JP6221201B2 - Non-aqueous electrolyte and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6221201B2
JP6221201B2 JP2011253224A JP2011253224A JP6221201B2 JP 6221201 B2 JP6221201 B2 JP 6221201B2 JP 2011253224 A JP2011253224 A JP 2011253224A JP 2011253224 A JP2011253224 A JP 2011253224A JP 6221201 B2 JP6221201 B2 JP 6221201B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
less
mass
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011253224A
Other languages
Japanese (ja)
Other versions
JP2013109930A (en
JP2013109930A5 (en
Inventor
浩之 徳田
浩之 徳田
山口 亮
亮 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011253224A priority Critical patent/JP6221201B2/en
Publication of JP2013109930A publication Critical patent/JP2013109930A/en
Publication of JP2013109930A5 publication Critical patent/JP2013109930A5/ja
Application granted granted Critical
Publication of JP6221201B2 publication Critical patent/JP6221201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解液および該非水系電解液を備える二次電池に関し、詳しくは、炭素−炭素三重結合を有する化合物を含有する非水系電解液および該非水電解液を備える非水系電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte solution and a secondary battery including the non-aqueous electrolyte solution. More specifically, the present invention relates to a non-aqueous electrolyte solution containing a compound having a carbon-carbon triple bond and a non-aqueous electrolyte solution including the non-aqueous electrolyte solution. Next battery.

携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、二次電池の電池特性の高性能化、例えば高容量化、高温保存特性、サイクル特性等の向上を高い水準で達成することが求められている。   Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are widely used as power sources for so-called portable electronic devices such as mobile phones and notebook computers, to in-vehicle power sources for automobiles and large power sources for stationary applications. It is being put into practical use. However, with the recent high performance of electronic devices and the application to in-vehicle power supplies for driving and large power supplies for stationary applications, the demand for applied secondary batteries is increasing, and the high performance of the battery characteristics of secondary batteries is increasing. For example, it is required to achieve high levels of improvement in capacity, high temperature storage characteristics, cycle characteristics, and the like.

非水系電解液二次電池に用いる非水系電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。   A non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery is usually composed mainly of an electrolyte and a non-aqueous solvent. The main components of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. It is used.

また、これらの非水系電解液を用いた電池の負荷特性、サイクル特性、保存特性、低温特性等の電池特性を改良するために、種々の非水溶媒や電解質、助剤等も提案されている。例えば、ビニレンカーボネート及びその誘導体や、ビニルエチレンカーボネート誘導体を使用することにより、二重結合を有する環状カーボネートが負極と優先的に反応して負極表面に良質の被膜を形成し、これにより電池の保存特性とサイクル特性が向上することが特許文献1および2に開示されている。   In addition, various nonaqueous solvents, electrolytes, auxiliaries, and the like have been proposed in order to improve battery characteristics such as load characteristics, cycle characteristics, storage characteristics, and low temperature characteristics of batteries using these nonaqueous electrolyte solutions. . For example, by using vinylene carbonate and its derivatives, or vinyl ethylene carbonate derivatives, cyclic carbonates with double bonds react preferentially with the negative electrode to form a good quality film on the negative electrode surface, thereby preserving the battery. Patent Documents 1 and 2 disclose that characteristics and cycle characteristics are improved.

また、例えば、特定のエチレンカーボネート誘導体と、三重結合含有化合物及び/又はペンタフルオロフェニルオキシ化合物とを併用することにより、ガス発生が少なく、サイクル特性が改善されることが特許文献3に開示されている。   Further, for example, Patent Document 3 discloses that by using a specific ethylene carbonate derivative, a triple bond-containing compound and / or a pentafluorophenyloxy compound, gas generation is reduced and cycle characteristics are improved. Yes.

特開平8−45545号公報JP-A-8-45545 特開平4−87156号公報JP-A-4-87156 国際公開第2006/077763号International Publication No. 2006/077763

Eur.J.Org.Chem.2003,4980−4990Eur. J. et al. Org. Chem. 2003, 4980-4990

しかしながら、近年の電池に対する高性能化への要求は、ますます高くなっており、高容量、高温保存特性、サイクル特性を高い次元で達成することが求められている。例えば、高温サイクルや高温保存などの高温耐久性試験時には、負極被膜は電解液中に熱溶出したり分解溶出したりする。被膜が溶出して露出した負極表面では、電解液の更なる還元分解が起こる。このような負極被膜あるいは電解液の還元分解成分は、電解液中を拡散し、正極表面にて酸化分解されて、電池容量を低下させたり、ガスを発生させたりするという
問題につながる。
However, the demand for higher performance of batteries in recent years is increasing, and it is required to achieve high capacity, high temperature storage characteristics, and cycle characteristics at a high level. For example, during a high-temperature durability test such as a high-temperature cycle or high-temperature storage, the negative electrode film is thermally eluted or decomposed and eluted in the electrolyte solution. On the negative electrode surface where the coating is eluted and exposed, further reductive decomposition of the electrolytic solution occurs. Such a reductive decomposition component of the negative electrode coating or the electrolytic solution diffuses in the electrolytic solution and is oxidatively decomposed on the surface of the positive electrode, leading to problems that the battery capacity is reduced and gas is generated.

とりわけこれら負極被膜あるいは電解液の還元分解成分の酸化分解は、正極活物質がリチウムを挿入脱離する電位が上昇すると顕著になる傾向にある。例えば、電池高容量化や高出力化のために電圧を高めた電池設計の非水系電解液電池に使用すると、現在市販されている電池(ボリュームゾーンである満充電時の電池電圧がおよそ4.2V)よりも、これらの酸化反応は顕著に引き起こされる。   In particular, the oxidative decomposition of the negative electrode coating or the reductive decomposition component of the electrolytic solution tends to become prominent when the potential at which the positive electrode active material inserts and desorbs lithium increases. For example, when it is used for a non-aqueous electrolyte battery with a battery design in which the voltage is increased in order to increase the battery capacity and output, the battery currently on the market (the battery voltage at full charge in the volume zone is approximately 4. These oxidation reactions are more prominent than in 2V).

また、非水系電解液電池を高容量化する別法として限られた電池体積の中にできるだけ多くの活物質を詰めることが検討されているが、このように電極の活物質層を加圧して高密度化したり、電池内部に占める活物質以外の体積を極力少なくするよう設計された電池では、電池内部の空隙は減少し、酸化分解による少量のガス発生によっても電池内圧は顕著に上昇して電池の膨張等により電池容量が低下したり、場合によっては安全弁の作動により電池自体が使用不能になる場合がある。   In addition, as an alternative method for increasing the capacity of a non-aqueous electrolyte battery, it has been studied to pack as many active materials as possible in a limited battery volume. In batteries designed to increase the density or reduce the volume other than the active material in the battery as much as possible, the voids inside the battery are reduced, and the internal pressure of the battery increases significantly even when a small amount of gas is generated by oxidative decomposition. The battery capacity may decrease due to the expansion of the battery or the battery itself may become unusable due to the operation of the safety valve.

特許文献1〜3に記載されている電解液を用いた非水系電解液二次電池では、負極被膜の耐久性が未だ満足しうるものではなく、サイクル特性や高温保存特性といった電池耐久性、特に高電圧動作時の耐久性を向上させる必要があった。   In the non-aqueous electrolyte secondary battery using the electrolytic solution described in Patent Documents 1 to 3, the durability of the negative electrode film is not yet satisfactory, battery durability such as cycle characteristics and high-temperature storage characteristics, particularly It was necessary to improve durability during high voltage operation.

そこで、本発明は、近年の二次電池に要求性能に対して発現する上記の種々の問題を解消し、特に、サイクル・保存等の耐久特性が改善された非水系電解液を提供すること、および、この非水系電解液を用いた非水系電解液電池を提供することにある。   Accordingly, the present invention solves the above-mentioned various problems that are expressed with respect to the required performance of secondary batteries in recent years, and in particular, provides a non-aqueous electrolyte solution with improved durability characteristics such as cycle and storage, And it is providing the non-aqueous electrolyte battery using this non-aqueous electrolyte.

発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液電池に使用する非水系電解液中に、特定の化合物を含有させることにより、サイクル・保存等の耐久特性が改善された非水系電解液電池が実現できることを見出し、本発明を完成させるに至った。
即ち、本発明の要旨は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the inventors have included a specific compound in the non-aqueous electrolyte used in the non-aqueous electrolyte battery, so that durability characteristics such as cycle and storage can be obtained. The present inventors have found that a non-aqueous electrolyte battery with improved can be realized, and have completed the present invention.
That is, the gist of the present invention is as follows.

a)リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液であって、前記非水系電解液が下記一般式(1)で表される化合物を含有することを特徴とする、非水系電解液。(請求項1)

Figure 0006221201
(上記一般式(1)中、R1は水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。R2はそれぞれ同一であっても異なっていても、また互いに結合して環構造を形成していてもよく、水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。m、nは0以上5以下の整数である。Wは下記一般式(2)で表される何れか基であって、Rは水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示し、Wが2つのRを有する場合、Rはそれぞれ同一であっても異なっていても、また互いに結合して環構造を形成していてもよい。)
Figure 0006221201
(X1、X2はそれぞれ下記一般式(3)で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。)
Figure 0006221201
b)前記一般式(1)で表される化合物が下記一般式(4)で表される3−ブチン−1,2−ジオール誘導体であることを特徴とする、請求項1に記載の非水系電解液。(請求項2)
Figure 0006221201
(上記一般式(4)中、X1、X2はそれぞれ前記一般式(3)で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。)
c)前記一般式(4)で表される3−ブチン−1,2−ジオール誘導体が、少なくとも下記一般式(5)〜(8)で表される化合物の何れか一つであることを特徴とする、請求項2に記載の非水系電解液。(請求項3)
Figure 0006221201
Figure 0006221201
Figure 0006221201
Figure 0006221201
d)非水系電解液中に前記一般式(1)で表される化合物が0.01〜5.0質量%含有されていることを特徴とする、請求項1乃至3の何れか1項に記載の非水系電解液。(請求項4)
e)リチウムイオンを吸蔵放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、前記非水系電解液が請求項1乃至4の何れか1項に記載の非水系電解液であることを特徴とする、非水系電解液電池。(請求項5)
f)下記一般式(1)で表される化合物。(請求項6)
Figure 0006221201
(上記一般式(1)中、R1は水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。R2はそれぞれ同一であっても異なっていても、また互いに結合して環構造を形成していてもよく、水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。m、nは0以上5以下の整数である。Wは下記一般式(2)で表される何れかの基であって、Rは水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示し、Wが2つのRを有する場合、Rはそれぞれ同一であっても異なっていても、また互いに結合して環構造を形成していてもよい。)
Figure 0006221201
(X1、X2はそれぞれ下記一般式(3)で表される何れか基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。)
Figure 0006221201
a) A non-aqueous electrolyte containing a lithium salt and a non-aqueous solvent for dissolving the lithium salt, wherein the non-aqueous electrolyte contains a compound represented by the following general formula (1) , Non-aqueous electrolyte. (Claim 1)
Figure 0006221201
(In the above general formula (1), R 1 represents hydrogen, halogen or an organic group having 1 to 20 carbon atoms which may have a hetero atom. R 2 may be the same or different, In addition, they may be bonded to each other to form a ring structure and represent an organic group having 1 to 20 carbon atoms which may have hydrogen, halogen or a hetero atom, and m and n are integers of 0 or more and 5 or less . W is any group represented by the following general formula (2), R 3 represents hydrogen, halogen or an organic group having 1 to 20 carbon atoms which may have a hetero atom, and W represents In the case of having two R 3 s , R 3 s may be the same or different from each other, or may be bonded to each other to form a ring structure.)
Figure 0006221201
(X 1 and X 2 are any groups represented by the following general formula (3), and R's may be the same or different and each may have a hetero atom. The organic group of number 1-20 is shown.
Figure 0006221201
b) The non-aqueous system according to claim 1, wherein the compound represented by the general formula (1) is a 3-butyne-1,2-diol derivative represented by the following general formula (4): Electrolytic solution. (Claim 2)
Figure 0006221201
(In the general formula (4), X 1 and X 2 are any groups represented by the general formula (3), and R may be the same or different, An organic group having 1 to 20 carbon atoms which may have
c) The 3-butyne-1,2-diol derivative represented by the general formula (4) is at least one of the compounds represented by the following general formulas (5) to (8). The non-aqueous electrolyte solution according to claim 2. (Claim 3)
Figure 0006221201
Figure 0006221201
Figure 0006221201
Figure 0006221201
d) The nonaqueous electrolyte solution contains 0.01 to 5.0% by mass of the compound represented by the general formula (1), according to any one of claims 1 to 3. The non-aqueous electrolyte described. (Claim 4)
e) a non-aqueous electrolyte battery comprising a negative electrode and a positive electrode capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to any one of claims 1 to 4. A non-aqueous electrolyte battery characterized by being an electrolyte. (Claim 5)
f) A compound represented by the following general formula (1). (Claim 6)
Figure 0006221201
(In the above general formula (1), R 1 represents hydrogen, halogen or an organic group having 1 to 20 carbon atoms which may have a hetero atom. R 2 may be the same or different, In addition, they may be bonded to each other to form a ring structure and represent an organic group having 1 to 20 carbon atoms which may have hydrogen, halogen or a hetero atom, and m and n are integers of 0 or more and 5 or less . W is any group represented by the following general formula (2), and R 3 represents hydrogen, halogen, or an organic group having 1 to 20 carbon atoms which may have a hetero atom, and W When R 2 has two R 3 s , R 3 s may be the same or different, or may be bonded to each other to form a ring structure.)
Figure 0006221201
(X 1 and X 2 are any groups represented by the following general formula (3), and R may be the same or different and each may have a hetero atom. 1 to 20 organic groups are shown.)
Figure 0006221201

本発明は、前記一般式(1)で表される化合物を非水系電解液中に導入することを特徴の一つとしている。通常、特許文献1〜3に代表されるように、電極表面を保護して保存特性やサイクル特性等の電池耐久性を向上させる材料の多くは多重結合性部位を有していることが多い。本発明者等はこの点に着目し、環構造中の官能基やヘテロ元素の結合部位、多重結合が環構造に結合する部位、および多重結合部分の電子軌道の混成状態について詳細に検討を行ったところ、前記一般式(1)で表される化合物の構造を有する一連の化合物群を導入した非水系電解液電池では、従来の不飽和結合を含有する鎖状及び環状炭酸エステル(実施例1〜2、比較例2〜3、5〜6)に比べて電池耐久性が飛躍的に向上し、上記の課題が解決できる知見を得て、本発明を完成させるに至った。   The present invention is characterized in that the compound represented by the general formula (1) is introduced into a non-aqueous electrolyte solution. Usually, as typified by Patent Documents 1 to 3, many materials that protect the electrode surface and improve battery durability such as storage characteristics and cycle characteristics often have multiple bonding sites. The present inventors paid attention to this point, and examined in detail the bonding sites of functional groups and heteroelements in the ring structure, the sites where multiple bonds are bonded to the ring structure, and the hybrid state of the electron orbits of the multiple bonds. As a result, in the non-aqueous electrolyte battery into which a series of compound groups having the structure of the compound represented by the general formula (1) is introduced, conventional chain and cyclic carbonates containing unsaturated bonds (Example 1) -2, comparative example 2-3, 5-6) battery durability improved drastically, the knowledge which can solve said subject was acquired, and it came to complete this invention.

上記のように電池耐久特性が劇的に改善できる理由については、現在のところはまだ完全に明らかとなっていないが、反応性に富む炭素−炭素三重結合を有すること、炭素−炭素三重結合に隣接した炭素が三級炭素であり、一種の共鳴構造により比較的酸性度が高いこと、エステル基を二つ有すること等により、電極表面において前記一般式(1)で表される化合物が含まれる保護被膜が高度に発達する。これにより、上記以外の電解液成分による副分解反応が抑制されることで、特に電池のサイクル・保存等の耐久特性が改善された非水系電解液電池が提供されると推測される。このような著しい電池耐久性向上効果は、特許文献1および2に記載されているような炭素−炭素二重結合化合物では確認されない。また、特許文献3に記載されているような、炭素−炭素三重結合を有する化合物であっても、一般式(1)で表される化合物構造ではない場合には、上記のような特筆すべき効果は確認されない(例えば実施例、比較例参照)ことから、一般式(1)で表される化合物の特異的な特徴であることが分かる。   The reason why the battery durability characteristics can be dramatically improved as described above is not completely clear at present, but it has a reactive carbon-carbon triple bond, a carbon-carbon triple bond. The adjacent carbon is a tertiary carbon and the compound represented by the general formula (1) is included on the electrode surface due to a relatively high acidity due to a kind of resonance structure and having two ester groups. The protective coating is highly developed. Thus, it is presumed that a non-aqueous electrolyte battery having improved durability characteristics such as cycle and storage of the battery is provided by suppressing the side decomposition reaction caused by the electrolyte components other than those described above. Such a remarkable battery durability improvement effect is not confirmed by the carbon-carbon double bond compounds described in Patent Documents 1 and 2. Moreover, even if it is a compound which has a carbon-carbon triple bond as described in patent document 3, when it is not a compound structure represented by General formula (1), it should be noted as mentioned above. Since the effect is not confirmed (see, for example, Examples and Comparative Examples), it can be seen that this is a specific feature of the compound represented by the general formula (1).

このように、本発明を用いることで、特に高電圧化や高容量化されたリチウム二次電池設計において、サイクル・保存等の耐久特性が改善された非水系電解液電池および該非水系電解液に使用される非水系電解液が提供される。   Thus, by using the present invention, particularly in the design of a lithium secondary battery with high voltage and high capacity, the non-aqueous electrolyte battery with improved durability characteristics such as cycle and storage, and the non-aqueous electrolyte can be used. The non-aqueous electrolyte used is provided.

以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments, and can be arbitrarily modified and implemented.

本発明の非水系電解液二次電池は、非水系電解液電池の中でも、例えばリチウム二次電
池用の電解液として用いるのに好適である。本発明の非水系電解液二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、水系電解液と、セパレータを備える。
The non-aqueous electrolyte secondary battery of the present invention is suitable for use as, for example, an electrolyte for a lithium secondary battery among non-aqueous electrolyte batteries. The non-aqueous electrolyte secondary battery of the present invention can adopt a known structure, and typically includes a negative electrode and a positive electrode capable of occluding and releasing ions (for example, lithium ions), an aqueous electrolyte, and a separator. Is provided.

1.非水系電解液
本発明の非水系電解液は、電解質とこれを溶解する非水系溶媒を含有してなる非水系電解液に関するものであり、炭素−炭素三重結合を有する化合物を含有することを特徴とする。
1. Non-aqueous electrolyte The non-aqueous electrolyte of the present invention relates to a non-aqueous electrolyte containing an electrolyte and a non-aqueous solvent for dissolving the electrolyte, and contains a compound having a carbon-carbon triple bond. And

1−1.一般式(1)で表される化合物
本発明の非水系電解液は、一般式(1)で表される化合物を含有することを特徴とする。一般式(1)で表される化合物であれば、好適に電極との界面保護被膜を形成することで耐久性向上に寄与するため、特に限定されるものではない。

Figure 0006221201
(上記一般式(1)中、R1は水素、ハロゲンまたはヘテロ原子を有していてもよい炭素
数1〜20の有機基を示す。R2はそれぞれ同一であっても異なっていても、また互いに
結合して環構造を形成していてもよく、水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。m、nは0以上の整数である。Wは下記一般式(2)で表される何れか基であって、Rは水素、ハロゲンまたはヘテロ原子を有していてもよい炭素数1〜20の有機基を示し、Wが2つのRを有する場合、Rはそれぞれ同一であっても異なっていても、また互いに結合して環構造を形成していてもよい。)
Figure 0006221201
(X1、X2はそれぞれ下記一般式(3)で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。)
Figure 0006221201
ここで、mおよびnは、式中で定められた範囲であれば特に限定されないが、好ましくは、0から5であり、さらに好ましくは0〜3、もっとも好ましくはmかnの何れかが0
であり、他方が1である。 1-1. Compound Represented by General Formula (1) The non-aqueous electrolyte solution of the present invention contains a compound represented by the general formula (1). If it is a compound represented by General formula (1), since it contributes to durability improvement by forming an interface protective film with an electrode suitably, it will not specifically limit.
Figure 0006221201
(In the above general formula (1), R 1 represents hydrogen, halogen or an organic group having 1 to 20 carbon atoms which may have a hetero atom. R 2 may be the same or different, In addition, they may be bonded to each other to form a ring structure and represent an organic group having 1 to 20 carbon atoms which may have hydrogen, halogen or a hetero atom, and m and n are integers of 0 or more. W is any group represented by the following general formula (2), R 3 represents hydrogen, halogen or an organic group having 1 to 20 carbon atoms which may have a hetero atom, and W is two If with R 3, R 3 is also optionally substituted by one or more identical respectively, or may be bonded to form a ring structure.)
Figure 0006221201
(X 1 and X 2 are any groups represented by the following general formula (3), and R's may be the same or different and each may have a hetero atom. The organic group of number 1-20 is shown.
Figure 0006221201
Here, m and n are not particularly limited as long as they are in the range defined in the formula, but are preferably 0 to 5, more preferably 0 to 3, and most preferably either m or n is 0.
And the other is 1.

上記一般式(1)中、R1は、式中で定められた範囲であれば特に限定されないが、好
ましくは、水素、フッ素、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基等があげられ、これらはヘテロ原子を有していてもよい。また、より好ましくは水素である。
ここで、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環の置換基としては、特に限定はされないが、好ましくは、ハロゲン、並びにカルボン酸、炭酸、スルホン酸、リン酸、及び亜リン酸等のエステル基等があげられ、さらに好ましくは、ハロゲン、最も好ましくはフッ素があげられる。
なお、「ヘテロ原子を有してもよい」とは、例えば有機基内の炭素原子の一部がヘテロ原子に置換されている場合、有機基がヘテロ原子を含む官能基を有する場合が含まれることを意味する。以下の「ヘテロ原子を有してもよい」との記載についても、同義である。
In the general formula (1), R 1 is not particularly limited as long as it is within the range defined in the formula, but preferably hydrogen, fluorine, a saturated aliphatic hydrocarbon group which may have a substituent, Examples thereof include an unsaturated aliphatic hydrocarbon group which may have a group and an aromatic hydrocarbon group which may have a substituent, and these may have a hetero atom. More preferably, it is hydrogen.
Here, a saturated aliphatic hydrocarbon group which may have a substituent, an unsaturated aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent / aromatic The substituent of the heterocyclic ring is not particularly limited, but preferably includes halogen and ester groups such as carboxylic acid, carbonic acid, sulfonic acid, phosphoric acid, and phosphorous acid, and more preferably halogen, Most preferred is fluorine.
The term “may have a heteroatom” includes, for example, a case where a part of carbon atoms in an organic group is substituted with a heteroatom, and a case where the organic group has a functional group containing a heteroatom. Means that. The following description of “may have a heteroatom” is also synonymous.

上記一般式(1)中、R2は、式中で定められた範囲であれば特に限定されないが、好
ましくは、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基等があげられ、これらはヘテロ原子を有していてもよい。なお、Rが「互いに結合して環構造を形成」する場合、かかる環構造がヘテロ原子を有してもよい炭素数1〜20の有機基(構造)であることを意味する。
ここで、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環の置換基としては、特に限定はされないが、好ましくは、ハロゲン、並びにカルボン酸、炭酸、スルホン酸、リン酸、及び亜リン酸等のエステル基等があげられ、さらに好ましくは、ハロゲン、最も好ましくはフッ素があげられる。
In the general formula (1), R 2 is not particularly limited as long as it is within the range defined in the formula, but preferably has a saturated aliphatic hydrocarbon group which may have a substituent, or a substituent. Examples thereof may include an unsaturated aliphatic hydrocarbon group, an aromatic hydrocarbon group which may have a substituent, and the like, and these may have a hetero atom. In addition, when R < 2 > couple | bonds together and forms a ring structure, it means that this ring structure is a C1-C20 organic group (structure) which may have a hetero atom.
Here, a saturated aliphatic hydrocarbon group which may have a substituent, an unsaturated aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent / aromatic The substituent of the heterocyclic ring is not particularly limited, but preferably includes halogen and ester groups such as carboxylic acid, carbonic acid, sulfonic acid, phosphoric acid, and phosphorous acid, and more preferably halogen, Most preferred is fluorine.

上記一般式(2)中、R3は、式中で定められた範囲であれば特に限定されないが、好
ましくは、水素、フッ素、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基等があげられ、これらはヘテロ原子を有していてもよい。また、より好ましくは水素である。なお、Rが「互いに結合して環構造を形成」する場合、かかる環構造がヘテロ原子を有してもよい炭素数1〜20の有機基(構造)であることを意味する。
ここで、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環の置換基としては、特に限定はされないが、好ましくは、ハロゲン、並びにカルボン酸、炭酸、スルホン酸、リン酸、及び亜リン酸等のエステル基等があげられ、さらに好ましくは、ハロゲン、最も好ましくはフッ素があげられる。
In the general formula (2), R 3 is not particularly limited as long as it is within the range defined in the formula, but is preferably hydrogen, fluorine, a saturated aliphatic hydrocarbon group which may have a substituent, or a substituted group. Examples thereof include an unsaturated aliphatic hydrocarbon group which may have a group and an aromatic hydrocarbon group which may have a substituent, and these may have a hetero atom. More preferably, it is hydrogen. Note that when R 3 is to "combine to form a ring structure" means that such ring structure is an organic group having 1 to 20 carbon atoms which may have a hetero atom (structure).
Here, a saturated aliphatic hydrocarbon group which may have a substituent, an unsaturated aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent / aromatic The substituent of the heterocyclic ring is not particularly limited, but preferably includes halogen and ester groups such as carboxylic acid, carbonic acid, sulfonic acid, phosphoric acid, and phosphorous acid, and more preferably halogen, Most preferred is fluorine.

上記一般式(3)中、Rは、式中で定められた範囲であれば特に限定されないが、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基等があげられ、これらはヘテロ原子を有していてもよい。なお、「Rはそれぞれ同一であっても異なっていてもよく」とは、X中のRとX中のRとがそれぞれ同一であっても異なっていてもよいこと、さらにX中又はX中に2つのRが含まれる場合はその2つのRが同一であっても異なっていてもよいことの両方を意味するものとする。
ここで、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基・芳香族ヘテロ環の置換基としては、特に限定はされないが、好ましくは、ハロゲン、並びにカルボン酸、炭酸、スルホン酸、リン酸、及び亜リン酸等のエステル基等があげられ、さらに好ましくは、ハロゲン
、最も好ましくはフッ素があげられる。
In the general formula (3), R is not particularly limited as long as it is within the range defined in the formula, but may be a saturated aliphatic hydrocarbon group that may have a substituent, or a group that may have a substituent. Examples thereof include a saturated aliphatic hydrocarbon group and an aromatic hydrocarbon group which may have a substituent, and these may have a hetero atom. “R may be the same or different from each other” means that R in X 1 and R in X 2 may be the same or different, and further in X 1 or if it contains two R in X 2 is intended to mean both that the two R may be different and the same.
Here, a saturated aliphatic hydrocarbon group which may have a substituent, an unsaturated aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent / aromatic The substituent of the heterocyclic ring is not particularly limited, but preferably includes halogen and ester groups such as carboxylic acid, carbonic acid, sulfonic acid, phosphoric acid, and phosphorous acid, and more preferably halogen, Most preferred is fluorine.

上記R1〜R3、Rにおいて、好ましい飽和脂肪族炭化水素基としては、具体的には、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1−フルオロエチル基、2−フルオロエチル基、1,1−ジフルオロエチル基、1,2−ジフルオロエチル基、2,2−ジフルオロエチル基、1,1、2−トリフルオロエチル基、1,2、2−トリフルオロエチル基、2、2、2−トリフルオロエチル基、フェニル基、シクロペンチル基、シクロヘキシル基、メトキシカルボニルオキシメチル基、エトキシカルボニルオキシメチル基、1−(メトキシカルボニルオキシ)−エチル基、1−(エトキシカルボニルオキシ)−エチル基、2−(メトキシカルボニルオキシ)−エチル基、2−(エトキシカルボニルオキシ)−エチル基、1−(メトキシカルボニルオキシ)−プロピル基、1−(エトキシカルボニルオキシ)−プロピル基、2−(メトキシカルボニルオキシ)−プロピル基、2−(エトキシカルボニルオキシ)−プロピル基、3−(メトキシカルボニルオキシ)−プロピル基、3−(エトキシカルボニルオキシ)−プロピル基、メチルスルホニルオキシメチル基、エチルスルホニルオキシメチル基、1−(メチルスルホニルオキシ)−エチル基、1−(エチルスルホニルオキシ)−エチル基、2−(メチルスルホニルオキシ)エチル基、2−(エチルスルホニルオキシ)−エチル基、1−(メチルスルホニルオキシ)−プロピル基、1−(エチルスルホニルオキシ)−プロピル基、2−(メチルスルホニルオキシ)−プロピル基、2−(エチルスルホニルオキシ)−プロピル基、3−(メチルスルホニルオキシ)−プロピル基、3−(エチルスルホニルオキシ)−プロピル基が挙げられる。 Specific examples of preferable saturated aliphatic hydrocarbon groups in R 1 to R 3 and R include a methyl group, an ethyl group, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1-fluoroethyl group, 2-fluoroethyl group, 1,1-difluoroethyl group, 1,2-difluoroethyl group, 2,2-difluoroethyl group, 1,1,2-trifluoroethyl group, 1,2,2-trifluoroethyl Group, 2,2,2-trifluoroethyl group, phenyl group, cyclopentyl group, cyclohexyl group, methoxycarbonyloxymethyl group, ethoxycarbonyloxymethyl group, 1- (methoxycarbonyloxy) -ethyl group, 1- (ethoxycarbonyl) Oxy) -ethyl group, 2- (methoxycarbonyloxy) -ethyl group, 2- (ethoxycarbonyloxy) -Ethyl group, 1- (methoxycarbonyloxy) -propyl group, 1- (ethoxycarbonyloxy) -propyl group, 2- (methoxycarbonyloxy) -propyl group, 2- (ethoxycarbonyloxy) -propyl group, 3- (Methoxycarbonyloxy) -propyl group, 3- (ethoxycarbonyloxy) -propyl group, methylsulfonyloxymethyl group, ethylsulfonyloxymethyl group, 1- (methylsulfonyloxy) -ethyl group, 1- (ethylsulfonyloxy) -Ethyl group, 2- (methylsulfonyloxy) ethyl group, 2- (ethylsulfonyloxy) -ethyl group, 1- (methylsulfonyloxy) -propyl group, 1- (ethylsulfonyloxy) -propyl group, 2- ( Methylsulfonyloxy) -propyl group, 2- (ethyls) Honiruokishi) - propyl, 3- (methylsulfonyloxy) - propyl, 3- (ethylsulfonyl oxy) - a propyl group.

好ましい不飽和脂肪族炭化水素基としては、具体的には、エテニル基、2−フルオロエテニル基、1−メチルエテニル基、2−プロペニル基、エチニル基、2−プロピニル基、3−フルオロ−2プロピニル基、があげられる。   Preferable unsaturated aliphatic hydrocarbon groups are specifically ethenyl group, 2-fluoroethenyl group, 1-methylethenyl group, 2-propenyl group, ethynyl group, 2-propynyl group, 3-fluoro-2propynyl. Group.

好ましい芳香族炭化水素基としては、フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、2、4−ジフルオロフェニル基、2、6−ジフルオロフェニル基、3、5−ジフルオロフェニル基、2、4、6−トリフルオロフェニル基、があげられる。   Preferred aromatic hydrocarbon groups include phenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,5-difluorophenyl group, 2, 4,6-trifluorophenyl group.

また、一般式(1)で表される化合物の分子量は、好ましくは50以上、500以下である。この範囲であれば、非水系電解液に対する炭素-炭素二重結合を有する環状カーボ
ネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。以下にこれら好ましい化合物の具体例を示す。
Moreover, the molecular weight of the compound represented by the general formula (1) is preferably 50 or more and 500 or less. Within this range, it is easy to ensure the solubility of the cyclic carbonate having a carbon-carbon double bond in the non-aqueous electrolyte solution, and the effects of the present invention are sufficiently exhibited. Specific examples of these preferable compounds are shown below.

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

Figure 0006221201
Figure 0006221201

これらの化合物の中でも、合成の容易さの観点から、下記一般式(4)で表される3−ブチン−1,2−ジオール誘導体を用いることがより好ましい。

Figure 0006221201
(上記一般式(4)中、X1、X2はそれぞれ前記一般式(3)で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。) Among these compounds, it is more preferable to use a 3-butyne-1,2-diol derivative represented by the following general formula (4) from the viewpoint of ease of synthesis.
Figure 0006221201
(In the general formula (4), X 1 and X 2 are any groups represented by the general formula (3), and R may be the same or different, An organic group having 1 to 20 carbon atoms which may have

上記一般式(4)で表される3−ブチン−1,2−ジオール誘導体における一般式(3)中のRも、上記一般式(1)で表される化合物における一般式(3)中のRと同様である。   R in the general formula (3) in the 3-butyne-1,2-diol derivative represented by the general formula (4) is also the same as that in the general formula (3) in the compound represented by the general formula (1). Same as R.

上記一般式(4)で表される好ましい3−ブチン−1,2−ジオール誘導体としては、以下の化合物が挙げられる。

Figure 0006221201
Examples of preferable 3-butyne-1,2-diol derivatives represented by the general formula (4) include the following compounds.
Figure 0006221201

さらに、前述した3−ブチン−1,2−ジオール誘導体のうち、特に下記一般式(5)〜(8)で表される化合物の何れか一つを用いることが特に好ましい。

Figure 0006221201
Furthermore, it is particularly preferable to use any one of the compounds represented by the following general formulas (5) to (8) among the aforementioned 3-butyne-1,2-diol derivatives.
Figure 0006221201

一般式(1)で表される化合物の製造方法は特に限定されるものではないが、例えば、対応するジオール化合物を適切な溶媒に溶解させ、アミンなどの塩基を加えて適切に冷却する。これに対して必要な酸塩化物、あるいは酸無水物を加え、必要に応じて反応温度を適宜上昇させる。得られる粗体を蒸留、再結晶もしくはシリカゲルカラムクロマトグラフィーなどの適切な方法で精製することで製造することが出来る。   Although the manufacturing method of the compound represented by General formula (1) is not specifically limited, For example, a corresponding diol compound is dissolved in a suitable solvent, and a base, such as an amine, is added and it cools appropriately. On the other hand, a necessary acid chloride or acid anhydride is added, and the reaction temperature is appropriately increased as necessary. The resulting crude product can be produced by purification by an appropriate method such as distillation, recrystallization or silica gel column chromatography.

一般式(1)で表される化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、前記一般式(1)で表される化合物の含有量は、非水系電解液中に0.01〜5.0質量%含有されていることが好ましく、0.01〜3.0質量%含有されていることがより好ましく、0.01〜2.0質量%含有されていることが特に好ましい。前記一般式(1)で表される化合物の含有量が上記範囲内にある場合、本発明の効果をより発揮することができる。   The compound represented by General formula (1) may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios. Moreover, it is preferable that content of the compound represented by the said General formula (1) is 0.01-5.0 mass% in nonaqueous electrolyte solution, 0.01-3.0 mass% It is more preferable that it is contained, and it is particularly preferable that it is contained in an amount of 0.01 to 2.0% by mass. When content of the compound represented by the said General formula (1) exists in the said range, the effect of this invention can be exhibited more.

1−2.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、
具体的には以下のものが挙げられる。
1-2. Electrolyte <Lithium salt>
As the electrolyte, a lithium salt is usually used. The lithium salt is not particularly limited as long as it is known to be used in this application, and any lithium salt can be used.
Specific examples include the following.

例えば、LiPF6 、LiBF4 、LiClO4 、LiAlF4 、LiSbF6 、LiNbF6、LiTaF6 、LiWF7 等の無機リチウム塩;
LiPO3 F、LiPO22 等のフルオロリン酸リチウム類;
LiWOF5 等のタングステン酸リチウム類;
HCO2 Li、CH3 CO2 Li、CH2 FCO2 Li、CHF2 CO2 Li、CF3
CO2 Li、CF3 CH2 CO2 Li、CF3 CF2 CO2 Li、CF3 CF2 CF2 CO2 Li、CF3 CF2 CF2 CF2 CO2 Li等のカルボン酸リチウム塩類;
FSO3 Li、CH3 SO3 Li、CH2 FSO3 Li、CHF2 SO3 Li、CF3
SO3 Li、CF3 CF2 SO3 Li、CF3 CF2 CF2 SO3 Li、CF3 CF2 CF2 CF2 SO3 Li等のスルホン酸リチウム塩類;
LiN(FCO)2 、LiN(FCO)(FSO2 )、LiN(FSO22 、LiN(FSO2 )(CF3 SO2 )、LiN(CF3 SO22 、LiN(C25 SO22 、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CF3 SO2 )(C49 SO2
)等のリチウムイミド塩類;LiC(FSO23 、LiC(CF3 SO23 、LiC(C25 SO23 等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF4 (CF32 、LiPF4 (C252 、LiPF4 (CF3 SO22 、LiPF4 (C25 SO22 、LiBF3 CF3 、LiBF325 、LiBF337 、LiBF2 (CF32 、LiBF2 (C252 、LiBF2
(CF3 SO22 、LiBF2 (C25 SO22 等の含フッ素有機リチウム塩類;等が挙げられる。
For example, inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiNbF 6 , LiTaF 6 , LiWF 7 ;
Lithium fluorophosphates such as LiPO 3 F and LiPO 2 F 2 ;
Lithium tungstates such as LiWOF 5 ;
HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3
Carboxylic acid lithium salts such as CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li, CF 3 CF 2 CF 2 CF 2 CO 2 Li;
FSO 3 Li, CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3
Sulfonic acid lithium salts such as SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 CF 2 SO 3 Li, CF 3 CF 2 CF 2 CF 2 SO 3 Li;
LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2
Lithium imide salts such as LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 ;
Lithium oxalatoborate salts such as lithium difluorooxalatoborate and lithium bis (oxalato) borate;
Lithium oxalate phosphate salts such as lithium tetrafluorooxalatophosphate, lithium difluorobis (oxalato) phosphate, lithium tris (oxalato) phosphate;
In addition, LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiBF 3 C 3 F 7 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2
And fluorine-containing organic lithium salts such as (CF 3 SO 2 ) 2 and LiBF 2 (C 2 F 5 SO 2 ) 2 .

中でも、LiPF6 、LiBF4 、LiSbF6 、LiTaF6 、LiPO22 、FSO3 Li、CF3 SO3 Li、LiN(FSO22 、LiN(FSO2 )(CF3 SO2 )、LiN(CF3 SO22 、LiN(C25 SO22 、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO23 、LiC(CF3 SO23 、LiC(C2
5 SO23 、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、リチウムトリス(オキサラト)フォスフェート、LiBF3 CF3 、LiBF325 、LiPF3 (CF33、LiPF3 (C253 等が出力特
性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
Among them, LiPF 6 , LiBF 4 , LiSbF 6 , LiTaF 6 , LiPO 2 F 2 , FSO 3 Li, CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN ( CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2
F 5 SO 2 ) 3 , lithium bisoxalatoborate, lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, lithium difluorobisoxalatophosphate, lithium tris (oxalato) phosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 and the like are particularly preferable because they have the effect of improving output characteristics, high-rate charge / discharge characteristics, high-temperature storage characteristics, cycle characteristics, and the like.

これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPF6 とLiBF4 や、LiPF6 とFSO3 Li、LiPF6 とLiPO22 等の併用であり、負荷特性やサイクル特性を向上させる効果がある。これらの中では、LiPF6 とFSO3 Li、LiPF6 とLiPO22 の併用がその効果が顕著である理由から好ましい。 These lithium salts may be used alone or in combination of two or more. A preferable example in the case of using two or more kinds in combination is a combination of LiPF 6 and LiBF 4 , LiPF 6 and FSO 3 Li, LiPF 6 and LiPO 2 F 2, etc., and has an effect of improving load characteristics and cycle characteristics. . Among these, the combined use of LiPF 6 and FSO 3 Li, or LiPF 6 and LiPO 2 F 2 is preferable because the effect is remarkable.

LiPF6 とLiBF4 、LiPF6 とFSO3 Liを併用する場合、非水系電解液全体100質量%に対するLiBF4 或いはFSO3 Liの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常
、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常30質量%以下、好ましくは20質量%以下である。一方、LiPF6 とLiPO22 の併用の場合においても非水系電解液全体100質量%に対するLiPO22 の濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上であり、一方その上限は、通常10質量%以下、好ましくは5質量%以下である。この範囲であれば、出力特性、負荷特性、低温特性、サイクル特性、高温特性等の効果が向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が低下する場合がある。
When LiPF 6 and LiBF 4 , LiPF 6 and FSO 3 Li are used in combination, the concentration of LiBF 4 or FSO 3 Li with respect to 100% by mass of the entire non-aqueous electrolyte is not limited, and the effects of the present invention are not significantly impaired. As long as it is optional, it is usually 0.01% by mass or more, preferably 0.1% by mass or more, and the upper limit is usually 30% by mass or less, preferably 20% with respect to the non-aqueous electrolyte solution of the present invention. It is below mass%. On the other hand, even when LiPF 6 and LiPO 2 F 2 are used in combination, the concentration of LiPO 2 F 2 with respect to 100% by mass of the total amount of the non-aqueous electrolyte is not limited as long as the effect of the present invention is not significantly impaired. However, with respect to the non-aqueous electrolyte solution of the present invention, it is usually 0.001% by mass or more, preferably 0.01% by mass or more, while its upper limit is usually 10% by mass or less, preferably 5% by mass or less. is there. Within this range, effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature characteristics are improved. On the other hand, if it is too much, it may be deposited at low temperature to deteriorate the battery characteristics, and if it is too little, the effect of improving the low temperature characteristics, cycle characteristics, high temperature storage characteristics, etc. may be reduced.

ここで、LiPO22 を電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPO22 をLiPF6 を含む電解液に添加する方法や後述する活物質や極板等の電池構成要素中に水を共存させておき、LiPF6 を含む電解液を用いて電池を組み立てる際に系中でLiPO22 を発生させる方法が挙げられ、本発明においてはいずれの手法を用いてもよい。 Here, the preparation of the electrolyte solution in the case of incorporating the LiPO 2 F 2 in the electrolyte solution, Ya separately active material method and later be added to the electrolytic solution containing LiPF 6 and LiPO 2 F 2 synthesized by a known method A method of generating LiPO 2 F 2 in the system when water is made to coexist in a battery component such as an electrode plate and a battery is assembled using an electrolytic solution containing LiPF 6 is included. You may use the method of.

上記の非水系電解液、および非水系電解液電池中におけるLiPO22 の含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。
また、他の一例は、無機リチウム塩と有機リチウム塩との併用であり、この両者の併用は、高温保存による劣化を抑制する効果がある。有機リチウム塩としては、CF3 SO3
Li、LiN(FSO22 、LiN(FSO2 )(CF3 SO2 )、LiN(CF3 SO22 、LiN(C25 SO22 、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO23 、LiC(CF3 SO23 、LiC(C25 SO23 、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBF3 CF3 、LiBF32 5 、LiPF3 (CF33 、LiPF3 (C253 等であるのが好ましい。この場合には、非水系電解液全体100質量%に対する有機リチウム塩の割合は、好ましくは0.1質量%以上、特に好ましくは0.5質量%以上、好ましくは30質量%以下、特に好ましくは20質量%以下である。
The method for measuring the content of LiPO 2 F 2 in the non-aqueous electrolyte and the non-aqueous electrolyte battery is not particularly limited, and any known method can be used. Examples include ion chromatography and F nuclear magnetic resonance spectroscopy (hereinafter sometimes abbreviated as NMR).
Another example is the combined use of an inorganic lithium salt and an organic lithium salt, and the combined use of both has the effect of suppressing deterioration due to high-temperature storage. As an organic lithium salt, CF 3 SO 3
Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethane Disulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , lithium bisoxalatoborate, Lithium difluorooxalatoborate, lithium tetrafluorooxalatophosphate, lithium difluorobisoxalatophosphate, LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 Etc. are preferred. In this case, the ratio of the organic lithium salt to 100% by mass of the whole non-aqueous electrolyte is preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, preferably 30% by mass or less, particularly preferably. It is 20 mass% or less.

非水系電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。この範囲であれば、低温特性、サイクル特性、高温特性等の効果が向上する。一方でリチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。   The concentration of these lithium salts in the non-aqueous electrolyte solution is not particularly limited as long as the effects of the present invention are not impaired, but the electric conductivity of the electrolyte solution is in a good range, and good battery performance is ensured. Therefore, the total molar concentration of lithium in the non-aqueous electrolyte is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, and further preferably 0.5 mol / L or more. Preferably it is 3 mol / L or less, More preferably, it is 2.5 mol / L or less, More preferably, it is 2.0 mol / L or less. If it is this range, effects, such as a low temperature characteristic, cycling characteristics, and a high temperature characteristic, will improve. On the other hand, if the total molar concentration of lithium is too low, the electrical conductivity of the electrolyte may be insufficient. On the other hand, if the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity. May decrease.

1−3.溶媒
非水溶媒としては、飽和環状カーボネート、フッ素原子を有する環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等を使用することが可能である。
1-3. Solvent As the non-aqueous solvent, a saturated cyclic carbonate, a cyclic carbonate having a fluorine atom, a chain carbonate, a cyclic and chain carboxylic acid ester, an ether compound, a sulfone compound, and the like can be used.

<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられ
る。
具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Saturated cyclic carbonate>
Examples of the saturated cyclic carbonate include those having an alkylene group having 2 to 4 carbon atoms.
Specifically, examples of the saturated cyclic carbonate having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.

飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の負荷特性を良好な範囲としやすくなる。
A saturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The blending amount of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The lower limit of the blending amount when one kind is used alone is 5% in 100% by volume of the non-aqueous solvent. Volume% or more, more preferably 10 volume% or more. By setting this range, the decrease in electrical conductivity resulting from the decrease in the dielectric constant of the non-aqueous electrolyte is avoided, and the large current discharge characteristics, negative electrode stability, and cycle characteristics of the non-aqueous electrolyte secondary battery are good. It becomes easy to be in a range. Moreover, an upper limit is 95 volume% or less, More preferably, it is 90 volume% or less, More preferably, it is 85 volume% or less. By setting it as this range, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, a decrease in ionic conductivity is suppressed, and as a result, the load characteristics of the non-aqueous electrolyte secondary battery are easily set in a favorable range.

また、飽和環状カーボネートの2種以上を任意の組み合わせで用いる場合の好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートに組み合わせである。
この場合のエチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの量を、0.1体積%以上、好ましくは1体積%以上、より好ましくは2体積%以上、また上限は、通常20体積%以下、好ましくは8体積%以下、より好ましくは5体積%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
Moreover, one of the preferable combinations when using 2 or more types of saturated cyclic carbonates by arbitrary combinations is a combination to ethylene carbonate and propylene carbonate.
In this case, the volume ratio of ethylene carbonate to propylene carbonate is preferably 99: 1 to 40:60, and particularly preferably 95: 5 to 50:50. Furthermore, the amount of propylene carbonate in the whole non-aqueous solvent is 0.1% by volume or more, preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit is usually 20% by volume or less, preferably 8% by volume. % Or less, more preferably 5% by volume or less. When propylene carbonate is contained within this range, it is preferable because the low temperature characteristics are further excellent while maintaining the combination characteristics of ethylene carbonate and dialkyl carbonates.

<フッ素原子を有する環状カーボネート>
フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と略記する場合がある)としては、フッ素原子を有する環状カーボネートであれば、特に制限はない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
<Cyclic carbonate having a fluorine atom>
The cyclic carbonate having a fluorine atom (hereinafter sometimes abbreviated as “fluorinated cyclic carbonate”) is not particularly limited as long as it is a cyclic carbonate having a fluorine atom.
Examples of the fluorinated cyclic carbonate include derivatives of cyclic carbonates having an alkylene group having 2 to 6 carbon atoms, such as ethylene carbonate derivatives. Examples of the ethylene carbonate derivative include fluorinated products of ethylene carbonate or ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms), and particularly those having 1 to 8 fluorine atoms. Is preferred.

具体的には、フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。   Specifically, fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4-fluoro -5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethyl Ji Ren carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate.

中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネー
ト、4,5- ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
Among them, at least one selected from the group consisting of monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,5-difluoro-4,5-dimethylethylene carbonate has high ionic conductivity. It is more preferable in terms of imparting properties and suitably forming an interface protective film.

フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系溶媒100体積%中、好ましくは0.01体積%以上、より好ましくは0.1体積%以上、さらに好ましくは0.2体積%以上であり、また、好ましくは95体積%以下、より好ましくは90体積%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、高温保存特性の低下や、ガス発生量の増加により、放電容量維持率が低下することを回避しやすい。
A fluorinated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The blending amount of the fluorinated cyclic carbonate is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired, but in 100% by volume of the non-aqueous solvent, preferably 0.01% by volume or more, more preferably 0.8%. It is 1 volume% or more, More preferably, it is 0.2 volume% or more, Preferably it is 95 volume% or less, More preferably, it is 90 volume% or less. Within this range, the non-aqueous electrolyte secondary battery tends to exhibit a sufficient cycle characteristic improvement effect, and avoids a decrease in discharge capacity maintenance rate due to a decrease in high-temperature storage characteristics or an increase in the amount of gas generated. Cheap.

尚、フッ素原子を有する環状カーボネートは、溶媒のみならず下記1−3に記載の助剤としても有効な機能を発現する。フッ素原子を有する環状カーボネート溶媒兼助剤として用いる場合の配合量に明確な境界は存在せず、前段落にて記載した配合量をそのまま踏襲できる。   In addition, the cyclic carbonate which has a fluorine atom expresses an effective function not only as a solvent but also as an auxiliary agent described in the following 1-3. There is no clear boundary in the blending amount when used as a cyclic carbonate solvent / auxiliary having a fluorine atom, and the blending amount described in the previous paragraph can be followed as it is.

<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジ−i−プロピルカーボネート、n−プロピル−i−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、i−ブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、i−ブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
<Chain carbonate>
As a chain carbonate, a C3-C7 thing is preferable.
Specifically, as the chain carbonate having 3 to 7 carbon atoms, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, di-i-propyl carbonate, n-propyl-i-propyl carbonate, ethyl methyl carbonate, Methyl-n-propyl carbonate, n-butyl methyl carbonate, i-butyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, i-butyl ethyl carbonate, t-butyl ethyl carbonate, etc. Is mentioned.

中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジ−i−プロピルカーボネート、n−プロピル−i−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。   Among them, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, di-i-propyl carbonate, n-propyl-i-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate are preferable, and dimethyl carbonate is particularly preferable. Diethyl carbonate and ethyl methyl carbonate.

また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。   Further, chain carbonates having a fluorine atom (hereinafter sometimes abbreviated as “fluorinated chain carbonate”) can also be suitably used. The number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or may be bonded to different carbons. Examples of the fluorinated chain carbonate include a fluorinated dimethyl carbonate derivative, a fluorinated ethyl methyl carbonate derivative, and a fluorinated diethyl carbonate derivative.

フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。   Examples of the fluorinated dimethyl carbonate derivative include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate, and the like.

フッ素化エチルメチルカーボネート誘導体としては、(2−フルオロエチル)メチルカーボネート、エチルフルオロメチルカーボネート、(2,2−ジフルオロエチル)メチルカーボネート、(2−フルオロエチル)フルオロメチルカーボネート、エチルジフルオロメチルカーボネート、(2,2,2−トリフルオロエチル)メチルカーボネート、(2,
2−ジフルオロエチル)フルオロメチルカーボネート、(2−フルオロエチル)ジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
Fluorinated ethyl methyl carbonate derivatives include (2-fluoroethyl) methyl carbonate, ethyl fluoromethyl carbonate, (2,2-difluoroethyl) methyl carbonate, (2-fluoroethyl) fluoromethyl carbonate, ethyl difluoromethyl carbonate, ( 2,2,2-trifluoroethyl) methyl carbonate, (2,
2-Difluoroethyl) fluoromethyl carbonate, (2-fluoroethyl) difluoromethyl carbonate, ethyl trifluoromethyl carbonate and the like.

フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2'−フルオロエチルカーボネート、ビス(2,2−ジフルオロ
エチル)カーボネート、2,2,2−トリフルオロエチル−2'−フルオロエチルカーボ
ネート、2,2,2−トリフルオロエチル−2',2'−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
Fluorinated diethyl carbonate derivatives include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, ethyl- (2,2,2-trifluoro). Ethyl) carbonate, 2,2-difluoroethyl-2′-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2′-fluoroethyl carbonate, 2,2, Examples include 2-trifluoroethyl-2 ′, 2′-difluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and the like.

鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。また、鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
A chain carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
The amount of the chain carbonate is preferably 5% by volume or more, more preferably 10% by volume or more, and further preferably 15% by volume or more in 100% by volume of the non-aqueous solvent. By setting the lower limit in this way, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, the decrease in ionic conductivity is suppressed, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily set to a favorable range. Become. Further, the chain carbonate is preferably 90% by volume or less, more preferably 85% by volume or less, in 100% by volume of the nonaqueous solvent. By setting the upper limit in this way, it is easy to avoid a decrease in electrical conductivity due to a decrease in the dielectric constant of the non-aqueous electrolyte and to make the large current discharge characteristics of the non-aqueous electrolyte secondary battery in a favorable range. .

特定の鎖状カーボネートに対して、エチレンカーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートを選択した場合、エチレンカーボネートの配合量が10体積%以上、80体積%以下、ジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートの配合量が20体積%以上、90体積%以下であることが好ましい。このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。
The battery performance can be remarkably improved by combining ethylene carbonate at a specific blending amount with respect to the specific chain carbonate.
For example, when dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate is selected as the specific chain carbonate, the blending amount of ethylene carbonate is 10% by volume or more and 80% by volume or less, dimethyl carbonate, ethyl methyl carbonate, or diethyl It is preferable that the blending amount of carbonate is 20% by volume or more and 90% by volume or less. By selecting such a blending amount, the low-temperature deposition temperature of the electrolyte is lowered, the viscosity of the nonaqueous electrolytic solution is also lowered to improve the ionic conductivity, and a high output can be obtained even at a low temperature.

特定の鎖状カーボネートを2種類以上併用することも好ましい。特定の鎖状カーボネートにジメチルカーボネートとエチルメチルカーボネートを併用して用いる場合、エチレンカーボネートの配合量が10体積%以上、60体積%以下、ジメチルカーボネートの配合量が10体積%以上、70体積%以下、エチルメチルカーボネートの配合量が10体積%以上、80体積%以下であるものが特に好ましい。また、特定の鎖状カーボネートにジメチルカーボネートとジエチルカーボネートを併用して用いる場合、エチレンカーボネートの配合量が10体積%以上、60体積%以下、ジメチルカーボネートの配合量が10体積%以上、70体積%以下、ジエチルカーボネートの配合量が10体積%以上、70体積%以下であるものが特に好ましい。更に、特定の鎖状カーボネートにエチルメチルカーボネートとジエチルカーボネートを併用して用いる場合、エチレンカーボネートの配合量が10体積%以上、60体積%以下、エチルメチルカーボネートの配合量が10体積%以上、80体積%以下、ジエチルカーボネートの配合量が10体積%以上、70体積%以下であるものが特に好ましい。   It is also preferable to use two or more types of specific chain carbonates in combination. When dimethyl carbonate and ethyl methyl carbonate are used in combination with a specific chain carbonate, the blending amount of ethylene carbonate is 10% by volume or more and 60% by volume or less, and the blending amount of dimethyl carbonate is 10% by volume or more and 70% by volume or less. Particularly preferred are those in which the amount of ethyl methyl carbonate is 10% by volume or more and 80% by volume or less. When a specific chain carbonate is used in combination with dimethyl carbonate and diethyl carbonate, the blending amount of ethylene carbonate is 10% by volume or more and 60% by volume or less, and the blending amount of dimethyl carbonate is 10% by volume or more and 70% by volume. Hereinafter, it is particularly preferable that the amount of diethyl carbonate is 10% by volume or more and 70% by volume or less. Further, when ethyl methyl carbonate and diethyl carbonate are used in combination with a specific chain carbonate, the blending amount of ethylene carbonate is 10% by volume or more and 60% by volume or less, the blending amount of ethyl methyl carbonate is 10% by volume or more, 80% Those having a volume% or less and a blending amount of diethyl carbonate of 10 vol% or more and 70 vol% or less are particularly preferable.

<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。
具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、
イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carboxylic acid ester>
Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula.
Specifically, gamma butyrolactone, gamma valerolactone, gamma caprolactone,
Epsilon caprolactone and the like. Among these, gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.

環状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。このように下限を設定することにより、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。   The amount of the cyclic carboxylic acid ester is usually 5% by volume or more, more preferably 10% by volume or more, in 100% by volume of the non-aqueous solvent. By setting the lower limit in this manner, the electrical conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. Moreover, the compounding quantity of cyclic carboxylic acid ester becomes like this. Preferably it is 50 volume% or less, More preferably, it is 40 volume% or less. By setting the upper limit in this way, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, a decrease in electrical conductivity is avoided, an increase in negative electrode resistance is suppressed, and a large current discharge of the non-aqueous electrolyte secondary battery is performed. It becomes easy to make a characteristic into a favorable range.

<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。
具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−i−プロピル、酢酸−n−ブチル、酢酸−i−ブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−i−プロピル、プロピオン酸−n−ブチル、プロピオン酸−i−ブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸−i−プロピル、i−酪酸メチル、i−酪酸エチル、i−酪酸−n−プロピル、i−酪酸−i−プロピル等が挙げられる。
<Chain carboxylic acid ester>
Examples of the chain carboxylic acid ester include those having 3 to 7 carbon atoms in the structural formula.
Specifically, methyl acetate, ethyl acetate, acetate-n-propyl, acetate- i- propyl, acetate-n-butyl, acetate- i- butyl, acetate-t-butyl, methyl propionate, ethyl propionate, propion Acid-n-propyl, propionate- i- propyl, propionate-n-butyl, propionate- i- butyl, propionate-t-butyl, methyl butyrate, ethyl butyrate, butyric acid-n-propyl, butyric acid- i- propyl, methyl i- butyrate, ethyl i- butyrate, i- acid -n- propyl, etc. i- butyric -i- propyl and the like.

中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−i−プロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。 Among them, methyl acetate, ethyl acetate, acetate-n-propyl, acetate-n-butyl, methyl propionate, ethyl propionate, propionate-n-propyl, propionate- i- propyl, methyl butyrate, ethyl butyrate, etc. It is preferable from the point of the improvement of the ionic conductivity by a viscosity fall.

鎖状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、非水系電解液の電気伝導率を改善し、非水系電解液二次電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。   The compounding amount of the chain carboxylic acid ester is usually 10% by volume or more, more preferably 15% by volume or more, in 100% by volume of the non-aqueous solvent. By setting the lower limit in this way, the electrical conductivity of the non-aqueous electrolyte solution is improved, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily improved. Moreover, the compounding quantity of chain | strand-shaped carboxylic acid ester is 60 volume% or less preferably in 100 volume% of nonaqueous solvents, More preferably, it is 50 volume% or less. By setting the upper limit in this manner, an increase in negative electrode resistance is suppressed, and the large current discharge characteristics and cycle characteristics of the non-aqueous electrolyte secondary battery are easily set in a favorable range.

<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ビス(2−フルオロエチ
ル)エーテル、ビス(2,2−ジフルオロエチル)エーテル、ビス(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,2−トリフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(3−フルオロ−n−プロピル)(2,2,2−トリフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,2−トリフルオロエチル)エーテル、(2,2,3,3,3−ペンフルオロ−n−プロピル)(2,2,2−トリフルオロエチル)エーテル、n−プロピル(1,1,2,2−テトラフルオロエチル)エーテル、(3−フルオロ−n−プロピル)(1,1,2,2−テトラフルオロエチル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3,3−ペンタフルオロ−n−プロピル)(1,1,2,2−テトラフルオロエチル)エーテル、ジ−n−プロピルエーテル、(3−フルオロ−n−プロピル)(n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3,3−ペンタフルオロ−n−プロピル)(n−プロピル)エーテル、ビス(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ビス(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,3,3,3−ペンタフルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、ビス(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ビス(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、エトキシメトキシメタン、(2−フルオロエトキシ)メトキシメタン、メトキシ(2,2,2−トリフルオロエトキシ)メタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ビス(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ビス(2,2,2−トリフルオロエトキシ)メタン、(1,1,2,2−テトラフルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、ビス(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、エトキシメトキシエタン、(2−フルオロエトキシ)メトキシエタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオ
ロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ビス(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ビス(2,2,2−トリフルオロエトキシ)エタン、(1,1,2,2−テトラフルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、ビス(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
<Ether compound>
As the ether compound, a chain ether having 3 to 10 carbon atoms in which part of hydrogen may be substituted with fluorine, and a cyclic ether having 3 to 6 carbon atoms are preferable.
Examples of the chain ether having 3 to 10 carbon atoms include diethyl ether, bis (2-fluoroethyl) ether, bis (2,2-difluoroethyl) ether, bis (2,2,2-trifluoroethyl) ether, ethyl (2-fluoroethyl) ether, ethyl (2,2,2-trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2 -Trifluoroethyl) ether, (2-fluoroethyl) (1,1,2,2-tetrafluoroethyl) ether, (1,1,2,2-tetrafluoroethyl) (2,2,2-trifluoro Ethyl) ether, ethyl-n-propyl ether, ethyl (3-fluoro-n-propyl) ether, ethyl (3,3,3-trifluoro-n-pro ) Ether, ethyl (2,2,3,3-tetrafluoro-n-propyl) ether, ethyl (2,2,3,3,3-pentafluoro-n-propyl) ether, 2-fluoroethyl-n -Propyl ether, (2-fluoroethyl) (3-fluoro-n-propyl) ether, (2-fluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (2-fluoroethyl) ( 2,2,3,3-tetrafluoro-n-propyl) ether, (2-fluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, 2,2,2-tri Fluoroethyl-n-propyl ether, (3-fluoro-n-propyl) (2,2,2-trifluoroethyl) ether, (2,2,2-trifluoroethyl) (3,3,3- Trifluoroacetic -n- propyl) ether, (2,2,3,3-tetrafluoro -n- propyl) (2,2,2-trifluoroethyl) ether, (2,2,3,3,3 pen data Fluoro-n-propyl) (2,2,2-trifluoroethyl) ether, n-propyl (1,1,2,2-tetrafluoroethyl) ether, (3-fluoro-n-propyl) (1,1 , 2,2-tetrafluoroethyl) ether, (1,1,2,2-tetrafluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (1,1,2,2-tetra) Fluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,3,3,3-pentafluoro-n-propyl) (1,1,2,2-tetrafluoro) Ethyl) ether, di-n- Propyl ether, (3-fluoro-n-propyl) (n-propyl) ether, (n-propyl) (3,3,3-trifluoro-n-propyl) ether, (n-propyl) (2,2, 3,3-tetrafluoro-n-propyl) ether, (2,2,3,3,3-pentafluoro-n-propyl) (n-propyl) ether, bis (3-fluoro-n-propyl) ether, (3-Fluoro-n-propyl) (3,3,3-trifluoro-n-propyl) ether, (3-fluoro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) Ether, (3-fluoro-n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, bis (3,3,3-trifluoro-n-propyl) ether, (2 , 2, , 3-Tetrafluoro-n-propyl) (3,3,3-trifluoro-n-propyl) ether, (2,2,3,3,3-pentafluoro-n-propyl) (3,3,3 -Trifluoro-n-propyl) ether, bis (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,3,3-tetrafluoro-n-propyl) (2,2, 3,3,3-pentafluoro-n-propyl) ether, bis (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-butyl ether, dimethoxymethane, ethoxymethoxymethane, ( 2-fluoroethoxy) methoxymethane, methoxy (2,2,2-trifluoroethoxy) methane, methoxy (1,1,2,2-tetrafluoroethoxy) methane, diethoxymethane, Toxi (2-fluoroethoxy) methane, ethoxy (2,2,2-trifluoroethoxy) methane, ethoxy (1,1,2,2-tetrafluoroethoxy) methane, bis (2-fluoroethoxy) methane, (2 -Fluoroethoxy) (2,2,2-trifluoroethoxy) methane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methane, bis (2,2,2-trifluoroethoxy) Methane, (1,1,2,2-tetrafluoroethoxy) (2,2,2-trifluoroethoxy) methane, bis (1,1,2,2-tetrafluoroethoxy) methane, dimethoxyethane, ethoxymethoxyethane , (2-fluoroethoxy) methoxyethane, methoxy (2,2,2-trifluoroethoxy) ethane, methoxy (1,1, 2,2-tetrafluoroethoxy) ethane, diethoxyethane, ethoxy (2-fluoroethoxy) ethane, ethoxy (2,2,2-trifluoroethoxy) ethane, ethoxy (1,1,2,2-tetrafluoroethoxy) ) Ethane, bis (2-fluoroethoxy) ethane, (2-fluoroethoxy) (2,2,2-trifluoroethoxy) ethane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) Ethane, bis (2,2,2-trifluoroethoxy) ethane, (1,1,2,2-tetrafluoroethoxy) (2,2,2-trifluoroethoxy) ethane, bis (1,1,2, 2-tetrafluoroethoxy) ethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethyl Glycol dimethyl ether.

炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ
素化化合物が挙げられる。
Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1 , 4-dioxane and the like, and fluorinated compounds thereof.

中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。   Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve ion dissociation. Of these, dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferable because they have low viscosity and give high ionic conductivity.

エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。   The compounding amount of the ether compound is usually in 100% by volume of the non-aqueous solvent, preferably 5% by volume or more, more preferably 10% by volume or more, further preferably 15% by volume or more, and preferably 70% by volume or less. More preferably, it is 60 volume% or less, More preferably, it is 50 volume% or less. If it is this range, it is easy to ensure the improvement effect of the lithium ion dissociation degree of chain ether, and the improvement of the ionic conductivity derived from a viscosity fall, and when a negative electrode active material is a carbonaceous material, a chain ether with lithium ion It is easy to avoid a situation where the capacity is reduced due to co-insertion.

<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
<Sulfone compound>
As the sulfone compound, a cyclic sulfone having 3 to 6 carbon atoms and a chain sulfone having 2 to 6 carbon atoms are preferable. The number of sulfonyl groups in one molecule is preferably 1 or 2.
Examples of the cyclic sulfone include trimethylene sulfones, tetramethylene sulfones, and hexamethylene sulfones that are monosulfone compounds; trimethylene disulfones, tetramethylene disulfones, and hexamethylene disulfones that are disulfone compounds. Among these, from the viewpoint of dielectric constant and viscosity, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable.

スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めて「スルホラン類」と略記する場合がある)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等がイオン伝導度が高く入出力が高い点で好ましい。   The sulfolane is preferably sulfolane and / or a sulfolane derivative (hereinafter sometimes abbreviated as “sulfolane” including sulfolane). As the sulfolane derivative, one in which one or more hydrogen atoms bonded to the carbon atom constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group is preferable. Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,2-difluorosulfolane, 2,3-difluorosulfolane, 2,4-difluorosulfolane, 2,5-difluorosulfolane, 3,4-difluorosulfolane, 2-fluoro-3-methylsulfolane, 2-fluoro-2-methylsulfolane, 3-fluoro-3-methylsulfolane, 3-fluoro-2-methylsulfolane, 4-fluoro-3-methyl Sulfolane, 4-fluoro-2-methylsulfolane, 5-fluoro-3-methylsulfolane, 5-fluoro-2-methylsulfolane, 2-fluoromethylsulfolane, 3-fluoromethylsulfolane, 2-difluoromethylsulfolane, 3-difluoro Methyl sulfolane, 2- Trifluoromethylsulfolane, 3-trifluoromethylsulfolane, 2-fluoro-3- (trifluoromethyl) sulfolane, 3-fluoro-3- (trifluoromethyl) sulfolane, 4-fluoro-3- (trifluoromethyl) sulfolane , 5-fluoro-3- (trifluoromethyl) sulfolane and the like are preferable in terms of high ionic conductivity and high input / output.

また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、メチル−n−プロピルスルホン、エチル−n−プロピルスルホン、ジ−n−プロピルスルホン、i−プロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、フルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、(2−フルオロ)エチルメチルスルホン、(2,2−ジフルオロエチル)メチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルフルオロメチルスルホン、エチ
ルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチル(2,2,2−トリフルオロエチル)スルホン、エチルペンタフルオロエチルスルホン、ビス(トリフルオロエチル)スルホン、ビス(パーフルオロエチル)スルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチル−i−プロピルスルホン、ジフルオロメチル−i−プロピルスルホン、トリフルオロメチル−i−プロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチル−i−プロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチル−i−プロピルスルホン、n−ブチル(2,2,2−トリフルオロエチル)ルスルホン、t−ブチル(2,2,2−トリフルオロエチル)スルホン、n−ブチルペンタフルオロエチルスルホン、t−ブチルペンタフルオロエチルスルホン等が挙げられる。
As the chain sulfone, dimethylsulfone, ethylmethylsulfone, diethylsulfone, methyl-n-propylsulfone, ethyl-n-propylsulfone, di-n-propylsulfone, i-propylmethylsulfone, isopropylethylsulfone, diisopropyl Sulfone, n-butylmethylsulfone, n-butylethylsulfone, t-butylmethylsulfone, t-butylethylsulfone, fluoromethylmethylsulfone, difluoromethylmethylsulfone, trifluoromethylmethylsulfone, (2-fluoro) ethylmethylsulfone , (2,2-difluoroethyl) methylsulfone, trifluoroethylmethylsulfone, pentafluoroethylmethylsulfone, ethylfluoromethylsulfone, ethyldifluoromethylsulfone, Tilt trifluoromethyl sulfone, perfluoroethyl methyl sulfone, ethyl (2,2,2-trifluoroethyl) sulfone, ethyl pentafluoroethyl sulfone, bis (trifluoroethyl) sulfone, bis (perfluoroethyl) sulfone, fluoromethyl N-propylsulfone, difluoromethyl-n-propylsulfone, trifluoromethyl-n-propylsulfone, fluoromethyl-i-propylsulfone, difluoromethyl-i-propylsulfone, trifluoromethyl-i-propylsulfone, trifluoro Ethyl-n-propylsulfone, trifluoroethyl-i-propylsulfone, pentafluoroethyl-n-propylsulfone, pentafluoroethyl-i-propylsulfone, n-butyl (2,2,2-trimethyl) Ruoroechiru) Rusuruhon, t- butyl (2,2,2-trifluoroethyl) sulfone, n- butyl pentafluoroethyl sulfone, t- butyl pentafluoroethyl sulfone, and the like.

中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、メチル−n−プロピルスルホン、メチル−i−プロピルスルホン、メチル−n−ブチルスルホン、t−ブチルメチルスルホン、フルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、(2−フルオロエチル)メチルスルホン、(2,2−ジフルオロエチル)メチルスルホン、メチルトリフルオロエチルスルホン、メチルペンタフルオロエチルスルホン、エチルフルオロメチルスルホン、ジフルオロメチルエチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、n−プロピルトリフルオロメチルスルホン、i−プロピルトリフルオロメチルスルホン、n−ブチルトリフルオロエチルスルホン、t−ブチルトリフルオロエチルスルホン、n−ブチルトリフルオロメチルスルホン、t−ブチルトリフルオロメチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。   Among them, dimethylsulfone, ethylmethylsulfone, diethylsulfone, methyl-n-propylsulfone, methyl-i-propylsulfone, methyl-n-butylsulfone, t-butylmethylsulfone, fluoromethylmethylsulfone, difluoromethylmethylsulfone, tri Fluoromethylmethylsulfone, (2-fluoroethyl) methylsulfone, (2,2-difluoroethyl) methylsulfone, methyltrifluoroethylsulfone, methylpentafluoroethylsulfone, ethylfluoromethylsulfone, difluoromethylethylsulfone, ethyltrifluoro Methyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoroethyl sulfone, n-propyl trifluoromethyl sulfone, i-propyl trifluoromethyl sulfone Hong, n- butyl trifluoroethyl sulfone, t- butyl trifluoroethyl sulfone, n- butyl trifluoromethylsulfonate, t- butyl trifluoromethyl sulfone is preferred because a higher high output ionic conductivity.

スルホン系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは0.3体積%以上、より好ましくは0.5体積%以上、さらに好ましくは1体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液二次電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。   The compounding amount of the sulfone compound is usually 0.3% by volume or more, more preferably 0.5% by volume or more, and further preferably 1% by volume or more in 100% by volume of the nonaqueous solvent. Is 40% by volume or less, more preferably 35% by volume or less, and still more preferably 30% by volume or less. Within this range, durability improvement effects such as cycle characteristics and storage characteristics can be easily obtained, and the viscosity of the non-aqueous electrolyte can be set to an appropriate range to avoid a decrease in electrical conductivity. When charging / discharging an aqueous electrolyte secondary battery at a high current density, it is easy to avoid a situation in which the charge / discharge capacity retention rate decreases.

1−4.助剤
本発明の非水系電解液電池において、炭素−炭素三重結合を有する化合物以外に、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示される不飽和結合を有する環状カーボネート、フッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
1-4. Auxiliary agent In the non-aqueous electrolyte battery of the present invention, an auxiliary agent may be appropriately used according to the purpose in addition to the compound having a carbon-carbon triple bond. Examples of the auxiliary agent include a cyclic carbonate having an unsaturated bond shown below, an unsaturated cyclic carbonate having a fluorine atom, an overcharge inhibitor, and other auxiliary agents.

<不飽和結合を有する環状カーボネート>
本発明の非水系電解液において、非水系電解液電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、炭素−炭素三重結合を有する化合物に加えて、炭素−炭素三重結合を有する化合物を除いた不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)を用いることができる。
<Cyclic carbonate having an unsaturated bond>
In the non-aqueous electrolyte of the present invention, in order to form a film on the negative electrode surface of the non-aqueous electrolyte battery and achieve a long battery life, in addition to the compound having a carbon-carbon triple bond, a carbon-carbon triple bond is used. A cyclic carbonate having an unsaturated bond excluding a compound having a bond (hereinafter sometimes abbreviated as “unsaturated cyclic carbonate”) can be used.

前記不飽和環状カーボネートとしては、炭素−炭素二重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環又は炭素−炭素二重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられ
る。
The unsaturated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond, and any unsaturated carbonate can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
Examples of the unsaturated cyclic carbonate include vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring or a carbon-carbon double bond, phenyl carbonates, vinyl carbonates, allyl carbonates, catechol carbonates, and the like. It is done.

ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4, 5- ビニルビニレンカーボネート、アリルビニレンカーボネート、4, 5- ジアリルビニレンカーボネート等が挙げられる。   The vinylene carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4 , 5-diallyl vinylene carbonate and the like.

芳香環又は炭素−炭素二重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。   Specific examples of ethylene carbonates substituted with an aromatic ring or a substituent having a carbon-carbon double bond include vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, 4- Allyl-5-vinylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene Examples thereof include carbonate and 4-methyl-5-allylethylene carbonate.

中でも、特に炭素−炭素三重結合を有する化合物と併用するのに好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4, 5- ビニルビニレンカーボネート、アリルビニレンカーボネート、4, 5- ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。   Among them, preferable unsaturated cyclic carbonates for use in combination with a compound having a carbon-carbon triple bond are vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, and 4,5-vinyl vinylene carbonate. , Allyl vinylene carbonate, 4,5-diallyl vinylene carbonate, vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, allyl ethylene carbonate, 4,5-diallyl ethylene carbonate, 4-methyl Since -5-allylethylene carbonate and 4-allyl-5-vinylethylene carbonate form a stable interface protective film, they are more preferably used.

不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。   The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will fully be expressed easily. The molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less. The production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method.

不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。
また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、好ましくは、0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。一方で少なすぎる場合は、本発明における効果が十分に発揮しない場合があり、また多すぎる場合は、抵抗が増加して出力や負荷特性が低下する場合がある。
An unsaturated cyclic carbonate may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios.
Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The amount of the unsaturated cyclic carbonate is 100% by mass in the non-aqueous electrolyte solution, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more. Moreover, Preferably it is 5 mass% or less, More preferably, it is 4 mass% or less, More preferably, it is 3 mass% or less. Within this range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient cycle characteristics improvement effect, and the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced. Easy to avoid. On the other hand, if the amount is too small, the effects of the present invention may not be sufficiently exhibited. If the amount is too large, the resistance may increase and the output and load characteristics may decrease.

<フッ素化不飽和環状カーボネート>
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
<Fluorinated unsaturated cyclic carbonate>
As the fluorinated cyclic carbonate, it is also preferable to use a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter sometimes abbreviated as “fluorinated unsaturated cyclic carbonate”). The number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 fluorine atoms.

フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
Examples of the fluorinated unsaturated cyclic carbonate include fluorinated vinylene carbonate derivatives, fluorinated ethylene carbonate derivatives substituted with an aromatic ring or a substituent having a carbon-carbon double bond.
Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.

芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。   Examples of the fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5. -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, 4,5-difluoro-4- Examples thereof include phenylethylene carbonate.

中でも、特に炭素−炭素三重結合を有する化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。   Among them, particularly preferred fluorinated unsaturated cyclic carbonates for use in combination with a compound having a carbon-carbon triple bond include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-vinyl vinylene. Carbonate, 4-allyl-5-fluorovinylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene Carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallyl Since ethylene carbonate forms a stable interface protective film, it is more preferably used.

フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。この範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。   The molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the fluorinated unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method. The molecular weight is more preferably 100 or more, and more preferably 200 or less.

フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存
特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。一方で少なすぎる場合は、本発明における効果が十分に発揮しない場合があり、また多すぎる場合は、抵抗が増加して出力や負荷特性が低下する場合がある。
A fluorinated unsaturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios.
Moreover, the compounding quantity of a fluorinated unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The compounding amount of the fluorinated unsaturated cyclic carbonate is usually 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, in 100% by mass of the nonaqueous electrolytic solution. Moreover, it is preferably 5% by mass or less, more preferably 4% by mass or less, and further preferably 3% by mass or less. Within this range, the non-aqueous electrolyte secondary battery is likely to exhibit a sufficient cycle characteristics improvement effect, and the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced. Easy to avoid. On the other hand, if the amount is too small, the effects of the present invention may not be sufficiently exhibited. If the amount is too large, the resistance may increase and the output and load characteristics may decrease.

<環状スルホン酸エステル>
本発明の非水系電解液において、環状スルホン酸エステルを用いることも好ましい。環状スルホン酸エステル化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、100以上であり、また、250以下である。この範囲であれば、非水系電解液に対する環状スルホン酸エステル化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。環状スルホン酸エステル化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
<Cyclic sulfonate ester>
In the nonaqueous electrolytic solution of the present invention, it is also preferable to use a cyclic sulfonate ester. The molecular weight of the cyclic sulfonic acid ester compound is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 100 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the cyclic sulfonic acid ester compound with respect to a non-aqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the cyclic sulfonate compound is not particularly limited, and can be produced by arbitrarily selecting a known method.

本発明の非水系電解液において、用いることができる環状スルホン酸エステル化合物としては、例えば、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−メチル−1,3−プロパンスルトン、2−メチル−1,3−プロパンスルトン、3−メチル−1,3−プロパンスルトン、1,4−ブタンスルトン、1−フルオロ−1,4−ブタンスルトン、2−フルオロ−1,4−ブタンスルトン、3−フルオロ−1,4−ブタンスルトン、4−フルオロ−1,4−ブタンスルトン、1−メチル−1,4−ブタンスルトン、2−メチル−1,4−ブタンスルトン、3−メチル−1,4−ブタンスルトン、4−メチル−1,4−ブタンスルトン、1,5−ペンタンスルトン、1−フルオロ−1,5−ペンタンスルトン、2−フルオロ−1,5−ペンタンスルトン、3−フルオロ−1,5−ペンタンスルトン、4−フルオロ−1,5−ペンタンスルトン、5−フルオロ−1,5−ペンタンスルトン、1−メチル−1,5−ペンタンスルトン、2−メチル−1,5−ペンタンスルトン、3−メチル−1,5−ペンタンスルトン、4−メチル−1,5−ペンタンスルトン、5−メチル−1,5−ペンタンスルトンなどのモノスルホン酸エステル化合物;
メチレンメタンジスルホネート、エチレンメタンジスルホネート、エチレンエタンジスルホネートなどのジスルホン酸エステル化合物;
等が挙げられる。
In the non-aqueous electrolyte solution of the present invention, examples of the cyclic sulfonate compound that can be used include:
1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-methyl-1,3-propane sultone 2-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone, 1,4-butane sultone, 1-fluoro-1,4-butane sultone, 2-fluoro-1,4-butane sultone, 3, -Fluoro-1,4-butane sultone, 4-fluoro-1,4-butane sultone, 1-methyl-1,4-butane sultone, 2-methyl-1,4-butane sultone, 3-methyl-1,4-butane sultone, 4 -Methyl-1,4-butane sultone, 1,5-pentane sultone, 1-fluoro-1,5-pentane sultone, 2-fluoro-1,5 Pentane sultone, 3-fluoro-1,5-pentane sultone, 4-fluoro-1,5-pentane sultone, 5-fluoro-1,5-pentane sultone, 1-methyl-1,5-pentane sultone, 2-methyl Monosulfonic acid ester compounds such as -1,5-pentanthruton, 3-methyl-1,5-pentanthruton, 4-methyl-1,5-pentanthruton, 5-methyl-1,5-pentanthruton;
Disulfonate compounds such as methylene methane disulfonate, ethylene methane disulfonate, ethylene ethane disulfonate;
Etc.

これらのうち、
1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1,4−ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが保存特性向上の点から好ましく、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトンがより好ましい。
Of these,
1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1,4-butane sultone, methylenemethane disulfonate Ethylene methane disulfonate is preferable from the viewpoint of improving storage characteristics, and 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3 -Propane sultone is more preferred.

また、炭素−炭素二重結合を有する環状スルホン酸エステルを用いることも好ましい。炭素−炭素二重結合を有する環状スルホン酸エステルとしては、1−プロペン−1,3−スルトン、2−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1−メチル−1−プロペン−1,3−スルトン、2−メチル−1−プロペン−1,3−スルトン、3−メチル−1−プロペン−1,3−スルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、1−フルオロ−1−ブテン−1,4−スルトン、2−フルオロ−1−ブテン−1,4−スルトン、3−フルオロ−1−ブテン−1,4−スルトン、4−フルオロ−1−ブテン−1,4−スルトン、1−メチル−1−ブテン−1,4−スルトン、2−メチル−1−ブテン−1,4−スルトン、3−メチル−1−ブテン−1,4−スルトン、4−メチル−1−
ブテン−1,4−スルトン、等を挙げることができる。
It is also preferable to use a cyclic sulfonic acid ester having a carbon-carbon double bond. Examples of the cyclic sulfonic acid ester having a carbon-carbon double bond include 1-propene-1,3-sultone, 2-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2 -Fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1-methyl-1-propene-1,3-sultone, 2-methyl-1-propene-1 , 3-sultone, 3-methyl-1-propene-1,3-sultone, 1-butene-1,4-sultone, 2-butene-1,4-sultone, 3-butene-1,4-sultone, 1 -Fluoro-1-butene-1,4-sultone, 2-fluoro-1-butene-1,4-sultone, 3-fluoro-1-butene-1,4-sultone, 4-fluoro-1-butene-1 , 4-sultone, 1-methyl 1-butene-1,4-sultone, 2-methyl-1-butene-1,4-sultone, 3-methyl-1-butene-1,4-sultone, 4-methyl-1
Examples include butene-1,4-sultone.

これらのうち、1−プロペン−1,3−スルトン、1−ブテン−1,4−スルトン、2−ブテン−1,4−スルトン、3−ブテン−1,4−スルトンがより好ましい。   Of these, 1-propene-1,3-sultone, 1-butene-1,4-sultone, 2-butene-1,4-sultone, and 3-butene-1,4-sultone are more preferable.

環状スルホン酸エステル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
本発明の非水系電解液全体に対する環状スルホン酸エステル化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
A cyclic sulfonic acid ester compound may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios.
There is no restriction | limiting in the compounding quantity of the cyclic sulfonate ester compound with respect to the whole non-aqueous electrolyte solution of this invention, Although it is arbitrary unless the effect of this invention is impaired remarkably, Usually, it is 0.8 with respect to the non-aqueous electrolyte solution of this invention. 001% by mass or more, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less. Let When the above range is satisfied, effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

<シアノ基を有する化合物>
本発明の非水系電解液において、シアノ基を有する化合物を用いることも好ましい。ここで、シアノ基を有する化合物としては、分子内にシアノ基を有している化合物であれば特にその種類は限定されないが、一般式(9)で表される化合物がより好ましい。
<Compound having a cyano group>
In the nonaqueous electrolytic solution of the present invention, it is also preferable to use a compound having a cyano group. Here, the compound having a cyano group is not particularly limited as long as it is a compound having a cyano group in the molecule, but a compound represented by the general formula (9) is more preferable.

Figure 0006221201
(上記一般式(9)中、Tは、炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子およびハロゲン原子からなる群から選ばれる原子で構成された有機基を表し、Uは置換基を有してもよい炭素数1から10のV価の有機基である。Vは1以上の整数であり、Vが2以上の場合は、Tは互いに同一であっても異なっていてもよい。)
Figure 0006221201
(In the above general formula (9), T represents an organic group composed of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom and a halogen atom; A V-valent organic group having 1 to 10 carbon atoms which may have a substituent, wherein V is an integer of 1 or more, and when V is 2 or more, T may be the same or different from each other. May be good.)

シアノ基を有する化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、より好ましくは80以上、さらに好ましくは100以上であり、また、200以下である。この範囲であれば、非水系電解液に対するシアノ基を有する化合物の溶解性を確保しやすく、本発明の効果が発現されやすい。シアノ基を有する化合物の製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。   The molecular weight of the compound having a cyano group is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more, more preferably 80 or more, still more preferably 100 or more, and 200 or less. If it is this range, it will be easy to ensure the solubility of the compound which has a cyano group with respect to nonaqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the compound having a cyano group is not particularly limited, and can be produced by arbitrarily selecting a known method.

一般式(9)で表される化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、i−ブチロニトリル、バレロニトリル、i−バレロニトリル、ラウロニトリル、2−メチルブチロニトリル、2,2−ジメチルブチロニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテントリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3,3−ジフルオロプロピオニトリル、2,2,3−トリフルオロプロピオニトリル、3,3,3−トリフルオロプロピオニトリル、3,3'−オキシジプロピオニトリル、3,3'−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;
Specific examples of the compound represented by the general formula (9) include, for example,
Acetonitrile, propionitrile, butyronitrile, i- butyronitrile, valeronitrile, i- valeronitrile, lauronitrile, 2-methylbutyronitrile, 2,2-dimethyl-butyronitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile , acrylonitrile, methacrylonitrile, crotononitrile, 3-methyl-crotononitrile, 2-methyl-2-butene nitrile, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile 2-hexenenitrile, fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2, -Difluoropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3'-oxydipropionitrile, 3,3 Compounds having one cyano group such as' -thiodipropionitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, pentafluoropropionitrile;

マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、i−プロピルマロノニトリル、t−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3'−(エチレンジオキシ)ジプロピオニトリル、3,3'−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物; Malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebaconitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, i-propylmalononitrile, t-butylmalononitrile, methylsk Sinonitrile, 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, trimethylsuccinonitrile, tetramethylsuccinonitrile, 3,3 ′-(ethylenedioxy) dipropionitrile, 3,3 ′ -A compound having two cyano groups such as (ethylenedithio) dipropionitrile;

1,2,3−トリス(2−シアノエトキシ)プロパン、トリス(2−シアノエチル)アミン等等のシアノ基を3つ有する化合物; Compounds having three cyano groups such as 1,2,3-tris (2-cyanoethoxy) propane and tris (2-cyanoethyl) amine;

メチルシアネート、エチルシアネート、プロピルシアネート、ブチルシアネート、ペンチルシアネート、ヘキシルシアネート、ヘプチルシアネートなどのシアネート化合物; Cyanate compounds such as methyl cyanate, ethyl cyanate, propyl cyanate, butyl cyanate, pentyl cyanate, hexyl cyanate, heptyl cyanate;

メチルチオシアネート、エチルチオシアネート、プロピルチオシアネート、ブチルチオシアネート、ペンチルチオシアネート、ヘキシルチオシアネート、ヘプチルチオシアネート、メタンスルホニルシアニド、エタンスルホニルシアニド、プロパンスルホニルシアニド、ブタンスルホニルシアニド、ペンタンスルホニルシアニド、ヘキサンスルホニルシアニド、ヘプタンスルホニルシアニド、メチルスルフロシアニダート、エチルスルフロシアニダート、プロピルスルフロシアニダート、ブチルスルフロシアニダート、ペンチルスルフロシアニダート、ヘキシルスルフロシアニダート、ヘプチルスルフロシアニダートなどの含硫黄化合物; Methyl thiocyanate, ethyl thiocyanate, propyl thiocyanate, butyl thiocyanate, pentyl thiocyanate, hexyl thiocyanate, heptyl thiocyanate, methanesulfonyl cyanide, ethanesulfonyl cyanide, propanesulfonyl cyanide, butanesulfonyl cyanide, pentanesulfonyl cyanide, hexanesulfonyl cyanide , Heptanesulfonyl cyanide, methylsulfurocyanidate, ethylsulfurocyanidate, propylsulfurocyanidate, butylsulfurocyanidate, pentylsulfurocyanidate, hexylsulfurocyanidate, heptylsulfur Sulfur-containing compounds such as frocyanidates;

シアノジメチルホスフィン、シアノジメチルホスフィンオキシド、シアノメチルホスフィン酸メチル、シアノメチル亜ホスフィン酸メチル、ジメチルホスフィン酸シアニド、ジメチル亜ホスフィン酸シアニド、シアノホスホン酸ジメチル、シアノ亜ホスホン酸ジメチル、メチルホスホン酸シアノメチル、メチル亜ホスホン酸シアノメチル、リン酸シアノジメチル、亜リン酸シアノジメチルなどの含リン化合物;
等が挙げられる。
Cyanodimethylphosphine, cyanodimethylphosphine oxide, methyl cyanomethylphosphinate, methyl cyanomethylphosphinate, dimethylphosphinic acid cyanide, dimethylphosphinic acid cyanide, dimethylphosphonic acid dimethyl, cyanophosphonic acid dimethyl, methylphosphonic acid cyanomethyl, methylphosphonic acid Phosphorus-containing compounds such as cyanomethyl acid, cyanodimethyl phosphate, cyanodimethyl phosphite;
Etc.

これらのうち、
アセトニトリル、プロピオニトリル、ブチロニトリル、i−ブチロニトリル、バレロニトリル、i−バレロニトリル、ラウロニトリル、クロトノニトリル、3‐メチルクロトノニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリルが保存特性向上の点から好ましく、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のシアノ基を2つ有する化合物がより好ましい。
Of these,
Acetonitrile, propionitrile, butyronitrile, i-butyronitrile, valeronitrile, i-valeronitrile, lauronitrile, crotononitrile, 3-methylcrotononitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, Azeronitrile, sebaconitrile, undecandinitrile, and dodecanedinitrile are preferable from the viewpoint of improving the storage characteristics, and cyano such as malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecanedinitrile, etc. A compound having two groups is more preferred.

シアノ基を有する化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
本発明の非水系電解液全体に対するシアノ基を有する化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。
The compound which has a cyano group may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The compounding amount of the compound having a cyano group with respect to the whole non-aqueous electrolyte of the present invention is not limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. 001% by mass or more, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less. Let When the above range is satisfied, effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature storage characteristics are further improved.

<ジイソシアネート化合物>
本発明の非水系電解液において、ジイソシアネート化合物を用いることも好ましい。ここで、ジイソシアネート化合物としては、分子内にイソシアナト基を2つ有する化合物であれば特に制限はないが、下記一般式(10)で表されるものが好ましい。
<Diisocyanate compound>
In the non-aqueous electrolyte solution of the present invention, it is also preferable to use a diisocyanate compound. Here, the diisocyanate compound is not particularly limited as long as it is a compound having two isocyanato groups in the molecule, but a compound represented by the following general formula (10) is preferable.

Figure 0006221201
(上記一般式(10)中、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である)
Figure 0006221201
(In the general formula (10), X is a hydrocarbon group having 1 to 16 carbon atoms which may be substituted with fluorine)

上記一般式(10)において、Xはフッ素で置換されていてもよい炭素数1〜16の炭化水素基である。Xの炭素数は好ましくは2以上、より好ましくは3以上、特に好ましくは4以上であり、また好ましくは14以下、より好ましくは12以下、特に好ましくは10以下、最も好ましくは8以下である。またXの種類については炭化水素基である限り特に限定されない。脂肪族鎖状アルキレン基、脂肪族環状アルキレン基及び芳香環含有炭化水素基のいずれであってもよいが、好ましくは脂肪族鎖状アルキレン基又は脂肪族環状アルキレン基である。   In the said General formula (10), X is a C1-C16 hydrocarbon group which may be substituted by the fluorine. The carbon number of X is preferably 2 or more, more preferably 3 or more, particularly preferably 4 or more, and is preferably 14 or less, more preferably 12 or less, particularly preferably 10 or less, and most preferably 8 or less. The type of X is not particularly limited as long as it is a hydrocarbon group. Any of an aliphatic chain alkylene group, an aliphatic cyclic alkylene group and an aromatic ring-containing hydrocarbon group may be used, but an aliphatic chain alkylene group or an aliphatic cyclic alkylene group is preferred.

一般式(10)で表される化合物の具体例としては、例えば、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;1,4−ジイソシアナト−2−ブテン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−3−ペンテン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−
ヘキセン、1,8−ジイソシアナト−2−オクテン、1,8−ジイソシアナト−3−オクテン、1,8−ジイソシアナト−4−オクテン、等のジイソシアナトアルケン類;1,3−ジイソシアナト−2−フルオロプロパン、1,3−ジイソシアナト−2,2−ジフルオロプロパン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,2−ジフルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,6−ジイソシアナト−2−フルオロヘキサン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−2,2−ジフルオロヘキサン、1,6−ジイソシアナト−2,3−ジフルオロヘキサン、1,6−ジイソシアナト−2,4−ジフルオロヘキサン、1,6−ジイソシアナト−2,5−ジフルオロヘキサン、1,6−ジイソシアナト−3,3−ジフルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、1,8−ジイソシアナト−2−フルオロオクタン、1,8−ジイソシアナト−3−フルオロオクタン、1,8−ジイソシアナト−4−フルオロオクタン、1,8−ジイソシアナト−2,2−ジフルオロオクタン、1,8−ジイソシアナト−2,3−ジフルオロオクタン、1,8−ジイソシアナト−2,4−ジフルオロオクタン、1,8−ジイソシアナト−2,5−ジフルオロオクタン、1,8−ジイソシアナト−2,6−ジフルオロオクタン、1,8−ジイソシアナト−2,7−ジフルオロオクタン、等のフッ素置換ジイソシアナトアルカン類;1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;1,2−フェニレンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレン−2,3−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,5−ジイソシアネート、トリレン−2,6−ジイソシアネート、トリレン−3,4−ジイソシアネート、トリレン−3,5−ジイソシアネート、1,2−ビス(イソシアナトメチル)ベンゼン、1,3−ビス(イソシアナトメチル)ベンゼン、1,4−ビス(イソシアナトメチル)ベンゼン、2,4−ジイソシアナトビフェニル、2,6−ジイソシアナトビフェニル、2,2’−ジイソシアナトビフェニル、3,3’−ジイソシアナトビフェニル、4,4’−ジイソシアナト−2−メチルビフェニル、4,4’−ジイソシアナト−3−メチルビフェニル、4,4’−ジイソシアナト−3,3’−ジメチルビフェニル、4,4’−ジイソシアナトジフェニルメタン、4,4’−ジイソシアナト−2−メチルジフェニルメタン、4,4’−ジイソシアナト−3−メチルジフェニルメタン、4,4’−ジイソシアナト−3,3’−ジメチルジフェニルメタン、1,5−ジイソシアナトナフタレン、1,8−ジイソシアナトナフタレン、2,3−ジイソシアナトナフタレン、1,5−ビス(イソシアナトメチル)ナフタレン、1,8−ビス(イソシアナトメチル)ナフタレン、2,3−ビス(イソシアナトメチル)ナフタレン等の芳香環含有ジイソシアネート類;
などが挙げられる。
Specific examples of the compound represented by the general formula (10) include, for example,
Linear polymethylene diisocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate; 1 -Methylhexamethylene diisocyanate, 2-methylhexamethylene diisocyanate, 3-methylhexamethylene diisocyanate, 1,1-dimethylhexamethylene diisocyanate, 1,2-dimethylhexamethylene diisocyanate, 1,3-dimethylhexamethylene diisocyanate, 1,4 -Dimethylhexamethylene diisocyanate DOO, 1,5-dimethyl hexamethylene diisocyanate, 1,6-dimethyl-hexamethylene diisocyanate, 1, 2,3-trimethyl hexamethylene diisocyanate, branched alkylene diisocyanates and the like; 1,4-diisocyanato-2-butene, 1, 5-diisocyanato-2-pentene, 1,5-diisocyanato-3-pentene, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-
Diisocyanatoalkenes such as hexene, 1,8-diisocyanato-2-octene, 1,8-diisocyanato-3-octene, 1,8-diisocyanato-4-octene; 1,3-diisocyanato-2-fluoropropane 1,3-diisocyanato-2,2-difluoropropane, 1,4-diisocyanato-2-fluorobutane, 1,4-diisocyanato-2,2-difluorobutane, 1,4-diisocyanato-2,3-difluorobutane 1,6-diisocyanato-2-fluorohexane, 1,6-diisocyanato-3-fluorohexane, 1,6-diisocyanato-2,2-difluorohexane, 1,6-diisocyanato-2,3-difluorohexane, , 6-Diisocyanato-2,4-difluorohexane, 1,6-diisocyanato 2,5-difluorohexane, 1,6-diisocyanato-3,3-difluorohexane, 1,6-diisocyanato-3,4-difluorohexane, 1,8-diisocyanato-2-fluorooctane, 1,8-diisocyanato- 3-fluorooctane, 1,8-diisocyanato-4-fluorooctane, 1,8-diisocyanato-2,2-difluorooctane, 1,8-diisocyanato-2,3-difluorooctane, 1,8-diisocyanato-2, Fluorine-substituted diisocyanates such as 4-difluorooctane, 1,8-diisocyanato-2,5-difluorooctane, 1,8-diisocyanato-2,6-difluorooctane, 1,8-diisocyanato-2,7-difluorooctane Natoalkanes; 1,2-diisocyanatocyclopentane, 1, -Diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3- Bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-2,2′-diisocyanate, dicyclohexylmethane-2,4′-diisocyanate, dicyclohexylmethane-3,3′-diisocyanate, Cycloalkane ring-containing diisocyanates such as dicyclohexylmethane-4,4′-diisocyanate; 1,2-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene-2, Diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,5-diisocyanate, tolylene-2,6-diisocyanate, tolylene-3,4-diisocyanate, tolylene-3,5-diisocyanate, 1,2-bis (isocyanate) Natomethyl) benzene, 1,3-bis (isocyanatomethyl) benzene, 1,4-bis (isocyanatomethyl) benzene, 2,4-diisocyanatobiphenyl, 2,6-diisocyanatobiphenyl, 2,2 '-Diisocyanatobiphenyl, 3,3'-diisocyanatobiphenyl, 4,4'-diisocyanato-2-methylbiphenyl, 4,4'-diisocyanato-3-methylbiphenyl, 4,4'-diisocyanato-3, 3'-dimethylbiphenyl, 4,4'-diisocyanatodiphenylmethane, 4,4'- Isocyanato-2-methyldiphenylmethane, 4,4′-diisocyanato-3-methyldiphenylmethane, 4,4′-diisocyanato-3,3′-dimethyldiphenylmethane, 1,5-diisocyanatonaphthalene, 1,8-diisocyanato Aromatic rings such as naphthalene, 2,3-diisocyanatonaphthalene, 1,5-bis (isocyanatomethyl) naphthalene, 1,8-bis (isocyanatomethyl) naphthalene, 2,3-bis (isocyanatomethyl) naphthalene Containing diisocyanates;
Etc.

これらの中でも、
エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタ
メチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、テトラデカメチレンジイソシアネート、等の直鎖ポリメチレンジイソシアネート類;1−メチルヘキサメチレンジイソシアネート、2−メチルヘキサメチレンジイソシアネート、3−メチルヘキサメチレンジイソシアネート、1,1−ジメチルヘキサメチレンジイソシアネート、1,2−ジメチルヘキサメチレンジイソシアネート、1,3−ジメチルヘキサメチレンジイソシアネート、1,4−ジメチルヘキサメチレンジイソシアネート、1,5−ジメチルヘキサメチレンジイソシアネート、1,6−ジメチルヘキサメチレンジイソシアネート、1,2,3−トリメチルヘキサメチレンジイソシアネート、等の分岐アルキレンジイソシアネート類;1,2−ジイソシアナトシクロペンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、等のシクロアルカン環含有ジイソシアネート類;
が好ましい。
Among these,
Linear polymethylene diisocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate; 1 -Methylhexamethylene diisocyanate, 2-methylhexamethylene diisocyanate, 3-methylhexamethylene diisocyanate, 1,1-dimethylhexamethylene diisocyanate, 1,2-dimethylhexamethylene diisocyanate, 1,3-dimethylhexamethylene diisocyanate, 1,4 -Dimethylhexamethylene diisocyanate DOO, 1,5-dimethyl hexamethylene diisocyanate, 1,6-dimethyl-hexamethylene diisocyanate, 1, 2,3-trimethyl hexamethylene diisocyanate, branched alkylene diisocyanates and the like; 1,2-diisocyanato cyclopentane, 1, 3-diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3 -Bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, dicyclohexylmethane-3,3 ' Diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, cycloalkane ring containing diisocyanates and the like;
Is preferred.

さらには、
テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、から選ばれる直鎖ポリメチレンジイソシアネート類;1,2−ジイソシアナトシクロペ
ンタン、1,3−ジイソシアナトシクロペンタン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、4−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−2,4’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、から選ばれるシクロアルカン環含有ジイソシアネート類;
が特に好ましい。
Moreover,
Linear polymethylene diisocyanates selected from tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate; 1,2-diisocyanatocyclopentane, 1,3-diisocyanatocyclopentane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanatomethyl) cyclohexane 4-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-2,2′-diisocyanate, dicyclohexylmethane-2,4′-diisocyanate, dicyclohexylmeta 3,3'-diisocyanate, cycloalkane ring containing diisocyanates selected from dicyclohexylmethane-4,4'-diisocyanate;
Is particularly preferred.

また上述した本発明におけるジイソシアネートは、1種類を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液において、ジイソシアネートを用い場合にその含有量は、該非水電解液の全体の質量に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.3質量%以上、また、通常5質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2質量%以下である。含有量が上記範囲内であると、サイクル、保存等の耐久性を向上でき、本発明の効果を十分に発揮できる。
Moreover, the diisocyanate in this invention mentioned above may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
In the non-aqueous electrolyte of the present invention, when diisocyanate is used, its content is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably based on the total mass of the non-aqueous electrolyte. Is 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 4.0% by mass or less, more preferably 3.0% by mass or less, and further preferably 2% by mass. % Or less. When the content is within the above range, durability such as cycle and storage can be improved, and the effects of the present invention can be sufficiently exhibited.

<過充電防止剤>
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
<Overcharge prevention agent>
In the non-aqueous electrolyte solution of the present invention, an overcharge inhibitor can be used in order to effectively suppress battery explosion / ignition when the non-aqueous electrolyte secondary battery is in an overcharged state or the like. .
As an overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like And a fluorine-containing anisole compound. Of these, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more. When two or more kinds are used in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, Using at least one selected from aromatic compounds not containing oxygen, such as t-amylbenzene, and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like is an overcharge prevention property and a high temperature storage property. From the standpoint of balance.

過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。   The amount of the overcharge inhibitor is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The overcharge inhibitor is preferably 0.1% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. If it is this range, it will be easy to fully express the effect of an overcharge inhibiting agent, and it will be easy to avoid the situation where the battery characteristics, such as a high temperature storage characteristic, fall. The overcharge inhibitor is more preferably 0.2% by mass or more, further preferably 0.3% by mass or more, particularly preferably 0.5% by mass or more, and more preferably 3% by mass or less, still more preferably. Is 2% by mass or less.

<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキ
シエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、エタンスルホン酸メチル、エタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;メチルジメチルホスフィネート、エチルジメチルホスフィネート、エチルジエチルホスフィネート、トリメチルホスホノフォルメート、トリエチルホスホノフォルメート、トリメチルホスホノアセテート、トリエチルホスホノアセテート、トリメチル−3−ホスホノプロピオネート、トリエチル−3−ホスホノプロピオネート等の含リン化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
<Other auxiliaries>
Other known auxiliary agents can be used in the non-aqueous electrolyte solution of the present invention. Other auxiliaries include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, anhydrous Carboxylic anhydrides such as itaconic acid, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; 2,4,8,10-tetraoxaspiro [5.5 ] Spiro compounds such as undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, Ethyl methanesulfonate, ethanesulfo Sulfur-containing compounds such as methyl acid, ethyl ethanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl- Nitrogen-containing compounds such as 2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide; hydrocarbon compounds such as heptane, octane, nonane, decane and cycloheptane; Fluorinated aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene, benzotrifluoride; methyl dimethyl phosphinate, ethyl dimethyl phosphinate, ethyl diethyl phosphinate, trimethyl phosphonoformate, triethyl phosphine Noforumeto, trimethyl phosphonoacetate, triethyl phosphonoacetate, trimethyl-3-phosphono propionate, phosphorus-containing compounds such as triethyl-3-phosphono propionate. These may be used alone or in combination of two or more. By adding these auxiliaries, capacity maintenance characteristics and cycle characteristics after high temperature storage can be improved.

これらの中でも、エチレンサルファイト、フルオロスルホン酸メチル、メタンスルホン酸メチル、エタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、1,4−ブタンジオールビス(2,2,2−トリフルオロエタンスルホネート)等の含硫黄化合物が、高温保存後の容量維持特性やサイクル特性を向上させる効果が大きいことから特に好ましい。   Among these, ethylene sulfite, methyl fluorosulfonate, methyl methanesulfonate, methyl ethanesulfonate, ethyl methanesulfonate, busulfan, 1,4-butanediol bis (2,2,2-trifluoroethanesulfonate), etc. This sulfur-containing compound is particularly preferable because it has a large effect of improving capacity retention characteristics and cycle characteristics after high-temperature storage.

その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。   The blending amount of other auxiliary agents is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The other auxiliary agent is preferably 0.01% by mass or more and 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Within this range, the effects of other auxiliaries can be sufficiently exhibited, and it is easy to avoid a situation in which battery characteristics such as high-load discharge characteristics deteriorate. The blending amount of other auxiliaries is more preferably 0.1% by mass or more, further preferably 0.2% by mass or more, more preferably 3% by mass or less, and further preferably 1% by mass or less. .

以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。   The non-aqueous electrolyte solution described above includes those existing inside the non-aqueous electrolyte battery according to the present invention. Specifically, the components of the non-aqueous electrolyte solution such as lithium salt, solvent, and auxiliary agent are separately synthesized, and the non-aqueous electrolyte solution is prepared from what is substantially isolated by the method described below. In the case of a nonaqueous electrolyte solution in a nonaqueous electrolyte battery obtained by pouring into a separately assembled battery, the components of the nonaqueous electrolyte solution of the present invention are individually placed in the battery, In order to obtain the same composition as the non-aqueous electrolyte solution of the present invention by mixing in a non-aqueous electrolyte battery, the compound constituting the non-aqueous electrolyte solution of the present invention is further generated in the non-aqueous electrolyte battery. The case where the same composition as the aqueous electrolyte is obtained is also included.

2.セパレータ
本発明の非水系電解液二次電池において、正極と負極との間には、短絡を防止するために、セパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
2. Separator In the non-aqueous electrolyte secondary battery of the present invention, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. In this case, the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.

セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない
限り、公知のものを任意に採用することができる。中でも、本発明においては、本発明の非水系電解液に対し安定な材料で形成された、ポリオレフィン系樹脂や、その他の樹脂、ガラス繊維、無機物等を構成成分として用いることが出来る。形状としては、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among these, in the present invention, polyolefin resins, other resins, glass fibers, inorganic substances, etc., which are formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention can be used as constituent components. As the shape, it is preferable to use a porous sheet excellent in liquid retention or a non-woven fabric.

本発明で用いるセパレータは、ポリオレフィン系樹脂を構成成分の一部として有することが好ましい。ここでポリオレフィン系樹脂として、具体的にポリエチレン系樹脂やポリプロピレン系樹脂、1−ポリメチルペンテン、ポリフェニレンスルフィドなどが挙げられる。   The separator used in the present invention preferably has a polyolefin-based resin as a component. Specific examples of the polyolefin resin include polyethylene resin, polypropylene resin, 1-polymethylpentene, and polyphenylene sulfide.

ポリエチレン系樹脂の例としては、低密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン及びエチレンを主成分とする共重合体、すなわち、エチレンとプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1、オクテン−1などの炭素数3〜10のα−オレフィン;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの不飽和カルボン酸エステル、共役ジエンや非共役ジエンのような不飽和化合物の中から選ばれる1種または2種以上のコモノマーとの共重合体または多元共重合体あるいはその混合組成物が挙げられる。エチレン系重合体のエチレン単位の含有量は、通常50質量%を超えるものである。   Examples of polyethylene resins include low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, medium-density polyethylene, high-density polyethylene, and copolymers based on ethylene, that is, ethylene and propylene, butene -1, pentene-1, hexene-1, heptene-1, octene-1, etc., α-olefins having 3 to 10 carbon atoms; vinyl esters such as vinyl acetate and vinyl propionate; methyl acrylate, ethyl acrylate, methacryl A copolymer or multi-component copolymer with one or two or more comonomers selected from unsaturated carboxylic acid esters such as methyl acrylate and ethyl methacrylate, and unsaturated compounds such as conjugated and non-conjugated dienes, or The mixed composition is mentioned. The ethylene unit content of the ethylene polymer is usually more than 50% by mass.

これらのポリエチレン系樹脂の中では、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンの中から選ばれる少なくとも1種のポリエチレン系樹脂が好ましく、高密度ポリエチレンが最も好ましい。
また、ポリエチレン系樹脂の重合触媒には特に制限はなく、チーグラー型触媒、フィリップス型触媒、カミンスキー型触媒等いずれのものでもよい。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法のポリエチレン系樹脂も使用可能である。
Among these polyethylene resins, at least one polyethylene resin selected from low density polyethylene, linear low density polyethylene, and high density polyethylene is preferable, and high density polyethylene is most preferable.
Moreover, there is no restriction | limiting in particular in the polymerization catalyst of a polyethylene-type resin, Any things, such as a Ziegler type catalyst, a Phillips type catalyst, and a Kaminsky type catalyst, may be sufficient. As a polymerization method of the polyethylene resin, there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that, and any method of the polyethylene resin can be used.

前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03〜15g/10分であることが好ましく、0.3〜10g/10分であることが好ましい。MFRが上記範囲であれば成形加工時に押出機の背圧が高くなりすぎることが無く生産性に優れる。尚本発明におけるMFRはJIS K7210
に準拠し、温度190℃、荷重2.16kgの条件下での測定値をさす。
The melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 15 g / 10 min, and preferably 0.3 to 10 g / 10 min. preferable. If the MFR is in the above range, the back pressure of the extruder does not become too high during the molding process and the productivity is excellent. The MFR in the present invention is JIS K7210.
The measured value under the conditions of temperature 190 ° C. and load 2.16 kg.

ポリエチレン系樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン触媒に代表されるシングルサイト触媒を用いた重合方法が挙げられる。   The production method of the polyethylene resin is not particularly limited, and is a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. A polymerization method using a single site catalyst may be mentioned.

次に、ポリプロピレン系樹脂の例について説明する。本発明におけるポリプロピレン系樹脂としては、ホモポリプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1―ヘプテン、1−オクテン、1−ノネンもしくは1−デセンなどα オレフィンとのランダム共重合体またはブロック共重合
体などが挙げられる。この中でも、電池用セパレータに用いる場合には機械的強度の観点からホモポリプロピレンがより好適に使用される。
Next, an example of a polypropylene resin will be described. The polypropylene resin in the present invention is homopolypropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or 1-decene. And a random copolymer or block copolymer with α-olefin. Among these, when used for a battery separator, homopolypropylene is more preferably used from the viewpoint of mechanical strength.

また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率が80〜99%であることが好ましく、より好ましくは83〜98%、更に好ましくは85〜97%であるものを使用する。アイソタクチックペンタッド分率が低すぎると、電池用セパレータの機械的強度が低下する恐れがある。一方、アイソタクチックペンタッ
ド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合においてはこの限りではない。アイソタクチックペンタッド分率とは、任意の連続する5つのプロピレン単位で構成される炭素―炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambellietatal.(Macromol.8,687(1975))に準拠している。
The polypropylene resin preferably has an isotactic pentad fraction exhibiting stereoregularity of 80 to 99%, more preferably 83 to 98%, and still more preferably 85 to 97%. use. If the isotactic pentad fraction is too low, the mechanical strength of the battery separator may decrease. On the other hand, the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at present, but this is not the case when a more regular resin is developed in the industrial level in the future. is not. The isotactic pentad fraction is a three-dimensional structure in which five methyl groups that are side chains are located in the same direction with respect to the main chain of carbon-carbon bonds composed of arbitrary five consecutive propylene units. Or the ratio is meant. Signal assignment of the methyl group region is as follows. Zambellietatal. (Macromol. 8, 687 (1975)).

また、ポリプロピレン系樹脂は、分子量分布を示すパラメータであるMw/Mnが1.5〜10.0であることが好ましい。より好ましくは2.0〜8.0、更に好ましくは2.0〜6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが1.5未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である場合が多い。一方Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、得られる電池用セパレータの機械強度が低下しやすい。Mw/MnはGPC(ゲルパーエミッションクロマトグラフィー)法によって得られる。   Moreover, it is preferable that Mw / Mn which is a parameter which shows molecular weight distribution of a polypropylene resin is 1.5-10.0. More preferably, 2.0 to 8.0, and still more preferably 2.0 to 6.0 is used. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution. However, if the Mw / Mn is less than 1.5, problems such as a decrease in extrusion moldability occur, and it is difficult to produce industrially. There are many cases. On the other hand, when Mw / Mn exceeds 10.0, the low molecular weight component increases, and the mechanical strength of the obtained battery separator tends to decrease. Mw / Mn is obtained by GPC (gel per emission chromatography) method.

また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.1〜15g/10分であることが好ましく、0.5〜10g/10分であることがより好ましい。MFRが0.1g/10分未満では、成形加工時の樹脂の溶融粘度が高く生産性が低下する。一方、15g/10分を超えると得られる電池用セパレータの強度が不足するなどの実用上の問題が生じやすい。なお、MFRはJIS
K7210に準拠して温度230℃、荷重2.16kgの条件で測定している。
In addition, the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually the MFR is preferably 0.1 to 15 g / 10 minutes, and preferably 0.5 to 10 g / 10 minutes. It is more preferable. When the MFR is less than 0.1 g / 10 minutes, the melt viscosity of the resin during the molding process is high, and the productivity is lowered. On the other hand, when it exceeds 15 g / 10 minutes, practical problems such as insufficient strength of the obtained battery separator tend to occur. MFR is JIS
In accordance with K7210, measurement is performed under conditions of a temperature of 230 ° C. and a load of 2.16 kg.

その他の樹脂、ガラス繊維セパレータの材料として、例えば、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を上記ポリオレフィン系樹脂と併用することができる。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   As materials for other resins and glass fiber separators, for example, aromatic polyamide, polytetrafluoroethylene, polyethersulfone, glass filter, and the like can be used in combination with the polyolefin resin. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。   The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 8 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only the battery performance such as the rate characteristic may be lowered, but also the energy density of the whole non-aqueous electrolyte secondary battery may be lowered.

さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。   Furthermore, when using a porous material such as a porous sheet or nonwoven fabric as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.

また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
Moreover, although the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
On the other hand, as inorganic materials, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. Used.

形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。   As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition to the above-mentioned independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 μm on both surfaces of the positive electrode and using a fluororesin as a binder.

3.負極
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
3. Negative electrode The negative electrode active material used for the negative electrode is described below. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.

<負極活物質>
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Negative electrode active material>
Examples of the negative electrode active material include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like.
As a carbonaceous material used as a negative electrode active material,
(1) natural graphite,
(2) a carbonaceous material obtained by heat-treating an artificial carbonaceous material and an artificial graphite material at least once in the range of 400 to 3200 ° C;
(3) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different crystallinities and / or has an interface in contact with the different crystalline carbonaceous materials,
(4) A carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different orientations and / or has an interface in contact with the carbonaceous materials having different orientations,
Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics. Moreover, the carbonaceous materials (1) to (4) may be used alone or in combination of two or more in any combination and ratio.

上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。   Examples of the artificial carbonaceous material and artificial graphite material of (2) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, those obtained by oxidizing these pitches, needle coke, pitch coke and Carbon materials that are partially graphitized, furnace black, acetylene black, organic pyrolysis products such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable organic materials are benzene, toluene, xylene, quinoline And a solution dissolved in a low-molecular organic solvent such as n-hexane, and carbides thereof.

負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記する場合がある)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   As an alloy material used as the negative electrode active material, as long as lithium can be occluded / released, lithium alone, simple metals and alloys forming lithium alloys, or oxides, carbides, nitrides, silicides, sulfides thereof Any of compounds such as products or phosphides may be used and is not particularly limited. The single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably aluminum, silicon and tin (hereinafter referred to as “ Simple metals) and alloys or compounds containing these atoms (sometimes abbreviated as “specific metal elements”). These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質とし
てこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
As a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides. By using these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.

また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。   In addition, a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included. Specifically, for example, in silicon and tin, an alloy of these elements and a metal that does not operate as a negative electrode can be used. For example, in the case of tin, a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.

これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。   Among these negative electrode active materials, since the capacity per unit mass is large when a battery is formed, any one simple metal of a specific metal element, an alloy of two or more specific metal elements, oxidation of a specific metal element In particular, silicon and / or tin metal simple substance, alloy, oxide, carbide, nitride and the like are preferable from the viewpoint of capacity per unit mass and environmental load.

負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)である。即ちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。   The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter sometimes abbreviated as “lithium titanium composite oxide”). That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure in a negative electrode active material for a non-aqueous electrolyte battery because the output resistance is greatly reduced.

また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
上記金属酸化物が、一般式(A)で表されるリチウムチタン複合酸化物であり、一般式(A)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。
In addition, lithium or titanium of the lithium titanium composite oxide is at least selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Those substituted with one element are also preferred.
The metal oxide is a lithium titanium composite oxide represented by the general formula (A). In the general formula (A), 0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, It is preferable that 0 ≦ z ≦ 1.6 because the structure upon doping and dedoping of lithium ions is stable.

Lix Tiy z 4 ・・・(A)
[一般式(A)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(A)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
Li x Ti y M z O 4 (A)
[In general formula (A), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. ]
Among the compositions represented by the general formula (A),
(A) 1.2 ≦ x ≦ 1.4, 1.5 ≦ y ≦ 1.7, z = 0
(B) 0.9 ≦ x ≦ 1.1, 1.9 ≦ y ≦ 2.1, z = 0
(C) 0.7 ≦ x ≦ 0.9, 2.1 ≦ y ≦ 2.3, z = 0
This structure is particularly preferable because of a good balance of battery performance.

上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3 Ti5/34 、(b)ではLi1 Ti24 、(c)ではLi4/5 Ti11/54 である。また、Z≠0の構造については、例えば、Li4/3 Ti4/3 Al1/34 が好ましいものとして挙げられる。 Particularly preferred representative compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (a), Li 1 Ti 2 O 4 in (b), Li 4/5 Ti 11/5 O in (c). 4 . As for the structure of Z ≠ 0, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.

<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ましい。
(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によ
るX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
<Physical properties of carbonaceous materials>
When using a carbonaceous material as a negative electrode active material, it is desirable to have the following physical properties.
(X-ray parameters)
The d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of carbonaceous materials is preferably 0.335 nm or more, and is usually 0.360 nm or less. 350 nm or less is preferable, and 0.345 nm or less is more preferable. Further, the crystallite size (Lc) of the carbonaceous material obtained by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, and more preferably 1.5 nm or more.

(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
(Volume-based average particle size)
The volume-based average particle diameter of the carbonaceous material is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and 7 μm. The above is particularly preferable, and is usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less, and particularly preferably 25 μm or less.

体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20量体)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
If the volume-based average particle size is below the above range, the irreversible capacity may increase, leading to loss of initial battery capacity. On the other hand, when the above range is exceeded, when an electrode is produced by coating, an uneven coating surface tends to be formed, which may be undesirable in the battery production process.
The volume-based average particle size is measured by dispersing carbon powder in a 0.2% by weight aqueous solution (about 10 mL) of polyoxyethylene (20-mer) sorbitan monolaurate, which is a surfactant, and using a laser diffraction / scattering method. This is performed using a particle size distribution meter (LA-700, manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.

(ラマンR値、ラマン半値幅)
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
(Raman R value, Raman half width)
The Raman R value of the carbonaceous material is a value measured using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.

ラマンR値が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。特に、ラマンR値が0.1以上であると、負極表面に好適な被膜を形成し、これにより保存特性やサイクル特性、負荷特性を向上させることができる。   When the Raman R value is below the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge / discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. In particular, when the Raman R value is 0.1 or more, a suitable film can be formed on the surface of the negative electrode, whereby storage characteristics, cycle characteristics, and load characteristics can be improved.

一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、炭素質材料の1580cm-1付近のラマン半値幅は特に制限されないが、通常10cm-1以上であり、15cm-1以上が好ましく、また、通常100cm-1以下であり、80cm-1以下が好ましく、60cm-1以下がさらに好ましく、40cm-1以下が特に好ましい。
On the other hand, if it exceeds the above range, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the efficiency may be lowered and the gas generation may be increased.
Further, the Raman half-width in the vicinity of 1580 cm −1 of the carbonaceous material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and usually 100 cm −1 or less, and 80 cm −1 or less. Preferably, it is more preferably 60 cm −1 or less, particularly preferably 40 cm −1 or less.

ラマン半値幅が上記範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる場合がある。即ち、充電受入性が低下する場合がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。一方、上記範囲を上回ると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。   If the Raman half width is less than the above range, the crystallinity of the particle surface becomes too high, and there are cases where the number of sites where Li enters between layers decreases with charge and discharge. That is, charge acceptance may be reduced. In addition, when the negative electrode is densified by applying it to the current collector and then pressing it, the crystals are likely to be oriented in a direction parallel to the electrode plate, which may lead to a decrease in load characteristics. On the other hand, if it exceeds the above range, the crystallinity of the particle surface is lowered, the reactivity with the non-aqueous electrolyte is increased, and the efficiency may be lowered and the gas generation may be increased.

ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm-1付近のピークPA の強度IA と、1360cm-1付近のピークPB の強度IB とを測定し、その強度比R(R=IB /IA )を
算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm-1付近のピークPA の半値幅を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。
The measurement of the Raman spectrum, using a Raman spectrometer (manufactured by JASCO Corporation Raman spectrometer), the sample is naturally dropped into the measurement cell and filled, and while irradiating the sample surface in the cell with argon ion laser light, This is done by rotating the cell in a plane perpendicular to the laser beam. The resulting Raman spectrum, the intensity I A of the peak P A in the vicinity of 1580 cm -1, and measuring the intensity I B of a peak P B in the vicinity of 1360 cm -1, the intensity ratio R (R = I B / I A) Is calculated. The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material of the present invention. Further, the half width of the peak P A in the vicinity of 1580 cm -1 of the resulting Raman spectrum was measured, which is defined as the Raman half-value width of the carbonaceous material of the present invention.

また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm-1
・測定範囲 :1100cm-1〜1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
Moreover, said Raman measurement conditions are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, Raman half width analysis: Background processing ・ Smoothing processing: Simple average, 5 points of convolution

(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m2 ・g-1以上であり、0.7m2 ・g-1以上が好ましく、1.0m2 ・g-1以上がさらに好ましく、1.5m2 ・g-1以上が特に好ましく、また、通常100m2 ・g-1以下であり、25m2 ・g-1以下が好ましく、15m2 ・g-1以下がさらに好ましく、10m2 ・g-1以下が特に好ましい。
BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
(BET specific surface area)
BET specific surface area of the carbonaceous material is a value of the measured specific surface area using the BET method is usually 0.1 m 2 · g -1 or more, 0.7 m 2 · g -1 or more, 1. 0 m 2 · g -1 or more, and particularly preferably 1.5 m 2 · g -1 or more, generally not more than 100 m 2 · g -1, preferably 25 m 2 · g -1 or less, 15 m 2 · g −1 or less is more preferable, and 10 m 2 · g −1 or less is particularly preferable.
When the value of the BET specific surface area is less than this range, the acceptability of lithium is likely to deteriorate during charging when used as a negative electrode material, lithium is likely to precipitate on the electrode surface, and stability may be reduced. On the other hand, if it exceeds this range, when used as a negative electrode material, the reactivity with the non-aqueous electrolyte increases, gas generation tends to increase, and a preferable battery may be difficult to obtain.

BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明の炭素質材料のBET比表面積と定義する。   The specific surface area was measured by the BET method using a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under nitrogen flow, Using a nitrogen helium mixed gas accurately adjusted so that the value of the relative pressure becomes 0.3, the nitrogen adsorption BET one-point method by the gas flow method is used. The specific surface area determined by the measurement is defined as the BET specific surface area of the carbonaceous material of the present invention.

(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。高電流密度充放電特性は、円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、短時間高電流密度充放電特性が低下する場合がある。
(Roundness)
When the circularity is measured as the degree of the sphere of the carbonaceous material, it is preferably within the following range. The circularity is defined as “circularity = (peripheral length of an equivalent circle having the same area as the particle projection shape) / (actual perimeter of the particle projection shape)”, and is theoretical when the circularity is 1. Become a true sphere.
The circularity of the particles having a particle size of 3 to 40 μm in the range of the carbonaceous material is desirably closer to 1, and is preferably 0.1 or more, more preferably 0.5 or more, and more preferably 0.8 or more, 0.85 or more is more preferable, and 0.9 or more is particularly preferable. High current density charge / discharge characteristics improve as the degree of circularity increases. Therefore, when the circularity is less than the above range, the filling property of the negative electrode active material is lowered, the resistance between particles is increased, and the high current density charge / discharge characteristics may be lowered for a short time.

円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明の炭素質材料の円形度と定義する。   The circularity is measured using a flow type particle image analyzer (FPIA manufactured by Sysmex Corporation). About 0.2 g of a sample was dispersed in a 0.2% by mass aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant, and irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute. The detection range is specified as 0.6 to 400 μm, and the particle size is measured in the range of 3 to 40 μm. The circularity determined by the measurement is defined as the circularity of the carbonaceous material of the present invention.

円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては
、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
The method for improving the circularity is not particularly limited, but a sphere-shaped sphere is preferable because the shape of the interparticle void when the electrode body is formed is preferable. Examples of spheroidizing treatment include a method of mechanically approaching a sphere by applying a shearing force and a compressive force, a mechanical / physical processing method of granulating a plurality of fine particles by the binder or the adhesive force of the particles themselves, etc. Is mentioned.

(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm-3以上であり、0.5g・cm-3以上が好ましく、0.7g・cm-3以上がさらに好ましく、1g・cm-3以上が特に好ましく、また、2g・cm-3以下が好ましく、1.8g・cm-3以下がさらに好ましく、1.6g・cm-3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
(Tap density)
The tap density of the carbonaceous material is usually 0.1 g · cm −3 or more, preferably 0.5 g · cm −3 or more, more preferably 0.7 g · cm −3 or more, and 1 g · cm −3 or more. particularly preferred, and is preferably 2 g · cm -3 or less, more preferably 1.8 g · cm -3 or less, 1.6 g · cm -3 or less are particularly preferred. When the tap density is below the above range, the packing density is difficult to increase when used as a negative electrode, and a high-capacity battery may not be obtained. On the other hand, when the above range is exceeded, there are too few voids between particles in the electrode, it is difficult to ensure conductivity between the particles, and it may be difficult to obtain preferable battery characteristics.

タップ密度の測定は、目開き300μmの篩を通過させて、20cm3 のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の炭素質材料のタップ密度として定義する。 The tap density is measured by passing a sieve having a mesh opening of 300 μm, dropping the sample onto a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, manufactured by Seishin Enterprise Co., Ltd.). Using a tap denser, tapping with a stroke length of 10 mm is performed 1000 times, and the tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the carbonaceous material of the present invention.

(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
(Orientation ratio)
The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. When the orientation ratio is below the above range, the high-density charge / discharge characteristics may deteriorate. The upper limit of the above range is the theoretical upper limit value of the orientation ratio of the carbonaceous material.

配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m-2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。 The orientation ratio is measured by X-ray diffraction after pressure-molding the sample. Set the molded body obtained by filling 0.47 g of the sample into a molding machine with a diameter of 17 mm and compressing it with 58.8 MN · m -2 so that it is flush with the surface of the sample holder for measurement. X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, a ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material of the present invention.

X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degree / measurement range and step angle / measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees 1 degree / 60 seconds (004) plane: 52 degrees ≦ 2θ ≦ 57 degrees 1 degree / 60 seconds

(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質
材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明の炭素質材料のアスペクト比と定義する。
(Aspect ratio (powder))
The aspect ratio of the carbonaceous material is usually 1 or more and usually 10 or less, preferably 8 or less, and more preferably 5 or less. If the aspect ratio exceeds the above range, streaking or a uniform coated surface cannot be obtained when forming an electrode plate, and the high current density charge / discharge characteristics may deteriorate. The lower limit of the above range is the theoretical lower limit value of the aspect ratio of the carbonaceous material.
The aspect ratio is measured by magnifying and observing the carbonaceous material particles with a scanning electron microscope. Carbonaceous material particles when three-dimensional observation is performed by selecting arbitrary 50 graphite particles fixed to the end face of a metal having a thickness of 50 μm or less and rotating and tilting the stage on which the sample is fixed. The longest diameter A and the shortest diameter B orthogonal thereto are measured, and the average value of A / B is obtained. The aspect ratio (A / B) obtained by the measurement is defined as the aspect ratio of the carbonaceous material of the present invention.

<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
<Configuration and production method of negative electrode>
Any known method can be used for producing the electrode as long as the effects of the present invention are not significantly impaired. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do.
In the case of using an alloy-based material, a method of forming a thin film layer (negative electrode active material layer) containing the above-described negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.

(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
(Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.

また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
In addition, the shape of the current collector includes, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc. Among them, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector.
The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and is usually 100 μm or less, preferably 50 μm or less. This is because if the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely if it is too thin, handling may be difficult.

(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
(Thickness ratio between current collector and negative electrode active material layer)
The ratio of the thickness of the current collector to the negative electrode active material layer is not particularly limited, but the value of “(the thickness of the negative electrode active material layer on one side immediately before the nonaqueous electrolyte injection) / (thickness of the current collector)” However, 150 or less is preferable, 20 or less is more preferable, 10 or less is particularly preferable, 0.1 or more is preferable, 0.4 or more is more preferable, and 1 or more is particularly preferable. When the ratio of the thickness of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge / discharge. On the other hand, below the above range, the volume ratio of the current collector to the negative electrode active material increases, and the battery capacity may decrease.

(結着剤)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有
する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, Rubber polymers such as NBR (acrylonitrile / butadiene rubber) and ethylene / propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc. And a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions). These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.

負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。   The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is particularly preferable. When the ratio of the binder with respect to a negative electrode active material exceeds the said range, the binder ratio from which the amount of binders does not contribute to battery capacity may increase, and the fall of battery capacity may be caused. On the other hand, below the above range, the strength of the negative electrode may be reduced.

特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。   In particular, when a rubbery polymer typified by SBR is contained as a main component, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, and is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. When the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.

(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Slurry forming solvent)
The solvent for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary. Alternatively, either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
In particular, when an aqueous solvent is used, it is preferable to add a dispersant or the like in addition to the thickener and slurry it using a latex such as SBR. In addition, these solvents may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.

(増粘剤)
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Thickener)
A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.

さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。   Further, when using a thickener, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, Moreover, it is 5 mass% or less normally, 3 mass% or less is preferable, and 2 mass% or less is more preferable. When the ratio of the thickener to the negative electrode active material is less than the above range, applicability may be significantly reduced. Moreover, when it exceeds the said range, the ratio of the negative electrode active material which occupies for a negative electrode active material layer will fall, and the problem that the capacity | capacitance of a battery falls and the resistance between negative electrode active materials may increase.

(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ま
しく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
(Electrode density)
The electrode structure when the negative electrode active material is converted into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g · cm −3 or more, and 1.2 g · cm −3 or more. but more preferably, particularly preferably 1.3 g · cm -3 or more, preferably 2.2 g · cm -3 or less, more preferably 2.1 g · cm -3 or less, 2.0 g · cm -3 or less Further preferred is 1.9 g · cm −3 or less. When the density of the negative electrode active material existing on the current collector exceeds the above range, the negative electrode active material particles are destroyed, and the initial irreversible capacity increases or non-aqueous system near the current collector / negative electrode active material interface. There is a case where high current density charge / discharge characteristics are deteriorated due to a decrease in permeability of the electrolytic solution. On the other hand, if the amount is less than the above range, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume may decrease.

(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(Thickness of negative electrode plate)
The thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited. However, the thickness of the composite layer obtained by subtracting the thickness of the metal foil of the core is usually 15 μm or more, preferably 20 μm or more. More preferably, it is 30 μm or more, and usually 300 μm or less, preferably 280 μm or less, more preferably 250 μm or less.

(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(Surface coating of negative electrode plate)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said negative electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.

4.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
4). Positive electrode <positive electrode active material>
The positive electrode active material used for the positive electrode is described below.
(composition)
The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.

リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2 等のリチウム・コバルト複合酸化物、LiNiO2 等のリチウム・ニッケル複合酸化物、LiMnO2 、LiMn24
、Li2 MnO4 等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をNa、K、B、F、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の元素で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5 Mn0.52 、LiNi0.85Co0.10Al0.052 、LiNi0.33Co0.33Mn0.332 、LiNi0.45Co0.10Al0.452 、LiMn1.8 Al0.24 、LiMn1.5 Ni0.54 等が挙げられる。
The transition metal of the lithium transition metal composite oxide is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples include lithium / cobalt composite oxide such as LiCoO 2 or LiNiO 2 . Lithium / nickel composite oxide, LiMnO 2 , LiMn 2 O 4
, Li 2 MnO 4 and other lithium-manganese composite oxides, and some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Na, K, B, F, Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W, and the like. Specific examples of the substituted ones include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.45 Co 0.10 Al 0.45 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like.

リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO4 、Li3 Fe2 (PO43 、LiFeP27 等のリン酸鉄類、LiCoPO4 等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。 As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other elements.

また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好まし
い。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は前記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
In addition, it is preferable to include lithium phosphate in the positive electrode active material because continuous charge characteristics are improved. Although there is no restriction | limiting in the use of lithium phosphate, It is preferable to mix and use the said positive electrode active material and lithium phosphate. The lower limit of the amount of lithium phosphate used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably 0.5% by mass with respect to the total of the positive electrode active material and lithium phosphate. %, And the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 5% by mass or less.

(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Surface coating)
Moreover, you may use what the substance of the composition different from this adhered to the surface of the said positive electrode active material. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.

これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。   For example, these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried. After the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously. In addition, when making carbon adhere, the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.

表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものも「正極活物質」に含まれる。
The amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably, as the lower limit. Is used at 10% or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. If it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions.
In the present invention, the “positive electrode active material” includes a material having a composition different from the surface attached to the surface of the positive electrode active material.

(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
(shape)
Examples of the shape of the particles of the positive electrode active material include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape as conventionally used. Moreover, primary particles may aggregate to form secondary particles.

(タップ密度)
正極活物質のタップ密度は、好ましくは0.5g/cm3 以上、より好ましくは0.8g/cm3 以上、さらに好ましくは1.0g/cm3 以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm3 以下、より好ましくは3.7g/cm3 以下、さらに好ましくは3.5g/cm3 以下である。
なお、本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
(Tap density)
The tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and further preferably 1.0 g / cm 3 or more. If the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of conductive material and binder increases, so that the positive electrode to the positive electrode active material layer The filling rate of the active material is restricted, and the battery capacity may be restricted. By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, and there is no particular upper limit, but if it is too large, diffusion of lithium ions using the electrolytic solution in the positive electrode active material layer as a medium is rate-limiting, and load characteristics may be easily reduced. The upper limit is preferably 4.0 g / cm 3 or less, more preferably 3.7 g / cm 3 or less, and still more preferably 3.5 g / cm 3 or less.
In the present invention, the tap density is defined as the powder packing density (tap density) g / cc when 5 to 10 g of the positive electrode active material powder is put in a 10 ml glass measuring cylinder and tapped 200 times with a stroke of about 20 mm. Ask.

(メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、上限は、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
(Median diameter d 50 )
The median diameter d 50 of the positive electrode active material particles (secondary particle diameter when the primary particles are aggregated to form secondary particles) is preferably 0.3 μm or more, more preferably 0.5 μm or more, The upper limit is preferably 30 μm or less, more preferably 27 μm or less, still more preferably 25 μm or less, and most preferably 22 μm or less. If the lower limit is not reached, a high tap density product may not be obtained. If the upper limit is exceeded, it takes time to diffuse lithium in the particles, so that the battery performance may be lowered, or the positive electrode of the battery, that is, the active material When a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur. Here, by mixing two or more kinds of the positive electrode active materials having different median diameters d 50 , the filling property at the time of forming the positive electrode can be further improved.
In the present invention, the median diameter d 50 is measured by a known laser diffraction / scattering particle size distribution measuring apparatus. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.

(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(Average primary particle size)
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is preferably 0.05 μm or more, more preferably 0.1 μm or more, and still more preferably 0.8 μm. The upper limit is preferably 5 μm or less, more preferably 4 μm or less, still more preferably 3 μm or less, and most preferably 2 μm or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
In the present invention, the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.

(BET比表面積)
正極活物質のBET比表面積は、好ましくは0.1m2 /g以上、より好ましくは0.2m2 /g以上、さらに好ましくは0.3m2 /g以上であり、上限は50m2 /g以下、好ましくは40m2 /g以下、さらに好ましくは30m2 /g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
(BET specific surface area)
The BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, still more preferably 0.3 m 2 / g or more, and the upper limit is 50 m 2 / g or less. , Preferably 40 m 2 / g or less, more preferably 30 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered. If the BET specific surface area is larger, the tap density is difficult to increase, and a problem may occur in applicability when forming the positive electrode active material layer.
In the present invention, the BET specific surface area is determined by using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 150 ° C. for 30 minutes under nitrogen flow, and then atmospheric pressure. This is defined as a value measured by a nitrogen adsorption BET one-point method using a gas flow method, using a nitrogen-helium mixed gas accurately adjusted so that the value of the relative pressure of nitrogen to 0.3 is 0.3.

(正極活物質の製造法)
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2 CO3 、LiNO3 等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
(Method for producing positive electrode active material)
As a manufacturing method of the positive electrode active material, a general method is used as a manufacturing method of the inorganic compound. In particular, various methods are conceivable for preparing a spherical or elliptical active material. For example, a transition metal source material is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring. And a spherical precursor is prepared and recovered, and after drying as necessary, a Li source such as LiOH, Li 2 CO 3 , LiNO 3 and the like is added and fired at a high temperature to obtain an active material. .

正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の1種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとして
は、LiCoO2 とLiNi0.33Co0.33Mn0.332 などのLiMn24 若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO2 若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
For the production of the positive electrode, the positive electrode active material may be used alone, or one or more of different compositions may be used in any combination or ratio. A preferable combination in this case is a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal or the like, or LiCoO 2 or The combination with what substituted a part of Co with other transition metals etc. is mentioned.

<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
<Configuration and manufacturing method of positive electrode>
The structure of the positive electrode will be described below. In the present invention, the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are liquid media A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.

正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。   The content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 99 mass% or less, More preferably, it is 98 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.

塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3 以上、より好ましくは2g/cm3 、さらに好ましくは2.2g/cm3 以上であり、上限としては、好ましくは5g/cm3 以下、より好ましくは4.5g/cm3 以下、さらに好ましくは4g/cm3 以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。 The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. The density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more as a lower limit, more preferably 2 g / cm 3 , further preferably 2.2 g / cm 3 or more, and preferably 5 g / cm 3 as an upper limit. It is 3 or less, more preferably 4.5 g / cm 3 or less, and further preferably 4 g / cm 3 or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and high output may not be obtained.

(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(Conductive material)
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.

(結着剤)
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン
、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of the coating method, any material that can be dissolved or dispersed in the liquid medium used during electrode production may be used. Resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber , Rubber polymers such as butadiene rubber and ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Ethylene copolymer, styrene Thermoplastic elastomeric polymer such as isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Soft resinous polymers such as polymers; Fluoropolymers such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers; alkali metal ions (especially lithium ions) And a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。   The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 1.5% by mass or more, and the upper limit is usually 80% by mass or less, preferably Is 60% by mass or less, more preferably 40% by mass or less, and most preferably 10% by mass or less. When the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.

(スラリー形成溶媒)
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
(Slurry forming solvent)
As the solvent for forming the slurry, the positive electrode active material, the conductive material, the binder, and a solvent capable of dissolving or dispersing the thickener used as necessary may be used. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.

特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。   In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more. The upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.

(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
(Current collector)
The material of the positive electrode current collector is not particularly limited, and a known material can be arbitrarily used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.

集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。な
お、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. Although the thickness of the thin film is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.

また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
Moreover, it is also preferable from the viewpoint of reducing the electronic contact resistance between the current collector and the positive electrode active material layer that a conductive additive is applied to the surface of the current collector. Examples of the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
The ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20 The lower limit is preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the positive electrode active material increases and the battery capacity may decrease.

(電極面積)
本発明の非水系電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(Electrode area)
When using the non-aqueous electrolyte of the present invention, it is preferable that the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature. Specifically, the sum of the electrode areas of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 15 times or more, and more preferably 40 times or more. The outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. . In the case of a bottomed cylindrical shape, the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder. The total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.

(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(Thickness of positive plate)
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is preferably as a lower limit with respect to one side of the current collector. Is 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 500 μm or less, more preferably 450 μm or less.

(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Positive electrode surface coating)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said positive electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.

5.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
5. Battery design <electrode group>
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .

電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。   When the electrode group occupancy is below the above range, the battery capacity decreases. In addition, if the above range is exceeded, there is less void space, the battery expands, and the member expands or the vapor pressure of the liquid component of the electrolyte increases and the internal pressure rises, and the charge / discharge cycle performance as a battery In some cases, the gas release valve that lowers various characteristics such as storage at high temperature and the like, or releases the internal pressure to the outside is activated.

<集電構造>
集電構造は、特に制限されないが、本発明の非水系電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
<Current collection structure>
The current collecting structure is not particularly limited, but in order to more effectively realize the high current density charge / discharge characteristics by the non-aqueous electrolyte solution of the present invention, a structure that reduces the resistance of the wiring part and the joint part is used. It is preferable. Thus, when internal resistance is reduced, the effect of using the non-aqueous electrolyte solution of this invention is exhibited especially favorable.

電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。   When the electrode group has the above-described laminated structure, a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used. When the area of one electrode increases, the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. When the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.

<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
<Exterior case>
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.

金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。   In an exterior case using metals, the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things. Examples of the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.

<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(PositiveTemperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<Protective element>
As a protective element, PTC (Positive Temperature Coefficient) whose resistance increases when abnormal heat generation or excessive current flows, temperature fuse, thermistor, shuts off the current flowing through the circuit due to sudden increase in battery internal pressure or internal temperature at abnormal heat generation A valve (current cutoff valve) or the like can be used. It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable that the protective element is designed so as not to cause abnormal heat generation or thermal runaway even without the protective element.

<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
<Exterior body>
The non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body. This exterior body is not particularly limited, and any known one can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.

また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大
型等のいずれであってもよい。
The shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

6.電池性能
本発明の非水系電解液二次電池は、特に制限なく用いることができるが、好ましくは高電圧化や高容量化された電池に用いることができる。
6). Battery Performance The non-aqueous electrolyte secondary battery of the present invention can be used without particular limitation, but can be preferably used for a battery having a high voltage or a high capacity.

高電圧化とは、例えばリチウムイオン二次電池の場合、通常4.25V以上、好ましくは4.3以上である。
また、高容量化とは、例えば18650型電池の場合、通常2600mAh以上、好ましくは2800mAh以上、より好ましくは、3000mAh以上である。
For example, in the case of a lithium ion secondary battery, the increase in voltage is usually 4.25 V or more, preferably 4.3 or more.
The increase in capacity is usually 2600 mAh or more, preferably 2800 mAh or more, more preferably 3000 mAh or more in the case of an 18650 type battery, for example.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

[一般式(1)で表される化合物の合成]
[3−エチニル−2,5−ジオキサヘキサン二酸ジメチル(EDOHM)の合成]

Figure 0006221201
窒素気流下、ジクロロメタンに文献記載の方法で得られる1,2−ジヒドロキシ−3−ブチン(非特許文献1)を溶解し、ピリジンを添加して撹拌した。氷冷下でクロロギ酸メチルを滴下した。4時間撹拌後、水を加えて反応を停止し、室温で一晩静置した。この反応終了液をジクロロメタンで5回抽出し、混合した有機層を希塩酸、水、重曹水、水、食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧条件で溶媒を留去し、得られた残渣を減圧蒸留(3mmH、沸点:104℃)にて精製し、無色油状の化合物Iを得た。 [Synthesis of Compound Represented by General Formula (1)]
[Synthesis of 3-ethynyl-2,5-dioxahexanedioic acid dimethyl (EDOHM)]
Figure 0006221201
Under a nitrogen stream, 1,2-dihydroxy-3-butyne (Non-patent Document 1) obtained by the method described in the literature was dissolved in dichloromethane, and pyridine was added and stirred. Methyl chloroformate was added dropwise under ice cooling. After stirring for 4 hours, water was added to stop the reaction, and the mixture was allowed to stand at room temperature overnight. This reaction-terminated liquid was extracted five times with dichloromethane, and the combined organic layer was washed successively with dilute hydrochloric acid, water, aqueous sodium bicarbonate, water and brine, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by distillation under reduced pressure (3 mmH g , boiling point: 104 ° C.) to obtain Compound I as a colorless oil.

Figure 0006221201
Figure 0006221201

[実施例A]
[負極の作製]
炭素質材料98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例1及び比較例1〜3に用いる負極とした。
[Example A]
[Production of negative electrode]
98 parts by mass of a carbonaceous material, 100 parts by mass of an aqueous dispersion of sodium carboxymethylcellulose (concentration of 1% by mass of carboxymethylcellulose sodium) and an aqueous dispersion of styrene-butadiene rubber (styrene-butadiene, respectively) as a thickener and a binder 1 part by mass of rubber concentration 50 mass%) was added and mixed with a disperser to form a slurry. The obtained slurry was applied to a copper foil having a thickness of 10 μm, dried, and rolled with a press. The active material layer was 30 mm wide, 40 mm long, 5 mm wide, and 9 mm long uncoated. It cut out into the shape which has a part, and it was set as the negative electrode used for Example 1 and Comparative Examples 1-3, respectively.

[正極の作製]
正極活物質としてLiNi1/3Mn1/3Co1/32 を90質量%と、導電材としてのア
セチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例1及び比較例1〜3に用いる正極とした。
[Production of positive electrode]
90% by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride (PVdF) as a binder Were slurried by mixing in N-methylpyrrolidone solvent. The obtained slurry was applied to an aluminum foil having a thickness of 15 μm, dried, and rolled with a press. The active material layer was 30 mm in width, 40 mm in length, 5 mm in width, and 9 mm in length. It cut out into the shape which has a process part, and it was set as the positive electrode used for Example 1 and Comparative Examples 1-3, respectively.

[電解液の製造]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合物(体積比30:30:40)に乾燥したLiPF6 を1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表2に記載の割合で化合物を混合し、それぞれ実施例1及び比較例1〜3に用いる電解液とした。
[Manufacture of electrolyte]
In a dry argon atmosphere, LiPF 6 dried in a mixture (volume ratio 30:30:40) of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) was adjusted to a ratio of 1 mol / L. A basic electrolyte solution was prepared by dissolution. The basic electrolyte solution was mixed with the compounds described in Table 2 to obtain electrolyte solutions used in Example 1 and Comparative Examples 1 to 3, respectively.

[リチウム二次電池の製造]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表2に記載の化合物を混合した電解液をそれぞれ袋内に注入し、真空封止を行い、シート状電池を作製し、それぞれ実施例1及び比較例1〜3に用いる電池とした。
[Manufacture of lithium secondary batteries]
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element. The battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were coated with a resin layer while projecting positive and negative terminals, and then an electrolytic solution in which the compounds shown in Table 2 were mixed Each was injected into a bag, vacuum-sealed, and a sheet-like battery was produced, and batteries used in Example 1 and Comparative Examples 1 to 3 were obtained.

[慣らし運転]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、2Cとはその2倍の電流値を、また0.2Cとはその1/5の電流値を表す。
[Run-in operation]
The lithium secondary battery was conditioned with a constant current corresponding to 0.2 C at 25 ° C. in a state of being sandwiched between glass plates in order to improve the adhesion between the electrodes. Here, 1C represents a current value that discharges the reference capacity of the battery in one hour, 2C represents a current value that is twice that, and 0.2C represents a current value that is 1/5 of the current value.

[サイクル特性の評価]
慣らし運転が完了した電池を、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、500サイクル実施した。(500サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。評価結果を表2に示す。
[Evaluation of cycle characteristics]
The battery that had been subjected to the running-in operation was charged at a constant current of 2C at 60 ° C. and then discharged at a constant current of 2C. The discharge capacity retention rate was determined from the formula of (discharge capacity at 500th cycle) ÷ (discharge capacity at the first cycle) × 100. The evaluation results are shown in Table 2.

Figure 0006221201
Figure 0006221201

[実施例B]
[負極の作製]
実施例1及び比較例1〜3に用いる負極と同様の方法で作製し、それぞれ実施例2及び比較例4〜6に用いる負極とした。
[Example B]
[Production of negative electrode]
A negative electrode used in Example 2 and Comparative Examples 4 to 6 was prepared in the same manner as the negative electrode used in Example 1 and Comparative Examples 1 to 3, respectively.

[正極の作製]
正極活物質としてLi(Ni0.45Mn0.45Co0.1)O2 を90質量%と、導電材とし
てのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、活物質層のサイズとして幅30mm、長さ40mm、及び幅5mm、長さ9mmの未塗工部を有する形状に切り出し、それぞれ実施例2及び比較例4〜6に用いる正極とした。
[Production of positive electrode]
90% by mass of Li (Ni 0.45 Mn 0.45 Co 0.1 ) O 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and 5% by mass of polyvinylidene fluoride (PVdF) as a binder, -Mixed in a methylpyrrolidone solvent and slurried. The obtained slurry was applied to a 15 μm-thick aluminum foil previously coated with a conductive additive, dried, and rolled with a press machine. The active material layer size was 30 mm wide, 40 mm long, and 5 mm wide. The positive electrode used in Example 2 and Comparative Examples 4 to 6 was cut into a shape having an uncoated part with a length of 9 mm.

[電解液の製造]
実施例1及び比較例1〜3で用いた基本電解液に、表3に記載の割合で化合物を混合し、それぞれ実施例2及び比較例4〜6に用いる電解液とした。
[Manufacture of electrolyte]
The basic electrolytes used in Example 1 and Comparative Examples 1 to 3 were mixed with the compounds shown in Table 3 to obtain electrolytes used in Example 2 and Comparative Examples 4 to 6, respectively.

[リチウム二次電池の製造]
上記負極、正極並びに上記電解液を使用した以外、実施例1及び比較例1〜3と同様にしてシート状電池を作製し、それぞれ実施例2及び比較例4〜6に用いる電池とした。
[Manufacture of lithium secondary batteries]
Except using the said negative electrode, a positive electrode, and the said electrolyte solution, the sheet-like battery was produced like Example 1 and Comparative Examples 1-3, and it was set as the battery used for Example 2 and Comparative Examples 4-6, respectively.

[慣らし運転]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。
[Run-in operation]
The lithium secondary battery was conditioned with a constant current corresponding to 0.2 C at 25 ° C. in a state of being sandwiched between glass plates in order to improve the adhesion between the electrodes.

[サイクル特性の評価]
慣らし運転が完了した電池を、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(300サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。評価結果を表3に示す。
[Evaluation of cycle characteristics]
The battery that had been subjected to the running-in operation was charged at a constant current of 2C at 60 ° C. and then discharged at a constant current of 2C, and 300 cycles were performed. The discharge capacity retention ratio was calculated from the formula of (discharge capacity at 300th cycle) ÷ (discharge capacity at the first cycle) × 100. The evaluation results are shown in Table 3.

Figure 0006221201
Figure 0006221201

表2および表3から明らかなように、本発明に係る非水系電解液電池(実施例1、2)は放電容量維持率に優れる。このような高い放電容量維持率は、一般式(1)で表される化合物の構造を有する点に起因しており、例えば、実施例1及び2のように炭素−炭素三重結合を有する場合であっても、一般式(1)で表される化合物の構造ではない場合は容量維持率は低い結果となる(比較例3及び比較例6)。また、炭素−炭素不飽和結合が結合していないエチレンジオールジカーボネートを用いても、容量維持率が低い結果となる(比較例2)。以上の事実は、一般式(1)で表される化合物の構造が極めて重要であることを示しており、一般式(1)で表される化合物は、反応性に富む炭素−炭素三重結合を有すること、炭素−炭素三重結合に隣接した炭素が三級炭素であり、一種の共鳴構造により比較的酸性度が高いこと、エステル基を二つ有すること等により、電極表面において前記一般式(1)で表される化合物が含まれる保護被膜が高度に発達する。これにより、上記以外の電解液成分による副分解反応が抑制されることで、特に電池のサイクル・保存等の耐久特性が改善された非水系電解液電池が提供されると推測される。   As is clear from Tables 2 and 3, the nonaqueous electrolyte batteries (Examples 1 and 2) according to the present invention are excellent in discharge capacity retention rate. Such a high discharge capacity retention rate is attributed to the structure of the compound represented by the general formula (1). For example, in the case of having a carbon-carbon triple bond as in Examples 1 and 2. Even if it is not the structure of the compound represented by the general formula (1), the capacity retention rate is low (Comparative Example 3 and Comparative Example 6). Moreover, even if it uses ethylene diol dicarbonate which the carbon-carbon unsaturated bond has not couple | bonded, it will be a result with a low capacity | capacitance maintenance factor (comparative example 2). The above facts show that the structure of the compound represented by the general formula (1) is extremely important, and the compound represented by the general formula (1) has a highly reactive carbon-carbon triple bond. The carbon adjacent to the carbon-carbon triple bond is a tertiary carbon, has a relatively high acidity due to a kind of resonance structure, and has two ester groups. The protective coating containing the compound represented by) is highly developed. Thus, it is presumed that a non-aqueous electrolyte battery having improved durability characteristics such as cycle and storage of the battery is provided by suppressing the side decomposition reaction caused by the electrolyte components other than those described above.

本発明の非水系電解液によれば、非水系電解液二次電池の耐久特性を高度に改善できるために極めて有用である。そのため、本発明の非水系電解液及びこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。   The non-aqueous electrolyte solution of the present invention is extremely useful because the durability characteristics of the non-aqueous electrolyte secondary battery can be improved to a high degree. Therefore, the non-aqueous electrolyte solution of the present invention and the non-non-aqueous electrolyte secondary battery using the same can be used for various known applications. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, etc. , Walkie Talkie, Electronic Notebook, Calculator, Memory Card, Portable Tape Recorder, Radio, Backup Power Supply, Motor, Automobile, Motorcycle, Motorbike, Bicycle, Lighting Equipment, Toy, Game Equipment, Clock, Electric Tool, Strobe, Camera, Load Examples include leveling power sources and natural energy storage power sources.

Claims (5)

リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液であって、前記非水系電解液が下記一般式()で表される3−ブチン−1,2−ジオール誘導体であることを特徴とする、非水系電解液。
Figure 0006221201

(上記一般式()中、 、X はそれぞれ下記一般式で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。
Figure 0006221201
A non-aqueous electrolyte solution comprising a lithium salt and a non-aqueous solvent for dissolving the lithium salt, wherein the non-aqueous electrolyte solution is a 3-butyne-1,2-diol derivative represented by the following general formula ( 4 ) A non-aqueous electrolyte solution characterized by being.
Figure 0006221201

(In the above general formula ( 4 ), X 1 and X 2 are any groups represented by the following general formula, and each R may be the same or different and has a heteroatom. An organic group having 1 to 20 carbon atoms which may be present.
Figure 0006221201
前記一般式(4)で表される3−ブチン−1,2−ジオール誘導体が、少なくとも下記一般式(5)〜(8)で表される化合物の何れか一つであることを特徴とする、請求項に記載の非水系電解液。
Figure 0006221201

Figure 0006221201

Figure 0006221201

Figure 0006221201
The 3-butyne-1,2-diol derivative represented by the general formula (4) is at least one of the compounds represented by the following general formulas (5) to (8). The non-aqueous electrolyte solution according to claim 1 .
Figure 0006221201

Figure 0006221201

Figure 0006221201

Figure 0006221201
非水系電解液中に前記一般式()で表される化合物が0.01〜5.0質量%含有されていることを特徴とする、請求項1又は2に記載の非水系電解液。 The non-aqueous electrolyte solution according to claim 1 or 2 , wherein the non-aqueous electrolyte solution contains 0.01 to 5.0 mass% of the compound represented by the general formula ( 4 ). リチウムイオンを吸蔵放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液電池であって、前記非水系電解液が請求項1乃至の何れか1項に記載の非水系電解液であることを特徴とする、非水系電解液電池。 Negative and positive lithium ions capable of occluding and releasing, as well as non-aqueous electrolyte A nonaqueous electrolyte battery comprising a nonaqueous electrolytic solution according to any one of the nonaqueous electrolytic solution according to claim 1 to 3 A non-aqueous electrolyte battery characterized by the above. 下記一般式()で表される化合物。
Figure 0006221201

(上記一般式()中、 、X はそれぞれ下記一般式で表される何れかの基であって、Rはそれぞれ同一であっても異なっていてもよく、ヘテロ原子を有していてもよい炭素数1〜20の有機基を示す。
Figure 0006221201

The compound represented by the following general formula ( 4 ).
Figure 0006221201

(In the above general formula ( 4 ), X 1 and X 2 are any groups represented by the following general formula, and each R may be the same or different and has a heteroatom. An organic group having 1 to 20 carbon atoms which may be present.
Figure 0006221201

JP2011253224A 2011-11-18 2011-11-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery Active JP6221201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253224A JP6221201B2 (en) 2011-11-18 2011-11-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253224A JP6221201B2 (en) 2011-11-18 2011-11-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2013109930A JP2013109930A (en) 2013-06-06
JP2013109930A5 JP2013109930A5 (en) 2014-12-25
JP6221201B2 true JP6221201B2 (en) 2017-11-01

Family

ID=48706505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253224A Active JP6221201B2 (en) 2011-11-18 2011-11-18 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6221201B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031316A1 (en) * 2014-08-25 2016-03-03 宇部興産株式会社 Non-aqueous liquid electrolyte, electricity storage device using same, and phosphorus compound used therein
JP7207555B2 (en) * 2019-09-04 2023-01-18 株式会社村田製作所 Electrolyte for secondary battery and secondary battery
CN112768773A (en) * 2021-03-15 2021-05-07 蜂巢能源科技有限公司 Electrolyte and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265171B2 (en) * 2002-08-21 2009-05-20 日本電気株式会社 Secondary battery
JP5201364B2 (en) * 2009-10-13 2013-06-05 ソニー株式会社 Secondary battery electrolyte and secondary battery
WO2012067248A1 (en) * 2010-11-19 2012-05-24 三菱化学株式会社 Process for producing 4-alkynyl-1,3-dioxolan-2-one derivative

Also Published As

Publication number Publication date
JP2013109930A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP6485485B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6555400B2 (en) Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP6187566B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2012035821A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP6222090B2 (en) Non-aqueous electrolyte secondary battery and method of using the same
JP6555407B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP2014086221A (en) Nonaqueous electrolyte secondary battery
JP6031868B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2014017250A (en) Nonaqueous electrolyte secondary battery and method for using the same
JP5948756B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5664056B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6221201B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5857434B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5948755B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP5760665B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6003036B2 (en) Non-aqueous electrolyte secondary battery
JP5760809B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2012089413A (en) Nonaqueous electrolyte battery
JP2012089412A (en) Sealed nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350