JP6215692B2 - Zygote - Google Patents

Zygote Download PDF

Info

Publication number
JP6215692B2
JP6215692B2 JP2013268752A JP2013268752A JP6215692B2 JP 6215692 B2 JP6215692 B2 JP 6215692B2 JP 2013268752 A JP2013268752 A JP 2013268752A JP 2013268752 A JP2013268752 A JP 2013268752A JP 6215692 B2 JP6215692 B2 JP 6215692B2
Authority
JP
Japan
Prior art keywords
joint
end portion
belt
strip
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013268752A
Other languages
Japanese (ja)
Other versions
JP2015126062A (en
Inventor
優 永田
優 永田
康治 宮本
康治 宮本
伸起 堀内
伸起 堀内
丈司 大隈
丈司 大隈
祐介 宮道
祐介 宮道
敬太 黒須
敬太 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013268752A priority Critical patent/JP6215692B2/en
Publication of JP2015126062A publication Critical patent/JP2015126062A/en
Application granted granted Critical
Publication of JP6215692B2 publication Critical patent/JP6215692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、異なる熱膨張係数を有する材料からなる基体と帯状体とが接合された接合体に関する。   The present invention relates to a joined body in which a base made of a material having different thermal expansion coefficients and a strip-like body are joined.

異なる熱膨張係数を有する材料からなる基体と帯状体とを接合する技術が必要とされている。このような異なる熱膨張係数を有する材料を貼り合わせる例として、太陽電池モジュールを例示することができる。   There is a need for a technique for joining a base body and a band-shaped body made of materials having different thermal expansion coefficients. A solar cell module can be exemplified as an example in which materials having different thermal expansion coefficients are bonded together.

太陽電池モジュールは、一般的にpn接合した単結晶シリコン基板や多結晶シリコン基板,CIGS(Copper Indium Gallium DiSelenide)基板等の両主面に電極を形成した複数の太陽電池素子を半田を介して帯状の接続導体で互いに接合されてなる。ここで、太陽電池素子が、小さい熱膨張係数を有する基体であり、接続導体が、高い熱膨張係数を有する帯状体であり、半田が、両者を接続する接合部であり、太陽電池モジュールが、これらを互いに接合した接合体となっている(例えば、特許文献1参照)。   A solar cell module is generally a strip of a plurality of solar cell elements having electrodes formed on both main surfaces thereof, such as a pn-junction single crystal silicon substrate, a polycrystalline silicon substrate, or a CIGS (Copper Indium Gallium DiSelenide) substrate. The connection conductors are joined together. Here, the solar cell element is a base having a small coefficient of thermal expansion, the connection conductor is a strip having a high coefficient of thermal expansion, the solder is a joint that connects both, and the solar cell module is It is a joined body in which these are joined together (see, for example, Patent Document 1).

特開2004−281797号公報JP 2004-281797 A

しかし、特許文献1に記載された技術を用いて得た接合体では、接合時の加熱や、日々の温度サイクルなどにより温度変化が生じた場合に、帯状体が熱膨張或いは収縮し、帯状体に接続された基体が帯状体の膨張等によって生じる応力を吸収できず、結果として、基体にクラックを引き起こす虞があった。特に帯状体と基体との接続部のうち、帯状体の端部において、帯状体の熱膨張量および熱収縮量が大きくなることから、そこに接続される基体にクラックが生じやすくなっていた。   However, in the joined body obtained by using the technique described in Patent Document 1, when temperature change occurs due to heating at the time of joining, daily temperature cycle, or the like, the strip is thermally expanded or contracted, The substrate connected to the substrate cannot absorb the stress caused by the expansion of the belt-like body, and as a result, the substrate may be cracked. In particular, since the amount of thermal expansion and contraction of the band-like body is large at the end of the band-like body in the connection portion between the band-like body and the base body, cracks are likely to occur in the base body connected thereto.

本発明は、上述の事情のもとで考え出されたものであって、基体に生じるクラックを抑制した接合体を提供することを目的とする。   The present invention has been conceived under the above-described circumstances, and an object of the present invention is to provide a bonded body in which cracks generated in a substrate are suppressed.

一形態に係る接合体は、第1主面を有する基体と、少なくとも端部が前記第1主面の上方に位置するように設けられ、前記基体よりも熱膨張係数の大きい材料からなる帯状の帯状体と、前記帯状体よりも熱膨張係数の小さい材料からなり、前記基体と前記帯状体とを接続する帯状の接合部と、を備える接合体であって、前記接合部は、平面視したときに、長手方向に沿った一対の外郭線同士が略平行である中間部と、前記中間部から延び、先端に向かうに連れて前記一対の外郭線同士の距離が変化している接合端部と、前記接合端部が前記基体と接する第1接合面と、前記接合端部が前記帯状体と接する第2接合面とを有し、前記第2接合面は、平面視したときに、前記帯状体の前記端部の内側に位置しており、前記接合端部に対して、前記第1主面の法線方向において断面視したときに、前記第1接合面から前記第2接合面側に向けて、前記接合部の外郭が徐々に前記中間部側に変位する第1変化部と、前記第2接合面から前記第1接合面側に向けて、前記接合部の外郭が徐々に前記中間部側に変位する第2変化部と、を有するとともに、前記第1変化部の変化率が前記第2変化部の変化率よりも小さい A joined body according to one embodiment is a belt-shaped member made of a material having a first main surface and a material having a thermal expansion coefficient larger than that of the substrate, provided at least an end portion is located above the first main surface. A band-shaped body and a band-shaped joint portion made of a material having a smaller coefficient of thermal expansion than the band-shaped body, and connecting the base body and the band-shaped body. Sometimes, a pair of outer lines along the longitudinal direction are substantially parallel to each other, and a joint end that extends from the intermediate part and the distance between the pair of outer lines changes toward the tip. And a first joint surface in which the joint end portion is in contact with the base body, and a second joint surface in which the joint end portion is in contact with the belt-like body, and when the second joint surface is viewed in plan view, located inside the end portion of the strip, with respect to the joint end portion, the A first change portion in which an outline of the joint portion is gradually displaced toward the intermediate portion side from the first joint surface toward the second joint surface when viewed in a cross-section in the normal direction of one main surface; And a second changing portion in which an outline of the joint portion gradually displaces toward the intermediate portion side from the second joint surface toward the first joint surface side, and a rate of change of the first change portion Is smaller than the rate of change of the second change part .

本発明によれば、基体に生じるクラックの発生を抑制した接合体を得ることができる。   According to the present invention, it is possible to obtain a bonded body in which the generation of cracks generated in the substrate is suppressed.

本発明の1つの実施形態に係る接合体の概略構成を示す平面図である。It is a top view which shows schematic structure of the conjugate | zygote which concerns on one Embodiment of this invention. (a),(b)は、本発明の1つの実施形態に係る接合体の要部上面図および断面図である。(A), (b) is the principal part top view and sectional drawing of the conjugate | zygote which concern on one Embodiment of this invention. (a),(b)は、本発明の変形例に係る接合体の要部上面図および断面図である。(A), (b) is the principal part top view and sectional drawing of the conjugate | zygote which concern on the modification of this invention. (a)〜(d)は、は本発明の変形例に係る接合体の要部上面図および断面図である。(A)-(d) is the principal part top view and sectional drawing of the conjugate | zygote which concern on the modification of this invention. 実施例にかかる接合体の応力分布状態をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the stress distribution state of the joined body concerning an Example. 比較例にかかる接合体の応力分布状態をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the stress distribution state of the joined body concerning a comparative example.

本発明の接合体の一実施形態について、図面を参照しつつ説明する。   An embodiment of the joined body of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る接合体10の平面図である。この例では、接合体10として太陽電池モジュールを例に説明する。接合体10は、基体1と、基体1よりも熱膨張係数の大きい材料からなる帯状の帯状体2と、基体1と帯状体2とを接合する、帯状体2よりも熱膨張係数の小さい材料からなる接合部3とを有する。   FIG. 1 is a plan view of a joined body 10 according to an embodiment of the present invention. In this example, a solar cell module will be described as an example of the bonded body 10. The joined body 10 is a material having a smaller thermal expansion coefficient than that of the belt-like body 2, which joins the base body 1, the belt-like belt-like body 2 made of a material having a larger thermal expansion coefficient than the base body 1, and the base body 1 and the belt-like body 2. And a joint portion 3 made of

基体1は、太陽電池素子であり、例えば厚み0.2mm〜0.4mm程度、大きさ150mm角程度の単結晶シリコン基板や多結晶シリコン基板からなる。基体1のシリコン基板にはボロン(B)などのp型の不純物を含む領域と、リン(P)などのn型の不純物を含む領域とが接してなるpn接合が形成されている。なお、基体1として単結晶シリコン基板を用いた場合には、その熱膨張係数は例えば、2.6μm・m−1・K−1を例示することができる。そして、基体1の表面にはフィンガー電極11とバスバー電極12とが形成されている。 The substrate 1 is a solar cell element, and is made of, for example, a single crystal silicon substrate or a polycrystalline silicon substrate having a thickness of about 0.2 mm to 0.4 mm and a size of about 150 mm square. A pn junction is formed on the silicon substrate of the base 1 so that a region containing p-type impurities such as boron (B) and a region containing n-type impurities such as phosphorus (P) are in contact with each other. In addition, when a single crystal silicon substrate is used as the substrate 1, the thermal expansion coefficient can be exemplified by 2.6 μm · m −1 · K −1, for example. Finger electrodes 11 and bus bar electrodes 12 are formed on the surface of the substrate 1.

フィンガー電極11およびバスバー電極12は、銀ペーストなどを塗布・焼成し形成されている。フィンガー電極11は幅0.1mm〜0.2mm程度で、基体1の所定の一辺に平行に多数本設けられる。このフィンガー電極11により光生成キャリアを効率よく収集することができる。バスバー電極12は、フィンガー電極11により収集されたキャリアを集電するために設けられ、フィンガー電極11と垂直に設けられる。また、効率よく集電するため、および、後述する帯状体2との接続を確実に行なうために、バスバー電極12の幅はフィンガー電極11よりも広くしており、例えば2mm程度とすればよい。   The finger electrode 11 and the bus bar electrode 12 are formed by applying and baking a silver paste or the like. A large number of finger electrodes 11 having a width of about 0.1 mm to 0.2 mm are provided in parallel to a predetermined side of the substrate 1. This finger electrode 11 can efficiently collect photogenerated carriers. The bus bar electrode 12 is provided to collect the carriers collected by the finger electrode 11 and is provided perpendicular to the finger electrode 11. Further, in order to collect current efficiently and to ensure connection to the band 2 described later, the width of the bus bar electrode 12 is made wider than the finger electrode 11 and may be about 2 mm, for example.

このようなフィンガー電極11,バスバー電極12は基体1の第1主面1aのみならず、反対側の主面にも同様に形成されている。   Such finger electrodes 11 and bus bar electrodes 12 are formed not only on the first main surface 1a of the base 1 but also on the opposite main surface.

そして、このような基体1のバスバー電極12の上方に帯状の帯状体2が後述の接合部3を介して配置される。帯状体2は、例えば厚みが0.1mm〜1.0mm程度で、その幅は太陽電池素子として機能する基体1の受光面である第1主面1aに影を作らないように、バスバー電極12と同程度とすることが好ましい。そして、帯状体2の長さは、バスバー電極12からの集電効率・電気抵抗を考慮して、バスバー電極12のほぼ全面をにわたって配置される長さを有する。ただし、帯状体2は少なくとも1つの端部21が基体1の第1主面1aの上方に位置すれば、もう一方の端部は基体1の外側まで伸びるような長さを有していてもよい。このように、帯状体2が基体1の外側まで伸びることより、基体1に隣接配置される他の太陽電池素子と接続することが可能となる。   And the strip | belt-shaped strip | belt-shaped body 2 is arrange | positioned through the junction part 3 mentioned later above the bus-bar electrode 12 of such a base | substrate 1. FIG. The strip-shaped body 2 has a thickness of, for example, about 0.1 mm to 1.0 mm, and its width is such that the bus bar electrode 12 has a width so as not to make a shadow on the first main surface 1a that is the light receiving surface of the substrate 1 that functions as a solar cell element. It is preferable to make it the same level. The length of the belt-like body 2 has a length that extends over almost the entire surface of the bus bar electrode 12 in consideration of the current collection efficiency and electrical resistance from the bus bar electrode 12. However, the belt-like body 2 may have such a length that the other end portion extends to the outside of the base body 1 when at least one end portion 21 is located above the first main surface 1a of the base body 1. Good. As described above, since the belt-like body 2 extends to the outside of the base body 1, it can be connected to another solar cell element disposed adjacent to the base body 1.

このような帯状体2は、銀(Ag),銅(Cu),アルミニウム(Al),鉄(Fe)、金(Au)等の高い伝導率を有する材料からなり、導電性などを考慮し、この例ではC
u箔を用いる。Cuの熱膨張係数は、16.6μm・m−1・K−1を例示することができる。
Such a band 2 is made of a material having high conductivity such as silver (Ag), copper (Cu), aluminum (Al), iron (Fe), gold (Au), etc. In this example C
u foil is used. The thermal expansion coefficient of Cu can be exemplified by 16.6 μm · m −1 · K −1 .

そして、基体1と帯状体2とを接合部3で接合する。接合部3は、帯状体2よりも小さい熱膨張係数を有する材料からなり、両者を接合可能なものあれば限定されない。この例では、基体1のバスバー電極12と帯状体2とを電気的に接続する必要があるため、導電性を有する材料を用いる。例えば、半田、ロウ材、導電性接合剤等を用いることができる。この例では半田を用いる。半田の熱膨張係数は、3.0μm・m−1・K−1を例示することができる。このように基体1との熱膨張係数差を小さくすれば、基体1への熱応力を抑制することができるので好ましい。 Then, the base body 1 and the belt-like body 2 are joined at the joint portion 3. The joining portion 3 is made of a material having a smaller thermal expansion coefficient than that of the belt-like body 2 and is not limited as long as both can be joined. In this example, since it is necessary to electrically connect the bus bar electrode 12 of the base 1 and the strip 2, a conductive material is used. For example, solder, brazing material, conductive bonding agent, or the like can be used. In this example, solder is used. The thermal expansion coefficient of solder can be exemplified by 3.0 μm · m −1 · K −1 . Thus, it is preferable to reduce the difference in thermal expansion coefficient from the substrate 1 because the thermal stress on the substrate 1 can be suppressed.

接合部3は、バスバー電極12上または、帯状体2の接合面側に所望のパターンの半田コートを施し、加熱しつつ接触させることで、基体1と帯状体2との間に介在させてもよい。   The joining portion 3 may be interposed between the base 1 and the strip 2 by applying a solder coat having a desired pattern on the bus bar electrode 12 or on the joining surface side of the strip 2 and heating the solder coat. Good.

このような接合部3の幅は、バスバー電極12よりも細ければよいが、バスバー電極12と略同一とすることにより、集電効率を高めることができる。   The width of the junction 3 may be narrower than that of the bus bar electrode 12, but the current collection efficiency can be increased by making the width of the junction 3 substantially the same as that of the bus bar electrode 12.

ここで、接合部3の形状について詳述する。図2に、基体1,帯状体2および接合部3の接合部分の模式的な要部拡大図を示す。図2(a)は、接合部分の平面視であり、図2(b)は、図2(a)のIIb線における断面図である。   Here, the shape of the joint portion 3 will be described in detail. In FIG. 2, the typical principal part enlarged view of the junction part of the base | substrate 1, the strip | belt-shaped body 2, and the junction part 3 is shown. FIG. 2A is a plan view of the joint portion, and FIG. 2B is a cross-sectional view taken along the line IIb in FIG.

図2に示すように、接合部3は、平面視で中間部31と接合端部32とを備えている。中間部31は幅方向における外郭線が略平行となっている領域をさす。幅方向における外郭線とは、言い換えると、長手方向に沿った外郭線のことを指す。接合端部32は、長手方向における長さの1/2以下の領域であって、中間部31の幅を有する部位から幅を変えて先端に至る領域をさすものとする。   As shown in FIG. 2, the joint portion 3 includes an intermediate portion 31 and a joint end portion 32 in plan view. The intermediate portion 31 refers to a region in which outlines in the width direction are substantially parallel. In other words, the outline in the width direction refers to an outline along the longitudinal direction. The joining end portion 32 is a region that is ½ or less of the length in the longitudinal direction, and refers to a region that reaches the distal end by changing the width from the portion having the width of the intermediate portion 31.

この例では、接合端部32の外郭線は、中間部31の外郭線の幅よりも内側に位置して
いる。言い換えると、中間部31における幅が最大であり、接合端部32は中間部31か
ら連続して幅が小さくなっている。そして、このような接合端部32が、基体1と接する
領域を第1接合面33とし、帯状体2と接する領域を第2接合面34とする。図2(a)
において、第接合面34の外郭線を破線で示している。
In this example, the outline of the joining end portion 32 is located inside the width of the outline of the intermediate portion 31. In other words, the width in the intermediate portion 31 is the maximum, and the joining end portion 32 is continuously reduced from the intermediate portion 31. A region where such a bonding end portion 32 is in contact with the substrate 1 is a first bonding surface 33, and a region where the bonding end portion 32 is in contact with the belt-like body 2 is a second bonding surface 34. FIG. 2 (a)
The outline of the second joint surface 34 is indicated by a broken line.

第1接合面33の外郭線により形成される外郭形状は、特に限定されないが、この例では、曲線または角部が全て鈍角となっている。言い換えると90°以下の鋭角部を含まないように構成されている。この例では、円弧を描くものとなっている。そして、この円弧部と、中間部31の幅方向における外郭線との接合部に着目すると、中間部31の直線状の外郭線と、第1接合面33の外郭線がなす円弧の接合部付近の接線とでなす角度が鈍角となっている。   The outline shape formed by the outline line of the first joint surface 33 is not particularly limited, but in this example, all the curves or corners are obtuse. In other words, it is configured not to include an acute angle portion of 90 ° or less. In this example, an arc is drawn. When attention is paid to the joint portion between the arc portion and the contour line in the width direction of the intermediate portion 31, the vicinity of the arc junction portion formed by the straight contour line of the intermediate portion 31 and the contour line of the first joint surface 33. The angle made with the tangent line is obtuse.

第2接合面34は、平面視で、帯状体2の端部21よりも内側に位置している。言い換えると、帯状体2の端部21の直下には第2接合面34が存在しない。なお、第2接合面34の外郭線の形状は特に限定されないが、この例では、第1接合面33の外郭線により形成される外郭形状と同様に円弧上の曲線としている。そして、平面視で帯状体2の外側に一部が位置している。   The second bonding surface 34 is located on the inner side of the end portion 21 of the strip 2 in plan view. In other words, the second bonding surface 34 does not exist immediately below the end portion 21 of the strip 2. In addition, although the shape of the outline of the 2nd junction surface 34 is not specifically limited, In this example, it is set as the curve on a circular arc similarly to the outline shape formed of the outline of the 1st junction surface 33. And a part is located in the outer side of the strip | belt-shaped body 2 by planar view.

このように、第1接合面33の外郭線の形状を鋭角を含まないものとすることにより、帯状体2からの熱収縮・熱膨張に起因する応力を分散することができる。さらに、第2接合面34が帯状体2の接合端部32よりも内側に位置していることから、帯状体2の熱収
縮・熱膨張が最も大きくなる端部21の角部に接合部3が接することがない。このことから、帯状体2から接合部3を介して基体1に伝わる熱収縮・熱膨張に起因する応力自体を低減することができる。さらに、この例では、第2接合面34の外郭線の形状も、鋭角を有しないように曲線としていることからに、帯状体2からの応力を低減することができるものとなる。
As described above, by making the shape of the outline of the first joint surface 33 not include an acute angle, it is possible to disperse the stress caused by the thermal contraction / thermal expansion from the belt-like body 2. Further, since the second joining surface 34 is located inside the joining end portion 32 of the strip 2, the joining portion 3 is formed at the corner of the end 21 where the thermal contraction / thermal expansion of the strip 2 is greatest. Will not touch. From this, it is possible to reduce the stress itself due to the thermal contraction and thermal expansion transmitted from the belt-like body 2 to the base body 1 through the joint portion 3. Furthermore, in this example, since the shape of the outline of the second joint surface 34 is also curved so as not to have an acute angle, the stress from the belt-like body 2 can be reduced.

さらに、図2(b)に示すように、接合部3の接合端部32における断面形状は、基体1側と帯状体2側の両側から内側に凹む形状となっている。言い換えると、第1接合面33から第2接合面34側(帯状体2側,上方)に向けて、中間部31側に凹むように変位する第1変化部35と、第2接合面34から第1接合面33側(基体1側,下方)に向けて、中間部31側に凹むように変位する第2変化部36と、を有している。このような構成とすることにより、帯状体2側からの応力を分散させながら受け、基体1側に向けて分散させながら伝える構成となる。   Further, as shown in FIG. 2B, the cross-sectional shape of the joint end portion 32 of the joint portion 3 is a shape that is recessed inward from both sides of the base body 1 side and the belt-like body 2 side. In other words, from the first joint surface 33 toward the second joint surface 34 side (the band-like body 2 side, upward), the first change portion 35 that is displaced so as to be recessed toward the intermediate portion 31 side, and the second joint surface 34 And a second changing portion 36 that is displaced so as to be recessed toward the intermediate portion 31 side toward the first bonding surface 33 side (base 1 side, downward). With such a configuration, the stress from the belt-like body 2 side is received while being dispersed, and the stress is transmitted while being dispersed toward the base body 1 side.

特にこの例では第1変化部35の変化率(傾きの絶対値)が第2変化部36の変化率(傾きの絶対値)に比べ小さくなっている。これにより、帯状体2からの応力を、より緩やかに基体1に伝達するものとなる。   Particularly in this example, the rate of change (absolute value of inclination) of the first change unit 35 is smaller than the rate of change (absolute value of inclination) of the second change unit 36. As a result, the stress from the belt-like body 2 is more gently transmitted to the base body 1.

また、接合部3を構成する材料の熱膨張係数が、基体1と帯状体2との中間であることから、接合部3で熱履歴に起因する応力を緩和することができる。さらに、この例では、接合部3を構成する材料の熱膨張係数が、基体1と帯状体2との熱膨張のうち、より基体1に近くなっているため、基体1と接合部3との熱膨張係数差に起因する応力の発生を抑制することができる。   Moreover, since the thermal expansion coefficient of the material constituting the joint portion 3 is intermediate between the base 1 and the belt-like body 2, the stress caused by the thermal history can be relaxed at the joint portion 3. Furthermore, in this example, since the thermal expansion coefficient of the material constituting the joint portion 3 is closer to the base body 1 in the thermal expansion between the base body 1 and the belt-like body 2, Generation of stress due to a difference in thermal expansion coefficient can be suppressed.

上述の通り、接合部3の形状、材料により、帯状体2からの熱履歴に起因する応力を接合部3により吸収する構成となっている。これにより、基体1に発生するクラックの発生を抑制することができる。   As described above, the joint 3 absorbs the stress caused by the thermal history from the band 2 by the shape and material of the joint 3. Thereby, generation | occurrence | production of the crack which generate | occur | produces in the base | substrate 1 can be suppressed.

(変形例1)
次に、接合体10の変形例について説明する。図3に、基体1A,帯状体2Aおよび接合部3Aの接合部分の模式的な要部拡大図を示す。図3(a)は、接合部分の平面視であり、図3(b)は、図3(a)のIIIb線における断面図である。
(Modification 1)
Next, a modified example of the joined body 10 will be described. FIG. 3 is a schematic enlarged view of the main part of the joining portion of the base 1A, the strip 2A, and the joining portion 3A. FIG. 3A is a plan view of the joining portion, and FIG. 3B is a cross-sectional view taken along the line IIIb in FIG.

図3に示す接合体1Aは、図2に示す接合体1の接合部3に代えて、接合部3Aを有する点で異なる。以下、異なる点のみ説明し、重複する説明を省略する。なお、第1接合面33Aの外郭形状を点線で、第2接合面34Aの外郭線を破線で示している。   A bonded body 1A shown in FIG. 3 is different in that a bonded portion 3A is provided instead of the bonded portion 3 of the bonded body 1 shown in FIG. Hereinafter, only different points will be described, and redundant description will be omitted. The outline of the first joint surface 33A is indicated by a dotted line, and the outline of the second joint surface 34A is indicated by a broken line.

接合部3Aは、第1接合面33Aが、平面視で帯状体2Aの端部21Aよりも内側に位置する。このような構成とすることにより、帯状体2とバスバー電極12との距離が、バスバー電極12,接合部3A,帯状体2Aの先端で大きくなることがない。これにより、集電効率を高めることができる。   In the joining portion 3A, the first joining surface 33A is located on the inner side of the end portion 21A of the belt-like body 2A in plan view. With such a configuration, the distance between the strip 2 and the bus bar electrode 12 does not increase at the bus bar electrode 12, the joint 3A, and the end of the strip 2A. Thereby, current collection efficiency can be improved.

(変形例2)
さらに、図4(a)〜(d)に示す構成としてもよい。図4(a)に示すように、接合部3Bの接合端部32Bにおける断面形状は、基体1B側と帯状体2B側の両側から内側に凹む形状となっている必要はなく、帯状体2B側から基体1B側に向けて、徐々に中間部31Bと反対側(外側)にはりだすように(膨らむように)してもよい。図4(a)においては、断面の外郭線が曲線を描くようになった例を示したが直線状であってもよい。さらに、帯状体2B側から基体1B側に向けて、垂直となるようにしてもよい。
(Modification 2)
Furthermore, it is good also as a structure shown to Fig.4 (a)-(d). As shown in FIG. 4A, the cross-sectional shape of the joint end portion 32B of the joint portion 3B does not need to be recessed inward from both sides of the base body 1B side and the belt-like body 2B side, but the belt-like body 2B side. From the side toward the base body 1B, it may be gradually protruded (inflated) to the opposite side (outside) of the intermediate portion 31B. Although FIG. 4A shows an example in which the outline of the cross section draws a curve, it may be linear. Further, it may be vertical from the belt-like body 2B side to the base body 1B side.

また、図4(b)に示すように、接合部3Cの接合端部32Cにおける、第2接合面34Cにおける外郭線の形状は、曲線ではなく直線状としてもよい。端部21Cの角部に接合部3Cが接触しておらず、第1接合面33Cの形状が曲線状であることから、このような構成であっても、基体1Cへの応力伝達を抑制することができる。   Moreover, as shown in FIG.4 (b), the shape of the outline of the 2nd joining surface 34C in the joining end part 32C of the joining part 3C is good also as a linear form instead of a curve. Since the joining portion 3C is not in contact with the corner portion of the end portion 21C and the shape of the first joining surface 33C is curved, even in such a configuration, stress transmission to the base 1C is suppressed. be able to.

また、図4(c)に示すように、接合部3Dの接合端部32Dにおける、第1接合面33Dの外郭線の幅は、図2に示すように必ずしも中間部31の幅を最大とする必要はなく、中間部31Dの幅から一旦膨らみ、先端に向けて徐々に小さくなるような形状としてもよい。言い換えると、中間部31Dの幅よりも大きい曲率半径を有する円弧部を接続してもよい。   Further, as shown in FIG. 4C, the width of the outline of the first joint surface 33D at the joint end portion 32D of the joint portion 3D does not necessarily maximize the width of the intermediate portion 31 as shown in FIG. There is no need, and the shape may be such that it once swells from the width of the intermediate portion 31D and gradually decreases toward the tip. In other words, an arc portion having a radius of curvature larger than the width of the intermediate portion 31D may be connected.

さらに、図4(d)に示すように、接合部3Eの接合端部32Dにおける平面形状は、その角部が全て鈍角となるように形成してもよい。   Furthermore, as shown in FIG. 4D, the planar shape of the joint end portion 32D of the joint portion 3E may be formed such that all corner portions thereof are obtuse.

(変形例3)
上述の例では、接合部3として基体1と帯状体2との間の熱膨張係数を有する材料を用いた例を用いて説明したが、基体1よりも小さい熱膨張係数を有するものとしてもよい。その場合には、基体1のクラックを抑制し、接合部3にクラックを発生させるものとなる。このため、万が一大きな熱応力が加わった場合であっても基体1(太陽電池素子)が破損することを抑制することができる。
(Modification 3)
In the above-described example, the example in which the material having the thermal expansion coefficient between the base body 1 and the belt-like body 2 is used as the bonding portion 3 has been described. However, the bonding section 3 may have a smaller thermal expansion coefficient than the base body 1. . In that case, cracks in the base 1 are suppressed, and cracks are generated in the joint 3. For this reason, even if it is a case where a big thermal stress is added by any chance, it can suppress that the base | substrate 1 (solar cell element) is damaged.

さらに付言すると、上述の実施形態では接合体10として太陽電池素子モジュールを例に説明したが、熱膨張係数の小さい平面を有する基体に熱膨張係数の大きい角部を有するような帯状の構造体である帯状体を接続するものであれば、これに限定されることはない。   In addition, although the solar cell element module has been described as an example of the joined body 10 in the above-described embodiment, it is a belt-like structure having a corner portion having a large thermal expansion coefficient on a base having a plane having a small thermal expansion coefficient. If it connects a certain strip | belt-shaped body, it will not be limited to this.

上述の実施形態およびその変形例ともに、接合部3となる半田のパターン形成のみで、基体1のクラック発生を抑制できるため、生産性のよいものとなる。具体的には、接合部3となる半田パターンを工夫してもよいし、基体1側および帯状体2側に半田コートを施し、接合部3の非形成部に相当する部分にソルダーレジストを配置すれば、両者を接触させて加熱した際に、自動的に所望の形状を有する接合部3を構成することができる。   In both the above-described embodiment and its modified example, the formation of cracks in the base body 1 can be suppressed only by forming a solder pattern to be the joint portion 3, so that the productivity is improved. Specifically, the solder pattern to be the joint portion 3 may be devised, solder coat is applied to the base 1 side and the band-like body 2 side, and a solder resist is disposed in a portion corresponding to the non-formation portion of the joint portion 3 If it does so, when both are made to contact and it heats, the junction part 3 which has a desired shape can be comprised automatically.

なお、上述の例では、接合部3の熱膨張係数が帯状体2よりも小さい場合を例に説明したが、第1接合面33の外郭形状が鋭角を含まず、かつ第2接合面34の外郭形状が平面視で帯状体2の端部21の内側に位置している場合には、帯状体2よりも大きい熱膨張係数の材料を用いてもよい。その場合には、帯状体2の端部21における応力集中を抑制し、かつ、帯状体2と接合部3とにより生じる応力を緩やかに基体1に伝達するものとなるので、基体1のクラック発生を抑制することができる。   In the above-described example, the case where the thermal expansion coefficient of the joint portion 3 is smaller than that of the belt-like body 2 has been described as an example. However, the outer shape of the first joint surface 33 does not include an acute angle and the second joint surface 34 When the outer shape is located inside the end portion 21 of the strip 2 in plan view, a material having a larger thermal expansion coefficient than that of the strip 2 may be used. In this case, since stress concentration at the end portion 21 of the belt-like body 2 is suppressed and stress generated by the belt-like body 2 and the joint portion 3 is gently transmitted to the base body 1, cracks in the base body 1 are generated. Can be suppressed.

実施例と比較例の接合体について、基体1にかかる応力をシミレーションした。具体的には、実施例として図4(a)に示す接合体をモデルとした。また、比較例として、帯状体の端部の角部に接合部が接触しており、かつ基体との接合部(第1接合面に相当する)の形状が直線状である場合をモデルとした。言い換えると、帯状体と同じ形状であり端部を合わせた接合部を用いたモデルを比較例とした。なお、具体的な条件は下記の通りとした。 The conjugate of examples and comparative examples, the stress applied to the substrate 1 and push from Mi configuration. Specifically, the joined body shown in FIG. 4A was used as a model as an example. Further, as a comparative example, a model is used in which the joint is in contact with the corner of the end of the strip and the shape of the joint with the base (corresponding to the first joint surface) is linear. . In other words, a model having the same shape as that of the belt-like body and using a joint portion in which ends are combined was used as a comparative example. The specific conditions were as follows.

基体:シリコン(熱膨張係数:8.3μm・m−1・K−1
帯状体:銅(熱膨張係数:16.8μm・m−1・K−1),
幅:3mm,厚み:0.15mm
接合部:半田(熱膨張係数:15μm・m−1・K−1
熱応力の条件:―100℃の温度荷重の付加
このような条件により、シミュレーションをした結果を図5,図6にそれぞれ示す。実施例である図5は、比較例である図6に比べ、帯状体2の端部21の角部,接合部3の接合端部32において1点に応力が集中することなく、基体1に応力を分散して伝えていることが確認できた。なお、シミュレーションの結果、接合端部32,端部21に近接する部分以外の領域では、表示したレンジの範囲外となっていた。すなわち、応力は極めて小さく、応力が集中している様子は確認されなかった。さらに、両モデルの最大応力を比較すると、実施例においては25.4MPaとなり、比較例においては、26.1MPaとなっていることからも、帯状体2からの応力を抑制することができることが確認できた。
Substrate: Silicon (thermal expansion coefficient: 8.3 μm · m −1 · K −1 )
Band: Copper (thermal expansion coefficient: 16.8 μm · m −1 · K −1 ),
Width: 3mm, thickness: 0.15mm
Joint: Solder (Coefficient of thermal expansion: 15 μm · m −1 · K −1 )
Conditions for thermal stress: Addition of temperature load of −100 ° C. Simulation results under such conditions are shown in FIGS. 5 and 6, respectively. FIG. 5 which is an example is compared with FIG. 6 which is a comparative example, and stress is not concentrated on one point at the corner portion of the end portion 21 of the strip 2 and the joint end portion 32 of the joint portion 3. It was confirmed that the stress was distributed and transmitted. As a result of the simulation, the region other than the portion adjacent to the joint end portion 32 and the end portion 21 was outside the range of the displayed range. That is, the stress was extremely small, and it was not confirmed that the stress was concentrated. Furthermore, when the maximum stress of both models is compared, it is 25.4 MPa in the example, and in the comparative example is 26.1 MPa, it is confirmed that the stress from the strip 2 can be suppressed. did it.

10 接合体
1 基体
1a 第1主面
11 フィンガー電極
12 バスバー電極
2 帯状体
21 端部
3 接合部
31 中間部
32 接合端部
33 第1接合面
34 第2接合面
35 第1変化部
36 第2変化部
DESCRIPTION OF SYMBOLS 10 Bonded body 1 Base | substrate 1a 1st main surface 11 Finger electrode 12 Bus-bar electrode 2 Band-shaped body 21 End part 3 Joining part 31 Intermediate part 32 Joining end part 33 1st joined surface 34 2nd joined surface 35 1st change part 36 2nd Change section

Claims (5)

第1主面を有する基体と、少なくとも端部が前記第1主面の上方に位置するように設けられ、前記基体よりも熱膨張係数の大きい材料からなる帯状の帯状体と、前記帯状体よりも熱膨張係数の小さい材料からなり、前記基体と前記帯状体とを接続する帯状の接合部と、を備える接合体であって、
前記接合部は、平面視したときに、長手方向に沿った一対の外郭線同士が略平行である中間部と、前記中間部から延び、先端に向かうに連れて前記一対の外郭線同士の距離が変化している接合端部と、前記接合端部が前記基体と接する第1接合面と、前記接合端部が前記帯状体と接する第2接合面とを有し、
前記第2接合面は、平面視したときに、前記帯状体の前記端部の内側に位置しており、
前記接合端部に対して、前記第1主面の法線方向において断面視したときに、前記第1接合面から前記第2接合面側に向けて、前記接合部の外郭が徐々に前記中間部側に変位する第1変化部と、前記第2接合面から前記第1接合面側に向けて、前記接合部の外郭が徐々に前記中間部側に変位する第2変化部と、を有するとともに、前記第1変化部の変化率が前記第2変化部の変化率よりも小さい、接合体。
A base body having a first main surface, a belt-like belt body made of a material having a thermal expansion coefficient larger than that of the base body, provided at least at an end portion above the first main surface; Is made of a material having a small thermal expansion coefficient, and is a joined body including a strip-shaped joint portion that connects the base body and the strip-shaped body,
The joint portion, when viewed in plan, has an intermediate portion in which a pair of outline lines along the longitudinal direction are substantially parallel to each other, and a distance between the pair of outline lines extending from the intermediate portion toward the tip. A joining end portion in which the joining end portion is in contact with the base, and a second joining surface in which the joining end portion is in contact with the belt-like body,
It said second joint surface, when viewed in a plan view, is located inside the end portion of the strip,
When the cross-section is viewed in the normal direction of the first main surface with respect to the joint end portion, the outline of the joint portion gradually extends from the first joint surface toward the second joint surface. A first changing portion that is displaced toward the portion side, and a second changing portion in which an outline of the joint portion is gradually displaced toward the intermediate portion side from the second joint surface toward the first joint surface side. And the joined body whose change rate of the said 1st change part is smaller than the change rate of the said 2nd change part .
記第1接合面の外郭形状は、曲線状もしくは角部が全て鈍角となっている、請求項1に記載の接合体。 Before SL contour of the first joint surface is curved or corner portions are all obtuse, conjugate of claim 1. 前記第2接合面の外郭形状は、曲線状もしくは角部が全て鈍角となっている、請求項1または2に記載の接合体。   3. The joined body according to claim 1, wherein the outer shape of the second joint surface is a curved shape or all corners are obtuse. 前記第1接合面は、平面視したときに、前記帯状体の前記端部の内側に位置している、請求項3に記載の接合体。 4. The joined body according to claim 3 , wherein the first joined surface is located inside the end portion of the belt-like body when viewed in a plan view. 前記基体は、電極が形成された太陽電池素子であって、前記帯状体は、前記電極と接合され、前記太陽電池素子からの電流を取り出すための取出し電極として機能する導体であって、前記接合部は、半田からなる、請求項1乃至のいずれかに記載の接合体。 The base is a solar cell element on which an electrode is formed, and the strip is a conductor that is joined to the electrode and functions as an extraction electrode for taking out a current from the solar cell element, the junction parts are made of solder, the conjugate according to any one of claims 1 to 4.
JP2013268752A 2013-12-26 2013-12-26 Zygote Active JP6215692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268752A JP6215692B2 (en) 2013-12-26 2013-12-26 Zygote

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268752A JP6215692B2 (en) 2013-12-26 2013-12-26 Zygote

Publications (2)

Publication Number Publication Date
JP2015126062A JP2015126062A (en) 2015-07-06
JP6215692B2 true JP6215692B2 (en) 2017-10-18

Family

ID=53536594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268752A Active JP6215692B2 (en) 2013-12-26 2013-12-26 Zygote

Country Status (1)

Country Link
JP (1) JP6215692B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054029B2 (en) * 2005-03-24 2008-02-27 株式会社東芝 Solder material and semiconductor device using the same
JP4519089B2 (en) * 2006-03-09 2010-08-04 シャープ株式会社 Solar cell, solar cell string and solar cell module
WO2008049006A2 (en) * 2006-10-17 2008-04-24 Fry's Metals, Inc. Materials for use with interconnects of electrical devices and related methods
JP2010027659A (en) * 2008-07-15 2010-02-04 Shin-Etsu Chemical Co Ltd Solar battery module, and manufacturing method therefor
DE102009003491A1 (en) * 2009-02-16 2010-08-26 Q-Cells Se Solar cell string and solar module with such solar cell strings
JP5490466B2 (en) * 2009-08-26 2014-05-14 三洋電機株式会社 Solar cell module
JP2013033848A (en) * 2011-08-02 2013-02-14 Jx Nippon Oil & Energy Corp Solar cell module and manufacturing method of the same

Also Published As

Publication number Publication date
JP2015126062A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
CN106252443B (en) Solar battery array
US11715806B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
US20150243798A1 (en) Solar cell module
TWI603493B (en) Solar cell and module comprising the same
EP3525246B1 (en) Solar cell module
CN107078169A (en) The solar cell designed with special front surface electrode
CN107771359B (en) Wire-based solar cell metallization
JP6241763B2 (en) Solar cell module and method for manufacturing solar cell module
WO2016117180A1 (en) Solar battery cell, solar battery module, method for manufacturing solar battery cell, and method for manufacturing solar battery module
JP2008186928A (en) Solar battery and solar battery module
JP6215692B2 (en) Zygote
JP2010258158A (en) Wiring sheet, solar cell with wiring sheet, and solar cell module
JP5944081B1 (en) Solar cell, solar cell module, method for manufacturing solar cell, method for manufacturing solar cell module
TWI496302B (en) Solar cell
JP4809018B2 (en) Solar cell
JP2014075532A (en) Solar cell module
TWI478364B (en) Solar cell and module comprising the same
KR20160140770A (en) Back side contact layer for pv module with by-pass configuration
JP4741538B2 (en) Solar cell module
TWI545784B (en) Solar cell
KR102156358B1 (en) Connecting member and solar cell module with the same
CN109585579A (en) Solar battery and its manufacturing method and solar cell module
TWM494437U (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170921

R150 Certificate of patent or registration of utility model

Ref document number: 6215692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150