JP6221798B2 - Electrode for power storage device - Google Patents

Electrode for power storage device Download PDF

Info

Publication number
JP6221798B2
JP6221798B2 JP2014022592A JP2014022592A JP6221798B2 JP 6221798 B2 JP6221798 B2 JP 6221798B2 JP 2014022592 A JP2014022592 A JP 2014022592A JP 2014022592 A JP2014022592 A JP 2014022592A JP 6221798 B2 JP6221798 B2 JP 6221798B2
Authority
JP
Japan
Prior art keywords
protective layer
particles
active material
electrode
large particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014022592A
Other languages
Japanese (ja)
Other versions
JP2015149237A (en
Inventor
庄太 嵯峨
庄太 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014022592A priority Critical patent/JP6221798B2/en
Publication of JP2015149237A publication Critical patent/JP2015149237A/en
Application granted granted Critical
Publication of JP6221798B2 publication Critical patent/JP6221798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、蓄電装置用電極に係り、詳しくは集電体に形成された活物質層の表面が保護層で覆われた蓄電装置用電極に関する。   The present invention relates to a power storage device electrode, and more particularly to a power storage device electrode in which a surface of an active material layer formed on a current collector is covered with a protective layer.

この種の電極として、図3に示すように、集電体(金属箔)50と、集電体50上に形成された活物質層52と、活物質層52上に形成された保護層54とを備え、保護層54は、有機粒子と無機粒子とを含有し、有機粒子及び無機粒子の平均粒径D50がいずれも0.10〜4.0μmであるリチウムイオン二次電池用電極が提案されている。有機粒子は溶融温度が100〜200℃であり、保護層54における有機粒子の含有量と無機粒子の含有量との比が質量比で1:1〜1:4である(特許文献1参照)。   As this type of electrode, as shown in FIG. 3, a current collector (metal foil) 50, an active material layer 52 formed on the current collector 50, and a protective layer 54 formed on the active material layer 52. The protective layer 54 includes organic particles and inorganic particles, and an electrode for a lithium ion secondary battery in which the average particle diameter D50 of the organic particles and the inorganic particles is 0.10 to 4.0 μm is proposed. Has been. The organic particles have a melting temperature of 100 to 200 ° C., and the ratio of the organic particle content to the inorganic particle content in the protective layer 54 is 1: 1 to 1: 4 in mass ratio (see Patent Document 1). .

特開2010−225545号公報JP 2010-225545 A

活物質層を保護する保護層54は、なるべく薄くすることが望まれる。保護層54を薄くする方法として、保護層54を構成する粒子の粒径を小さくすることが考えられる。ところで、電極の活物質層52の表面に保護層54が一体に形成された構成では、保護層54を構成する粒子の粒径が活物質の粒径に比べて小さすぎる場合、保護層54を薄くすると、図4に模式的に示すように、保護層54の一部に凹部56が生じる。凹部56は、活物質層52が露出したり、保護層54の厚さが極端に薄い状態となったりした箇所である。そのため、凹部56が生じると、蓄電装置の使用時に凹部56に電流が集中して蓄電装置の性能が低下したり、蓄電装置の寿命が短くなったりする。   It is desirable that the protective layer 54 that protects the active material layer be as thin as possible. As a method for reducing the thickness of the protective layer 54, it is conceivable to reduce the particle size of the particles constituting the protective layer 54. By the way, in the configuration in which the protective layer 54 is integrally formed on the surface of the active material layer 52 of the electrode, when the particle size of the particles constituting the protective layer 54 is too small compared to the particle size of the active material, the protective layer 54 is formed. When the thickness is reduced, a recess 56 is formed in a part of the protective layer 54 as schematically shown in FIG. The concave portion 56 is a portion where the active material layer 52 is exposed or the thickness of the protective layer 54 is extremely thin. Therefore, when the concave portion 56 is generated, current is concentrated in the concave portion 56 when the power storage device is used, so that the performance of the power storage device is deteriorated or the life of the power storage device is shortened.

特許文献1では、保護層54を構成する粒子の粒径と、活物質の粒径との関係に関しては記載がない。しかし、例えばリチウムイオン二次電池では、活物質の粒径は20μm程度で小さくても10μm程度である。また、保護層は表面の凹凸ができるだけ小さい方が望ましく、凹凸を小さくするには保護層を構成する粒子の粒径を小さくする必要がある。そのため、特許文献1のように、保護層を構成する粒子として、粒径が0.10〜4.0μmの粒子使用して保護層を薄く形成した場合は、凹部が少なく、かつ凹凸が小さな状態の保護層を形成することが難しい。   In Patent Document 1, there is no description regarding the relationship between the particle size of the particles constituting the protective layer 54 and the particle size of the active material. However, in a lithium ion secondary battery, for example, the particle size of the active material is about 20 μm and at most about 10 μm. In addition, it is desirable that the surface of the protective layer is as small as possible, and in order to reduce the unevenness, it is necessary to reduce the particle size of the particles constituting the protective layer. Therefore, as in Patent Document 1, when the protective layer is thinly formed using particles having a particle size of 0.10 to 4.0 μm as the particles constituting the protective layer, there are few concave portions and small irregularities. It is difficult to form a protective layer.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、電極を構成する活物質層上に電気的絶縁性粒子を主成分とする保護層を薄く設けても、保護層の凹部の発生を抑制することができ、蓄電装置の性能低下を防止することができる蓄電装置用電極を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to provide a protective layer even if a protective layer mainly composed of electrically insulating particles is provided on the active material layer constituting the electrode. It is an object of the present invention to provide an electrode for a power storage device that can suppress the generation of the recesses of the power storage device and prevent the performance of the power storage device from deteriorating.

上記課題を解決する蓄電装置用電極は、集電体の少なくとも一方の面上に形成された活物質層の表面に保護層が形成された蓄電装置用電極であって、前記保護層は、電気的絶縁性を有し平均粒径の異なる大粒子と小粒子とを主成分として構成され、前記小粒子の粒径(A)と前記大粒子の粒径(B)との比(A/B)が1/3〜1/10であり、前記大粒子は平均粒径D50が3〜5μmであり、前記小粒子は平均粒径D50が0.5〜1μmであり、前記大粒子の平均粒径は、前記活物質層を構成する粒子状の活物質の平均粒径よりも小さく、前記大粒子は、前記活物質層の表面において隣り合う前記活物質の間に入り込んでおり、前記小粒子は、前記大粒子及び前記大粒子で覆われなかった活物質層の表面を覆うように堆積して、小粒子の層が形成されている。ここで、「大粒子と小粒子とを主成分として」とは、大粒子と小粒子の他に、例えば、バインダ等を含むことを意味する。 An electrode for a power storage device that solves the above problem is an electrode for a power storage device in which a protective layer is formed on a surface of an active material layer formed on at least one surface of a current collector. A large particle and a small particle having different average particle sizes and having a specific insulating property as a main component, and a ratio (A / B) of the particle size (A) of the small particle to the particle size (B) of the large particle ) Ri is 1 / 3-1 / 10 der, the large particles are 3~5μm average particle diameter D50, wherein the small particles have an average particle size D50 0.5 to 1 [mu] m, the average of the large particles The particle size is smaller than the average particle size of the particulate active material constituting the active material layer, and the large particles enter between the adjacent active materials on the surface of the active material layer, and the small particles The particles are deposited so as to cover the surfaces of the large particles and the active material layer not covered with the large particles. Layers that have been formed. Here, “having large particles and small particles as main components” means including, for example, a binder in addition to the large particles and the small particles.

この構成によれば、大粒子が活物質層の表面における活物質の隙間を効率良く埋め、その表面を小粒子が覆うことにより、保護層の表面は小粒子で形成された状態となる。小粒子の粒径が小さすぎると表面エネルギーが大きくなるために2次凝集体を形成して粒径が大きくなってしまう。しかし、小粒子の粒径(A)と大粒子の粒径(B)との比(A/B)を1/3〜1/10とすることにより、小粒子が2次凝集体を形成し難く、保護層の表面は2次凝集体のない小粒子で構成される状態となる。したがって、電極を構成する活物質層上に電気的絶縁性粒子を主成分とする保護層を薄く設けても、保護層の凹部の発生を抑制することができ、蓄電装置の性能低下を防止することができる。   According to this configuration, the large particles efficiently fill the gaps of the active material on the surface of the active material layer, and the surface is covered with the small particles, so that the surface of the protective layer is formed with the small particles. If the particle size of the small particles is too small, the surface energy is increased, so that secondary aggregates are formed and the particle size is increased. However, when the ratio (A / B) of the particle size (A) of the small particles to the particle size (B) of the large particles is 1/3 to 1/10, the small particles form secondary aggregates. It is difficult, and the surface of the protective layer is in a state composed of small particles without secondary aggregates. Therefore, even when a thin protective layer mainly composed of electrically insulative particles is provided on the active material layer constituting the electrode, it is possible to suppress the formation of recesses in the protective layer, and to prevent deterioration in performance of the power storage device. be able to.

また、小粒子が2次凝集体を形成することが無く、保護層の表面がより平坦になる。 Further , the small particles do not form secondary aggregates, and the surface of the protective layer becomes flatter.

本発明によれば、電極を構成する活物質層上に電気的絶縁性粒子を主成分とする保護層を薄く設けても、保護層の凹部の発生を抑制することができ、蓄電装置の性能低下を防止することができる。   According to the present invention, even when a thin protective layer mainly composed of electrically insulating particles is provided on the active material layer constituting the electrode, generation of a recess in the protective layer can be suppressed, and the performance of the power storage device A decrease can be prevented.

(a)は一実施形態の電極を幅方向に切断した断面図、(b)は保護層と活物質層の部分拡大模式図。(A) is sectional drawing which cut | disconnected the electrode of one Embodiment in the width direction, (b) is the partial expanded schematic diagram of a protective layer and an active material layer. 電極の製造工程の一部を示す概略図。Schematic which shows a part of manufacturing process of an electrode. 従来技術の電極の模式断面図。The schematic cross section of the electrode of a prior art. 保護層を構成する粒子の粒径が小さすぎる場合の保護層の部分模式平面図。The partial schematic top view of a protective layer when the particle size of the particle | grains which comprise a protective layer is too small.

以下、本発明を蓄電装置用電極としてのリチウムイオン二次電池用の帯状電極に具体化した一実施形態を図1及び図2にしたがって説明する。
図1(a)に示すように、帯状電極10は、集電体としての金属箔11と、金属箔11の少なくとも一方の面上に形成された活物質層12と、活物質層12上に形成された保護層13とを備えている。活物質層12は、帯状電極10の幅方向両側に活物質合剤非塗布部14が存在するように金属箔11上に形成されている。なお、この実施形態では、活物質層12は、金属箔11の両面上に形成されている。
Hereinafter, an embodiment in which the present invention is embodied in a strip electrode for a lithium ion secondary battery as an electrode for a power storage device will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1A, the strip electrode 10 includes a metal foil 11 as a current collector, an active material layer 12 formed on at least one surface of the metal foil 11, and an active material layer 12. And the formed protective layer 13. The active material layer 12 is formed on the metal foil 11 so that the active material mixture non-applied portions 14 exist on both sides of the strip electrode 10 in the width direction. In this embodiment, the active material layer 12 is formed on both surfaces of the metal foil 11.

活物質層12及び保護層13を模式的に示すと、図1(b)に示すように、活物質層12は、多数の粒子状の活物質15が充填された状態で構成されている。活物質15は、平均粒径が20μm程度である。   When the active material layer 12 and the protective layer 13 are schematically shown, as shown in FIG. 1B, the active material layer 12 is configured in a state where a large number of particulate active materials 15 are filled. The active material 15 has an average particle size of about 20 μm.

保護層13は、電気的絶縁性を有し平均粒径の異なる小粒子16と大粒子17とで構成されている。小粒子16及び大粒子17はセラミック粒子で構成されている。大粒子17の粒径は保護層13の厚さ以下で、かつ活物質層12の表面に存在する隣り合う活物質15の隙間を効率良く埋める大きさに設定されている。例えば、保護層13は、膜厚が5μmに形成され、大粒子17は平均粒径D50が3〜5μmに形成されている。そして、模式的には、大粒子17は活物質層12の表面に存在する隣り合う活物質15の隙間に1個ずつ入った状態で1層を構成している。即ち、大粒子17同士は互いに接触せずに配置されている。   The protective layer 13 is composed of small particles 16 and large particles 17 having electrical insulating properties and different average particle sizes. The small particles 16 and the large particles 17 are composed of ceramic particles. The particle size of the large particles 17 is set to a size that is less than or equal to the thickness of the protective layer 13 and that efficiently fills the gaps between adjacent active materials 15 present on the surface of the active material layer 12. For example, the protective layer 13 is formed with a film thickness of 5 μm, and the large particles 17 are formed with an average particle diameter D50 of 3 to 5 μm. Then, typically, the large particles 17 constitute one layer in a state where one large particle 17 is placed in a gap between adjacent active materials 15 existing on the surface of the active material layer 12. That is, the large particles 17 are arranged without contacting each other.

小粒子16は、活物質15及び大粒子17を覆う状態で、保護層13の表面の凹凸が小さくなる粒径に設定されている。保護層13の表面は小粒子16のみで構成されている。小粒子16は平均粒径D50が0.5〜1μmに形成されている。即ち、小粒子16の粒径Aと大粒子17の粒径Bとの比A/Bが1/3〜1/10に設定されている。   The small particles 16 are set to have a particle size in which the unevenness on the surface of the protective layer 13 is small in a state of covering the active material 15 and the large particles 17. The surface of the protective layer 13 is composed only of small particles 16. The small particles 16 have an average particle diameter D50 of 0.5 to 1 μm. That is, the ratio A / B between the particle size A of the small particles 16 and the particle size B of the large particles 17 is set to 1/3 to 1/10.

なお、図1(b)では、活物質層12、保護層13、活物質15、小粒子16、大粒子17の関係を分かり易く図示するため、活物質15、小粒子16及び大粒子17の粒径の比は正確には図示していない。   In FIG. 1B, the relationship between the active material layer 12, the protective layer 13, the active material 15, the small particles 16, and the large particles 17 is illustrated in an easy-to-understand manner. The particle size ratio is not shown precisely.

帯状電極10の活物質層12を覆う保護層13は、できるだけ薄くかつ平坦なことが望ましい。保護層13が平坦になるには小粒子16の粒径が小さい必要がある。しかし、小粒子16の粒径が小さすぎると表面エネルギーが大きくなるために、2次凝集体を形成して粒径が大きくなってしまう。また、隙間なく平坦な塗膜を形成するには、小粒子16が大粒子17の1/10の大きさで十分であり、小粒子16をそれより小さく必要はない。そして、小粒子16の粒径Aと大粒子17の粒径Bとの比A/Bが1/3〜1/10に設定されているため、2次凝集体を形成し難く、隙間なく平坦な塗膜を形成することができる。   The protective layer 13 covering the active material layer 12 of the strip electrode 10 is desirably as thin and flat as possible. In order for the protective layer 13 to become flat, the particle size of the small particles 16 needs to be small. However, if the particle size of the small particles 16 is too small, the surface energy is increased, so that secondary aggregates are formed and the particle size is increased. Moreover, in order to form a flat coating film without a gap, it is sufficient that the small particles 16 are 1/10 the size of the large particles 17, and the small particles 16 do not need to be smaller than that. Since the ratio A / B between the particle size A of the small particles 16 and the particle size B of the large particles 17 is set to 1/3 to 1/10, it is difficult to form a secondary aggregate and is flat without a gap. A smooth coating film can be formed.

次に前記のように構成された帯状電極10の製造方法を説明する。
帯状電極10の製造方法は、先ず金属箔11上に活物質層12が形成された帯状の金属箔11を形成した後、その金属箔11に保護層13を形成する。活物質層12の形成は公知の方法で実施できるため、活物質層12が形成された帯状の金属箔11に対して保護層13を形成する方法について説明する。
Next, the manufacturing method of the strip electrode 10 comprised as mentioned above is demonstrated.
In the method for manufacturing the strip electrode 10, first, the strip-shaped metal foil 11 having the active material layer 12 formed on the metal foil 11 is formed, and then the protective layer 13 is formed on the metal foil 11. Since the formation of the active material layer 12 can be performed by a known method, a method for forming the protective layer 13 on the strip-shaped metal foil 11 on which the active material layer 12 is formed will be described.

図2に示すように、保護層形成工程においては、両面に活物質層12(図示せず)を有する帯状の金属箔11が供給リール20から繰り出され、ダンサーロール21a及びガイドロール22aを経て保護層形成材料供給用のスリットダイ23と対向する位置に案内される。そして、スリットダイ23から吐出されるスラリー状の保護層形成材料24が金属箔11の一方の面の活物質層12上に塗布された後、水平に移動し、乾燥装置25を通過して保護層形成材料24がある程度乾燥されて保護層13が形成される。その後、ガイドロール22b及びダンサーロール21bを経て巻取リール27に巻取られる。なお、保護層形成材料24は、小粒子16及び大粒子17がバインダを含む溶液に分散されたスラリーで構成されている。   As shown in FIG. 2, in the protective layer forming step, a strip-shaped metal foil 11 having an active material layer 12 (not shown) on both sides is unwound from a supply reel 20 and protected through a dancer roll 21a and a guide roll 22a. Guided to a position facing the slit die 23 for supplying the layer forming material. And after the slurry-like protective layer forming material 24 discharged from the slit die 23 is applied on the active material layer 12 on one surface of the metal foil 11, it moves horizontally and passes through the drying device 25 to be protected. The layer forming material 24 is dried to some extent to form the protective layer 13. Thereafter, the film is wound around the take-up reel 27 through the guide roll 22b and the dancer roll 21b. The protective layer forming material 24 is composed of a slurry in which small particles 16 and large particles 17 are dispersed in a solution containing a binder.

次に一方の面の活物質層12上に保護層13が形成された金属箔11が巻き取られた巻取リール27を供給リール20として使用して、前述と同様にその金属箔11の他方の面の活物質層12上に保護層13が形成されて帯状電極10が完成する。   Next, the take-up reel 27 in which the metal foil 11 having the protective layer 13 formed on the active material layer 12 on one side is wound is used as the supply reel 20, and the other of the metal foil 11 is used in the same manner as described above. A protective layer 13 is formed on the active material layer 12 on this surface, and the strip electrode 10 is completed.

スラリー状態の保護層形成材料24が活物質層12上に塗布された状態で、金属箔11が水平に移動する間に、溶媒が揮発するとともに小粒子16及び大粒子17は活物質層12に向かって沈降するが、小粒子16は大粒子17に比べて沈降し難く、大粒子17が先に活物質層12の表面に到達する。保護層形成材料24中の大粒子17の量は、大粒子17が活物質15の間に入った状態で1層を形成する量に設定されているため、大部分の大粒子17は、図1(b)に示すように、活物質15の間に入り込んだ状態となる。そして、小粒子16が大粒子17及び大粒子17で覆われなかった活物質層12の表面を覆うように堆積して小粒子16の層が形成される。そのため、保護層13の表面は、小粒子16により凹凸の少ない状態に形成される。   While the protective layer forming material 24 in a slurry state is applied on the active material layer 12, the solvent volatilizes and the small particles 16 and the large particles 17 are formed on the active material layer 12 while the metal foil 11 moves horizontally. The small particles 16 are less likely to settle than the large particles 17, and the large particles 17 first reach the surface of the active material layer 12. The amount of the large particles 17 in the protective layer forming material 24 is set to an amount that forms one layer in a state where the large particles 17 are interposed between the active materials 15. As shown in FIG. 1 (b), it enters a state between the active materials 15. Then, the small particles 16 are deposited so as to cover the surface of the active material layer 12 not covered with the large particles 17 and the large particles 17, thereby forming a layer of the small particles 16. Therefore, the surface of the protective layer 13 is formed by the small particles 16 so as to have less unevenness.

この実施形態によれば、以下に示す効果を得ることができる。
(1)蓄電装置用電極(帯状電極10)は、集電体(金属箔11)の少なくとも一方の面上に形成された活物質層12の表面に保護層13が形成された蓄電装置用電極であって、保護層13は、電気的絶縁性を有し平均粒径の異なる大粒子17と小粒子16とを主成分として構成され、小粒子16の粒径Aと大粒子17の粒径Bとの比A/Bが1/3〜1/10である。したがって、電極を構成する活物質層12上に電気的絶縁性粒子を主成分とする保護層13を薄く設けても、保護層13の凹部の発生を抑制することができ、蓄電装置の性能低下を防止することができる。
According to this embodiment, the following effects can be obtained.
(1) An electrode for a power storage device (band electrode 10) is a power storage device electrode in which a protective layer 13 is formed on the surface of an active material layer 12 formed on at least one surface of a current collector (metal foil 11). The protective layer 13 is mainly composed of large particles 17 and small particles 16 having electrical insulation properties and different average particle diameters. The particle size A of the small particles 16 and the particle diameters of the large particles 17 are the same. The ratio A / B with B is 1/3 to 1/10. Therefore, even if the protective layer 13 mainly composed of electrically insulating particles is provided on the active material layer 12 constituting the electrode, generation of a recess in the protective layer 13 can be suppressed, and the performance of the power storage device is reduced. Can be prevented.

(2)大粒子17は平均粒径D50が3〜5μmであり、小粒子16は平均粒径D50が0.5〜1μmである。この構成によれば、小粒子16が2次凝集体を形成することが無く、保護層13の表面がより平坦になる。   (2) The large particles 17 have an average particle diameter D50 of 3 to 5 μm, and the small particles 16 have an average particle diameter D50 of 0.5 to 1 μm. According to this configuration, the small particles 16 do not form secondary aggregates, and the surface of the protective layer 13 becomes flatter.

(3)大粒子17の粒径は保護層13の厚さ以下で、かつ活物質層12の表面に存在する隣り合う活物質15の隙間を効率良く埋める大きさに設定されている。したがって、大粒子17の粒径が保護層13の厚さより大きな場合に比べて、保護層13の表面の凹凸を小さくすることができる。   (3) The particle size of the large particles 17 is set to a size that is less than or equal to the thickness of the protective layer 13 and efficiently fills the gaps between adjacent active materials 15 present on the surface of the active material layer 12. Therefore, the unevenness of the surface of the protective layer 13 can be reduced as compared with the case where the particle size of the large particles 17 is larger than the thickness of the protective layer 13.

(4)保護層13の表面は小粒子16のみで構成されている。したがって、保護層13の表面を小粒子16及び大粒子17が混在する状態で構成する場合に比べて、保護層形成材料24を構成する小粒子16と大粒子17との混合割合の自由度が高くなる。   (4) The surface of the protective layer 13 is composed of only small particles 16. Therefore, the degree of freedom of the mixing ratio of the small particles 16 and the large particles 17 constituting the protective layer forming material 24 is higher than that in the case where the surface of the protective layer 13 is configured in a state where the small particles 16 and the large particles 17 are mixed. Get higher.

(5)活物質層12の上に保護層13を形成する場合、粒径比及び粒径が所定の関係を有する小粒子16及び大粒子17を所定の割合で含むスラリー状の保護層形成材料24を、水平に移動する金属箔11上の活物質層12上に塗布する。この構成によれば、保護層用の粒子として大粒子17のみを含む保護層形成材料と、保護層用の粒子として小粒子16のみを含む保護層形成材料とを2回に分けて塗布する必要が無く、塗布工程が簡単になるとともに保護層13の製造に要する時間の短縮を図ることができる。   (5) In the case where the protective layer 13 is formed on the active material layer 12, a slurry-like protective layer forming material containing a small particle 16 and a large particle 17 having a predetermined relationship between the particle size ratio and the particle size. 24 is applied on the active material layer 12 on the horizontally moving metal foil 11. According to this configuration, the protective layer forming material containing only the large particles 17 as the protective layer particles and the protective layer forming material containing only the small particles 16 as the protective layer particles need to be applied in two portions. The coating process is simplified and the time required for manufacturing the protective layer 13 can be shortened.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 保護層13は、電気的絶縁性を有し平均粒径の異なる大粒子17と小粒子16とを主成分として構成され、小粒子16の粒径Aと大粒子17の粒径Bとの比A/Bが1/3〜第1/10であればよく、保護層13の表面が小粒子16だけで形成されずに、小粒子16と大粒子17とで形成されていてもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The protective layer 13 is mainly composed of large particles 17 and small particles 16 having electrical insulation properties and different average particle diameters. The protective layer 13 has a particle diameter A of the small particles 16 and a particle diameter B of the large particles 17. The ratio A / B may be 1/3 to 1/10, and the surface of the protective layer 13 may be formed of the small particles 16 and the large particles 17 instead of the small particles 16 alone.

○ 蓄電装置用電極(帯状電極10)は、負極及び正極のいずれであってもよい。正極の場合、活物質15の粒径は負極の場合に比べて、一般的に小さくなる。
○ 蓄電装置用電極(帯状電極10)は、集電体(金属箔11)の片面に活物質層12及び保護層13が形成された構成であってもよい。
○ The electrode for the power storage device (band electrode 10) may be either a negative electrode or a positive electrode. In the case of the positive electrode, the particle size of the active material 15 is generally smaller than that of the negative electrode.
The power storage device electrode (band electrode 10) may have a configuration in which an active material layer 12 and a protective layer 13 are formed on one surface of a current collector (metal foil 11).

○ 蓄電装置用電極は、帯状電極10に限らず、積層型の電極組立体に使用される電極であってもよい。
○ 蓄電装置は、リチウムイオン二次電池に限らず、例えば、電気二重層キャパシタやリチウムイオンキャパシタ等のようなキャパシタであってもよい。
The electrode for the power storage device is not limited to the strip electrode 10 but may be an electrode used for a stacked electrode assembly.
The power storage device is not limited to a lithium ion secondary battery, and may be a capacitor such as an electric double layer capacitor or a lithium ion capacitor.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1又は請求項2に記載の発明において、前記大粒子は、平均粒径が前記保護層の膜厚以下である。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention described in claim 1 or claim 2, the large particles have an average particle size equal to or smaller than the film thickness of the protective layer.

(2)集電体の少なくとも一方の面上に形成された活物質層の表面に保護層が形成された蓄電装置用電極の製造方法であって、前記活物質層が形成された前記集電体に対して前記保護層を形成する保護層形成工程において、電気的絶縁性を有しかつ平均粒径が異なり、粒径比が1/3〜1/10となる小粒子と大粒子とを含むスラリー状の保護層形成材料を、水平に移動する前記集電体上に塗布する蓄電装置用電極の製造方法。   (2) A method of manufacturing an electrode for a power storage device in which a protective layer is formed on a surface of an active material layer formed on at least one surface of a current collector, wherein the current collector has the active material layer formed thereon In the protective layer forming step of forming the protective layer on the body, small particles and large particles having electrical insulation properties, different average particle diameters, and particle size ratios of 1/3 to 1/10 are obtained. The manufacturing method of the electrode for electrical storage apparatuses which apply | coats the slurry-form protective layer forming material containing on the said collector which moves horizontally.

A…小粒子の粒径、B…大粒子の粒径、11…集電体としての金属箔、12…活物質層、13…保護層、16…小粒子、17…大粒子。   A: Particle size of small particles, B: Particle size of large particles, 11: Metal foil as a current collector, 12 ... Active material layer, 13 ... Protective layer, 16 ... Small particles, 17 ... Large particles.

Claims (1)

集電体の少なくとも一方の面上に形成された活物質層の表面に保護層が形成された蓄電装置用電極であって、
前記保護層は、電気的絶縁性を有し平均粒径の異なる大粒子と小粒子とを主成分として構成され、前記小粒子の粒径(A)と前記大粒子の粒径(B)との比(A/B)が1/3〜1/10であり、
前記大粒子は平均粒径D50が3〜5μmであり、前記小粒子は平均粒径D50が0.5〜1μmであり、
前記大粒子の平均粒径は、前記活物質層を構成する粒子状の活物質の平均粒径よりも小さく、
前記大粒子は、前記活物質層の表面において隣り合う前記活物質の間に入り込んでおり、前記小粒子は、前記大粒子及び前記大粒子で覆われなかった活物質層の表面を覆うように堆積して、小粒子の層が形成されていることを特徴とする蓄電装置用電極。
An electrode for a power storage device in which a protective layer is formed on the surface of an active material layer formed on at least one surface of a current collector,
The protective layer is mainly composed of large particles and small particles having electrical insulating properties and different average particle diameters, and the particle diameter (A) of the small particles and the particle diameter (B) of the large particles ratio (a / B) Ri is 1 / 3-1 / 10 der,
The large particles have an average particle diameter D50 of 3 to 5 μm, the small particles have an average particle diameter D50 of 0.5 to 1 μm,
The average particle size of the large particles is smaller than the average particle size of the particulate active material constituting the active material layer,
The large particles enter between the adjacent active materials on the surface of the active material layer, and the small particles cover the surface of the active material layer not covered with the large particles and the large particles. deposited, the power storage device electrode, characterized that you have been layers of small particles formed.
JP2014022592A 2014-02-07 2014-02-07 Electrode for power storage device Expired - Fee Related JP6221798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022592A JP6221798B2 (en) 2014-02-07 2014-02-07 Electrode for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022592A JP6221798B2 (en) 2014-02-07 2014-02-07 Electrode for power storage device

Publications (2)

Publication Number Publication Date
JP2015149237A JP2015149237A (en) 2015-08-20
JP6221798B2 true JP6221798B2 (en) 2017-11-01

Family

ID=53892447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022592A Expired - Fee Related JP6221798B2 (en) 2014-02-07 2014-02-07 Electrode for power storage device

Country Status (1)

Country Link
JP (1) JP6221798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184234A1 (en) * 2022-03-30 2023-10-05 宁德新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005117169A1 (en) * 2004-05-27 2005-12-08 Matsushita Electric Industrial Co., Ltd. Wound nonaqueous secondary battery and electrode plate used therein
JP5055865B2 (en) * 2006-07-19 2012-10-24 パナソニック株式会社 Lithium ion secondary battery
JP2010160982A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
CN103947008B (en) * 2011-11-15 2017-12-01 丰田自动车株式会社 Nonaqueous electrolyte type secondary cell

Also Published As

Publication number Publication date
JP2015149237A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
US10411246B2 (en) Electrode and method of manufacturing electrode
JP6167854B2 (en) Electrode for power storage device and electrode assembly for power storage device
EP2235769A4 (en) Battery having enhanced electrical insulation capability
JP5994467B2 (en) Method for producing lithium ion secondary battery
JP2015191879A (en) Wound type secondary battery
JP6376171B2 (en) Electrode body manufacturing method and battery manufacturing method
WO2018196300A1 (en) Processing process and device of lithium battery separator
JP6221798B2 (en) Electrode for power storage device
JP5535465B2 (en) Non-aqueous electrolyte secondary battery
JP6336821B2 (en) Secondary battery
WO2017175992A3 (en) Electrode assembly and methods for manufacturing electrode assembly and battery
KR101252914B1 (en) Electrode assembly, secondary battery including the same and manufacturing method of the same
JP2018198161A (en) Coating device
KR20130100678A (en) Secondary battery and manufacturing method using the same
TWI651739B (en) Winding, winding assembly and preparation metohd of winding
WO2015046234A1 (en) Coated aluminum material and method for producing same
JP7169740B2 (en) LITHIUM ELECTRODE AND METHOD FOR MANUFACTURING SAME
JP2013026081A (en) Lithium ion battery, and method for manufacturing lithium ion battery
JP2015115116A (en) Press apparatus and manufacturing method of electrode material
JP6103250B2 (en) Method for manufacturing electrode for power storage device
JP6020255B2 (en) Electrode manufacturing method
JP2016072025A (en) Method of manufacturing electrode for power storage device
JP2017212172A (en) Coating method of coating material and gravure coating device
KR20200044091A (en) Winding type battery cell
JP7455796B2 (en) Electrode body, secondary battery, and electrode body manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees