JP6219335B2 - Train state detection device and train state detection method - Google Patents

Train state detection device and train state detection method Download PDF

Info

Publication number
JP6219335B2
JP6219335B2 JP2015085817A JP2015085817A JP6219335B2 JP 6219335 B2 JP6219335 B2 JP 6219335B2 JP 2015085817 A JP2015085817 A JP 2015085817A JP 2015085817 A JP2015085817 A JP 2015085817A JP 6219335 B2 JP6219335 B2 JP 6219335B2
Authority
JP
Japan
Prior art keywords
train
speed
sensor
state detection
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015085817A
Other languages
Japanese (ja)
Other versions
JP2016205922A (en
Inventor
浅野 晃
晃 浅野
光 坪田
光 坪田
稲葉 敬之
敬之 稲葉
学 秋田
学 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Kyosan Electric Manufacturing Co Ltd
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS, Kyosan Electric Manufacturing Co Ltd filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2015085817A priority Critical patent/JP6219335B2/en
Priority to TW104124858A priority patent/TWI652494B/en
Priority to CN201510463330.9A priority patent/CN106066476B/en
Publication of JP2016205922A publication Critical patent/JP2016205922A/en
Application granted granted Critical
Publication of JP6219335B2 publication Critical patent/JP6219335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、列車状態検出装置及び列車状態検出方法に係り、特に、ドップラーレーダー型のセンサを利用して列車の速度や道床からセンサまでの高さを検出する列車状態検出装置及び列車状態検出方法に関する。   The present invention relates to a train state detection device and a train state detection method, and in particular, a train state detection device and a train state detection method for detecting a train speed and a height from a roadbed to a sensor using a Doppler radar type sensor. About.

列車の速度検出としては車輪の回転を検出して算出する方法が知られている。従来の手法では、速度と経過時間から列車の移動距離を求め、さらに積算することで列車位置を確定させている。しかし、車輪の空転、滑走が発生することにより計測速度に誤差が発生する。また、列車走行により車輪が摩耗することで車輪径が変化していくため、計測速度に誤差が発生する。近年、列車に搭載する車上装置が自列車の位置を認識し、与えられた列車制御信号と比較することで、自列車の停止目標位置を確定させる等の技術が求められている。この場合、車上装置で自列車位置を正確に認識することが非常に重要となり、そのために速度検出精度を高める技術が必要となる。   A known method for detecting the speed of a train is to detect and calculate the rotation of a wheel. In the conventional method, the train travel distance is obtained from the speed and the elapsed time, and the train position is determined by further integrating. However, an error occurs in the measurement speed due to idling and sliding of the wheels. In addition, since the wheel diameter changes due to wear of the wheels by running the train, an error occurs in the measurement speed. 2. Description of the Related Art In recent years, there has been a demand for techniques such as an on-board device mounted on a train that recognizes the position of the own train and compares it with a given train control signal to determine the stop target position of the own train. In this case, it is very important to accurately recognize the position of the own train with the on-board device, and for this purpose, a technique for increasing the speed detection accuracy is required.

そのような技術として、例えば、ドップラーレーダー型のセンサを利用して列車の速度を検出する列車速度検出装置が提案されている(例えば、非特許文献1参照)。具体的には、ミリ波の送受信アンテナを備えた装置を車両の床下に設置した状態で、軌道に向けてミリ波を照射し反射波を取得する。ドップラー効果の原理を利用して車両の速度を算出している。この列車速度検出装置をもとに自列車位置を求めている。   As such a technique, for example, a train speed detection device that detects the speed of a train using a Doppler radar type sensor has been proposed (for example, see Non-Patent Document 1). Specifically, in a state where a device including a millimeter wave transmission / reception antenna is installed under the floor of a vehicle, the reflected wave is obtained by irradiating the millimeter wave toward the track. The speed of the vehicle is calculated using the principle of the Doppler effect. The own train position is obtained based on this train speed detection device.

笠井 貴之等、「ミリ波を用いた非接触式速度計の開発」、2012年11月、鉄道サイパネ・シンポジウム論文集通号49Takayuki Kasai et al., "Development of non-contact speedometer using millimeter wave", November 2012, Railroad Saipan Symposium Proceedings No. 49

ところで、センサから得られた斜め方向速度成分を、センサの地面に対する傾斜角を用いて補正する従来の方法は、センサと地面(反射位置)の位置関係が定常的にずれる場合や、センサの検知エリアが広がっている場合(レーザーのようにビームではない場合)に、検出速度誤差が大きくなるという課題がある。   By the way, the conventional method of correcting the oblique direction velocity component obtained from the sensor using the inclination angle of the sensor with respect to the ground is the case where the positional relationship between the sensor and the ground (reflection position) is constantly shifted, or the detection of the sensor. When the area is wide (when it is not a beam like a laser), there is a problem that the detection speed error becomes large.

反射位置となる道床が、センサに対して均一の高さであれば問題は少ないが、現実には道床面の高さには場所によってばらつきがあり、また積雪などにより道床面の高さが変化した場合の影響もあることから、センサと地面の距離変化によって、列車速度の誤差を発生させない方策が必要となる。また、上述の様に積雪等によって道床の状態に変化が生じたことを把握したいという要望もある。   There is little problem if the roadbed that is the reflection position is uniform with respect to the sensor, but in reality, the height of the roadbed varies depending on the location, and the height of the roadbed changes due to snow accumulation. Therefore, there is a need to take measures to prevent train speed errors due to changes in the distance between the sensor and the ground. In addition, there is a demand for grasping that a change in the condition of the road bed has occurred due to snow accumulation or the like as described above.

本発明は、以上のような状況に鑑みなされたものであって、上記課題を解決する技術を提供することにある。   This invention is made | formed in view of the above situations, Comprising: It is providing the technique which solves the said subject.

本発明の列車状態検出装置は、道床に対して所定の傾斜角を送出波の照射方向として列車の底部に設置されたドップラーレーダー型のセンサと、前記センサによって算出される反射位置までの斜め方向距離と、前記照射方向の斜め方向速度とを取得する計測値取得部と、前記斜め方向距離と前記斜め方向速度とをもとに、所定の数学的手法に基づき前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを同時に求める探索部とを備える。
また、前記探索部は、前記数学的手法として、次の〔数式1〕が最小となる前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを求めてもよい。
〔数式1〕
f(RV、h)=((V/RV)2+(h/RH)2−1)2
〔式中、
V:ドップラーレーダー型のセンサによって検出された斜め方向速度、
RH:ドップラーレーダー型のセンサによって検出された斜め方向距離、
h:道床からセンサまでの高さ、
RV:列車の水平方向の速度〕。
また、前記道床から前記センサまでの高さと前記列車の水平方向の速度との探索範囲は、列車の位置と関連づけて設定されてもよい。
また、探索結果に特異な値が生じたときに、外部の指令部へ通知する通信処理部を備えてもよい。
また、前記通信処理部は外部の指令部から探索範囲の指示を受けてもよい。
本発明の列車状態検出方法は、道床に対して所定の傾斜角を送出波の照射方向として列車の底部に設置されたドップラーレーダー型のセンサによって算出される反射位置までの斜め方向距離と、前記照射方向の斜め方向速度とを取得する計測値取得行程と、前記斜め方向距離と前記斜め方向速度とをもとに、所定の数学的手法に基づき前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを同時に求める探索行程とを備える。
The train state detection device according to the present invention includes a Doppler radar type sensor installed at the bottom of a train with a predetermined inclination angle with respect to the roadbed as an irradiation direction of a transmission wave, and an oblique direction to a reflection position calculated by the sensor. Based on the measured value acquisition unit for acquiring the distance and the oblique direction velocity in the irradiation direction, and the oblique direction distance and the oblique direction velocity, the height from the road bed to the sensor is determined based on a predetermined mathematical method. And a search unit for simultaneously obtaining the speed of the train in the horizontal direction.
Further, the search unit may obtain a height from the roadbed to the sensor at which the following [Equation 1] is minimized and a horizontal speed of the train as the mathematical method.
[Formula 1]
f (RV, h) = ((V / RV) 2+ (h / RH) 2-1) 2
[Where,
V: diagonal velocity detected by a Doppler radar type sensor,
RH: Diagonal distance detected by a Doppler radar type sensor,
h: Height from the road bed to the sensor,
RV: Train horizontal speed].
The search range between the height from the road bed to the sensor and the horizontal speed of the train may be set in association with the position of the train.
Moreover, you may provide the communication processing part which notifies an external command part when a specific value arises in a search result.
The communication processing unit may receive a search range instruction from an external command unit.
In the train state detection method of the present invention, the oblique direction distance to the reflection position calculated by a Doppler radar type sensor installed at the bottom of the train with a predetermined inclination angle with respect to the roadbed as the direction of the outgoing wave, Based on a measured value acquisition process for acquiring an oblique direction speed in the irradiation direction, the oblique direction distance and the oblique direction speed, a height from the road bed to the sensor based on a predetermined mathematical method, and the train And a search process for simultaneously obtaining the horizontal speed of each.

本発明によると、ドップラーレーダー型のセンサを用いて、センサが取り付けられている車両の設置高度と車両速度とを精度良く測定する技術を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which measures accurately the installation height and vehicle speed of the vehicle in which the sensor is attached using a Doppler radar type sensor is realizable.

本実施形態に係る、列車の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the train based on this embodiment. 本実施形態に係る、列車の底面にドップラーレーダー型のセンサを道床に対し傾斜角をつけて設置して列車速度を計測する原理を説明する図である。It is a figure explaining the principle which installs a Doppler radar type sensor on the bottom of a train and makes an angle of inclination with respect to a roadbed, and measures a train speed concerning this embodiment. 本実施形態に係る、列車速度及び設置高度を算出するシミュレーション例を示すグラフである。It is a graph which shows the example of a simulation which calculates the train speed and installation height based on this embodiment.

次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。   Next, modes for carrying out the present invention (hereinafter, simply referred to as “embodiments”) will be specifically described with reference to the drawings.

図1は、本実施形態に係る列車1の構成を示す機能ブロック図であり、ここでは、主に速度算出機能及び設置高度算出機能に着目して示している。図2は、ドップラーレーダー型センサを用いて軌道91上の列車1の列車速度RV及びドップラーレーダー型センサ20の設置高さ(「設置高度h」ともいう。)を計測する原理を説明する図である。   FIG. 1 is a functional block diagram showing a configuration of a train 1 according to the present embodiment, and here, mainly focusing on a speed calculation function and an installation altitude calculation function. FIG. 2 is a diagram for explaining the principle of measuring the train speed RV of the train 1 on the track 91 and the installation height of the Doppler radar sensor 20 (also referred to as “installation height h”) using a Doppler radar sensor. is there.

列車1は、車両制御部40と、ドップラーレーダー型センサ20と、センサ検出部10とを備える。ドップラーレーダー型センサ20は、列車1の底面2に、道床90に対し所定の傾斜角θをつけて設置されている。即ち、ドップラーレーダー型センサ20の照射方向が傾斜角θに設定されている。センサ検出部10は、距離情報検出部11と速度情報検出部12を備える。距離情報検出部11は、ドップラーレーダー型センサ20のセンシング結果をもとに、斜め方向(傾斜角θの方向)の距離情報RHを検出する。同様に、速度情報検出部12は、ドップラーレーダー型センサ20のセンシング結果をもとに、ドップラー効果の原理に基づいて、斜め方向(傾斜角θの方向)の速度情報Vを検出する。   The train 1 includes a vehicle control unit 40, a Doppler radar type sensor 20, and a sensor detection unit 10. The Doppler radar type sensor 20 is installed on the bottom surface 2 of the train 1 with a predetermined inclination angle θ with respect to the road bed 90. That is, the irradiation direction of the Doppler radar type sensor 20 is set to the inclination angle θ. The sensor detection unit 10 includes a distance information detection unit 11 and a speed information detection unit 12. The distance information detection unit 11 detects the distance information RH in the oblique direction (the direction of the inclination angle θ) based on the sensing result of the Doppler radar type sensor 20. Similarly, the speed information detection unit 12 detects the speed information V in an oblique direction (direction of the tilt angle θ) based on the Doppler effect principle based on the sensing result of the Doppler radar type sensor 20.

探索部30は、センサ検出部10(ドップラーレーダー型センサ20)で検出した速度情報Vをもとに列車1の水平方向の速度つまり列車速度RVを推定するとともにドップラーレーダー型センサ20の設置高度hを算出する。   The search unit 30 estimates the horizontal speed of the train 1, that is, the train speed RV, based on the speed information V detected by the sensor detection unit 10 (Doppler radar type sensor 20), and the installation altitude h of the Doppler radar type sensor 20. Is calculated.

探索部30は、上記機能を実現する為の構成として、探索実行部31、探索設定部32、探索情報記憶部33を備える。探索実行部31は、後述する数学的手法を用いて最も確からしいと推定される列車速度RV及び設置高度hを探索する。   The search unit 30 includes a search execution unit 31, a search setting unit 32, and a search information storage unit 33 as a configuration for realizing the above functions. The search execution unit 31 searches for the train speed RV and the installation altitude h that are estimated to be most likely using a mathematical method described later.

探索設定部32は、探索実行部31を実行するにあたり各種の条件(設定情報)を設定する。具体的には、探索設定部32は、どのような数学的手法を用いるか、どのような探索範囲とするかを予め設定する。   The search setting unit 32 sets various conditions (setting information) when executing the search execution unit 31. Specifically, the search setting unit 32 presets what mathematical method is used and what search range is used.

探索情報記憶部33は、探索設定部32の設定情報を保持すると共に、探索部30による探索結果を保持する。   The search information storage unit 33 holds the setting information of the search setting unit 32 and also holds the search result by the search unit 30.

車両制御部40は、列車速度部41と、位置情報部42と、通信処理部43とを備える。通信処理部43は、運行する列車を統括的に制御する外部の指令部80と無線により通信を行う。   The vehicle control unit 40 includes a train speed unit 41, a position information unit 42, and a communication processing unit 43. The communication processing unit 43 communicates wirelessly with an external command unit 80 that comprehensively controls a running train.

列車速度部41は、探索部30で探索された列車速度RVをもとに、列車速度を算出する。列車速度部41は、列車速度RVに特に異常な値がなければ、列車速度RVをそのまま列車速度とする。異常な値とは、前の値と比べて極端に乖離した値や、想定範囲外の値である。   The train speed unit 41 calculates the train speed based on the train speed RV searched by the search unit 30. If there is no particularly abnormal value in the train speed RV, the train speed unit 41 uses the train speed RV as it is as the train speed. An abnormal value is a value that is extremely different from the previous value or a value outside the assumed range.

列車速度RVに異常な値があれば、列車速度部41は、直近の列車速度RVを列車速度とする。なお、列車速度部41で特定された列車速度及び位置情報部42で特定された位置情報は、例えばリアルタイムで通信処理部43を介して指令部80に通知される。   If there is an abnormal value in the train speed RV, the train speed unit 41 sets the latest train speed RV as the train speed. The train speed specified by the train speed unit 41 and the position information specified by the position information unit 42 are notified to the command unit 80 via the communication processing unit 43 in real time, for example.

なお、列車速度RVに異常な値が継続する場合は、列車速度部41はエラー報知を行うとともに、図示しない別系統の速度計(例えば車輪回転に基づく速度計やGPSを用いた速度計)に切り替える。また、その旨を通信処理部43を介して指令部80へ通知する。   In addition, when an abnormal value continues in the train speed RV, the train speed unit 41 performs an error notification and uses a speedometer of another system (not shown) such as a speedometer based on wheel rotation or a speedometer using GPS. Switch. In addition, this is notified to the command unit 80 via the communication processing unit 43.

図2を参照して、本実施形態における速度検出方法(本推定速度)を具体的に説明する。ここではドップラーレーダー型センサ20のアンテナ中心Cから反射面である道床90に所定の傾斜角(チルト角)θで送出波が照射されて反射波としてドップラーレーダー型センサ20に戻るものとする。   With reference to FIG. 2, the speed detection method (this estimated speed) in this embodiment is demonstrated concretely. Here, it is assumed that a transmission wave is irradiated at a predetermined inclination angle (tilt angle) θ from the antenna center C of the Doppler radar type sensor 20 to the road bed 90 which is a reflection surface, and returns to the Doppler radar type sensor 20 as a reflected wave.

図2(a)、(b)に示す様に、斜め前方照射方向のドップラーレーダー型センサ20より検出された距離情報RHと、速度情報Vと、ドップラーレーダー型センサ20の地面からの設置高度hと、列車速度RVには、次式のような関係が成り立つ。   As shown in FIGS. 2A and 2B, the distance information RH detected by the Doppler radar type sensor 20 in the oblique forward irradiation direction, the speed information V, and the installation height h of the Doppler radar type sensor 20 from the ground. And, the following relationship is established for the train speed RV.

ドップラーレーダー型センサ20で検出された距離情報RHと速度情報Vが複数ある場合、図2(a)により、それぞれの距離情報RHと、傾斜角θと、ドップラーレーダー型センサ20の設置高度hの間には、式(1)が成り立つ。ただし、添え字Pk(0≦Pk≦TN、TNは最大サンプル数)を検出された際のサンプル番号とする。

Figure 0006219335
When there are a plurality of distance information RH and speed information V detected by the Doppler radar type sensor 20, the distance information RH, the inclination angle θ, and the installation height h of the Doppler radar type sensor 20 are shown in FIG. In the meantime, equation (1) holds. However, the subscript Pk (0 ≦ Pk ≦ TN, where TN is the maximum number of samples) is the sample number when detected.
Figure 0006219335

また、ドップラーレーダー型センサ20で検出された距離情報RHと速度情報Vが複数ある場合、図2(b)により、それぞれの速度情報Vと、傾斜角θと、列車速度RVの間には、式(2)が成り立つ。ただし、添え字Pkを検出された際のサンプル番号とする。

Figure 0006219335
In addition, when there are a plurality of distance information RH and speed information V detected by the Doppler radar type sensor 20, according to FIG. 2B, between each speed information V, the inclination angle θ, and the train speed RV, Equation (2) holds. However, the sample number when the subscript Pk is detected is used.
Figure 0006219335

三角関数の基本公式として次の式(3)がある。

Figure 0006219335
上述の式(3)に式(1)、(2)を代入すると、次の式(4)が成り立つ。
Figure 0006219335
There is the following formula (3) as the basic formula of the trigonometric function.
Figure 0006219335
Substituting the formulas (1) and (2) into the above formula (3), the following formula (4) is established.
Figure 0006219335

ここで、式(4)において、未知数である列車速度RVと、設置高度hを数学的手法(例えば、非線形最小二乗法(式(5)))を用いて、計算することにより、列車速度RVと設置高度hとを同時に探索する。この探索は、探索実行部31が行う。

Figure 0006219335
Here, in equation (4), the train speed RV and the installation altitude h, which are unknown numbers, are calculated by using a mathematical method (for example, nonlinear least square method (equation (5))), so that the train speed RV And the installation altitude h are searched simultaneously. This search is performed by the search execution unit 31.
Figure 0006219335

図3は、非線形最小二乗法による探索結果例を示すイメージ図である。図3(a)は、2次元で等高線形式で示したグラフである。図3(b)は3次元で示したグラフである。ここでは、列車速度50km/h、設置高度0.8mとした場合に、上述の非線形最小二乗法でそれらを探索する例を示している。図示のように、未知数である列車速度RVと、設置高度hとを所定の範囲(探索範囲)で当てはめていくと、収束点(最小値)が検出される。その収束点に対応する列車速度RVと設置高度hが、求める値となる。探索範囲は、予め設定され探索設定部32に記憶されている。なお、探索に用いる数学的手法として、非線形最小二乗法の他に、例えば、焼きなまし法や山登り法等の手法がある。   FIG. 3 is an image diagram showing an example of a search result by the nonlinear least square method. FIG. 3A is a two-dimensional graph shown in a contour line format. FIG. 3B is a three-dimensional graph. Here, when the train speed is 50 km / h and the installation altitude is 0.8 m, an example of searching for them by the above-described nonlinear least square method is shown. As shown in the figure, when the unknown train speed RV and the installation altitude h are applied within a predetermined range (search range), a convergence point (minimum value) is detected. The train speed RV and the installation altitude h corresponding to the convergence point are values to be obtained. The search range is set in advance and stored in the search setting unit 32. As a mathematical method used for the search, there are methods such as an annealing method and a hill climbing method in addition to the nonlinear least square method.

以上の方法により、距離情報RH及び速度情報Vから、設置高度hや傾斜角θの変化に影響されることなく、列車速度RVを算出することができる。また、設置高度hも算出することができるので、道床90の凹凸の変化や異常を検出することができる。   By the above method, the train speed RV can be calculated from the distance information RH and the speed information V without being affected by changes in the installation height h and the inclination angle θ. In addition, since the installation height h can also be calculated, it is possible to detect a change or abnormality in the unevenness of the road bed 90.

以上、本実施形態の効果をまとめると次の通りである。
(1)バラスト(敷石)の敷き詰め方が区間により統一されていない環境(例えば、特定の区間だけ、バラストが枕木の高さまで敷き詰められていない環境など)のように、ドップラーレーダー型センサ20の設置高度hが定常的に変化する場合であっても、設置高度hの変化も想定・吸収し、高度推定をしながら、速度精度の向上を図ることができる。
(2)積雪環境のように、どこから反射してきたか判断できない場合であっても、距離情報に紐付けされた速度情報を用いているので、速度情報のみを用いるよりも、速度精度の向上を図ることができる。
(3)設置高度hも推定しているので、道床90などの地面環境の凹凸の変化を検出することができる。したがって、安全対策の確認作業を早期に行うことができる。
(4)ドップラーレーダー型センサ20の傾斜角が、走行中の振動や衝撃でずれた場合でも、計算の中で傾斜角がキャンセルされるので、ずれの影響を排除することができる。
The effects of the present embodiment are summarized as follows.
(1) Installation of the Doppler radar type sensor 20 such as an environment where the ballast (paving stone) method is not unified by section (for example, an environment where the ballast is not spread to the height of sleepers only in a specific section). Even if the altitude h changes constantly, the change in the installation altitude h is assumed and absorbed, and the speed accuracy can be improved while estimating the altitude.
(2) Even when it is not possible to determine where the light is reflected, such as in a snowy environment, speed information associated with distance information is used, so speed accuracy is improved rather than using only speed information. be able to.
(3) Since the installation height h is also estimated, it is possible to detect a change in the unevenness of the ground environment such as the road bed 90. Therefore, confirmation work of safety measures can be performed at an early stage.
(4) Even when the tilt angle of the Doppler radar type sensor 20 is shifted due to vibration or impact during traveling, the tilt angle is canceled in the calculation, so that the influence of the shift can be eliminated.

以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications are possible for the combination of each of those components, and such modifications are also within the scope of the present invention.

1 列車
2 底面
10 センサ検出部
11 距離情報検出部
12 速度情報検出部
20 ドップラーレーダー型センサ
30 探索部
31 探索実行部
32 探索設定部
33 探索情報記憶部
40 車両制御部
41 列車速度部
42 位置情報部
43 通信処理部
80 指令部
90 道床
91 軌道
DESCRIPTION OF SYMBOLS 1 Train 2 Bottom 10 Sensor detection part 11 Distance information detection part 12 Speed information detection part 20 Doppler radar type sensor 30 Search part 31 Search execution part 32 Search setting part 33 Search information storage part 40 Vehicle control part 41 Train speed part 42 Position information Unit 43 communication processing unit 80 command unit 90 road bed 91 track

Claims (6)

道床に対して所定の傾斜角を送出波の照射方向として列車の底部に設置されたドップラーレーダー型のセンサと、
前記センサによって算出される反射位置までの斜め方向距離と、前記照射方向の斜め方向速度とを取得する計測値取得部と、
前記斜め方向距離と前記斜め方向速度とをもとに、所定の数学的手法に基づき前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを同時に求める探索部と
を備えることを特徴とする列車状態検出装置。
A Doppler radar type sensor installed at the bottom of the train with a predetermined inclination angle with respect to the roadbed as the direction of irradiation of the outgoing wave;
A measurement value acquisition unit that acquires an oblique direction distance to the reflection position calculated by the sensor and an oblique direction speed in the irradiation direction;
A search unit that simultaneously obtains the height from the road bed to the sensor and the horizontal speed of the train based on the diagonal distance and the diagonal speed based on a predetermined mathematical method. A train state detection device.
前記探索部は、前記数学的手法として、次の〔数式1〕が最小となる前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを求めることを特徴とする請求項1に記載の列車状態検出装置。
〔数式1〕
f(RV、h)=((V/RV)+(h/RH)−1)
〔式中、
V:ドップラーレーダー型のセンサによって検出された斜め方向速度、
RH:ドップラーレーダー型のセンサによって検出された斜め方向距離、
h:道床からセンサまでの高さ、
RV:列車の水平方向の速度〕。
The said search part calculates | requires the height from the said road bed to the said sensor and the horizontal speed of the said train that the following [Formula 1] becomes the minimum as the said mathematical method, The said train is characterized by the above-mentioned. The train state detection device described.
[Formula 1]
f (RV, h) = ((V / RV) 2 + (h / RH) 2 −1) 2
[Where,
V: diagonal velocity detected by a Doppler radar type sensor,
RH: Diagonal distance detected by a Doppler radar type sensor,
h: Height from the road bed to the sensor,
RV: Train horizontal speed].
前記道床から前記センサまでの高さと前記列車の水平方向の速度との探索範囲は、列車の位置と関連づけて設定されていることを特徴とする請求項1または2に記載の列車状態検出装置。   The train state detection device according to claim 1 or 2, wherein a search range between the height from the roadbed to the sensor and the horizontal speed of the train is set in association with the position of the train. 探索結果に特異な値が生じたときに、外部の指令部へ通知する通信処理部を備えることを特徴とする請求項1から3までのいずれかに記載の列車状態検出装置。   The train state detection device according to any one of claims 1 to 3, further comprising a communication processing unit that notifies an external command unit when a unique value occurs in the search result. 前記通信処理部は外部の指令部から探索範囲の指示を受けることを特徴とする請求項4に記載の列車状態検出装置。
The train state detection device according to claim 4, wherein the communication processing unit receives an instruction of a search range from an external command unit.
道床に対して所定の傾斜角を送出波の照射方向として列車の底部に設置されたドップラーレーダー型のセンサによって算出される反射位置までの斜め方向距離と、前記照射方向の斜め方向速度とを取得する計測値取得行程と、
前記斜め方向距離と前記斜め方向速度とをもとに、所定の数学的手法に基づき前記道床から前記センサまでの高さと、前記列車の水平方向の速度とを同時に求める探索行程と
を備えることを特徴とする列車状態検出方法。
Obtains the diagonal distance to the reflection position calculated by a Doppler radar type sensor installed at the bottom of the train with a predetermined inclination angle with respect to the roadbed as the direction of the outgoing wave, and the diagonal velocity of the irradiation direction. The measurement value acquisition process to
A search process for simultaneously obtaining a height from the roadbed to the sensor and a horizontal speed of the train based on the diagonal distance and the diagonal speed based on a predetermined mathematical method. The train state detection method characterized.
JP2015085817A 2015-04-20 2015-04-20 Train state detection device and train state detection method Active JP6219335B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015085817A JP6219335B2 (en) 2015-04-20 2015-04-20 Train state detection device and train state detection method
TW104124858A TWI652494B (en) 2015-04-20 2015-07-31 Train state detection device and train state detection method
CN201510463330.9A CN106066476B (en) 2015-04-20 2015-07-31 Train state detection device and train state detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085817A JP6219335B2 (en) 2015-04-20 2015-04-20 Train state detection device and train state detection method

Publications (2)

Publication Number Publication Date
JP2016205922A JP2016205922A (en) 2016-12-08
JP6219335B2 true JP6219335B2 (en) 2017-10-25

Family

ID=57419657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085817A Active JP6219335B2 (en) 2015-04-20 2015-04-20 Train state detection device and train state detection method

Country Status (3)

Country Link
JP (1) JP6219335B2 (en)
CN (1) CN106066476B (en)
TW (1) TWI652494B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252111B2 (en) * 2019-10-09 2023-04-04 株式会社Soken estimation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201176A (en) * 1985-03-04 1986-09-05 Komatsu Ltd Method for reducing error in doppler radar type vehicle ground speed detector
JP2778619B2 (en) * 1994-06-09 1998-07-23 東日本旅客鉄道株式会社 Non-contact speed measurement device for railway vehicles
DE4429419A1 (en) * 1994-08-19 1996-02-22 Daimler Benz Aerospace Ag Determining road state by car mounted radar
US6082666A (en) * 1997-12-03 2000-07-04 Raytheon Company System for accurately determining missile vertical velocity and altitude
FR2809186B1 (en) * 2000-05-22 2002-07-12 Celine Corbrion METHOD AND DEVICE FOR MEASURING THE SPEED OF A MOBILE
JP2005043080A (en) * 2003-07-23 2005-02-17 Fujitsu Ten Ltd Method of attaching radar for vehicle, and radar for vehicle
DE102004037907A1 (en) * 2004-08-05 2006-03-16 Robert Bosch Gmbh Radar sensor for motor vehicles
JP4893883B2 (en) * 2006-06-30 2012-03-07 独立行政法人 宇宙航空研究開発機構 Radio altitude speed measuring apparatus and altitude speed measuring method using radio wave
JP6448179B2 (en) * 2013-08-08 2019-01-09 日本信号株式会社 Radar equipment
CN203825191U (en) * 2014-03-24 2014-09-10 北京川速微波科技有限公司 Radar velocity measurement apparatus based on angle compensation
CN104069970B (en) * 2014-06-10 2016-08-17 潍坊美奥农业科技有限公司 A kind of agricultural brainpower insufflation machinery
CN104483667A (en) * 2015-01-02 2015-04-01 江苏新瑞峰信息科技有限公司 Vehicle-mounted radar device

Also Published As

Publication number Publication date
TW201638609A (en) 2016-11-01
CN106066476B (en) 2021-06-04
CN106066476A (en) 2016-11-02
JP2016205922A (en) 2016-12-08
TWI652494B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
US9267792B2 (en) Method and apparatus for compensating lateral displacements and low speed variations in the measure of a longitudinal profile of a surface
US9610961B2 (en) Method and device for measuring speed in a vehicle independently of the wheels
US8700324B2 (en) Machine navigation system having integrity checking
CN104995528B (en) It is capable of the trailer-mounted radar device of Discrimination Radar sensor setting angle
WO2017123301A2 (en) Negative obstacle detector
US20190212440A1 (en) Driving lane detection device and driving lane detection method
US10309763B2 (en) Rail position measurement device
JP7052543B2 (en) Vehicle position estimation device
CN109031302B (en) Method and device for analysing the environment of a vehicle and vehicle equipped with such a device
JP3710451B2 (en) Method and apparatus for measuring position of moving object
CN103115581A (en) Multifunctional rail measuring system and method thereof
JP2010210483A (en) Radar apparatus
CN106405535B (en) Train speed detection device and train speed detection method
JP2022100793A (en) Vehicle travel system and blind angle estimation method
JP6219335B2 (en) Train state detection device and train state detection method
JP2018073010A (en) Mobile body control device, mobile body control method, and program for mobile body control device
JP2015165754A (en) Train speed detecting device, and train speed detecting method
JP2020135711A (en) Control apparatus, mobile body, and control method
JP6494538B2 (en) Limit measuring device and limit measuring program
Stein et al. An analysis of different sensors for turnout detection for train-borne localization systems
JP6604052B2 (en) Runway boundary estimation device and runway boundary estimation method
JP2006275748A (en) Detecting device for value of axis misalignment of radar
TWI666463B (en) Train speed detection device and method
CN112630791A (en) Height limit measuring method for special vehicle
JP2015056123A (en) Environmental map generation control device of moving body, moving body, and environmental map generation method of moving body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6219335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250