JP6222127B2 - Stamped character reader - Google Patents

Stamped character reader Download PDF

Info

Publication number
JP6222127B2
JP6222127B2 JP2015021856A JP2015021856A JP6222127B2 JP 6222127 B2 JP6222127 B2 JP 6222127B2 JP 2015021856 A JP2015021856 A JP 2015021856A JP 2015021856 A JP2015021856 A JP 2015021856A JP 6222127 B2 JP6222127 B2 JP 6222127B2
Authority
JP
Japan
Prior art keywords
character
stamped
marking surface
marking
dimensional distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021856A
Other languages
Japanese (ja)
Other versions
JP2016146018A (en
Inventor
田中 薫
薫 田中
酒井 純
純 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015021856A priority Critical patent/JP6222127B2/en
Publication of JP2016146018A publication Critical patent/JP2016146018A/en
Application granted granted Critical
Publication of JP6222127B2 publication Critical patent/JP6222127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Character Input (AREA)

Description

本発明は、鋼材の刻印面に刻印された刻印文字を読取る刻印文字読取り装置に関し、特に製鉄所の熱間工程で鋼材の刻印面に刻印された刻印文字を読取る場合に好適なものである。   The present invention relates to a stamped character reading device that reads a stamped character stamped on a stamped surface of a steel material, and is particularly suitable for reading a stamped character stamped on a stamped surface of a steel material in a hot process of a steel mill.

このように鋼材の刻印面に刻印された刻印文字を読取る場合、従来は、例えば市販のデジタルカメラで刻印面を撮像して、その画像をモニターに表示し、検査者が刻印文字を読取っていた。これを自動化するために、例えば刻印文字に対して複数の方向から照明を当てて刻印文字の陰影を採取し、その映像を画像処理して文字を抽出することも行われていた。更に、下記特許文献1では、刻印面に刻印された凹凸刻印文字の品質チェックのために、レーザ距離計を用いて刻印面の三次元データを取得し、刻印面の形状を算出することで刻印文字の刻印面との段差量を算出し、その段差量から凹凸刻印文字の品質チェックを行っている。   In the case of reading the engraved characters engraved on the engraved surface of the steel in this way, conventionally, for example, the engraved surface is imaged with a commercially available digital camera, the image is displayed on the monitor, and the inspector reads the engraved characters. . In order to automate this, for example, the stamped character is illuminated from a plurality of directions to extract the shadow of the stamped character, and the image is processed to extract the character. Furthermore, in Patent Document 1 below, in order to check the quality of the uneven marking character stamped on the marking surface, the three-dimensional data of the marking surface is obtained using a laser distance meter, and the shape of the marking surface is calculated to obtain the marking. The level difference between the marking surface of the characters is calculated, and the quality check of the concavo-convex marking characters is performed from the level difference.

特許第5036637号公報Japanese Patent No. 5036637

しかしながら、従来の刻印文字自動読取り装置では、何れも、例えば製鉄所の熱間工程で600℃以上の赤熱した鋼材の刻印面に刻印された刻印文字を読取ることは困難である。例えば、刻印文字の陰影を画像処理して文字を抽出しようとする場合、鋼材の刻印面には傾きや曲面、凹凸があるため、照明条件や撮像条件が安定せず、文字部とそれ以外の部分とのコントラストがとれず、安定して文字を読取ることができない。また、特許文献1のようにレーザ距離計を用いて刻印面の三次元距離データを取得しようとする場合、一般にレーザ距離計には赤色レーザ光が用いられており、この赤色レーザ光によるレーザ距離計では、赤熱している鋼材の刻印面の三次元距離データを安定して取得することができない。従って、従来の刻印文字自動読取り装置では、600℃以上の赤熱した鋼材の刻印文字を読取ることは困難である。
本発明は、上記のような問題点に着目してなされたものであり、600℃以上の赤熱した鋼材の刻印面に刻印された刻印文字も読取り可能な刻印文字読取り装置を提供することを目的とするものである。
However, it is difficult for any conventional automatic reading device for reading stamped characters to read stamped characters stamped on the marking surface of red hot steel material of 600 ° C. or higher in the hot process of a steel mill, for example. For example, when trying to extract the character by image processing the shadow of the stamped character, because the stamped surface of the steel material has an inclination, a curved surface, and unevenness, the lighting conditions and imaging conditions are not stable, the character part and other The contrast with the part cannot be obtained and the characters cannot be read stably. In addition, when acquiring the three-dimensional distance data of the marking surface using a laser distance meter as in Patent Document 1, generally, red laser light is used for the laser distance meter, and the laser distance by this red laser light is used. The total cannot stably acquire the three-dimensional distance data of the marking surface of the red-hot steel material. Therefore, it is difficult to read a stamped character of red hot steel material of 600 ° C. or higher with a conventional automatic stamped character reader.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a stamped character reader capable of reading a stamped character stamped on a stamped surface of a red hot steel material at 600 ° C. or higher. It is what.

上記課題を解決するために、本発明の一態様によれば、600℃以上の赤熱状態にある鋼材の刻印面に刻印され且つ刻印面より凹んだ刻印文字を読取る刻印文字読取り装置であって、緑より波長の短いレーザ光によるレーザ距離計により規定の領域分解能でレーザ距離計からの刻印面の三次元距離情報を取得する三次元距離情報取得部と、取得された刻印面の三次元距離情報から刻印面の高さ方向への起伏状態を含む面状態を刻印面の面状態三次元距離情報として算出する刻印面状態算出部と、算出された刻印面の面状態三次元距離情報を基準とする閾値を取得された刻印面の三次元距離情報と比較して距離が閾値以上である領域を凹み有領域として特定する凹み有領域特定部と、特定された凹み有領域の存在領域から刻印文字群を抽出する刻印文字群抽出部と、抽出された刻印文字群のうち、凹み有領域の連続性から刻印文字を切出す刻印文字切出し部と、切出された刻印文字を予め記憶された文字と比較して刻印文字を認識する刻印文字認識部とを備えた刻印文字読取り装置が提供される。   In order to solve the above-mentioned problem, according to one aspect of the present invention, there is provided a stamped character reading device that reads a stamped character that is stamped on a stamped surface of a steel material in a red hot state of 600 ° C. or higher and that is recessed from the stamped surface, A 3D distance information acquisition unit that acquires 3D distance information on the marking surface from the laser distance meter with a specified area resolution using a laser distance meter with a laser beam having a wavelength shorter than green, and 3D distance information on the acquired marking surface A stamped surface state calculation unit that calculates a surface state including a undulation state in the height direction of the stamped surface as surface state three-dimensional distance information of the stamped surface, and based on the calculated surface state three-dimensional distance information of the stamped surface Compared with the three-dimensional distance information of the acquired marking surface, the area with the distance greater than or equal to the threshold is identified as a recessed area, and the character is stamped from the identified existence area of the recessed area. Extract a group Compared with the pre-stored character, the stamp character extraction unit, the stamp character extraction unit that extracts the stamp character from the continuity of the recessed region in the extracted stamp character group, and the extracted stamp character There is provided a stamped character reader including a stamped character recognition unit for recognizing a stamped character.

而して、本発明の刻印文字読取り装置では、緑より波長の短いレーザ光によるレーザ距離計により規定の領域分解能でレーザ距離計からの刻印面の三次元距離情報を取得し、取得された刻印面の三次元距離情報から刻印面の高さ方向への起伏状態を含む面状態を刻印面の面状態三次元距離情報として算出し、算出された刻印面の面状態三次元距離情報を基準とする閾値を取得された刻印面の三次元距離情報と比較して距離が閾値以上である領域を凹み有領域として特定し、特定された凹み有領域の存在領域から刻印文字群を抽出し、抽出された刻印文字群のうち、凹み有領域の連続性から刻印文字を切出し、切出された刻印文字を予め記憶された文字と比較して刻印文字を認識することにより、600℃以上の赤熱した鋼材の刻印面の刻印文字も読み取ることができる。   Thus, in the marking character reading device of the present invention, the three-dimensional distance information of the marking surface from the laser distance meter is obtained with a laser range finder using a laser beam having a wavelength shorter than that of green, and the obtained marking is obtained. The surface state including the undulation state in the height direction of the marking surface is calculated from the three-dimensional distance information of the surface as the surface state three-dimensional distance information of the marking surface, and the calculated surface state three-dimensional distance information of the marking surface is used as a reference. Compare the 3D distance information of the engraved surface with the acquired threshold to identify the area where the distance is equal to or greater than the threshold as a recessed area, and extract and extract a stamped character group from the area where the identified recessed area exists In the stamped character group, the stamped character was cut out from the continuity of the recessed area, and the cut stamped character was compared with the prestored character to recognize the stamped character, thereby causing a red heat of 600 ° C. or more. Stamped surface of steel It can be read.

本発明の刻印文字読取り装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the stamped character reader of this invention. 図1に示す演算処理装置で実行される刻印文字読取りのための演算処理のフローチャートである。It is a flowchart of the arithmetic processing for the stamp character reading performed with the arithmetic processing apparatus shown in FIG. 鋼材の刻印面及び刻印文字の縦断面図である。It is a longitudinal cross-sectional view of the marking surface and marking character of steel materials. 図1のレーザ距離計で取得した鋼材刻印面の三次元距離マップの説明図である。It is explanatory drawing of the three-dimensional distance map of the steel material marking surface acquired with the laser distance meter of FIG. 図4の鋼材刻印面の三次元距離マップを移動平均によってノイズ除去−平滑化して算出した刻印面面状態の三次元距離マップの説明図である。It is explanatory drawing of the three-dimensional distance map of the marking surface state calculated by carrying out noise removal-smoothing by the moving average of the three-dimensional distance map of the steel material marking surface of FIG. 図5の刻印面面状態の三次元距離マップを基準とする閾値と鋼材刻印面の三次元距離マップの比較の説明図である。It is explanatory drawing of the comparison with the threshold value on the basis of the three-dimensional distance map of the marking surface state of FIG. 5, and the three-dimensional distance map of a steel material marking surface. 図6の比較結果から特定された凹み有メッシュの説明図である。It is explanatory drawing of the mesh with a dent identified from the comparison result of FIG. 図4の鋼材刻印面の三次元距離マップからバラツキの大きいデータを除去した三次元距離マップの説明図である。It is explanatory drawing of the three-dimensional distance map which removed the data with big variation from the three-dimensional distance map of the steel material marking surface of FIG. 図8の鋼材刻印面の三次元距離マップを重み付け最小二乗法によって平滑化して算出した刻印面面状態の三次元距離マップの説明図である。It is explanatory drawing of the three-dimensional distance map of the marking surface state calculated by smoothing the three-dimensional distance map of the steel marking surface of FIG. 8 by the weighted least square method. 図9の刻印面面状態の三次元距離マップを基準とする閾値と鋼材刻印面の三次元距離マップの比較の説明図である。It is explanatory drawing of the comparison with the threshold value on the basis of the three-dimensional distance map of the marking surface state of FIG. 9, and the three-dimensional distance map of a steel material marking surface. 図10の比較結果から特定された凹み有メッシュの説明図である。It is explanatory drawing of the mesh with a dent identified from the comparison result of FIG. 刻印面面状態の三次元距離マップを基準とする閾値と鋼材刻印面の三次元距離マップの比較の異なる例を示す説明図である。It is explanatory drawing which shows the example from which the threshold value on the basis of the three-dimensional distance map of a marking surface state and the comparison of the three-dimensional distance map of a steel material marking surface differs. 図12の比較結果から特定された凹み有メッシュの説明図である。It is explanatory drawing of the mesh with a dent specified from the comparison result of FIG. 凹み有メッシュから抽出された刻印文字群の説明図である。It is explanatory drawing of the stamp character group extracted from the mesh with a dent. 刻印文字群から切出された文字の説明図である。It is explanatory drawing of the character cut out from the stamp character group.

以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, arrangement, etc. of components. Is not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

以下に、本発明の刻印文字読取り装置の一実施形態について図面を参照しながら説明する。図1は、この実施形態の刻印文字読取り装置の概略構成を示す正面図であり、製鉄所の熱間圧延工程の入側部分に配置されている。熱間圧延工程に送給される鋼材(スラブ)Sは図1の右方向に長手であり、図の左方端面を刻印面Fとして、その刻印面Fに、刻印面Fより凹んだ刻印文字が刻印されている。この実施形態では、この鋼材Sの刻印面Fをレーザ距離計1で走査して、刻印文字を含む刻印面Fの三次元距離データを、例えば三次元距離マップ(三次元情報)として取得する。   Hereinafter, an embodiment of a stamped character reader according to the present invention will be described with reference to the drawings. FIG. 1 is a front view showing a schematic configuration of the engraved character reading device of this embodiment, which is arranged at an entry side portion of a hot rolling process of a steel mill. The steel material (slab) S fed to the hot rolling process is long in the right direction in FIG. 1, and the left end surface of the figure is a marking surface F, and the marking surface F is recessed from the marking surface F. Is imprinted. In this embodiment, the marking surface F of the steel material S is scanned with the laser distance meter 1, and the three-dimensional distance data of the marking surface F including the marking characters is acquired as, for example, a three-dimensional distance map (three-dimensional information).

この実施形態のレーザ距離計1には、緑より波長の短いレーザ光を用いたレーザ距離計が使用される。熱間圧延工程に送給される鋼材Sは、600℃以上の温度で赤熱しており、一般的な赤色レーザ光を用いたのでは、鋼材Sからの赤色波長成分により、鋼材Sの刻印面Fの三次元距離データを適正に取得することができない。そのため、この実施形態のレーザ距離計1では、赤熱した鋼材Sの刻印面Fでも三次元距離データを取得可能なように、緑より波長の短いレーザ光を用いる。緑の波長には、例えば国際照明委員会が規定する波長546.1nmが適用される。従って、この実施形態のレーザ距離計1のレーザ光には、それよりも波長の短い、例えば青や紫のレーザ光が使用される。   As the laser distance meter 1 of this embodiment, a laser distance meter using laser light having a wavelength shorter than that of green is used. The steel material S fed to the hot rolling process is red hot at a temperature of 600 ° C. or higher. If a general red laser beam is used, the marking surface of the steel material S is generated by the red wavelength component from the steel material S. F three-dimensional distance data cannot be acquired properly. Therefore, in the laser rangefinder 1 of this embodiment, laser light having a wavelength shorter than that of green is used so that the three-dimensional distance data can be acquired even on the marking surface F of the red hot steel material S. For the green wavelength, for example, the wavelength 546.1 nm specified by the International Commission on Illumination is applied. Therefore, for example, blue or violet laser light having a shorter wavelength is used as the laser light of the laser rangefinder 1 of this embodiment.

このレーザ距離計1は、例えばレーザヘッドを揺動することによってレーザ光を扇形に偏向し、二次元、つまりレーザ光の偏向方向とその反射方向の位置情報をレーザ距離計からの距離データとして検出する二次元レーザ距離計である。この実施形態では、この二次元レーザ距離計1によるレーザ光の偏向方向を図1の上下方向、つまり紙面と平行な方向に設定し、そのレーザ距離計1を移動装置2で紙面と垂直な方向に移動(走査)することで、鋼材Sの刻印面Fの三次元距離データを検出して三次元距離マップとする。つまり、鋼材Sの刻印面Fは、刻印面Fと平行な面の二次元位置データに、刻印面Fの高さ方向の位置データが重畳された三次元距離マップで傾き状態や曲面状態、凹凸状態が表される。従って、取得される三次元距離マップは、鋼材Sの刻印面Fの面状態を表している。このレーザ距離計1の移動装置2には、例えば既存のリニアガイド装置などが適用され、これによりレーザ距離計1を図1の紙面垂直方向に滑らかに移動することができる。この実施形態では、この二次元レーザ距離計1を走査することにより、例えば0.3mmメッシュの分解能で鋼材Sの刻印面Fの面状態を検出することができる。   The laser rangefinder 1 deflects the laser beam into a fan shape by, for example, swinging the laser head, and detects two-dimensional, that is, the position information of the laser beam deflection direction and its reflection direction as distance data from the laser rangefinder. It is a two-dimensional laser rangefinder. In this embodiment, the deflection direction of the laser beam by the two-dimensional laser distance meter 1 is set in the vertical direction in FIG. 1, that is, the direction parallel to the paper surface, and the laser distance meter 1 is perpendicular to the paper surface by the moving device 2. By moving (scanning), the three-dimensional distance data of the marking surface F of the steel material S is detected to obtain a three-dimensional distance map. That is, the marking surface F of the steel material S is a three-dimensional distance map in which the position data in the height direction of the marking surface F is superimposed on the two-dimensional position data of the surface parallel to the marking surface F. The state is represented. Therefore, the acquired three-dimensional distance map represents the surface state of the marking surface F of the steel material S. For example, an existing linear guide device or the like is applied to the moving device 2 of the laser distance meter 1, whereby the laser distance meter 1 can be smoothly moved in the direction perpendicular to the paper surface of FIG. In this embodiment, by scanning the two-dimensional laser distance meter 1, the surface state of the marking surface F of the steel material S can be detected with a resolution of 0.3 mm mesh, for example.

レーザ距離計1によるレーザ光の偏向や移動装置2によるレーザ距離計1の移動は、レーザ距離計制御装置3によって制御され、レーザ距離計1で検出された鋼材Sの刻印面Fの三次元距離データは、このレーザ距離計制御装置3によって三次元距離マップに変換される。レーザ距離計制御装置3は、前述のようにレーザ距離計1のレーザ光を図1の紙面平行方向に偏向すると共に、レーザ距離計1そのものを図1の紙面垂直方向に予め設定された初期位置から終点位置まで一定速度で移動し、その間に取得した三次元距離データを鋼材Sの刻印面Fの三次元距離マップに変換する。レーザ距離計1及びレーザ距離計制御装置3は、より上位の演算処理装置4によって制御され、この演算処理装置4で刻印文字の読取りが行われる。演算処理装置4は、コンピュータシステムなどで構成される高度な演算処理機能を有するものである。つまり、この実施形態の刻印文字読取り装置は、演算処理装置4内で実行される演算処理によって構築される。また、この演算処理装置4には、図示しない更に上位の演算処理装置から、熱間圧延工程に送給される鋼材Sの刻印面Fへの刻印文字情報が入力される。
図2は、演算処理装置4で実行される刻印読取りのための演算処理を示すフローチャートである。この演算処理は、例えばオペレータによる刻印文字読取り指令入力で開始され、先ずステップS1で、二次元レーザ距離計1を走査して、規定された分解能、つまり0.3mmメッシュ(領域)で鋼材Sの刻印面Fの三次元距離マップを作成する。
Laser beam deflection by the laser distance meter 1 and movement of the laser distance meter 1 by the moving device 2 are controlled by the laser distance meter control device 3, and the three-dimensional distance of the marking surface F of the steel S detected by the laser distance meter 1. The data is converted into a three-dimensional distance map by the laser distance meter controller 3. The laser distance meter control device 3 deflects the laser light of the laser distance meter 1 in the direction parallel to the paper surface of FIG. 1 as described above, and the laser distance meter 1 itself is set in the initial position in the direction perpendicular to the paper surface of FIG. The three-dimensional distance data acquired during this period is converted into a three-dimensional distance map of the marking surface F of the steel material S. The laser distance meter 1 and the laser distance meter control device 3 are controlled by a higher-order arithmetic processing device 4, and the arithmetic processing device 4 reads the engraved characters. The arithmetic processing unit 4 has an advanced arithmetic processing function constituted by a computer system or the like. That is, the stamped character reading device of this embodiment is constructed by arithmetic processing executed in the arithmetic processing device 4. Further, in this arithmetic processing unit 4, imprinted character information on the marking surface F of the steel S fed to the hot rolling process is input from a higher-level arithmetic processing unit (not shown).
FIG. 2 is a flowchart showing the arithmetic processing for marking reading executed by the arithmetic processing device 4. This calculation process is started, for example, by inputting an engraved character reading command by an operator. First, in step S1, the two-dimensional laser distance meter 1 is scanned, and the steel material S is scanned with a prescribed resolution, that is, 0.3 mm mesh (region). A three-dimensional distance map of the marking surface F is created.

次にステップS2に移行して、取得された刻印面Fの三次元距離マップからノイズを除去すると共にノイズの除去された三次元距離マップから刻印面Fの面状態を算出する。この実施形態では、刻印文字は刻印面Fから凹んでいるので、刻印面Fから突出する凸部は、読取り対象となる刻印文字からはノイズでしかない。後述するように、刻印面Fは、面状態としての傾き、曲面、凹凸の他に、鋼材製造工程で生じたスケール(浮きスケール)が凸部として存在している。そこで、刻印面Fの三次元距離マップのうち、刻印面Fから規定値以上突出している凸部(レーザ距離計1からの距離の小さい部分)をノイズとして除去する。そして、このようにノイズが除去された三次元距離マップから刻印面Fの面状態を算出する。刻印面Fの面状態の算出には、後述するように、移動平均による平滑化(平滑化フィルタ)や最小二乗法による曲面回帰分析などがある。   Next, the process proceeds to step S2, in which noise is removed from the acquired three-dimensional distance map of the marking surface F, and the surface state of the marking surface F is calculated from the three-dimensional distance map from which noise has been removed. In this embodiment, since the engraved character is recessed from the engraving surface F, the convex portion protruding from the engraving surface F is only noise from the engraved character to be read. As will be described later, the marking surface F has a scale (floating scale) generated in the steel material manufacturing process as a convex portion in addition to the inclination, the curved surface, and the unevenness as the surface state. Therefore, in the three-dimensional distance map of the marking surface F, a convex portion (a portion having a small distance from the laser rangefinder 1) protruding from the marking surface F by a specified value or more is removed as noise. Then, the surface state of the marking surface F is calculated from the three-dimensional distance map from which noise has been removed in this way. The calculation of the surface state of the marking surface F includes smoothing by a moving average (smoothing filter) and curved surface regression analysis by a least square method, as will be described later.

次にステップS3に移行して、算出された刻印面Fの面状態に応じた閾値判定によって、刻印面Fの三次元距離マップにおける距離が閾値以上であるメッシュを凹み有メッシュとして特定する。
次にステップS4に移行して、特定された凹み有メッシュの存在領域から刻印文字群を抽出する。
次にステップS5に移行して、抽出された刻印文字群のうち、凹み有メッシュの連続性(非連続性を含む)から刻印文字を切出す。この実施形態では、凹み有メッシュが刻印面Fの縦、横、斜め方向に連続している領域に刻印文字が存在するものとし、近接する凹み有メッシュが3メッシュ以上離れている場合には別々の刻印文字であると判定する。
次にステップS6に移行して、切出された刻印文字を予め記憶された文字とのモデルマッチング(パターンマッチング)により文字として認識する。
次にステップS7に移行して、認識された文字を上位演算処理装置からの文字と照合してから復帰する。
Next, the process proceeds to step S3, and a mesh whose depth in the three-dimensional distance map of the marking surface F is greater than or equal to the threshold is specified as a concave mesh by threshold determination according to the calculated surface state of the marking surface F.
Next, the process proceeds to step S4, and a stamped character group is extracted from the identified existence area of the mesh with dents.
Next, the process proceeds to step S5, where a stamped character is cut out from the continuity (including discontinuity) of the concave mesh in the extracted stamped character group. In this embodiment, it is assumed that engraved characters exist in a region where the mesh with dents is continuous in the vertical, horizontal, and diagonal directions of the marking surface F, and when the adjacent mesh with dents is 3 mesh or more apart, It is determined that it is a stamped character.
Next, the process proceeds to step S6, where the cut stamped character is recognized as a character by model matching (pattern matching) with a character stored in advance.
Next, the process proceeds to step S7, where the recognized character is collated with the character from the higher-order processing unit, and then the process returns.

この演算処理によれば、二次元レーザ距離計1を走査して規定されたメッシュで鋼材Sの刻印面Fの三次元距離マップを作成した後、取得された刻印面Fの三次元距離マップから凸部ノイズを除去すると共にノイズの除去された三次元距離マップから刻印面Fの面状態を算出する。これにより、刻印面Fそのものの傾き状態や曲面状態、凹凸状態が検出される。そして、算出された刻印面Fの面状態に応じた閾値と刻印面Fの三次元距離マップを比較し、レーザ距離計1からの距離が閾値以上であるメッシュを凹み有メッシュとして特定する。この凹み有メッシュは、刻印文字である可能性が高いメッシュである。そして、特定された凹み有メッシュの存在領域から刻印文字群を抽出し、抽出された刻印文字群のうち、凹み有メッシュの連続性から刻印文字を切出し、切出された刻印文字を予め記憶された文字とのモデルマッチング(パターンマッチング)により文字として認識する。例えば、刻印文字が接近している場合には、夫々の刻印文字を認識しにくいが、凹み有メッシュが非連続である部分で刻印文字が独立していると判定すれば、刻印文字を切出すことができ、この切出された刻印文字をモデルマッチングで比較して文字と認識することができる。そして、最終的に、上位演算処理装置から入力された文字と認識された文字を照合し、例えば照合結果が適正でない場合には、その旨をオペレータに報知する。   According to this calculation process, the two-dimensional laser rangefinder 1 is scanned to create a three-dimensional distance map of the marking surface F of the steel material S with a specified mesh, and then from the acquired three-dimensional distance map of the marking surface F. The surface state of the marking surface F is calculated from the three-dimensional distance map from which the convex noise is removed and the noise is removed. Thereby, the inclination state, curved surface state, and uneven state of the marking surface F itself are detected. Then, a threshold corresponding to the calculated surface state of the marking surface F is compared with a three-dimensional distance map of the marking surface F, and a mesh whose distance from the laser rangefinder 1 is equal to or greater than the threshold is specified as a concave mesh. This concave mesh is a mesh that is highly likely to be a stamped character. Then, a stamped character group is extracted from the identified existence region of the recessed mesh, and the stamped character is extracted from the extracted stamped character group based on the continuity of the recessed mesh, and the extracted stamped character is stored in advance. It is recognized as a character by model matching (pattern matching). For example, when engraved characters are close to each other, it is difficult to recognize each engraved character, but if it is determined that the engraved character is independent in a portion where the concave mesh is discontinuous, the engraved character is cut out. It is possible to recognize the extracted stamped character by comparing it with model matching. Finally, the recognized character is collated with the character input from the host arithmetic processing unit. If the collation result is not appropriate, for example, the operator is notified of this.

例えば、実際の鋼材Sにおける刻印面Fの面状態が図3のようなものであった場合に、刻印面Fから剥離している浮きスケールCは、レーザ距離計1からの距離が刻印面Fよりも突出して小さいから、刻印面Fより凹んでいる刻印文字の読取りに際してはノイズである。この凸部ノイズを除去することで、刻印面Fの面状態から著しい凸状変化を除去することができる。このような刻印面Fの三次元距離マップのうち、例えばレーザ光の偏向方向への刻印面Fの二次元距離マップが図4のようであった場合について考察する。即ち、刻印面Fの三次元距離マップは、図4のような刻印面Fの二次元距離マップが図の紙面垂直方向に繋がっていると考えればよい。この三次元距離マップでは、レーザ距離計1からの距離が、その他の部分よりも一定量以上大きい部分に刻印文字の凹みがあると考えられる。また、レーザ距離計1からの距離が、その他の部分よりも規定値以上小さい部分は、浮きスケールCなどの凸部ノイズであると考えられる。   For example, when the surface state of the marking surface F in the actual steel material S is as shown in FIG. 3, the floating scale C peeled off from the marking surface F has a distance from the laser distance meter 1 as the marking surface F. Therefore, it is a noise when reading engraved characters that are recessed from the engraving surface F. By removing the convex noise, a remarkable convex change from the surface state of the marking surface F can be removed. Consider a case in which, for example, the two-dimensional distance map of the marking surface F in the laser beam deflection direction is as shown in FIG. That is, the three-dimensional distance map of the marking surface F may be considered that the two-dimensional distance map of the marking surface F as shown in FIG. 4 is connected in the direction perpendicular to the drawing sheet. In this three-dimensional distance map, it is considered that there is a dent of a stamped character in a portion where the distance from the laser rangefinder 1 is larger than the other portion by a certain amount or more. In addition, it is considered that a portion where the distance from the laser rangefinder 1 is smaller than the other portion by a specified value or more is convex noise such as a floating scale C.

そこで、図4の凸部ノイズを除去した後、移動平均によって三次元距離マップを平滑化したのが図5である。この移動平均による平滑化には、例えば周知のように重み付け移動平均などを用いることもできる。そして、このように三次元距離マップを平滑化することにより、刻印面Fの高さ方向への起伏状態を含む刻印面Fの面状態、即ち傾き状態や曲面状態、凹凸状態を検出することができる。この刻印面Fの面状態の三次元距離マップを基準として規定の閾値を加算したものが図6の二点鎖線である。この閾値と図4の刻印面Fの三次元距離マップを比較し、レーザ距離計1からの距離が閾値以上の領域、つまりメッシュに刻印文字の凹みがあると考えられる。そこで、図7に示すように、距離が閾値以上のメッシュを凹み有メッシュとして特定する。   Therefore, FIG. 5 shows a smoothed three-dimensional distance map by moving average after removing the convex noise of FIG. For the smoothing by the moving average, for example, a weighted moving average can be used as well known. By smoothing the three-dimensional distance map in this way, the surface state of the marking surface F including the undulation state in the height direction of the marking surface F, that is, the tilt state, the curved surface state, and the uneven state can be detected. it can. A two-dot chain line in FIG. 6 is obtained by adding a prescribed threshold value based on the three-dimensional distance map of the surface state of the marking surface F. This threshold value is compared with the three-dimensional distance map of the marking surface F in FIG. Therefore, as shown in FIG. 7, a mesh whose distance is equal to or greater than a threshold is specified as a concave mesh.

刻印面の面状態検出には、最小二乗法による回帰曲面分析を用いることもできる。例えば、図8は、図4の三次元距離マップに対し、その他の部分よりもバラツキの大きい距離データをノイズとして除去したものである。刻印文字の凹みも、本来の刻印面Fの面状態から見れば、ノイズの一部と考えられる。このノイズが除去された三次元距離マップを最小二乗法によって曲面(図では曲線)に回帰分析した面状態が図9のように表れる。その場合、例えばデータの密度が大きいメッシュでは重みを大きくし、データの密度が小さいメッシュでは重みを小さく設定した最小二乗法を用いると、回帰分析した刻印面Fの面状態の信頼度が高くなる。この刻印面Fの面状態の三次元距離マップを基準として規定の閾値を加算したものが図10の二点鎖線である。そして、この閾値と図4の刻印面Fの三次元距離マップを比較し、図11に示すように、レーザ距離計1からの距離が閾値以上の領域、つまりメッシュを凹み有メッシュとして特定する。   For detecting the surface state of the marking surface, regression surface analysis by the least square method can be used. For example, FIG. 8 is obtained by removing, as noise, distance data having a larger variation than the other parts of the three-dimensional distance map of FIG. The dent of the engraved character is also considered to be a part of noise when viewed from the original state of the engraving surface F. FIG. 9 shows a surface state obtained by performing regression analysis on the curved surface (curved in the drawing) of the three-dimensional distance map from which the noise is removed by the least square method. In that case, for example, when the least square method is used in which the weight is increased for a mesh having a high data density and the weight is set to a small value for a mesh having a low data density, the reliability of the surface state of the engraved surface F subjected to regression analysis is increased. . The two-dot chain line in FIG. 10 is obtained by adding a prescribed threshold value based on the three-dimensional distance map of the surface state of the marking surface F. Then, this threshold value is compared with the three-dimensional distance map of the marking surface F in FIG. 4, and as shown in FIG. 11, an area where the distance from the laser distance meter 1 is equal to or larger than the threshold value, that is, a mesh is specified as a concave mesh.

刻印面Fの三次元距離マップと閾値の比較方法には、前述以外の方法として、取得した三次元距離マップから刻印面Fの面状態としての距離データを減じて図12の実線のような刻印面Fの面状態に対する凹凸状態の三次元距離マップを取得し、この刻印面Fの面状態に対する凹凸状態の三次元距離マップと閾値を比較することもできる。そして、これにより、図13に示すように、レーザ距離計1からの距離が閾値以上であるメッシュを凹み有メッシュとして特定することができる。   As a method for comparing the three-dimensional distance map of the marking surface F with the threshold value, as a method other than the method described above, the distance data as the surface state of the marking surface F is subtracted from the acquired three-dimensional distance map, and the marking as shown by the solid line in FIG. It is also possible to acquire a three-dimensional distance map of the uneven state with respect to the surface state of the surface F and compare the threshold value with the three-dimensional distance map of the uneven state with respect to the surface state of the marking surface F. And thereby, as shown in FIG. 13, the mesh whose distance from the laser rangefinder 1 is more than a threshold value can be specified as a concave mesh.

このようにして凹み有メッシュが特定されると、図14のように、凹み有メッシュDとそうでないメッシュ(凹み無メッシュ)Mのマトリックスが形成される。このマトリックスのうち、凹み有メッシュDが存在している領域が刻印文字群であると考えられるので、その刻印文字群を抽出する。そして、その抽出された刻印文字群のうち、凹み有メッシュDが縦、横、斜め方向に連続している領域に刻印文字が存在し、凹み有メッシュDの非連続領域で、刻印文字が独立していると考えられるので、図15に示すように、その独立した凹み有メッシュ領域から刻印文字を切出し、周知のモデルマッチング(パターンマッチング)手法によって文字を認識する。   When the concave mesh is specified in this way, a matrix of the concave mesh D and the non-recessed mesh (non-dent mesh) M is formed as shown in FIG. In this matrix, since the region where the concave mesh D exists is considered to be a stamped character group, the stamped character group is extracted. In the extracted engraved character group, the engraved character D exists in a region where the concave mesh D is continuous in the vertical, horizontal, and diagonal directions, and the imprinted character is independent in the non-continuous region of the concave mesh D. Therefore, as shown in FIG. 15, a stamped character is cut out from the independent mesh area with dents, and the character is recognized by a well-known model matching (pattern matching) method.

このように、この実施形態の刻印文字読取り装置では、緑より波長の短いレーザ光によるレーザ距離計1により規定のメッシュ分解能でレーザ距離計1からの刻印面Fの三次元距離マップを三次元距離情報取得ステップS1で取得する。そして、取得された刻印面Fの三次元距離マップから刻印面Fの高さ方向への起伏状態を含む面状態を刻印面Fの面状態三次元距離マップとして刻印面状態算出ステップS2で算出する。この算出された刻印面Fの面状態三次元距離マップを基準として、取得された刻印面Fの三次元距離マップと閾値を比較して距離が閾値以上であるメッシュを凹み有メッシュとして凹み有領域特定ステップS3で特定する。このようにして凹み有メッシュが特定されたら、その凹み有メッシュの存在領域から刻印文字群を刻印文字群抽出ステップS4で抽出し、抽出された刻印文字群のうち、凹み有領域の連続性(非連続性を含む)から刻印文字を刻印文字切出しステップS5で切出し、切出された刻印文字を予め記憶された文字と比較して刻印文字を刻印文字認識ステップS7で認識する。これにより、600℃以上の赤熱した鋼材の刻印面の刻印文字も読み取ることができる。   As described above, in the marking character reading device of this embodiment, the three-dimensional distance map of the marking surface F from the laser distance meter 1 with the prescribed mesh resolution is obtained by the laser distance meter 1 using a laser beam having a wavelength shorter than green. Obtained in the information obtaining step S1. Then, from the acquired three-dimensional distance map of the marking surface F, a surface state including the undulation state in the height direction of the marking surface F is calculated as a surface state three-dimensional distance map of the marking surface F in the marking surface state calculation step S2. . Using the calculated surface state three-dimensional distance map of the marking surface F as a reference, the obtained three-dimensional distance map of the marking surface F is compared with a threshold value, and a mesh having a distance equal to or greater than the threshold value is defined as a concave mesh. It specifies with specific step S3. When the concave mesh is specified in this way, a stamped character group is extracted from the existence region of the concave mesh in the stamped character group extraction step S4, and the continuity of the concave region in the extracted stamped character group ( A stamped character is cut out in a stamped character cutout step S5, and the cutout character is compared with a previously stored character to recognize the stamped character in a stamped character recognition step S7. Thereby, the marking character of the marking surface of the red hot steel material of 600 ° C. or higher can also be read.

また、刻印面状態算出ステップS2では、刻印面の高さ方向への起伏状態を含む面状態の算出に先立って、取得された刻印面の三次元距離マップから刻印面の凸部分をノイズとして除去することにより、浮きスケールのような刻印文字の読取りに不要なノイズを除去して刻印面の面状態を適正に算出することが可能となり、その結果、刻印文字の読取り精度を向上することができる。   In addition, in the marking surface state calculation step S2, the convex portion of the marking surface is removed as noise from the acquired three-dimensional distance map of the marking surface prior to calculation of the surface state including the undulation state in the height direction of the marking surface. By doing so, it becomes possible to remove noise unnecessary for reading a stamped character such as a floating scale and to properly calculate the surface state of the stamped surface, and as a result, it is possible to improve the reading accuracy of the stamped character. .

また、刻印文字照合ステップS7で、認識された刻印文字を上位演算処理装置から取得した刻印文字情報と比較して照合することにより、例えば熱間圧延工程への鋼材Sの誤送給を回避することが可能となる。
本発明がここに記載していない様々な実施の形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に記載された発明特定事項によってのみ定められるものである。
Further, in the stamp character collation step S7, the recognized stamp character is compared with the stamp character information acquired from the host processor, thereby avoiding erroneous feeding of the steel material S to the hot rolling process, for example. It becomes possible.
It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention-specific matters described in the appropriate claims from the above description.

1 レーザ距離計(二次元レーザ距離計)
2 移動装置
3 レーザ距離計制御装置
4 演算処理装置
S 鋼材(スラブ)
F 刻印面
L 刻印文字
C 浮きスケール
1 Laser rangefinder (two-dimensional laser rangefinder)
2 Moving device 3 Laser distance meter control device 4 Arithmetic processing device S Steel (slab)
F Stamp surface L Stamp character C Floating scale

Claims (3)

600℃以上の赤熱状態にある鋼材の刻印面に刻印され且つ前記刻印面より凹んだ刻印文字を読取る刻印文字読取り装置であって、
緑より波長の短いレーザ光によるレーザ距離計により規定の領域分解能で前記レーザ距離計からの前記刻印面の三次元距離情報を取得する三次元距離情報取得部と、
前記取得された刻印面の三次元距離情報から前記刻印面の高さ方向への起伏状態を含む面状態を刻印面の面状態三次元距離情報として算出する刻印面状態算出部と、
前記算出された刻印面の面状態三次元距離情報を基準とする閾値を前記取得された刻印面の三次元距離情報と比較して距離が閾値以上である領域を凹み有領域として特定する凹み有領域特定部と、
前記特定された凹み有領域の存在領域から刻印文字群を抽出する刻印文字群抽出部と、
前記抽出された刻印文字群のうち、前記凹み有領域の連続性から刻印文字を切出す刻印文字切出し部と、
前記切出された刻印文字を予め記憶された文字と比較して刻印文字を認識する刻印文字認識部と
を備えたことを特徴とする刻印文字読取り装置。
A stamped character reader that reads a stamped character that is stamped on a stamped surface of a steel material in a red hot state of 600 ° C. or higher and that is recessed from the stamped surface,
A three-dimensional distance information acquisition unit for acquiring three-dimensional distance information of the marking surface from the laser distance meter with a specified area resolution by a laser distance meter with a laser beam having a wavelength shorter than green;
A marking surface state calculation unit for calculating a surface state including a undulation state in the height direction of the marking surface from the acquired three-dimensional distance information of the marking surface, as surface state three-dimensional distance information of the marking surface;
Comparing a threshold value based on the calculated surface state three-dimensional distance information of the marking surface with the acquired three-dimensional distance information of the marking surface, a region having a distance greater than or equal to the threshold value is specified as a concave region. An area identification unit;
A stamped character group extraction unit that extracts a stamped character group from the region of presence of the identified recessed area;
Of the extracted stamped character group, a stamped character cutout unit that cuts out a stamped character from the continuity of the recessed region,
A stamped character reader comprising a stamped character recognition unit that recognizes a stamped character by comparing the cut stamped character with a previously stored character.
前記刻印面状態算出部は、前記刻印面の高さ方向への起伏状態を含む面状態の算出に先立って、前記取得された刻印面の三次元距離情報から前記刻印面の凸部分をノイズとして除去することを特徴とする請求項1に記載の刻印文字読取り装置。   Prior to calculating the surface state including the undulation state in the height direction of the marking surface, the marking surface state calculation unit determines the convex portion of the marking surface as noise from the acquired three-dimensional distance information of the marking surface. The stamp character reading device according to claim 1, wherein the stamp character reading device is removed. 前記刻印文字認識部で認識された刻印文字を上位演算処理装置から取得した刻印文字情報と比較して照合する刻印文字照合部
を備えたことを特徴とする請求項1又は2に記載の刻印文字読取り装置。
The stamp character according to claim 1, further comprising a stamp character collating unit that compares the stamp character recognized by the stamp character recognition unit with stamp character information acquired from a higher-order processor. Reader.
JP2015021856A 2015-02-06 2015-02-06 Stamped character reader Active JP6222127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021856A JP6222127B2 (en) 2015-02-06 2015-02-06 Stamped character reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021856A JP6222127B2 (en) 2015-02-06 2015-02-06 Stamped character reader

Publications (2)

Publication Number Publication Date
JP2016146018A JP2016146018A (en) 2016-08-12
JP6222127B2 true JP6222127B2 (en) 2017-11-01

Family

ID=56686247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021856A Active JP6222127B2 (en) 2015-02-06 2015-02-06 Stamped character reader

Country Status (1)

Country Link
JP (1) JP6222127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018132446A1 (en) * 2018-12-17 2020-06-18 Gom Gmbh Method of recognizing symbols

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253747A (en) * 1996-03-26 1997-09-30 Kawasaki Steel Corp Method and device for automatic identification of steel
JPH1021331A (en) * 1996-06-28 1998-01-23 Hitachi Eng Co Ltd Method and device for reading pattern of examinee
JP2004334288A (en) * 2003-04-30 2004-11-25 Mitsubishi Heavy Ind Ltd Engraved letter recognition device and method
JP2005300210A (en) * 2004-04-07 2005-10-27 Ryoei Engineering Kk High temperature object profile measuring system and high temperature object distance measuring system
JP5036637B2 (en) * 2008-06-16 2012-09-26 株式会社神戸製鋼所 Image processing method and image processing apparatus for extracting uneven characters
JP5749525B2 (en) * 2011-03-09 2015-07-15 株式会社ブリヂストン Tire size measuring method and tire size measuring device

Also Published As

Publication number Publication date
JP2016146018A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6599672B2 (en) Character cutout device, character recognition device, and character cutout method
KR960702360A (en) ANGLE OF BEND DETECTOR AND STRAIGHT LINE EXTRACTOR USED THEREFOR, AND ANGLE OF BEND DETECTING POSITION SETTING APPARATUS
JP6487255B2 (en) Character cutout device, character recognition device, and character cutout method
JP2007219943A (en) Casted character recognition device
JP6665550B2 (en) Tire contact surface analysis device, tire contact surface analysis system, and tire contact surface analysis method
JP2010155272A (en) Device for straightening shape of steel sheet
JP2008040693A (en) Line noise removal device, line noise removal method and line noise removal program
JP2018096908A (en) Inspection device and inspection method
JP2010156622A (en) Shape measurement method and shape measurement apparatus of steel plate
US20230186516A1 (en) Method and flat bed machine tool for detecting a fitting position of a supporting bar
JP6222127B2 (en) Stamped character reader
JP5036637B2 (en) Image processing method and image processing apparatus for extracting uneven characters
KR20150118810A (en) Recognizing System for Vehicle Number of Vehicle Body
JP5280337B2 (en) Character recognition method and character recognition device
JP5157575B2 (en) Defect detection method
JP4658779B2 (en) Haze detection method, apparatus, and computer program
JP2010091525A (en) Pattern matching method of electronic component
JP5034693B2 (en) Code reading apparatus and method
JP2007132868A (en) Apparatus and method for measuring shape of cell on gravure plate
JP4492258B2 (en) Character and figure recognition and inspection methods
JP2018106592A (en) Carved character reading device and carved character reading method
JP4799426B2 (en) Contour inspection method and apparatus
JP2008052468A (en) Processing apparatus for fine line removal and method, and character recognition process apparatus and method
JP2019060836A (en) Float detector and float detection method of print, inspection device, and inspection method
JP6296585B1 (en) Print lift detection apparatus, lift detection method, inspection apparatus, and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250