JP2015071169A Active JP5793256B1 (en) 2010-12-24 2015-03-31 Glass for chemical strengthening
JP2015113788A Active JP5793257B1 (en) 2010-12-24 2015-06-04 Glass for chemical strengthening
JP2015141264A Pending JP2015231946A (en) 2010-12-24 2015-07-15 Glass for chemical reinforcement
JP2015216295A Active JP6128186B2 (en) 2010-12-24 2015-11-04 Glass for chemical strengthening
JP2016225206A Withdrawn JP2017036211A (en) 2010-12-24 2016-11-18 Chemically strengthened glass

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017120533A Active JP6465163B2 (en) 2010-12-24 2017-06-20 Glass for chemical strengthening

Country Status (1)

Country Link
JP (8) JP5612233B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718855B (en) 2019-01-25 2021-02-11 大陸商四川旭虹光電科技有限公司 Chemical tempered glass and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233274B2 (en) * 2014-10-30 2017-11-22 京セラドキュメントソリューションズ株式会社 Fixing apparatus and image forming apparatus
KR20190112273A (en) * 2017-02-07 2019-10-04 에이지씨 가부시키가이샤 Chemical tempered glass
DE102018116483A1 (en) * 2018-07-06 2020-01-09 Schott Ag Chemically toughened glasses with high chemical resistance and crack resistance
KR102249941B1 (en) * 2019-07-19 2021-05-11 주식회사 케이씨씨글라스 Glass composition and chemically strengthened glass manufactured therefrom

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156755A (en) * 1978-04-19 1979-05-29 Ppg Industries, Inc. Lithium containing ion exchange strengthened glass
JPH0676224B2 (en) * 1986-02-13 1994-09-28 旭硝子株式会社 Tempered glass manufacturing method
JPS62270439A (en) * 1986-05-17 1987-11-24 Ishizuka Glass Ltd Glass for chemical reinforcement
JPH03237036A (en) * 1989-08-24 1991-10-22 Nippon Electric Glass Co Ltd Thin plate type borosilicate glass for alumina package
JP3412804B2 (en) * 1996-12-26 2003-06-03 Hoya株式会社 Information recording medium substrate
GB2335423A (en) * 1998-03-20 1999-09-22 Pilkington Plc Chemically toughenable glass
JP3959588B2 (en) * 1999-05-13 2007-08-15 日本板硝子株式会社 Glass substrate for information recording medium, method for producing glass substrate for information recording medium, and information recording medium
JP2002174810A (en) * 2000-12-08 2002-06-21 Hoya Corp Glass substrate for display, manufacturing method for the same and display using the same
JP4446683B2 (en) * 2002-05-24 2010-04-07 Hoya株式会社 Glass substrate for magnetic recording media
JP4656863B2 (en) * 2003-06-06 2011-03-23 Hoya株式会社 Zirconium-containing glass composition, chemically strengthened glass article, glass substrate for magnetic recording medium, and method for producing glass plate
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
JP5467490B2 (en) * 2007-08-03 2014-04-09 日本電気硝子株式会社 Method for producing tempered glass substrate and tempered glass substrate
US8232218B2 (en) * 2008-02-29 2012-07-31 Corning Incorporated Ion exchanged, fast cooled glasses
JP5444846B2 (en) * 2008-05-30 2014-03-19 旭硝子株式会社 Glass plate for display device
JP5614607B2 (en) * 2008-08-04 2014-10-29 日本電気硝子株式会社 Tempered glass and method for producing the same
EP2334613A1 (en) * 2008-08-21 2011-06-22 Corning Inc. Durable glass housings/enclosures for electronic devices
JP2010051116A (en) * 2008-08-22 2010-03-04 Hitachi Ltd Switching power supply, power supply system, and electronic equipment
JP5622069B2 (en) * 2009-01-21 2014-11-12 日本電気硝子株式会社 Tempered glass, tempered glass and method for producing tempered glass
JP5294150B2 (en) * 2009-01-23 2013-09-18 日本電気硝子株式会社 Method for producing tempered glass
US8341976B2 (en) * 2009-02-19 2013-01-01 Corning Incorporated Method of separating strengthened glass
CN101508524B (en) * 2009-03-31 2010-06-30 成都光明光电股份有限公司 Glass suitable for chemically tempering and chemical tempered glass
US8647995B2 (en) * 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
US8802581B2 (en) * 2009-08-21 2014-08-12 Corning Incorporated Zircon compatible glasses for down draw
EP2492247A1 (en) * 2009-10-20 2012-08-29 Asahi Glass Company, Limited Glass sheet for cu-in-ga-se solar cells, and solar cells using same
US8759238B2 (en) * 2010-05-27 2014-06-24 Corning Incorporated Ion exchangeable glasses
US20120052275A1 (en) * 2010-08-30 2012-03-01 Avanstrate Inc. Glass substrate, chemically strengthened glass substrate and cover glass, and method for manufactruing the same
CN105110636A (en) * 2010-09-27 2015-12-02 旭硝子株式会社 Glass for chemical tempering, chemically tempered glass, and glass plate for display device
US9434644B2 (en) * 2010-09-30 2016-09-06 Avanstrate Inc. Cover glass and method for producing cover glass
US8883663B2 (en) * 2010-11-30 2014-11-11 Corning Incorporated Fusion formed and ion exchanged glass-ceramics
JP5834793B2 (en) * 2010-12-24 2015-12-24 旭硝子株式会社 Method for producing chemically strengthened glass
CN102531384B (en) * 2010-12-29 2019-02-22 安瀚视特股份有限公司 Cover glass and its manufacturing method
JP5661174B2 (en) * 2011-03-31 2015-01-28 日本板硝子株式会社 Glass composition suitable for chemical strengthening, and chemically strengthened glass article
TWI591039B (en) * 2011-07-01 2017-07-11 康寧公司 Ion exchangeable glass with high compressive stress
CN102417301A (en) * 2011-08-22 2012-04-18 河南国控宇飞电子玻璃有限公司 Glass composition and glass made of the composition, preparation method and purpose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718855B (en) 2019-01-25 2021-02-11 大陸商四川旭虹光電科技有限公司 Chemical tempered glass and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015187073A (en) 2015-10-29
JP6128186B2 (en) 2017-05-17
JP2017122045A (en) 2017-07-13
JP2016074595A (en) 2016-05-12
JP2017036211A (en) 2017-02-16
JP2015180597A (en) 2015-10-15
JP2017154973A (en) 2017-09-07
JP2014221718A (en) 2014-11-27
JP5793256B1 (en) 2015-10-14
JP5793257B1 (en) 2015-10-14
JP5612233B1 (en) 2014-10-22
JP2015231946A (en) 2015-12-24
JP6465163B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5834793B2 (en) Method for producing chemically strengthened glass
JP5672405B2 (en) Sheet glass
JP6465163B2 (en) Glass for chemical strengthening
WO2016104446A1 (en) Glass and chemically strengthened glass
JP2011088763A (en) Glass sheet for display, sheet glass for display and method for manufacturing the same
JPWO2012077796A1 (en) Method for producing chemically strengthened glass
KR20120130695A (en) Method for producing chemically tempered glass

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250