JP6220250B2 - LED light emitting device - Google Patents

LED light emitting device Download PDF

Info

Publication number
JP6220250B2
JP6220250B2 JP2013254648A JP2013254648A JP6220250B2 JP 6220250 B2 JP6220250 B2 JP 6220250B2 JP 2013254648 A JP2013254648 A JP 2013254648A JP 2013254648 A JP2013254648 A JP 2013254648A JP 6220250 B2 JP6220250 B2 JP 6220250B2
Authority
JP
Japan
Prior art keywords
light
led
emitting device
light emitting
transparent cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254648A
Other languages
Japanese (ja)
Other versions
JP2015115380A (en
Inventor
宮下 純司
純司 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2013254648A priority Critical patent/JP6220250B2/en
Publication of JP2015115380A publication Critical patent/JP2015115380A/en
Application granted granted Critical
Publication of JP6220250B2 publication Critical patent/JP6220250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、複数のLEDを実装したLEDモジュールと、上部開口を有する反射部材を備えたLED発光装置に関し、特に上部開口を有する反射部材が低くても指向性が良好なLED発光装置に関する。   The present invention relates to an LED light emitting device including an LED module on which a plurality of LEDs are mounted and a reflecting member having an upper opening, and more particularly to an LED light emitting device having good directivity even if the reflecting member having an upper opening is low.

近年、LEDは半導体素子であるため、長寿命で優れた駆動特性を有し、さらに小型で発光効率が良く、鮮やかな発光色を有することから、カラー表示装置のバックライトや照明等に広く利用されるようになってきた。   In recent years, since LEDs are semiconductor elements, they have long life and excellent driving characteristics, and are small, have high luminous efficiency, and have bright emission colors, so they are widely used for backlights and lighting of color display devices. It has come to be.

特に近年、スポットライトのような発光装置として、放物面鏡等の上部開口を有する反射部材に多数のLEDを実装したLEDモジュールを組み合わせて平行光線群を得るLED発光装置が望まれている。   Particularly in recent years, as a light emitting device such as a spotlight, there has been a demand for an LED light emitting device that obtains a parallel light beam group by combining an LED module in which a number of LEDs are mounted on a reflecting member having an upper opening such as a parabolic mirror.

放物面鏡の焦点位置に点光源を配置すれば平行光線群が得られる。しかしながら、ふつうLEDモジュールは有限な発光面積を有する面光源となり、さらに放物面鏡は有限の高さとなる。この結果、たとえこのLEDモジュールの中心が放物面鏡の焦点に配置されていても、光源としてのLEDモジュールが平面的な広がりを有すること、及び放物面鏡の高さが制限されることによって、平行光線群を得ることが出来ない。   If a point light source is arranged at the focal position of the parabolic mirror, a parallel light beam group is obtained. However, the LED module usually becomes a surface light source having a finite light emitting area, and the parabolic mirror has a finite height. As a result, even if the center of the LED module is arranged at the focal point of the parabolic mirror, the LED module as the light source has a planar spread and the height of the parabolic mirror is limited. Therefore, it is impossible to obtain a parallel light beam group.

この様子について図12、図13により、光源及び反射部材の形状と放射光の関係を説明する。図12は放物面鏡50の焦点fに点光源101を配置したLED発光装置100の断面図である。図12に示す如くLED発光装置100の点光源101からあらゆる方向に出射された光線P0は、放物面鏡50で反射し全て上方へ向かう。すなわちLED発光装置100により集光性の高い平行光線群を得ることが出来る。なお一部の光線P0は放物面鏡50に当たらず斜め上方に進行する。   With respect to this state, the relationship between the shapes of the light source and the reflecting member and the emitted light will be described with reference to FIGS. FIG. 12 is a cross-sectional view of the LED light emitting device 100 in which the point light source 101 is disposed at the focal point f of the parabolic mirror 50. As shown in FIG. 12, the light rays P0 emitted from the point light source 101 of the LED light emitting device 100 in all directions are reflected by the parabolic mirror 50 and all go upward. That is, the LED light emitting device 100 can obtain a group of parallel light rays with high light collecting properties. A part of the light rays P0 does not hit the parabolic mirror 50 and travels obliquely upward.

次に図13により放物面鏡50の焦点fに2次元的に広がる面光源を配置したLED発光装置110について説明する。図13は、放物面鏡50の焦点fの位置に複数のLEDを実装した面光源102(LEDモジュール)を配置したLED発光装置110の断面図である。面光源102の左端から出射する光線P1、中央から出射する光線P2、右端から出射する光線P3は、それぞれ放物面鏡50で反射し異なる角度で上方へ向かう。つまり平面的に広がる面光源102から出射する光線P1、P2、P3は、放物面鏡50で反射したあと非平行な光線群となる。同様に放物面鏡50の他の部分で反射する光線P4、P5、P6も非平行な光線群となる。さらに図13では、放物面鏡50の高さが有限であるため、破線で示した光線Poの如く放物面鏡50で反射することなく外部に放散してしまうものもある。   Next, an LED light emitting device 110 in which a surface light source that extends two-dimensionally at the focal point f of the parabolic mirror 50 will be described with reference to FIG. FIG. 13 is a cross-sectional view of the LED light emitting device 110 in which the surface light source 102 (LED module) in which a plurality of LEDs are mounted is disposed at the focal point f of the parabolic mirror 50. A light ray P1 emitted from the left end of the surface light source 102, a light ray P2 emitted from the center, and a light ray P3 emitted from the right end are respectively reflected by the parabolic mirror 50 and directed upward at different angles. That is, the light rays P1, P2, and P3 emitted from the planar light source 102 spreading in a plane form a non-parallel light ray group after being reflected by the parabolic mirror 50. Similarly, the light rays P4, P5, and P6 reflected by other portions of the parabolic mirror 50 are also non-parallel light ray groups. Further, in FIG. 13, since the height of the parabolic mirror 50 is finite, there are some rays that are diffused to the outside without being reflected by the parabolic mirror 50, such as a light beam Po indicated by a broken line.

非平行光線群を生ずるLED発光装置110に対し、面状に広がった光源から得た光線をいったん放物面鏡の焦点に集光することにより、平行光線群を得る発光装置がいくつか提案されている。(例えば特許文献1(図15)、特許文献2(図2))   Some LED light emitting devices 110 that generate non-parallel light groups have been proposed in which light beams obtained from a light source spread in a planar shape are once collected at the focal point of a parabolic mirror to obtain parallel light groups. ing. (For example, Patent Document 1 (FIG. 15), Patent Document 2 (FIG. 2))

以下特許文献1の図15に記載された発光装置の構成を図14により説明する。図14は特許文献1の図15に記載された発光装置の趣旨を逸脱しないようにして書き直した発光装置200の断面図である。図14に示す発光装置200は、底部に開口50aを有する放物面鏡50と、放物面鏡50の開口50aに挿入された円錐状の導光部材60と、導光部材60の入力面側に配置された複数のレーザー発光素子201a、201b、201cを有する面光源201と、導光部材60の頂部に設けられた光散乱体70とよりなる。この光散乱体70は放物面鏡50の焦点fの位置に設けられている。   Hereinafter, the configuration of the light-emitting device described in FIG. 15 of Patent Document 1 will be described with reference to FIG. FIG. 14 is a cross-sectional view of the light-emitting device 200 rewritten without departing from the spirit of the light-emitting device described in FIG. A light emitting device 200 shown in FIG. 14 includes a parabolic mirror 50 having an opening 50 a at the bottom, a conical light guide member 60 inserted into the opening 50 a of the parabolic mirror 50, and an input surface of the light guide member 60. It comprises a surface light source 201 having a plurality of laser light emitting elements 201 a, 201 b, 201 c arranged on the side, and a light scatterer 70 provided on the top of the light guide member 60. This light scatterer 70 is provided at the position of the focal point f of the parabolic mirror 50.

発光装置200の面光源201に含まれる発光素子は、それぞれの発光色が異なるレーザー発光素子201a、201b、201cである。レーザー発光素子201a、201b、201cから出射した光線は導光部材60の内部において全反射を繰り返しながら伝搬し光散乱体70に入射する。光散乱体70では入射した光線が散乱し、このとき同時に混色する。この散乱体70は放物面鏡50の焦点fの位置に設けられているため、散乱体70から放射状に放射される光線群は放物面鏡50で反射し平行光線群となる。なお一部の光線Poは放物面鏡50に当たらず斜め上方に進行する。   The light emitting elements included in the surface light source 201 of the light emitting device 200 are laser light emitting elements 201a, 201b, and 201c having different emission colors. The light beams emitted from the laser light emitting elements 201 a, 201 b, and 201 c propagate while repeating total reflection inside the light guide member 60 and enter the light scatterer 70. In the light scatterer 70, the incident light beam is scattered and mixed at the same time. Since the scatterer 70 is provided at the position of the focal point f of the parabolic mirror 50, the light beam radiated from the scatterer 70 is reflected by the parabolic mirror 50 to become a parallel light beam group. A part of the light beam Po does not hit the parabolic mirror 50 and travels obliquely upward.

同様に特許文献2の図2には、面状に広がる光源から出射する光線を、頂点が放物面鏡の焦点にある円錐状の導光部材で放物面鏡の焦点に導光し、その光線から平行光線群を得る発光装置が示されている。   Similarly, in FIG. 2 of Patent Document 2, a light beam emitted from a light source spreading in a planar shape is guided to the focal point of the parabolic mirror with a conical light guide member whose apex is at the focal point of the parabolic mirror, A light emitting device is shown that obtains a group of parallel rays from the rays.

特開2011−65979号公報(図15)Japanese Patent Laying-Open No. 2011-65979 (FIG. 15) 特開2005−38605号公報(図2)Japanese Patent Laying-Open No. 2005-38605 (FIG. 2)

上記特許文献1及び特許文献2に記載された発光装置のように放物面鏡の焦点で光線をいったん収束させてから平行光線群を得る方法では、放物面鏡(反射部材)の高さを十分に大きくしなければならない。これに対し放物面鏡が浅い場合、焦点から上方斜め方向に進む光線のうち多くの部分が放物面で反射せず、そのまま上方斜め方向に進み続けてしまう。つまり発光装置から出射する光が広がってしまう。すなわち特許文献1、2で示されたような発光装置には、平行光線群を得ようとすると放物面鏡を大型化せざるを得ないという課題がある。   In the method of obtaining parallel light beams after once converging light rays at the focal point of the parabolic mirror as in the light emitting devices described in Patent Document 1 and Patent Document 2, the height of the parabolic mirror (reflecting member) is obtained. Must be large enough. On the other hand, when the parabolic mirror is shallow, most of the light beams traveling in the obliquely upward direction from the focal point are not reflected by the parabolic surface and continue to proceed in the obliquely upward direction. That is, the light emitted from the light emitting device spreads. That is, the light emitting devices as disclosed in Patent Documents 1 and 2 have a problem that a parabolic mirror has to be enlarged when trying to obtain a parallel light beam group.

さらに特許文献1の発光装置のように一方向だけに光を出射するレーザー発光素子を使える場合は、円錐状の導光部材内で全ての光を全反射させ、頂点に集光させることができる。これに対し光源として出射する光線の配光分布が大きく広がっているLEDを使用した場合には、円錐状の導光体に光を入射させても、導光体の軸に対して大きく傾いた光線が存在するため、これらの光線が導光体から漏れだし、指向性の高い光として利用できる成分が少なくなるという課題もある。   Furthermore, when a laser light emitting element that emits light in only one direction as in the light emitting device of Patent Document 1 can be used, all light can be totally reflected in the conical light guide member and condensed at the apex. . On the other hand, when an LED in which the light distribution of emitted light is widely spread as a light source is used, even if light is incident on a conical light guide, it is greatly inclined with respect to the axis of the light guide. Since light rays exist, there is a problem that these light rays leak from the light guide and there are fewer components that can be used as highly directional light.

また放物面鏡のような反射部材を備えたLED発光装置を照明装置などに使う場合、完全な平行光線群を必要とせず一定水準以上の指向性が求められる場合がある。   Further, when an LED light emitting device including a reflecting member such as a parabolic mirror is used for an illumination device or the like, directivity of a certain level or more may be required without requiring a complete parallel light beam group.

そこで本発明の目的は、上記問題点を解決しようとするものであり、小型で光利用効率が高く、実用レベルの平行光線群を得ることができるLED発光装置を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and to provide an LED light emitting device that is small in size, has high light utilization efficiency, and can obtain a parallel light beam group at a practical level.

上記目的を達成するため本発明のLED発光装置の構成は、モジュール基板上に複数のLEDを実装した1つのLEDモジュールと、前記1つのLEDモジュールの発光面側に上部開口を有する反射部材を備えたLED発光装置において、前記1つのLEDモジュールの発光面が前記反射部材の内側に配置され、前記1つのLEDモジュールの上面に1つの透明円錐体を配設し、前記1つのLEDモジュールと、前記1つの透明円錐体と、前記反射部材とが互いの中心軸を一致させて配設され、前記1つの透明円錐体の頂部が平坦になっていることを特徴とする。 In order to achieve the above object, a configuration of an LED light emitting device of the present invention includes one LED module in which a plurality of LEDs are mounted on a module substrate, and a reflecting member having an upper opening on the light emitting surface side of the one LED module. in the LED light emitting apparatus, the light emitting surface of the one LED module is disposed inside of the reflective member, disposed one transparent cones on the upper surface of the one LED module, wherein one of the LED module, wherein One transparent cone and the reflecting member are arranged so that their central axes coincide with each other, and the top of the one transparent cone is flat .

上記構成によれば本発明のLED発光装置では、LEDモジュールを出射した光線の進行過程に3つの形態がある。第1の形態では、LEDモジュールの上方に配置した透明円錐透明円錐体に入射できない光線が反射部材に直接到達し、そこで反射して上方に向かう。第2の形態では、透明円錐体の底面から透明円錐体に入射し、その後透明円錐体の斜面に達し、その斜面から出射する光線が、透明円錐体の底面と斜面で2回屈折することにより鉛直方向偏るようにして上方に向かう。さらに第3の形態では、透明円錐体の底面から透明円錐体に入射し、まず透明円錐体の斜面で全反射しその後透明円錐体の斜面の別の部分から出射する光線が、透明円錐体からの出射時に進行方向が水平方向に偏り、その後反射部材で反射して上方に向かう。   According to the said structure, in the LED light-emitting device of this invention, there exist three forms in the progression process of the light ray which radiate | emitted the LED module. In a 1st form, the light ray which cannot enter into the transparent cone transparent cone arrange | positioned above an LED module reaches | attains a reflection member directly, and it reflects and heads upwards there. In the second embodiment, the light enters the transparent cone from the bottom surface of the transparent cone, and then reaches the slope of the transparent cone, and the light emitted from the slope is refracted twice by the bottom and slope of the transparent cone. Heading upward so as to be vertically deviated. Furthermore, in the third embodiment, light rays that enter the transparent cone from the bottom surface of the transparent cone, first totally reflected by the slope of the transparent cone, and then emitted from another part of the slope of the transparent cone are transmitted from the transparent cone. When the light is emitted, the traveling direction is deviated in the horizontal direction, and then reflected upward by the reflecting member.

本発明のLED発光装置では、上述した光の進行に係る3つの形態のうち、第2の形態及び第3の形態で進行する光があるため、所望の指向性を得ようとするとき反射部材の高さを低くできる。つまり、透明円錐体がないとき斜め上方に進行してしまう光は、第2の形態では2回の屈折により軸方向に偏り、第3の形態では透明円錐体から出射するとき水平方向に偏り、反射部材で反射し上方へ向かうようになる。また本発明のLED発光装置では反射部材の内側に面状のLEDモジュールを配置しているため、その外形が反射部材の外形で決まる。   In the LED light-emitting device according to the present invention, among the three forms related to the above-described light travel, there is light traveling in the second form and the third form. Can be lowered. That is, light that travels obliquely upward when there is no transparent cone is biased in the axial direction by two refractions in the second form, and is deflected in the horizontal direction when emitted from the transparent cone in the third form, The light is reflected by the reflecting member and goes upward. Moreover, in the LED light-emitting device of this invention, since the planar LED module is arrange | positioned inside a reflection member, the external shape is decided by the external shape of a reflection member.

前記反射部材の下側に下部開口を設け、前記LEDモジュールを前記反射部材の前記下部開口に配置すると良い。   A lower opening may be provided below the reflecting member, and the LED module may be disposed in the lower opening of the reflecting member.

前記透明円錐体は透明なフランジを有し、前記フランジにより前記反射部材に保持されていると良い。   The transparent cone has a transparent flange, and is preferably held by the reflecting member by the flange.

前記LEDは蛍光体層を有すると良い。   The LED may have a phosphor layer.

上記の如く本発明のLED発光装置は、反射部材の内側に面状のLEDモジュールを配置しながら反射部材の高さを低くできるため小型化が図られ、LEDモジュールからも、出射した多くの光線が上方に向かうので発光効率が優れ、容易に実用レベルの平行光線群が得られる。   As described above, the LED light-emitting device of the present invention can be reduced in size because a planar LED module can be disposed inside the reflecting member, so that the height of the reflecting member can be reduced. Many light beams emitted from the LED module can also be achieved. Is directed upward, so that the luminous efficiency is excellent, and a practical parallel light beam group can be easily obtained.

本発明の実施形態におけるLED発光装置の断面図である。It is sectional drawing of the LED light-emitting device in embodiment of this invention. 図1に示す透明円錐体の斜視図と断面図である。It is the perspective view and sectional drawing of a transparent cone shown in FIG. 図1に示すLED発光装置の配光分布を示す断面図である。It is sectional drawing which shows the light distribution of the LED light-emitting device shown in FIG. 参考例として示すLED発光装の配光分布を示す断面図である。It is sectional drawing which shows the light distribution of the LED light-emitting device shown as a reference example. 図1に示すLED発光装置の遠方の明るさを示す配光分布図である。It is a light distribution map which shows the brightness of the distant place of the LED light-emitting device shown in FIG. 図4に示す参考例のLED発光装置の遠方の明るさを示す配光分布図である。It is a light distribution map which shows the brightness of the distant place of the LED light-emitting device of the reference example shown in FIG. 図1に示すLED発光装置の配光分布を示す断面図である。It is sectional drawing which shows the light distribution of the LED light-emitting device shown in FIG. 図4に示す参考例のLED発光装置の配光分布を示す断面図である。It is sectional drawing which shows the light distribution of the LED light-emitting device of the reference example shown in FIG. 図1に示すLEDモジュールの平面図である。It is a top view of the LED module shown in FIG. 図9に示すLEDモジュールのA−A断面図である。It is AA sectional drawing of the LED module shown in FIG. 図9に示すLEDの断面図である。It is sectional drawing of LED shown in FIG. 従来のLED発光装置の断面図である。It is sectional drawing of the conventional LED light-emitting device. 従来のLED発光装置の断面図である。It is sectional drawing of the conventional LED light-emitting device. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device.

以下図面により、本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態)
図1〜図11により本発明の実施形態を説明する。図1は本発明の実施形態におけるLED発光装置10の断面図である。図1に示すように、実装基板7の上には反射部材である放物面鏡5が載置されており、この放物面鏡5の底部には下部開口5kが形成されている。放物面鏡5の下部開口5kに対応する位置には、モジュール基板2a上に複数のLED11、LED12、LED13、LED14、LED15(事例ととして5個のLEDを示す)を実装したLEDモジュール2が配置されている。さらにLEDモジュール2の上面側に透明円錐体3が配置されている。透明円錐体3の底面とLEDモジュール2の発光面とは隙間をあけて対向している。LED発光装置10では、LEDモジュール2の発光面と透明円錐体3はすべて上部開口を有する放物面鏡5の内側に配置されている。またLED発光装置10では、LEDモジュール2の中心軸と、透明円錐体3の中心軸と、放物面鏡5の中心軸は互いに一致している。
(Embodiment)
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of an LED light emitting device 10 according to an embodiment of the present invention. As shown in FIG. 1, a parabolic mirror 5 as a reflecting member is placed on the mounting substrate 7, and a lower opening 5 k is formed at the bottom of the parabolic mirror 5. At a position corresponding to the lower opening 5k of the parabolic mirror 5, there is an LED module 2 in which a plurality of LEDs 11, LED 12, LED 13, LED 14, and LED 15 (showing five LEDs as examples) are mounted on the module substrate 2a. Has been placed. Further, a transparent cone 3 is disposed on the upper surface side of the LED module 2. The bottom surface of the transparent cone 3 and the light emitting surface of the LED module 2 face each other with a gap. In the LED light emitting device 10, the light emitting surface of the LED module 2 and the transparent cone 3 are all disposed inside a parabolic mirror 5 having an upper opening. In the LED light emitting device 10, the central axis of the LED module 2, the central axis of the transparent cone 3, and the central axis of the parabolic mirror 5 are coincident with each other.

図2は図1に示すLED発光装置10に組み込まれた透明円錐体3を示しており、(a)は斜視図、(b)は断面図である。透明円錐体3の下側には同じ透明部材によって形成されたフランジ4が設けられており、図1に示す如くこのフランジ4を放物面鏡5の反射面に保持させることによって、LEDモジュール2の上面側に透明円錐体3を配置している。なお、透明円錐体3では頂点部分を平坦化している(円錐台)が、頂点部分を曲面にしたりとがらせたりしても良い。頂点部分を平面または曲面にすると、直接的に上方に向かう光線が生じるので発光効率を改善できる。   2 shows the transparent cone 3 incorporated in the LED light emitting device 10 shown in FIG. 1, wherein (a) is a perspective view and (b) is a cross-sectional view. A flange 4 formed of the same transparent member is provided on the lower side of the transparent cone 3, and the LED module 2 is held by holding the flange 4 on the reflecting surface of the parabolic mirror 5 as shown in FIG. A transparent cone 3 is arranged on the upper surface side of the. In the transparent cone 3, the apex portion is flattened (conical frustum), but the apex portion may be curved or bent. If the apex portion is a flat surface or a curved surface, light rays directly upward are generated, so that the light emission efficiency can be improved.

次に図3、図5、図7によりLED発光装置10の配光分布について、図4、図6、図8に示す参考例の配光分布と比較しながら説明する。図3はLED発光装置10の配光分布を示す断面図であり、LEDモジュールに実装された複数のLED11〜15の内、中央に配置されたLED13からの発光を代表事例として説明する。図4は参考例として示すLED発光装置20の配光分布を示す断面図である。LED発光装置20はLED発光装置10から透明円錐体3を取り除いたものであり、従来からLED発光装置として広く採用されている構成である。またLED13はLED発光装置10、20の軸上にある。   Next, the light distribution of the LED light emitting device 10 will be described with reference to FIGS. 3, 5, and 7, comparing with the light distribution of the reference examples shown in FIGS. 4, 6, and 8. FIG. 3 is a cross-sectional view showing a light distribution of the LED light-emitting device 10, and a light emission from the LED 13 arranged at the center among the plurality of LEDs 11 to 15 mounted on the LED module will be described as a representative example. FIG. 4 is a cross-sectional view showing a light distribution of the LED light emitting device 20 shown as a reference example. The LED light-emitting device 20 is obtained by removing the transparent cone 3 from the LED light-emitting device 10 and has a configuration widely used as an LED light-emitting device from the past. The LED 13 is on the axis of the LED light emitting devices 10 and 20.

まず光学系が簡単な図4に示す参考例から説明する。LEDモジュール20の中央に実装されたLED13から出射した光線群の分布はランバーシアン特性となる。この光線群の内、低い角度で出射した光線Pa、Pgは放物面鏡5で反射し、光線Pdとともに指向性をもった光として上方向へ出射する。一方、高い角度で放射された光線Pb、Pc、Pe、Pfは、放物面鏡5の高さが低いので、反射せず、無効な光として外部(斜め上方)へ放散される。なお、LED発光装置20では透明円錐体3は配設されないが、LED発光装置10との対応関係を明確にするため、LED発光装置20をLED発光装置10に改造するとき透明円錐体3が配設されるべき位置を点線で示している。   First, a reference example shown in FIG. 4 having a simple optical system will be described. The distribution of light beams emitted from the LED 13 mounted at the center of the LED module 20 has a Lambertian characteristic. Of this group of rays, the rays Pa and Pg emitted at a low angle are reflected by the parabolic mirror 5 and emitted upward as light having directivity together with the rays Pd. On the other hand, the light rays Pb, Pc, Pe, and Pf emitted at a high angle are not reflected and are diffused to the outside (obliquely upward) as invalid light because the height of the parabolic mirror 5 is low. Note that the transparent cone 3 is not disposed in the LED light emitting device 20, but the transparent cone 3 is arranged when the LED light emitting device 20 is modified to the LED light emitting device 10 in order to clarify the correspondence with the LED light emitting device 10. The position to be set is indicated by a dotted line.

次に図3により透明円錐体3を有するLED発光装置10の動作を説明する。なおLED13が発する光線は無数にあるが、そのなかで図4に示した光線Pa〜Pgを図3でも使用する。   Next, the operation of the LED light emitting device 10 having the transparent cone 3 will be described with reference to FIG. There are an infinite number of light rays emitted from the LED 13, and among these, the light rays Pa to Pg shown in FIG. 4 are also used in FIG.

図3に示すようにLED発光装置10は、放物面鏡5の内部にLEDモジュール2と透明円錐体3が配置されている。放物面鏡5とLEDモジュール2と透明円錐体3は同軸の関係にあり、放物面鏡5とLEDモジュール2の間には隙間が存在する。LEDモジュール2の中央に実装されたLED13から出射した光線群はランバーシアン特性となっており、これらの光線群は3つの形態に分けられる。そのうちの第1の形態は低い角度θcで放射された光線群であり、光線Paと光線Pgを含む。この光線群(光線Pa、Pg等)は、LEDモジュール2の上方に配置された透明円錐体3に入射せず、直接放物面鏡5の反射面5a、5bに達し、そこで反射して上方に向かう。すなわちLEDモジュール2と透明円錐体3との隙間から放物面鏡5に向かう光線群(光線Pa,Pg等)は、透明円錐体3があってもなくても経路に変化はなく、LED発光装置10の上方に向かう。   As shown in FIG. 3, in the LED light emitting device 10, the LED module 2 and the transparent cone 3 are arranged inside a parabolic mirror 5. The parabolic mirror 5, the LED module 2, and the transparent cone 3 are in a coaxial relationship, and a gap exists between the parabolic mirror 5 and the LED module 2. A group of rays emitted from the LED 13 mounted in the center of the LED module 2 has a Lambertian characteristic, and these groups of rays are divided into three forms. The first of these is a group of rays emitted at a low angle θc, and includes rays Pa and Pg. This light ray group (light ray Pa, Pg, etc.) does not enter the transparent cone 3 arranged above the LED module 2, but directly reaches the reflecting surfaces 5a and 5b of the parabolic mirror 5, and is reflected there and reflected upward. Head for. That is, the light ray group (light ray Pa, Pg, etc.) from the gap between the LED module 2 and the transparent cone 3 toward the parabolic mirror 5 has no change in the path regardless of whether the transparent cone 3 is present or not. Heading over the device 10.

第2の形態は、中程度の入射角θdで透明円錐体3の底面から透明円錐体3に入射する光線群であり、光線Pb、Pfを含む。この光線群(光線Pb、Pf等)は、透明円錐体3の底面と斜面3a、3bで2回屈折することによって上方に向かう。このとき2回目の屈折が斜面3a、3bで起こるため、第2の形態に属する光線群は鉛直方向に偏る。例えば光線Pbは、透明円錐体3の底面で軸方向に屈折し、さらに斜面3aで軸方向に屈折する。透明円錐体3がない場合、光線Pbは点線で示したPb´になってしまう。すなわち透明円錐体3により、斜め上方に向かおうとする光線群の一部(光線Pb´、Pf´等)をLED発光装置10では上方に向かう成分(透明円錐体3を出射した光線Pb、Pf等)に変換している。   The second form is a group of light rays that enter the transparent cone 3 from the bottom surface of the transparent cone 3 at a medium incident angle θd, and includes light rays Pb and Pf. This light ray group (light rays Pb, Pf, etc.) is directed upward by being refracted twice by the bottom surface of the transparent cone 3 and the inclined surfaces 3a, 3b. At this time, since the second refraction occurs on the inclined surfaces 3a and 3b, the light beams belonging to the second form are biased in the vertical direction. For example, the light ray Pb is refracted in the axial direction on the bottom surface of the transparent cone 3 and further refracted in the axial direction on the inclined surface 3a. When there is no transparent cone 3, the light ray Pb becomes Pb ′ indicated by a dotted line. That is, the transparent cone 3 causes a part of the light ray group (light rays Pb ′, Pf ′, etc.) to be directed obliquely upward in the LED light emitting device 10 to the upward component (light rays Pb, Pf emitted from the transparent cone 3). Etc.).

第3の形態は、大きい入射角θeで透明円錐体3の底面から透明円錐体3に入射する光線群であり、光線Pc、Peを含む。この光線群(光線Pc、Pe等)は透明円錐体3の斜面3a、3bで全反射して反対側の斜面3b、3aから出射する。このとき第3の形態に属する光線群は、反対側の斜面で屈折して出射する際に、LED13から出射したときに比べ水平方向に偏り、この角度で放物面鏡5の反射面5a、5bに到達し、そこで反射して上方に向かう。   The third form is a light ray group that enters the transparent cone 3 from the bottom surface of the transparent cone 3 at a large incident angle θe, and includes light rays Pc and Pe. This ray group (light rays Pc, Pe, etc.) is totally reflected by the inclined surfaces 3a, 3b of the transparent cone 3 and is emitted from the opposite inclined surfaces 3b, 3a. At this time, when the light beam belonging to the third form is refracted and emitted from the slope on the opposite side, it is biased in the horizontal direction compared to when it is emitted from the LED 13, and at this angle, the reflecting surface 5a of the parabolic mirror 5 Reach 5b, where it reflects and heads upward.

例えば光線Pcは透明円錐体3の底面から比較的大きな入射角θeで入射し、透明円錐体3の斜面3aで全反射して反対の斜面3bに向かう。ことき進行方向は大きく水平方向に偏る。さらに光線Pcは斜面3bで軸方向に屈折して透明円錐体3から出射する。なお光線Pcは軸方向に屈折して出射しても、全反射により大きく水平方向に偏っていたため、依然として透明円錐体3から出射するときはLED13から出射したときより水平方向に偏っている。この後、光線Pcは放物面鏡5の反射面5bで反射して上方に向かう。なお。透明円錐体3がない場合、光線Pcは点線で示したPc´になってしまう。すなわち透明円錐体3により、斜め上方に向かおうとする光線群の一部(光線Pc´、Pe´等)をLED発光装置10では上方に向かう成分(透明円錐体3を出射した光線Pc、Pe等)に変換している。   For example, the light ray Pc is incident from the bottom surface of the transparent cone 3 at a relatively large incident angle θe, is totally reflected by the inclined surface 3a of the transparent cone 3, and travels toward the opposite inclined surface 3b. The direction of travel is greatly biased horizontally. Further, the light ray Pc is refracted in the axial direction on the inclined surface 3 b and is emitted from the transparent cone 3. Even if the light ray Pc is refracted in the axial direction and emitted, it is greatly deviated in the horizontal direction due to total reflection. Therefore, when the light ray Pc is emitted from the transparent cone 3, it is more deviated in the horizontal direction than when emitted from the LED 13. Thereafter, the light ray Pc is reflected by the reflecting surface 5b of the parabolic mirror 5 and travels upward. Note that. In the absence of the transparent cone 3, the light ray Pc becomes Pc ′ indicated by a dotted line. That is, the transparent cone 3 causes a part of the light ray group (light rays Pc ′, Pe ′, etc.) to be directed obliquely upward in the LED light emitting device 10 to the upward component (light rays Pc, Pe emitted from the transparent cone 3). Etc.).

なお軸上で透明円錐体3の底面に垂直に入射した光線Pdは透明円錐体3で屈折せず直接上方に向かう。また第3の進行形態では全反射を複数回繰り返すものも含まれる。図3では上方に向かう光線を鉛直方向の矢印で示したが、説明を簡単化するために便宜的に表示したものであり、実際には鉛直方向からずれている。   The light beam Pd incident on the axis perpendicularly to the bottom surface of the transparent cone 3 is not refracted by the transparent cone 3 and goes directly upward. Further, the third traveling form includes one that repeats total reflection a plurality of times. In FIG. 3, the light beam traveling upward is indicated by the arrow in the vertical direction, but is displayed for convenience in order to simplify the explanation, and is actually deviated from the vertical direction.

以上のようにLED発光装置10では、LEDモジュール2の上方に透明円錐体3を配置しており、この透明円錐体3に入射しない光線Pa、Pgは反射部材(放物面鏡5)に直接到達し、そこで反射して上方に向かう。また、透明円錐体3の底面から所定の角度より小さい入射角θdで入射した光線Pb、Pfは、透明円錐体3の底面と斜面で2回屈折することにより上方に向かう。さらに透明円錐体の底面から所定の角度より大きい入射角θeで入射した光線は、まず透明円錐体の斜面で全反射し、その後透明円錐体3の逆側の斜面から水平方向に偏って出射し、反射部材で反射して上方に向かう。   As described above, in the LED light emitting device 10, the transparent cone 3 is disposed above the LED module 2, and the light beams Pa and Pg that are not incident on the transparent cone 3 directly enter the reflecting member (parabolic mirror 5). Arrives and reflects up there. Further, light rays Pb and Pf incident at an incident angle θd smaller than a predetermined angle from the bottom surface of the transparent cone 3 are directed upward by being refracted twice by the bottom surface and the inclined surface of the transparent cone 3. Further, a light beam incident at an incident angle θe larger than a predetermined angle from the bottom surface of the transparent cone is first totally reflected by the slope of the transparent cone, and then emitted in a horizontal direction from the opposite slope of the transparent cone 3. Reflected by the reflecting member and headed upward.

図3に示すLED発光装置10の配光分布を、図4に示すLED発光装置20の配光分布と比較してみると、図3で示したようにLED発光装置20では発散して無効となっていた光線Pb’、Pc’、Pe’、Pf’がLED発光装置10では透明円錐体3の配置によって上方に向かう有効な光線Pb、Pc、Pe、Pfに変換されている。   When comparing the light distribution of the LED light emitting device 10 shown in FIG. 3 with the light distribution of the LED light emitting device 20 shown in FIG. 4, the LED light emitting device 20 diverges and becomes invalid as shown in FIG. The light rays Pb ′, Pc ′, Pe ′, and Pf ′ that have been converted into the effective light rays Pb, Pc, Pe, and Pf that are directed upward by the arrangement of the transparent cone 3 in the LED light emitting device 10.

次に図5、図6によりLED発光装置10、20から十分に遠い場所における明るさの分布を説明する。図5はLED発光装置10の遠方(1m)の明るさを示す配光分布図であり、図6はLED発光装置20の遠方(1m)の明るさを示す配光分布図である。   Next, the brightness distribution in a place sufficiently far from the LED light emitting devices 10 and 20 will be described with reference to FIGS. FIG. 5 is a light distribution diagram showing the brightness of the LED light emitting device 10 in the distance (1 m), and FIG. 6 is a light distribution diagram showing the brightness of the LED light emitting device 20 in the distance (1 m).

図5と図6に示すLED発光装置10、20の配光分布図において、ハッチングの濃度は明るさの強さ(単位立体角あたりの光線の数)を示し、濃度が高いほど明るい状態を示している。また遠方における画角Fはフラッシュ発光における必要照明範囲を示している。   In the light distribution diagrams of the LED light emitting devices 10 and 20 shown in FIG. 5 and FIG. 6, the hatching density indicates the intensity of brightness (the number of rays per unit solid angle), and the higher the density, the brighter the state. ing. A field angle F at a distant position indicates a necessary illumination range in flash emission.

図5に示すLED発光装置10の配光分布と、図6に示すLED発光装置20の配光分布とを比較すると、図6に示すLED発光装置20の配光分布は、中心付近は明るいが、中心部以外の領域、すなわち周辺部の光線はほぼ均等に発散しているため、画角Fにおける明るさが不足している。これに対し、図5に示すLED発光装置10の配光分布では、光線が中心付近に集光されているとともに、中心付近にも明い領域が広がっており、画角Fにおける明るさが改善されている。つまりLED発光装置20では画角Fをこえて広がってしまう光線を、LED発光装置10では画角F内に収めることができたということになる。   When comparing the light distribution of the LED light emitting device 10 shown in FIG. 5 with the light distribution of the LED light emitting device 20 shown in FIG. 6, the light distribution of the LED light emitting device 20 shown in FIG. Since the light rays in the region other than the central portion, that is, the peripheral portion diverge almost evenly, the brightness at the angle of view F is insufficient. On the other hand, in the light distribution of the LED light emitting device 10 shown in FIG. 5, the light rays are condensed near the center, and a bright area is also spread near the center, and the brightness at the angle of view F is improved. Has been. That is, the LED light emitting device 20 has been able to accommodate the light beam that spreads beyond the angle of view F within the angle of view F in the LED light emitting device 10.

この差が生じる理由について図3と図4により光源部近傍の光線の状態から説明する。図4で示したように、LED発光装置20の光線群の特性は、LEDモジュール2に実装されたLED13からの発光が一部(光線Pa、Pg等)のみ放物面鏡5の反射面で反射して上方に向かうが、多くの光線群(光線Pb、Pc、Pe、Pf等)が周囲に広がってしまう。このため、中心部分の狭い範囲のみ明るさが強まるが、その他の範囲では光線Pb、Pc、Pe、Pf等が均等に広がっていく。なお、中心軸から離れた位置にあるLED11、12、14、15から発する光線は上方からやや傾いてLED装置10を出射するため、遠方では明るい範囲が広がる。   The reason why this difference occurs will be described from the state of light rays in the vicinity of the light source unit with reference to FIGS. As shown in FIG. 4, the characteristics of the light beam group of the LED light emitting device 20 are that the light emitted from the LED 13 mounted on the LED module 2 is only partially reflected by the reflecting surface of the parabolic mirror 5 (light rays Pa, Pg, etc.). Although it reflects and goes up, many light ray groups (light rays Pb, Pc, Pe, Pf, etc.) spread to the circumference. For this reason, the brightness increases only in a narrow range of the central portion, but the light rays Pb, Pc, Pe, Pf, etc. spread evenly in other ranges. In addition, since the light emitted from the LEDs 11, 12, 14, and 15 located away from the central axis is emitted from the LED device 10 with a slight inclination from above, the bright range is widened far away.

これに対し、図3に示すように、LED発光装置10の光線群の特性は反射部材5と透明円錐体3によって上方に向かう光線Pe、Pa、Pd、Pf、Pg等ばかりになり中央付近に集光する。実際には、後述するように中心軸から離れた位置にあるLED11、12、14、15から発する光線は上方から傾いてLED装置10を出射するのに加え、透明円錐体3から出射した光も傾いて出射する。このようにしてLED装置10の配光分布は中心からやや広がった範囲も明るくできるようになる。   On the other hand, as shown in FIG. 3, the characteristics of the light beam group of the LED light emitting device 10 are not only the light beams Pe, Pa, Pd, Pf, Pg, etc., which are directed upward by the reflecting member 5 and the transparent cone 3, but in the vicinity of the center. Condensate. Actually, as will be described later, light emitted from the LEDs 11, 12, 14, 15 located away from the central axis is inclined from above and emitted from the LED device 10, and light emitted from the transparent cone 3 is also emitted. Inclined and emitted. In this way, the light distribution of the LED device 10 can be brightened even in a slightly widened area from the center.

上記図3と図4では、本発明のLED装置10と比較例のLED装置20について、放物面鏡5の焦点である面光源(LEDモジュール2)の中心から放射される光線群、すなわちLEDモジュール2の中心位置に実装されたLED13から放射される光線群について図示していた。これに対し面光源の他の部分から放射される光線群は、焦点からの発光による配光分布をぼやかすように作用しながら同様な傾向を示す。そこで中心軸からずれた位置に実装されたLEDからの配光分布例を図7、図8により説明する。   3 and 4, a group of light rays emitted from the center of the surface light source (LED module 2) that is the focal point of the parabolic mirror 5 in the LED device 10 of the present invention and the LED device 20 of the comparative example, that is, LEDs. A group of light beams emitted from the LED 13 mounted at the center position of the module 2 is illustrated. On the other hand, a group of light rays emitted from other parts of the surface light source show the same tendency while acting to blur the light distribution by light emission from the focal point. An example of light distribution from the LED mounted at a position shifted from the central axis will be described with reference to FIGS.

図7はLED発光装置10の機能的な断面図であり、部材構成は図3と等しい。図7ではLEDモジュール2に実装された複数のLEDの内、中央から2番目の位置に配置されたLED12の配光分布を示している。同様に図8はLED発光装置20の機能的な断面図であり、部材構成は図4と等しい。図8でもLED12の配光分布を示している。なお図3、図4と同一部材及び対応する光線には同一符号を付して重複する説明は省略する。   FIG. 7 is a functional cross-sectional view of the LED light-emitting device 10, and the member configuration is the same as FIG. FIG. 7 shows a light distribution of the LEDs 12 arranged at the second position from the center among the plurality of LEDs mounted on the LED module 2. Similarly, FIG. 8 is a functional cross-sectional view of the LED light-emitting device 20, and the member configuration is the same as FIG. FIG. 8 also shows the light distribution of the LED 12. The same members and corresponding light beams as those in FIGS. 3 and 4 are denoted by the same reference numerals, and redundant description is omitted.

まず、光学系が単純なLED発光装置20について図8により配光分布を説明する。図4と比較すると、図8では、発光源としてLED13がLED12に代わることによって、配光分布全体が変形する。つまり放物面鏡5で反射した光線Pa、Pgは図の左側に傾く。放物面鏡5で反射しない光線Pc、Pa、Pe、Pf等は右側成分が多くなる。おなじ理由でLED11の配光分布はさらに大きく変形する。同様にLED14、15の配光分布は、LED11、12の配光分布とは反対側に変形する。   First, the light distribution of the LED light emitting device 20 having a simple optical system will be described with reference to FIG. Compared with FIG. 4, in FIG. 8, the entire light distribution is deformed by replacing the LED 13 as the light emitting source with the LED 12. That is, the light beams Pa and Pg reflected by the parabolic mirror 5 are inclined to the left side of the figure. Light rays Pc, Pa, Pe, Pf, etc. that are not reflected by the parabolic mirror 5 have a large right component. For the same reason, the light distribution of the LED 11 is further deformed. Similarly, the light distribution of the LEDs 14 and 15 is deformed to the opposite side to the light distribution of the LEDs 11 and 12.

次に本発明のLED発光装置10について図7により配光分布を説明する。図3と比較すると図7では、直接的に放物面鏡5で反射する光線Pa、Pgは図8と同様に図の左側に傾く。透明円錐体3の底面に入射し、透明円錐体3から出射する光線Pb、Pfは、入射角θdであれば透明円錐体3からの出射角が図3の光線Pb、Pfの出射角と等しくなるため、図3の光線Pb、Pfと平行になる。透明円錐体3の底面に入射し、透明円錐体3の斜面で全反射してから斜面の別の部分から出射する光線Pc、Peは、LEDモジュール2からの出射角がθeであれば、透明円錐体3から出射する角度が図3の光線Pc、Peと同じになるが、透明円錐体3からの出射位置や放物面鏡5における反射位置が異なる。例えば光線Peの場合、図3の光線Peよりも透明円錐3の上部で出射し、放物面鏡5の上部で反射する。この結果、図3の光線Peよりも図7の光線Peの方が軸方向(図の右側)に傾いている。以上のようにLED12から発する光線の一部は、対応するLED13の光線とは違った方向に出射する。同様にLED11、14、15から発する光線(一部)も、LED13から発する光線とは違った方向に向かう。   Next, the light distribution of the LED light emitting device 10 of the present invention will be described with reference to FIG. Compared with FIG. 3, in FIG. 7, the light beams Pa and Pg directly reflected by the parabolic mirror 5 are inclined to the left side of the figure as in FIG. 8. The light rays Pb and Pf incident on the bottom surface of the transparent cone 3 and emitted from the transparent cone 3 have an emission angle equal to the emission angles of the light rays Pb and Pf in FIG. Therefore, it becomes parallel to the light rays Pb and Pf in FIG. Light rays Pc and Pe that are incident on the bottom surface of the transparent cone 3 and are totally reflected by the slope of the transparent cone 3 and then emitted from another part of the slope are transparent if the emission angle from the LED module 2 is θe. Although the angle emitted from the cone 3 is the same as the light rays Pc and Pe in FIG. 3, the emission position from the transparent cone 3 and the reflection position on the parabolic mirror 5 are different. For example, in the case of the light beam Pe, it is emitted from the upper part of the transparent cone 3 and reflected from the upper part of the parabolic mirror 5 than the light beam Pe in FIG. As a result, the light beam Pe in FIG. 7 is inclined in the axial direction (right side in the figure) than the light beam Pe in FIG. 3. As described above, a part of the light beam emitted from the LED 12 is emitted in a direction different from the light beam of the corresponding LED 13. Similarly, the light rays (a part) emitted from the LEDs 11, 14, and 15 are directed in different directions from the light rays emitted from the LED 13.

以上のように従来のLED発光装置20でも本発明の発光装置10でも、放物面鏡5と面光源を構成するLEDモジュール2を組み合わせた場合、その配光分布は放物面鏡の焦点に点光源を置いた配光分布からぼやけるようになる。同様に光源が焦点から軸方向にずれた場合も配光分布がぼやける。   As described above, in the conventional LED light emitting device 20 and the light emitting device 10 of the present invention, when the parabolic mirror 5 and the LED module 2 constituting the surface light source are combined, the light distribution is at the focal point of the parabolic mirror. The light distribution is blurred from the point light source. Similarly, when the light source is shifted from the focal point in the axial direction, the light distribution is blurred.

最後に図9から図11により、LED発光装置10で使用したLEDモジュール2の一例を示す。図9はLEDモジュール2の平面図であり、図10は図9に示すLEDモジュール2のA−A断面図であり、図11は図9に示すLED15の断面図である。矩形のモジュール基板2aには中央に円形の領域2bがあり、領域2bの内側にLED13が配置されている。LED13を中心に、複数のLEDが円形の領域を埋めるように整列して実装されている。そして図示しない配線によって複数のLEDは直列又は並列接続され、ほぼ円形の面光源を形成している。なお図1等に示したLED11〜15は、図10に示された9個のLEDうちから5個抜き出したものである。   Finally, FIG. 9 to FIG. 11 show an example of the LED module 2 used in the LED light emitting device 10. 9 is a plan view of the LED module 2, FIG. 10 is a cross-sectional view taken along the line AA of the LED module 2 shown in FIG. 9, and FIG. 11 is a cross-sectional view of the LED 15 shown in FIG. The rectangular module substrate 2a has a circular region 2b in the center, and the LEDs 13 are arranged inside the region 2b. Around the LED 13, a plurality of LEDs are arranged and mounted so as to fill a circular area. A plurality of LEDs are connected in series or in parallel by a wiring (not shown) to form a substantially circular surface light source. The LEDs 11 to 15 shown in FIG. 1 and the like are obtained by extracting five of the nine LEDs shown in FIG.

図11は図9に示すLED15の断面図である。LED15は、ベアチップ状態のLEDダイではなく、LEDダイ1の上面を蛍光体層1a、側面を反射層1bで被覆したものである。このようにLED15は、LEDダイ1が蛍光体層1aや反射層1bと一体化したパッケージ品である。このようにLEDモジュール基板2a上にパッケージ化したLEDを配列させる構成とすることにより、LEDごとに異なる発光色を設定できるため、発光色が調整できる面光源を実現することができる。また、モジュール基板2aにベアチップ状態のLEDダイを複数実装し、全LEDダイを共通の蛍光体層で被覆しても良い。   FIG. 11 is a cross-sectional view of the LED 15 shown in FIG. The LED 15 is not an LED die in a bare chip state, but the LED die 1 is covered with the phosphor layer 1a and the side surface with the reflection layer 1b. Thus, the LED 15 is a package product in which the LED die 1 is integrated with the phosphor layer 1a and the reflective layer 1b. Thus, by setting it as the structure which arranges the packaged LED on the LED module board | substrate 2a, since a different luminescent color can be set for every LED, the surface light source which can adjust luminescent color is realizable. Alternatively, a plurality of bare die LED dies may be mounted on the module substrate 2a, and all the LED dies may be covered with a common phosphor layer.

LED発光装置10ではLEDモジュール2と、透明円錐体3と、反射部材である放物面鏡5とが互いの中心軸を一致させて配設されていた。しかしながら集光性を多少悪化させても良い場合は、LEDモジュール2と、透明円錐体3と、反射部材である放物面鏡5とが互いの中心軸を共通にしなくても良い。   In the LED light emitting device 10, the LED module 2, the transparent cone 3, and the parabolic mirror 5, which is a reflecting member, are arranged with their center axes aligned. However, if the light condensing property may be somewhat deteriorated, the LED module 2, the transparent cone 3 and the parabolic mirror 5 which is a reflecting member do not have to have the same central axis.

LED発光装置10では、反射部材である放物面鏡5の下側に下部開口5kを設け、LEDモジュール2を反射部材の下部開口5kに配置していた。しかしながら本発明のLED発光装置は、下部開口がなくても良い。この場合はLED発光装置を放物面鏡等の反射部材中に配置すればよい。なお開口部5kを設けることによりLEDモジュールを取扱い易くできる。   In the LED light emitting device 10, the lower opening 5k is provided below the parabolic mirror 5 that is a reflecting member, and the LED module 2 is disposed in the lower opening 5k of the reflecting member. However, the LED light emitting device of the present invention may not have a lower opening. In this case, the LED light emitting device may be arranged in a reflecting member such as a parabolic mirror. The LED module can be easily handled by providing the opening 5k.

LED発光装置10では、透明円錐体3が透明なフランジ4を有し、フランジ4により反射部材である放物面鏡5に保持されていた。しかしながら透明円錐体の固定方法はフランジでなくても良い。例えばモジュール基板に透明円錐体を固定してもよい。なお透明なフランジで透明円錐体を固定すると固定部の影がなくなり、さらに透明円錐体全体が大きくなるので取扱い易くなる。   In the LED light-emitting device 10, the transparent cone 3 has a transparent flange 4, and is held by the parabolic mirror 5 which is a reflecting member by the flange 4. However, the method for fixing the transparent cone may not be a flange. For example, a transparent cone may be fixed to the module substrate. If the transparent cone is fixed with a transparent flange, the shadow of the fixing portion disappears, and the entire transparent cone becomes larger, which makes it easier to handle.

LED発光装置10では、LED11〜15等が蛍光体層を有していた。しかしながら本発明のLED発光装置では、LEDが蛍光体層を有さず、LEDダイの発光色がそのまま出射されてもよい。例えば、LEDダイの発光色が赤色、緑色、青色の3種類のLEDを蛍光体層なしにモジュール基板に実装し、LEDモジュールを白色発光させても良い。なお各LEDが蛍光体層を有すると、LED単体で白色発光させられるので、簡単に白色光源が得られる。   In the LED light emitting device 10, the LEDs 11 to 15 and the like have a phosphor layer. However, in the LED light emitting device of the present invention, the LED does not have a phosphor layer, and the emitted color of the LED die may be emitted as it is. For example, the LED die may be mounted on a module substrate without emitting a phosphor layer so that the LED module emits white light, and the LED module emits white light. If each LED has a phosphor layer, white light is emitted by the LED alone, so a white light source can be easily obtained.

LED発光装置10では、反射部材が放物面鏡であった。しかしながら反射部材は放物面鏡に限られず、上部が開口し、反射光が上部に向かうよう斜面を備えているようなものなら良い。なおこれらの反射部材のなかで放物面鏡は集光性(指向性)が良いという特徴がある。   In the LED light emitting device 10, the reflecting member is a parabolic mirror. However, the reflecting member is not limited to a parabolic mirror, and may be any member that has an opening at the top and a slope so that the reflected light is directed toward the top. Of these reflecting members, the parabolic mirror is characterized by good light condensing properties (directivity).

1 LEDダイ
1a 蛍光体層
1b 反射体層
2 LEDモジュール
2a モジュール基板
3 透明円錐体
3a、3b 斜面
4 フランジ
5、50 放物面鏡
5a、5b 反射面
7 実装基板
10、20、100 LED発光装置
11〜15 LED
50a 開口
60 導光部材
70 光散乱体
101 点光源
102、201 面光源
200 発光装置
201a、201b、201c レーザー発光素子
Pa〜Pg、P0〜P6、Po 光線
DESCRIPTION OF SYMBOLS 1 LED die 1a Phosphor layer 1b Reflector layer 2 LED module 2a Module substrate 3 Transparent cone 3a, 3b Slope 4 Flange 5, 50 Parabolic mirror 5a, 5b Reflective surface 7 Mounting substrate 10, 20, 100 LED light emitting device 11-15 LED
50a opening 60 light guide member 70 light scatterer 101 point light source 102, 201 surface light source 200 light emitting device 201a, 201b, 201c laser light emitting element Pa to Pg, P0 to P6, Po light

Claims (4)

モジュール基板上に複数のLEDを実装した1つのLEDモジュールと、前記1つのLEDモジュールの発光面側に上部開口を有する反射部材を備えたLED発光装置において、
前記1つのLEDモジュールの発光面が前記反射部材の内側に配置され、
前記1つのLEDモジュールの上面に1つの透明円錐体を配設し、
前記1つのLEDモジュールと、前記1つの透明円錐体と、前記反射部材とが互いの中心軸を一致させて配設され、
前記1つの透明円錐体の頂部が平坦になっていることを特徴とするLED発光装置。
In an LED light emitting device including one LED module having a plurality of LEDs mounted on a module substrate, and a reflective member having an upper opening on the light emitting surface side of the one LED module,
The light emitting surface of the one LED module is disposed inside the reflecting member,
One transparent cone is disposed on the upper surface of the one LED module;
The one LED module, the one transparent cone, and the reflecting member are arranged with their center axes aligned with each other,
The LED light-emitting device, wherein a top portion of the one transparent cone is flat .
前記反射部材の下側に下部開口を設け、前記1つのLEDモジュールを前記反射部材の前記下部開口に配置したことを特徴とする請求項1に記載のLED発光装置。 The LED light-emitting device according to claim 1, wherein a lower opening is provided below the reflecting member, and the one LED module is disposed in the lower opening of the reflecting member. 前記透明円錐体は透明なフランジを有し、前記フランジにより前記反射部材に保持されていることを特徴とする請求項1又は2に記載のLED発光装置。 The transparent cone has a transparent flange, LED light-emitting device according to claim 1 or 2, characterized in that it is held by the reflecting member by said flange. 前記LEDは蛍光体層を有することを特徴とする請求項1からの何れか1項に記載のLED発光装置。 The LED, LED light-emitting device according to any one of claims 1 to 3, wherein a phosphor layer.
JP2013254648A 2013-12-10 2013-12-10 LED light emitting device Active JP6220250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254648A JP6220250B2 (en) 2013-12-10 2013-12-10 LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254648A JP6220250B2 (en) 2013-12-10 2013-12-10 LED light emitting device

Publications (2)

Publication Number Publication Date
JP2015115380A JP2015115380A (en) 2015-06-22
JP6220250B2 true JP6220250B2 (en) 2017-10-25

Family

ID=53528941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254648A Active JP6220250B2 (en) 2013-12-10 2013-12-10 LED light emitting device

Country Status (1)

Country Link
JP (1) JP6220250B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709873A (en) * 2015-07-22 2018-02-16 日立化成株式会社 Lighting device, means of illumination and use its image projection apparatus
JP2017203759A (en) * 2016-05-13 2017-11-16 株式会社キーエンス Image processing sensor
AU2017396687B2 (en) 2017-01-31 2020-09-24 HotaluX, Ltd. Led module for flashing lamp and flashing lamp
FR3065783B1 (en) * 2017-04-28 2019-07-12 Valeo Comfort And Driving Assistance CONTROL MODULE FOR A VEHICLE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674418B2 (en) * 2001-06-29 2011-04-20 パナソニック株式会社 Lighting equipment
WO2005078338A1 (en) * 2004-02-17 2005-08-25 Kelly William M A utility lamp
JP4651105B2 (en) * 2006-01-31 2011-03-16 スタンレー電気株式会社 Lighting equipment
JP4963839B2 (en) * 2006-02-06 2012-06-27 昭和電工株式会社 Light emitting device
JP4880637B2 (en) * 2008-03-31 2012-02-22 株式会社イネックス Long distance LED lighting fixture
JP2011253901A (en) * 2010-06-01 2011-12-15 Phoenix Denki Kk Led lighting device
US8485692B2 (en) * 2011-09-09 2013-07-16 Xicato, Inc. LED-based light source with sharply defined field angle
JP5891398B2 (en) * 2011-12-19 2016-03-23 パナソニックIpマネジメント株式会社 lighting equipment
JP2013149430A (en) * 2012-01-18 2013-08-01 Asahi Glass Co Ltd Parallel light emitting device
JP2016515767A (en) * 2013-04-15 2016-05-30 ダウ コーニング コーポレーションDow Corning Corporation Light emitting assembly and method with spectral shift reflection

Also Published As

Publication number Publication date
JP2015115380A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
US10753546B2 (en) Light module and lighting device having same
JP4960406B2 (en) Light emitting diode light source module
JP5241068B2 (en) Side light emitting device, backlight unit using the same as light source, and liquid crystal display device using the same
CN104583668B (en) Illumination lens of LED backlight, light emitting device, surface light source device, and display device
US7740366B2 (en) Two-sided illumination LED lens and LED module and LED two-sided illumination system using the same
CN103388776B (en) Backlight module
US20130027926A1 (en) Light source module
US20100165640A1 (en) Optical member of lighting device
US9052071B2 (en) Illumination device having light-guiding structure
CN112424529B (en) Light source structure, backlight module and display device
JP6220250B2 (en) LED light emitting device
CN108351088B (en) Lens structure, lamp using lens structure, backlight module and display device
JP2008300170A (en) Lighting system, and liquid crystal display device using it
JP2006332638A (en) Light emitting diode apparatus
US11428985B2 (en) LED lens array for backlight device and display device having same
JP2006237321A (en) Light emitting diode
JP6134131B2 (en) Semiconductor light emitting device, manufacturing method thereof, and lighting device
US9140827B2 (en) Lens, LED light source unit having the lens and LED light source module incorporating the unit
JP5954663B2 (en) lighting equipment
TW201506321A (en) Light emitting diode light source module
US20220137459A1 (en) Light reflecting structure, backlight module and display device
JP6437242B2 (en) Luminous flux control member, surface light source device, and display device
KR101502047B1 (en) Led flat panel type illumination module
CN105609613B (en) Light emitting device package and back light unit including light emitting device package
JP2005197423A (en) Led light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170929

R150 Certificate of patent or registration of utility model

Ref document number: 6220250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250