JP6215084B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP6215084B2
JP6215084B2 JP2014034149A JP2014034149A JP6215084B2 JP 6215084 B2 JP6215084 B2 JP 6215084B2 JP 2014034149 A JP2014034149 A JP 2014034149A JP 2014034149 A JP2014034149 A JP 2014034149A JP 6215084 B2 JP6215084 B2 JP 6215084B2
Authority
JP
Japan
Prior art keywords
units
unit
indoor
outdoor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014034149A
Other languages
Japanese (ja)
Other versions
JP2015158336A (en
Inventor
隆英 伊藤
隆英 伊藤
篤 塩谷
篤 塩谷
松尾 実
実 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2014034149A priority Critical patent/JP6215084B2/en
Priority to PCT/JP2015/052588 priority patent/WO2015129381A1/en
Priority to ES15756043T priority patent/ES2811122T3/en
Priority to EP15756043.4A priority patent/EP3064848B1/en
Publication of JP2015158336A publication Critical patent/JP2015158336A/en
Application granted granted Critical
Publication of JP6215084B2 publication Critical patent/JP6215084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空調システムに係り、特に、空調システムの制御に関するものである。   The present invention relates to an air conditioning system, and more particularly to control of an air conditioning system.

従来、複数の室外機と複数の室内機とを共通の冷媒配管で接続してなる空調システムが知られている(例えば、特許文献1参照)。このような空調システムにおいて、各室内機制御部及び各室外機制御部が、冷媒圧力の変動を許容範囲内とするという共通の制御ルールに従って、それぞれに対応する室内機及び室外機を制御する自律分散制御が行われる場合がある。   Conventionally, an air conditioning system in which a plurality of outdoor units and a plurality of indoor units are connected by a common refrigerant pipe is known (see, for example, Patent Document 1). In such an air conditioning system, each indoor unit control unit and each outdoor unit control unit controls the corresponding indoor unit and outdoor unit according to a common control rule that the fluctuation of the refrigerant pressure is within an allowable range. Distributed control may be performed.

特開2007−292407号公報JP 2007-292407 A

しかしながら従来の自律分散制御では、システムの安定性と応答性とは相反するものであり、両立させることが難しかった。   However, in the conventional autonomous distributed control, the stability and responsiveness of the system are contradictory and it is difficult to achieve both.

本発明は、このような事情に鑑みてなされたものであって、システムの応答性と安定性とを両立させることのできる空調システムを提供することを目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the air-conditioning system which can make the responsiveness and stability of a system compatible.

本発明の第1態様は、複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムであって、各室内機に対応して設けられた複数の室内機制御部と、各室外機に対応して設けられた複数の室外機制御部とを有し、各前記室内機制御部及び各前記室外機制御部は、相互通信可能とされ、いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともに前記グループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える空調システムである。   The first aspect of the present invention is an air conditioner that performs autonomous distributed control in which a plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units has a predetermined state quantity constant. A plurality of indoor unit control units provided corresponding to the respective indoor units, and a plurality of outdoor unit control units provided corresponding to the respective outdoor units. And each of the outdoor unit control units can communicate with each other, and when a target value is changed in any of the indoor units, an outdoor unit that operates corresponding to the indoor unit is connected between the outdoor unit control units. The outdoor unit determined by communication, and the determined outdoor unit and the indoor unit whose target value is changed are virtually grouped, and the indoor unit control unit corresponding to the grouped indoor unit and the outdoor unit, and the The outdoor unit controller communicates with each other, thereby Air conditioning that follows the standard value and generates a control command so that the fluctuation amount of the state quantity within the group is within a predetermined range, and applies the generated control command to the corresponding indoor unit and outdoor unit, respectively. System.

上記態様によれば、室内機の目標値が変更された場合には、この室内機と対になって動作する室外機が選定され、選定された室外機と目標値が変更された室外機とがグループ化される。そして、グループ化された室内機及び室外機の間で、目標値変更に伴う状態量の変動を所定範囲内に抑制するような制御指令が生成され、各制御指令が対応する室内機及び室外機に与えられる。これにより、目標値変更に伴う状態量の変化をグループ化された室内機と室外機との間に留めることができ、システムを安定させることができる。また、目標値の変更に伴う制御をグループ化された室内機と室外機との間に限定するので、応答性を向上させることができる。   According to the above aspect, when the target value of the indoor unit is changed, an outdoor unit that operates in a pair with the indoor unit is selected, and the selected outdoor unit and the outdoor unit whose target value has been changed. Are grouped. Then, a control command is generated between the grouped indoor units and outdoor units so as to suppress the variation of the state quantity due to the target value change within a predetermined range, and the indoor unit and the outdoor unit to which each control command corresponds. Given to. Thereby, the change of the state quantity accompanying the target value change can be kept between the grouped indoor units and outdoor units, and the system can be stabilized. Moreover, since the control accompanying the change of the target value is limited between the grouped indoor units and the outdoor units, the responsiveness can be improved.

上記空調システムにおいて、前記グループ化されていない前記室内機及び前記室外機は、前記グループ化された前記室内機及び前記室外機における前記状態量が前記目標値に応じて変化している間において操作量をロックし、前記状態量が安定した後に前記操作量のロックを解除することとしてもよい。   In the air conditioning system, the indoor unit and the outdoor unit that are not grouped are operated while the state quantities of the grouped indoor unit and the outdoor unit are changed according to the target value. The amount may be locked, and the operation amount may be unlocked after the state amount is stabilized.

このようにすることで、グループ化された室内機及び室外機における状態量の変動の影響がグループ化されていない室内機や室外機に外乱として生じたとしても、この外乱に応答することを回避することができ、安定した作動を維持することができる。   By doing so, even if the influence of the state quantity fluctuation in the grouped indoor unit and outdoor unit occurs as a disturbance in the ungrouped indoor unit and outdoor unit, it is avoided to respond to this disturbance. And stable operation can be maintained.

上記空調システムにおいて、各前記室内機と各前記室内機にそれぞれ対応する前記室内機制御部との間、及び、各前記室外機と各前記室外機にそれぞれ対応する前記室外機制御部との間は、それぞれ1対1通信とされていてもよい。   In the air conditioning system, between each indoor unit and each indoor unit control unit corresponding to each indoor unit, and between each outdoor unit and each outdoor unit control unit corresponding to each outdoor unit. May be one-to-one communication.

このように、対応機器と制御部との通信を1対1通信とすることで、データ通信量を減らすことができ、通信の遅延による応答の遅延を回避することが可能となる。   As described above, the communication between the corresponding device and the control unit is a one-to-one communication, so that the data communication amount can be reduced and a response delay due to a communication delay can be avoided.

上記空調システムにおいて、複数の前記室内機制御部及び複数の前記室外機制御部は、1つまたは複数のハードウェアに仮想化された制御部として集約して搭載されていてもよい。   In the air conditioning system, the plurality of indoor unit control units and the plurality of outdoor unit control units may be integrated and mounted as a control unit virtualized in one or a plurality of hardware.

このように、複数の制御部を1つまたは複数のハードウェア上に仮想化された制御部として集約して搭載させることにより、コストの低減や装置の小型化を図ることが可能となる。   In this way, by integrating and mounting a plurality of control units as virtualized control units on one or a plurality of hardware, it is possible to reduce costs and downsize the apparatus.

本発明の第2態様は、複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムに適用される制御装置であって、各室内機に対応して設けられた複数の室内機制御部と、各室外機に対応して設けられた複数の室外機制御部とを有し、各前記室内機制御部及び各前記室外機制御部は、相互通信可能とされ、いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、
グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともに前記グループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える制御装置である。
A second aspect of the present invention is an air conditioner that performs autonomous distributed control in which a plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units has a predetermined state quantity constant. A control device applied to the system, having a plurality of indoor unit control units provided corresponding to each indoor unit, and a plurality of outdoor unit control units provided corresponding to each outdoor unit, Each of the indoor unit control units and each of the outdoor unit control units can communicate with each other, and when a target value is changed in any of the indoor units, the outdoor unit that operates corresponding to the indoor unit is It is determined by communication between outdoor unit control units, and the determined outdoor unit and the indoor unit whose target value is changed are virtually grouped,
The indoor unit control unit and the outdoor unit control unit respectively corresponding to the grouped indoor unit and the outdoor unit follow the target value by communicating with each other and the state in the group It is a control device that generates a control command so that a fluctuation amount of the amount is within a predetermined range, and gives the generated control command to the corresponding indoor unit and the outdoor unit, respectively.

本発明の第3態様は、複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムの制御方法であって、各室内機に対応して設けられた複数の室内機制御部と、各室外機に対応して設けられた複数の室外機制御部とを相互通信可能な構成とし、いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともに前記グループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える空調システムの制御方法である。   A third aspect of the present invention is an air conditioner that performs autonomous distributed control in which a plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units has a predetermined state quantity constant. A system control method, in which a plurality of indoor unit control units provided corresponding to each indoor unit and a plurality of outdoor unit control units provided corresponding to each outdoor unit can communicate with each other. When the target value is changed in any of the indoor units, an outdoor unit that operates corresponding to the indoor unit is determined by communication between the outdoor unit control units, and the determined outdoor unit and the target value are The changed indoor units are virtually grouped, and the indoor unit control units and the outdoor unit control units corresponding to the grouped indoor units and the outdoor units respectively communicate with each other, Following the target value and the group Wherein the variation of the state quantity to produce respectively a control command such that within a predetermined range, which is the indoor unit and the control method of the air conditioning system for providing to each of the outdoor units corresponding the generated control command in.

本発明によれば、自律分散制御を前提とする場合に、システムの応答性を安定性とを両立させることができるという効果を奏する。   According to the present invention, when autonomous distributed control is assumed, there is an effect that it is possible to achieve both stability and stability of the system.

本発明の一実施形態に係る空調システムの概略構成を示した図である。It is the figure which showed schematic structure of the air conditioning system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る空調システムに適用される制御装置の概略構成を示した図である。It is the figure which showed schematic structure of the control apparatus applied to the air conditioning system which concerns on one Embodiment of this invention. 一般的な自律分散制御において、室内機の設定温度が変更された場合の高圧側圧力の応答例を示した図である。In general autonomous distributed control, it is the figure which showed the example of a response of the high voltage | pressure side pressure when the preset temperature of an indoor unit is changed.

以下に、本発明の一実施形態に係る空調システムについて、図面を参照して説明する。
図1は、本実施形態に係る空調システム1の冷媒系統について概略的に示した図である。図1に示すように、空調システム1は、複数の室外機2a、2b及び複数の室内機3a、3bを備えている。室外機2a、2b及び室内機3a、3bはそれぞれ並列に接続されている。ここで、図1では、室外機及び室内機を2台ずつ備える構成を例示しているが、台数についてはこの例に限定されず、2台以上設けられていればよい。
Hereinafter, an air conditioning system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a refrigerant system of an air conditioning system 1 according to the present embodiment. As shown in FIG. 1, the air conditioning system 1 includes a plurality of outdoor units 2a and 2b and a plurality of indoor units 3a and 3b. The outdoor units 2a and 2b and the indoor units 3a and 3b are respectively connected in parallel. Here, FIG. 1 illustrates a configuration including two outdoor units and two indoor units, but the number of units is not limited to this example, and two or more units may be provided.

室外機2a、2bはそれぞれ、冷媒を圧縮して送出する圧縮機21、冷媒の循環方向を切り換える四方弁22、冷媒と外気との間で熱交換を行う室外熱交換器23、室外ファン24、冷媒の機液分離等を目的として圧縮機21の吸入側配管に設けられたアキュムレータ25等を主な構成として備えている。また、室外機2a、2bには、高圧側の冷媒圧力を計測する高圧側圧力センサ26、低圧側の冷媒圧力を計測する低圧側圧力センサ27がそれぞれ設けられている。なお、室外機2bは、室外機2aと同様の構成を有しているため、図示を省略している。   The outdoor units 2a and 2b are respectively a compressor 21 that compresses and sends out refrigerant, a four-way valve 22 that switches the circulation direction of the refrigerant, an outdoor heat exchanger 23 that exchanges heat between the refrigerant and the outside air, an outdoor fan 24, An accumulator 25 or the like provided in the suction side piping of the compressor 21 is provided as a main configuration for the purpose of separating the machine liquid from the refrigerant. The outdoor units 2a and 2b are each provided with a high pressure side pressure sensor 26 that measures the high pressure side refrigerant pressure and a low pressure side pressure sensor 27 that measures the low pressure side refrigerant pressure. Since the outdoor unit 2b has the same configuration as the outdoor unit 2a, the illustration is omitted.

室内機3a、3bはそれぞれ、膨張弁31、室内熱交換器32、及び室内ファン33を主な構成として備えている。また、室内機3a、3bには、高圧側の冷媒圧力を計測する高圧側圧力センサ36、低圧側の冷媒圧力を計測する低圧側圧力センサ37、空調温度を計測する温度センサ38がそれぞれ設けられている。なお、室内機3bは、室内機3aと同様の構成を有しているため、図示を省略している。   Each of the indoor units 3a and 3b includes an expansion valve 31, an indoor heat exchanger 32, and an indoor fan 33 as main components. The indoor units 3a and 3b are respectively provided with a high pressure sensor 36 for measuring the refrigerant pressure on the high pressure side, a low pressure sensor 37 for measuring the refrigerant pressure on the low pressure side, and a temperature sensor 38 for measuring the air conditioning temperature. ing. Since the indoor unit 3b has the same configuration as the indoor unit 3a, the illustration is omitted.

室外機2aの高圧側冷媒配管5a、室外機2bの高圧側冷媒配管5b、室内機3aの高圧側冷媒配管6a、室内機3bの高圧側冷媒配管6bは、ヘッダ7により接続されている。また、室外機2aの低圧側冷媒配管15a、室外機2bの低圧側冷媒配管15b、室内機3aの低圧側冷媒配管16a、室内機3bの低圧側冷媒配管16bは、ヘッダ8において接続されている。
これにより、例えば、冷房運転の場合には、室外機2a、2bから送出された冷媒は、ヘッダ7において合流し、室内機2a,2bに分岐して供給可能とされ、室内機2a、2bからの戻り冷媒はヘッダ8において合流し、室外機3a、2bに分岐されて供給可能とされている。また、暖房時においては、逆の冷媒流れとなる。
The high pressure side refrigerant pipe 5a of the outdoor unit 2a, the high pressure side refrigerant pipe 5b of the outdoor unit 2b, the high pressure side refrigerant pipe 6a of the indoor unit 3a, and the high pressure side refrigerant pipe 6b of the indoor unit 3b are connected by a header 7. Further, the low pressure side refrigerant pipe 15a of the outdoor unit 2a, the low pressure side refrigerant pipe 15b of the outdoor unit 2b, the low pressure side refrigerant pipe 16a of the indoor unit 3a, and the low pressure side refrigerant pipe 16b of the indoor unit 3b are connected at the header 8. .
Thereby, for example, in the case of the cooling operation, the refrigerant sent from the outdoor units 2a and 2b merges in the header 7 and can be branched and supplied to the indoor units 2a and 2b. The return refrigerant merges at the header 8 and is branched into the outdoor units 3a and 2b so as to be supplied. Moreover, it becomes a reverse refrigerant | coolant flow at the time of heating.

図2は、本実施形態に係る空調システム1の制御装置の概略構成を示した図である。図2に示すように、制御装置10は、室外機2aを制御する室外機制御部40a、室外機2bを制御する室外機制御部40b、室内機3aを制御する室内機制御部50a、及び室内機3bを制御する室内機制御部50bを備えている。以下、室外機制御部40a等を区別せずに、全ての制御部を意味するときは、単に「制御部」という。   FIG. 2 is a diagram illustrating a schematic configuration of the control device of the air conditioning system 1 according to the present embodiment. As shown in FIG. 2, the control device 10 includes an outdoor unit control unit 40a that controls the outdoor unit 2a, an outdoor unit control unit 40b that controls the outdoor unit 2b, an indoor unit control unit 50a that controls the indoor unit 3a, and an indoor unit The indoor unit control part 50b which controls the machine 3b is provided. Hereinafter, when all the control units are meant without distinguishing the outdoor unit control unit 40a and the like, they are simply referred to as “control units”.

本実施形態において、室外機制御部40a、室外機制御部40b、室内機制御部50a、及び室内機制御部50bは、通信媒体11を介して相互通信が可能な構成とされている。通信媒体11は、有線、無線を問わず、例えば、イーサネット等のローカルエリアネットワークが一例として挙げられる。   In the present embodiment, the outdoor unit control unit 40a, the outdoor unit control unit 40b, the indoor unit control unit 50a, and the indoor unit control unit 50b are configured to be able to communicate with each other via the communication medium 11. An example of the communication medium 11 is a local area network such as Ethernet, regardless of whether it is wired or wireless.

また、室外機制御部40aと室外機2a、室外機制御部40bと室外機2b、室内機制御部50aと室内機3a、室内機制御部50bと室外機2bとは、通信媒体12を介した1対1対応の通信とされている。   The outdoor unit control unit 40a and the outdoor unit 2a, the outdoor unit control unit 40b and the outdoor unit 2b, the indoor unit control unit 50a and the indoor unit 3a, and the indoor unit control unit 50b and the outdoor unit 2b are connected via the communication medium 12. The communication is one-to-one correspondence.

このように、制御部間については、例えば、イーサネット等の通信速度が比較的速い(例えば、1Gbps以上)通信媒体を介して相互通信が可能となるので、データ通信の遅延による応答性の低下することはない。また、一般的に、制御部と機器との間の通信媒体12については、通信速度が比較的遅い(例えば、19.2kbps等)通信媒体が使用されるが、1対1対応の通信とすることで、通信データ量を低減させることで、応答性の低下を回避することが可能となる。   In this way, between the control units, for example, mutual communication is possible via a communication medium having a relatively high communication speed such as Ethernet (for example, 1 Gbps or more), so that responsiveness is reduced due to a delay in data communication. There is nothing. In general, a communication medium having a relatively low communication speed (for example, 19.2 kbps) is used for the communication medium 12 between the control unit and the device. Thus, it is possible to avoid a decrease in responsiveness by reducing the amount of communication data.

なお、室外機制御部40a、室外機制御部40b、室内機制御部50a、及び室内機制御部50bについては、上述した構成の他、例えば、これらの制御部が1つまたは複数のハードウェア上に、仮想化された制御部として形成され、相互間の通信が可能とされているとともに、それぞれが独立動作可能な構成とされていてもよい。このように、仮想化された制御部として各制御部を形成することにより、装置全体の小型化やコスト低減を図ることが可能となる。   For the outdoor unit control unit 40a, the outdoor unit control unit 40b, the indoor unit control unit 50a, and the indoor unit control unit 50b, in addition to the configuration described above, for example, these control units are provided on one or a plurality of hardware. In addition, it may be configured as a virtualized control unit so as to be able to communicate with each other and to be able to operate independently. Thus, by forming each control unit as a virtualized control unit, it is possible to reduce the size and cost of the entire apparatus.

あるいは、室外機制御部40a、室外機制御部40b、室内機制御部50a、及び室内機制御部50bは、クラウド上に存在していてもよい。
このように、室外機制御部40a、室外機制御部40b、室内機制御部50a、及び室内機制御部50bの存在形態については、特に限定されず、CPU資源やコスト、装置サイズなどに応じて適宜最適な方法を採用すればよい。
Alternatively, the outdoor unit control unit 40a, the outdoor unit control unit 40b, the indoor unit control unit 50a, and the indoor unit control unit 50b may exist on the cloud.
Thus, the presence forms of the outdoor unit control unit 40a, the outdoor unit control unit 40b, the indoor unit control unit 50a, and the indoor unit control unit 50b are not particularly limited, depending on CPU resources, cost, device size, and the like. What is necessary is just to employ | adopt the optimal method suitably.

室外機制御部40a、40b、室内機制御部50a、50bは、通常時において、空調システム1における所定の状態量を一定とするような自律分散制御を行う。
例えば、室内機制御部50a、50bの各々は、それぞれ対応する室内機3a、3bの高圧側圧力(状態量)が予め設定されている所定の室内機高圧許容範囲内(例えば、図3参照)となるように、低圧側圧力(状態量)が予め設定されている所定の室内機低圧許容範囲内となるように、それぞれの膨張弁31の弁開度を調整して、冷媒流量を制御する。
The outdoor unit control units 40a and 40b and the indoor unit control units 50a and 50b perform autonomous distributed control so that a predetermined state quantity in the air conditioning system 1 is constant during normal times.
For example, each of the indoor unit control units 50a and 50b is within a predetermined indoor unit high pressure allowable range in which the high pressure side pressure (state quantity) of the corresponding indoor unit 3a and 3b is set in advance (see, for example, FIG. 3). The refrigerant flow rate is controlled by adjusting the valve opening of each expansion valve 31 so that the low-pressure side pressure (state quantity) falls within a predetermined indoor unit low-pressure allowable range set in advance. .

また、室外機制御部40a、40bの各々は、それぞれ対応する室外機2a、2bの高圧側圧力(状態量)が予め設定されている所定の室外機高圧許容範囲内(例えば、図3参照)となるように、低圧側圧力(状態量)が予め設定されている所定の室外機低圧許容範囲内となるように、それぞれの圧縮機21の回転数を制御する。
ここで、例えば、室内機低圧許容範囲は室外機低圧許容範囲よりも広く設定されており、室内機高圧許容範囲は室外機高圧許容範囲よりも広く設定されている。
Each of the outdoor unit controllers 40a and 40b is within a predetermined outdoor unit high pressure allowable range in which the high pressure side pressure (state quantity) of the corresponding outdoor unit 2a and 2b is set in advance (see, for example, FIG. 3). Thus, the rotational speed of each compressor 21 is controlled so that the low-pressure side pressure (state quantity) is within a predetermined outdoor unit low-pressure allowable range set in advance.
Here, for example, the indoor unit low pressure allowable range is set wider than the outdoor unit low pressure allowable range, and the indoor unit high pressure allowable range is set wider than the outdoor unit high pressure allowable range.

次に、本実施形態に係る空調システム1において、例えば、リモコン操作等により、室内機の設定温度が変更された場合(上記「通常時」に対して「過渡時」という)における各制御部の動作について説明する。以下の説明では、便宜上、室内機3aの設定温度が変更された場合について説明する。   Next, in the air conditioning system 1 according to the present embodiment, for example, when the set temperature of the indoor unit is changed by remote control operation or the like (referred to as “transient” with respect to the “normal time”), The operation will be described. In the following description, a case where the set temperature of the indoor unit 3a is changed will be described for convenience.

この場合、室内機3aの室内機制御部50aから他の制御部である室内機制御部50b、室外機制御部40a、40bに対して設定温度変更に関する情報が送信される。例えば、室内機制御部50aは、設定温度変更に必要とされる冷媒流量の情報を送信する。室外機制御部40a、40bは相互に情報を交換し、室内機3aの冷媒流量の増減に対応する室外機を決定する。   In this case, information about the set temperature change is transmitted from the indoor unit control unit 50a of the indoor unit 3a to the other indoor unit control unit 50b and the outdoor unit control units 40a and 40b. For example, the indoor unit control unit 50a transmits information on the refrigerant flow rate required for changing the set temperature. The outdoor unit control units 40a and 40b exchange information with each other and determine the outdoor unit corresponding to the increase or decrease in the refrigerant flow rate of the indoor unit 3a.

例えば、室外機2a、2bのうち、冷媒流量の増加に伴う負荷率の増減に基づいて運転効率(例えば、成績係数)を求め、運転効率の最もよい室外機に決定する。なお、決定手法については、予めアルゴリズムを各室外機制御部40a、40bに格納しておき、このアルゴリズムに従っていずれかの室外機を選定することとすればよい。以下、説明の便宜上、室外機2aが選定されたものとして説明をする。   For example, among the outdoor units 2a and 2b, the operating efficiency (for example, coefficient of performance) is obtained based on the increase / decrease in the load factor accompanying the increase in the refrigerant flow rate, and the outdoor unit having the best operating efficiency is determined. Regarding the determination method, an algorithm may be stored in advance in each of the outdoor unit control units 40a and 40b, and any one of the outdoor units may be selected according to this algorithm. Hereinafter, for convenience of explanation, the explanation will be made assuming that the outdoor unit 2a is selected.

上記のように、設定温度が変更された室内機3aに対応して動作する室外機2aが決定されると、室内機3aに対応する室内機制御部50aと、室外機2aに対応する室外機制御部40aとを仮想的にグループ化する。例えば、室内機制御部50aと室外機制御部40aとの間でサブドメインを形成する。そして、サブドメイン内の室内機制御部50aと室外機制御部40aとの間で相互通信を行うことにより、変更後の設定温度に追従するとともに、グループ化された室内機3a及び室外機2aにおける冷媒圧力の変動量を所定の範囲内とするような制御指令をそれぞれ生成する。   As described above, when the outdoor unit 2a operating corresponding to the indoor unit 3a whose set temperature has been changed is determined, the indoor unit control unit 50a corresponding to the indoor unit 3a and the outdoor unit corresponding to the outdoor unit 2a The control unit 40a is virtually grouped. For example, a subdomain is formed between the indoor unit control unit 50a and the outdoor unit control unit 40a. Then, by performing mutual communication between the indoor unit control unit 50a and the outdoor unit control unit 40a in the subdomain, the set temperature after the change is followed, and the grouped indoor units 3a and 2a Control commands are generated so that the fluctuation amount of the refrigerant pressure falls within a predetermined range.

具体的には室内機制御部50aは、変更後の設定温度に追従するような膨張弁31の開度指令及び室内ファン33の回転数をフィードフォワード制御により生成し、室外機制御部40aは室内機制御部50aにより生成される膨張弁31の開度指令に基づいて、冷媒流量の変化量を推定し、この変化量に応じた圧縮機21の回転数指令および室外ファン24の回転数指令をフードフォワード制御により生成する。   Specifically, the indoor unit control unit 50a generates the opening command of the expansion valve 31 and the rotation speed of the indoor fan 33 so as to follow the set temperature after the change by feedforward control, and the outdoor unit control unit 40a Based on the opening degree command of the expansion valve 31 generated by the machine control unit 50a, the change amount of the refrigerant flow rate is estimated, and the rotation speed command of the compressor 21 and the rotation speed command of the outdoor fan 24 corresponding to the change amount are obtained. Generated by food forward control.

そして、室内機制御部50aは、通信媒体12を介して、生成した各種指令を室内機3aに送信するとともに、室外機制御部40aは通信媒体12を介して生成した各種指令を室外機2aに送信する。これにより、室内機3aにおいては、受信した制御指令に基づいて膨張弁31の弁開度及び室内ファン33の回転数が制御され、室外機2aにおいては、受信した制御指令に基づいて圧縮機21の回転数及び室外ファン24の回転数が制御される。
このように、室内機3aの膨張弁31の弁開度及び室外機2aの圧縮機21の回転数がほぼ同時期に変化することにより、室内機3aの膨張弁31の弁開度が変化することに伴う冷媒圧力の変化を、圧縮機21の回転数変化による冷媒流量の変化により吸収することができる。したがって、室内機3aの設定温度が変更されることに伴う冷媒圧力の変化をドメイン内、換言すると、室内機3aと室外機2aとのグループ内に留めることができ、空調システム1における冷媒の圧力変動を所定の範囲内に抑制することが可能となる。
そして、室内機3aの温度が変更後の設定温度に一致することで、空調システム内の冷媒の状態が安定すると、室内機3a及び室外機2aのグループ化が解除される。これにより、各制御部による通常時の自律分散制御が再開される。
The indoor unit control unit 50a transmits the generated various commands to the indoor unit 3a via the communication medium 12, and the outdoor unit control unit 40a transmits the various commands generated via the communication medium 12 to the outdoor unit 2a. Send. Thereby, in the indoor unit 3a, the valve opening degree of the expansion valve 31 and the rotation speed of the indoor fan 33 are controlled based on the received control command, and in the outdoor unit 2a, the compressor 21 is controlled based on the received control command. And the rotation speed of the outdoor fan 24 are controlled.
Thus, the valve opening degree of the expansion valve 31 of the indoor unit 3a is changed by the valve opening degree of the expansion valve 31 of the indoor unit 3a and the rotational speed of the compressor 21 of the outdoor unit 2a changing substantially at the same time. The change in the refrigerant pressure accompanying the change can be absorbed by the change in the refrigerant flow rate due to the change in the rotation speed of the compressor 21. Therefore, the change of the refrigerant pressure accompanying the change of the set temperature of the indoor unit 3a can be kept in the domain, in other words, the group of the indoor unit 3a and the outdoor unit 2a. The fluctuation can be suppressed within a predetermined range.
And if the state of the refrigerant | coolant in an air conditioning system is stabilized because the temperature of the indoor unit 3a corresponds to the setting temperature after a change, grouping of the indoor unit 3a and the outdoor unit 2a will be cancelled | released. Thereby, the autonomous distributed control at the normal time by each control unit is resumed.

また、グループ化されていない室内機3b及び室外機2bにおいては、上記グループ化された室内機3aの膨張弁31の弁開度及び室外機2aの圧縮機21の回転数等が変化している期間において、室内機制御部50b及び室外機制御部40bが室内機3b及び室外機2bの膨張弁や圧縮機等の操作量をロックし、空調システム1における冷媒圧力が安定した後に、上記操作量のロックを解除する。
これにより、室内機3a及び室外機2aにおける冷媒圧力の変動の影響が室内機3b及び室外機2bに外乱として生じたとしても、この外乱に応答して室内機3bの膨張弁(不図示)や室外機2bの圧縮機(不図示)の操作量が変動することを回避することができ、安定した作動を維持することができる。
Moreover, in the indoor unit 3b and the outdoor unit 2b which are not grouped, the valve opening degree of the expansion valve 31 of the grouped indoor unit 3a, the rotation speed of the compressor 21 of the outdoor unit 2a, and the like are changed. In the period, after the indoor unit control unit 50b and the outdoor unit control unit 40b lock the operation amount of the expansion valve and the compressor of the indoor unit 3b and the outdoor unit 2b and the refrigerant pressure in the air conditioning system 1 is stabilized, the operation amount Release the lock.
Thereby, even if the influence of the fluctuation of the refrigerant pressure in the indoor unit 3a and the outdoor unit 2a occurs as a disturbance in the indoor unit 3b and the outdoor unit 2b, an expansion valve (not shown) of the indoor unit 3b in response to the disturbance It is possible to avoid fluctuations in the operation amount of the compressor (not shown) of the outdoor unit 2b, and it is possible to maintain a stable operation.

以上説明したように、本実施形態に係る空調システム1及びその制御装置10並びに制御方法によれば、室内機の設定温度が変化した場合には、この室内機の設定温度変化に対応する室外機を選定し、選定した室内機と室外機とがグループ化される。そして、グループ化された室内機及び室外機の間で、設定温度変更に伴う冷媒圧力の変動を所定範囲内に抑制するように、膨張弁の弁開度及び圧縮機の回転数がほぼ同時期に制御される。これにより、設定温度の変更に伴う冷媒圧力の変化をグループ化された室内機と室外機との間に留めることができ、システムを安定させることができる。また、設定温度の変更に伴う制御をグループ化された室内機と室外機との間に限定するので、応答性を向上させることができる。   As described above, according to the air conditioning system 1 and its control device 10 and control method according to the present embodiment, when the set temperature of the indoor unit changes, the outdoor unit corresponding to the set temperature change of the indoor unit. The selected indoor unit and outdoor unit are grouped. Then, between the grouped indoor units and outdoor units, the valve opening of the expansion valve and the rotation speed of the compressor are substantially simultaneously so as to suppress the fluctuation of the refrigerant pressure accompanying the change of the set temperature within a predetermined range. Controlled. Thereby, the change of the refrigerant | coolant pressure accompanying the change of preset temperature can be stopped between the grouped indoor unit and outdoor unit, and a system can be stabilized. Moreover, since the control accompanying the change of the set temperature is limited to the grouped indoor units and outdoor units, the responsiveness can be improved.

図3に、一般的な自律分散制御において、室内機の設定温度が変更された場合の高圧側圧力の応答例を示す。例えば、一般的な自律分散制御においては、以下のような制御が行われる。
すなわち、いずれかの室内機の設定温度が変更となった場合、この室内機の膨張弁の弁開度が設定温度に従って制御される。膨張弁の弁開度が変化することにより、冷媒圧力が変化すると、冷媒配管を共通とする他の室内機及び室外機は、この冷媒圧力の変化を予め設定された所定の範囲内に抑制しようと動作する。これにより、各室内機においては、膨張弁の弁開度が調整され、各室外機においては圧縮機の回転数が制御される。このような制御が各室内機及び各室外機においてフィードバック制御において行われることにより、徐々に冷媒圧力が所定の値に収束する。このような自律分散制御では、フィードバックゲインが高ければ図3に実線で示すように応答性は向上するが、オーバーシュートが発生し、系が不安定となる。一方、フィードバックゲインを低くすると図3に破線で示すように、オーバーシュートの発生を抑制でき、系は安定するが、応答性が劣る。
FIG. 3 shows a response example of the high-pressure side pressure when the set temperature of the indoor unit is changed in general autonomous distributed control. For example, in general autonomous distributed control, the following control is performed.
That is, when the set temperature of any indoor unit is changed, the opening degree of the expansion valve of the indoor unit is controlled according to the set temperature. When the refrigerant pressure changes due to the change in the opening degree of the expansion valve, other indoor units and outdoor units that share the refrigerant pipes try to suppress the change in the refrigerant pressure within a predetermined range. And works. Thereby, in each indoor unit, the valve opening degree of the expansion valve is adjusted, and in each outdoor unit, the rotation speed of the compressor is controlled. By performing such control in feedback control in each indoor unit and each outdoor unit, the refrigerant pressure gradually converges to a predetermined value. In such autonomous decentralized control, if the feedback gain is high, the responsiveness is improved as shown by the solid line in FIG. 3, but overshoot occurs and the system becomes unstable. On the other hand, when the feedback gain is lowered, as shown by the broken line in FIG. 3, the occurrence of overshoot can be suppressed and the system is stabilized, but the response is inferior.

これに対し、本実施形態に係る空調システム1及びその制御装置並びに制御方法によれば、上述したように、設定温度が変更された室内機に対応して動作する室外機を選定してグループ化し、グループ化した室内機と室外機との間で、冷媒圧力がほぼ一定となるように膨張弁の制御及び圧縮機の回転数制御が行われるので、冷媒圧力の変動を従来に比べて抑制することができ、システムの応答性と安定性の両立を図ることが可能となる。   On the other hand, according to the air conditioning system 1 and its control device and control method according to the present embodiment, as described above, the outdoor units that operate corresponding to the indoor units whose set temperature has been changed are selected and grouped. The expansion valve control and the compressor rotation speed control are performed between the grouped indoor units and the outdoor unit so that the refrigerant pressure is substantially constant, so that fluctuations in the refrigerant pressure are suppressed compared to the conventional case. This makes it possible to achieve both responsiveness and stability of the system.

本発明は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

1 空調システム
2a、2b 室外機
3a、3b 室内機
11、12 通信媒体
21 圧縮機
24 室外ファン
31 膨張弁
33 室内ファン
40a、40b 室外機制御部
50a、50b 室内機制御部
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2a, 2b Outdoor unit 3a, 3b Indoor unit 11, 12 Communication medium 21 Compressor 24 Outdoor fan 31 Expansion valve 33 Indoor fan 40a, 40b Outdoor unit control part 50a, 50b Indoor unit control part

Claims (6)

複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムであって、
各前記室内機に対応して設けられた複数の室内機制御部と、
各前記室外機に対応して設けられた複数の室外機制御部と
を有し、
各前記室内機制御部及び各前記室外機制御部は、相互通信可能とされ、
いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、
グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともにグループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える空調システム。
A plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units is an air conditioning system that performs autonomous distributed control such that a predetermined state quantity is constant,
A plurality of indoor unit control units provided corresponding to the indoor units,
A plurality of outdoor unit control units provided corresponding to each of the outdoor units,
Each indoor unit control unit and each outdoor unit control unit are capable of mutual communication,
When a target value is changed in any of the indoor units, an outdoor unit that operates corresponding to the indoor unit is determined by communication between the outdoor unit control units, and the determined outdoor unit and target value are changed. Virtually grouped indoor units,
The indoor unit control units and the outdoor unit control units corresponding to the grouped indoor units and the outdoor units respectively communicate with each other to follow the target value and the state quantity in the group. An air-conditioning system that generates control commands so that the fluctuation amount of each is within a predetermined range, and gives the generated control commands to the corresponding indoor unit and outdoor unit, respectively.
グループ化されていない前記室内機及び前記室外機は、グループ化された前記室内機及び前記室外機における前記状態量が前記目標値に応じて変化している間において操作量をロックし、前記状態量が安定した後に前記操作量のロックを解除する請求項1に記載の空調システム。   The indoor unit and the outdoor unit that are not grouped lock the operation amount while the state quantity in the grouped indoor unit and the outdoor unit changes according to the target value, and the state The air conditioning system according to claim 1, wherein the operation amount is unlocked after the amount is stabilized. 各前記室内機と各前記室内機にそれぞれ対応する前記室内機制御部との間、及び、各前記室外機と各前記室外機にそれぞれ対応する前記室外機制御部との間は、それぞれ1対1通信とされている請求項1または請求項2に記載の空調システム。   There is a pair between each indoor unit and the indoor unit control unit corresponding to each indoor unit, and between each outdoor unit and each outdoor unit control unit corresponding to each outdoor unit. The air conditioning system according to claim 1 or 2, wherein one communication is set. 複数の前記室内機制御部及び複数の前記室外機制御部は、1つまたは複数のハードウェアに仮想化された制御部として集約して搭載されている請求項1から請求項3のいずれかに記載の空調システム。   The plurality of indoor unit control units and the plurality of outdoor unit control units are collectively mounted as a control unit virtualized in one or a plurality of hardware. The air conditioning system described. 複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムに適用される制御装置であって、
各前記室内機に対応して設けられた複数の室内機制御部と、
各前記室外機に対応して設けられた複数の室外機制御部と
を有し、
各前記室内機制御部及び各前記室外機制御部は、相互通信可能とされ、
いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、
グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともにグループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える制御装置。
A control device applied to an air conditioning system in which a plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units perform autonomous distributed control in which a predetermined state quantity is constant. There,
A plurality of indoor unit control units provided corresponding to the indoor units,
A plurality of outdoor unit control units provided corresponding to each of the outdoor units,
Each indoor unit control unit and each outdoor unit control unit are capable of mutual communication,
When a target value is changed in any of the indoor units, an outdoor unit that operates corresponding to the indoor unit is determined by communication between the outdoor unit control units, and the determined outdoor unit and target value are changed. Virtually grouped indoor units,
The indoor unit control units and the outdoor unit control units corresponding to the grouped indoor units and the outdoor units respectively communicate with each other to follow the target value and the state quantity in the group. A control device that generates a control command such that the fluctuation amount of each is within a predetermined range, and applies the generated control command to the corresponding indoor unit and the outdoor unit, respectively.
複数の室外機と複数の室内機とが並列に接続され、各前記室内機及び各前記室外機が所定の状態量を一定とするような自律分散制御を行う空調システムの制御方法であって、
各前記室内機に対応して設けられた複数の室内機制御部と、各前記室外機に対応して設けられた複数の室外機制御部とを相互通信可能な構成とし、
いずれかの前記室内機において目標値が変更された場合に、該室内機と対応して動作する室外機を前記室外機制御部間の通信により決定し、決定した前記室外機と目標値が変更された前記室内機とを仮想的にグループ化し、
グループ化された前記室内機及び前記室外機にそれぞれ対応する前記室内機制御部及び前記室外機制御部は、相互に通信を行うことにより、前記目標値に追従するとともに、グループ内での前記状態量の変動量を所定範囲内とするような制御指令をそれぞれ生成し、
生成した制御指令を対応する前記室内機及び前記室外機にそれぞれ与える空調システムの制御方法。
A control method of an air conditioning system in which a plurality of outdoor units and a plurality of indoor units are connected in parallel, and each of the indoor units and each of the outdoor units performs autonomous distributed control such that a predetermined state quantity is constant,
A plurality of indoor unit control units provided corresponding to the indoor units and a plurality of outdoor unit control units provided corresponding to the outdoor units are configured to be capable of mutual communication.
When a target value is changed in any of the indoor units, an outdoor unit that operates corresponding to the indoor unit is determined by communication between the outdoor unit control units, and the determined outdoor unit and target value are changed. Virtually grouped indoor units,
The indoor unit control unit and the outdoor unit control unit respectively corresponding to the grouped indoor unit and the outdoor unit follow the target value by communicating with each other, and the state in the group Generate control commands to keep the amount of fluctuation within a specified range,
A control method for an air conditioning system that applies the generated control command to the corresponding indoor unit and outdoor unit, respectively.
JP2014034149A 2014-02-25 2014-02-25 Air conditioning system Active JP6215084B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014034149A JP6215084B2 (en) 2014-02-25 2014-02-25 Air conditioning system
PCT/JP2015/052588 WO2015129381A1 (en) 2014-02-25 2015-01-29 Air conditioning system, and control device and control method for same
ES15756043T ES2811122T3 (en) 2014-02-25 2015-01-29 Air conditioning system and control device and control method therefor
EP15756043.4A EP3064848B1 (en) 2014-02-25 2015-01-29 Air conditioning system, and control device and control method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034149A JP6215084B2 (en) 2014-02-25 2014-02-25 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2015158336A JP2015158336A (en) 2015-09-03
JP6215084B2 true JP6215084B2 (en) 2017-10-18

Family

ID=54008707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034149A Active JP6215084B2 (en) 2014-02-25 2014-02-25 Air conditioning system

Country Status (4)

Country Link
EP (1) EP3064848B1 (en)
JP (1) JP6215084B2 (en)
ES (1) ES2811122T3 (en)
WO (1) WO2015129381A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855192B (en) * 2019-03-06 2021-05-25 杭州享福多智能科技有限公司 Air conditioner with outer unit regulated and controlled in grading mode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667950B2 (en) * 1993-09-20 1997-10-27 株式会社日立製作所 Air conditioner and its address setting method
JP2001241738A (en) * 2000-03-02 2001-09-07 Sanyo Electric Co Ltd Refrigerator/cooler and its controlling method
JP4129594B2 (en) * 2003-04-15 2008-08-06 株式会社日立製作所 Air conditioning system
JP2005083592A (en) * 2003-09-04 2005-03-31 Hitachi Ltd Air conditioner
KR100697007B1 (en) * 2004-12-22 2007-03-20 엘지전자 주식회사 Apparatus for summing capacity of outdoor units in multi air-conditioner and method therefor
JP4779791B2 (en) * 2006-04-26 2011-09-28 アイシン精機株式会社 Air conditioner
KR20120085110A (en) * 2011-01-21 2012-07-31 엘지전자 주식회사 Air conditioning system, and communicating apparatus and method of the same
JP6064412B2 (en) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
EP3064848B1 (en) 2020-07-22
ES2811122T3 (en) 2021-03-10
EP3064848A4 (en) 2017-01-11
WO2015129381A1 (en) 2015-09-03
JP2015158336A (en) 2015-09-03
EP3064848A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
US9835347B2 (en) State-based control in an air handling unit
JP5085716B2 (en) Air conditioning system for server room management, server management system using the same, and air conditioning control method
CN105674472B (en) The refrigeration control method and device of computer room
US10908570B2 (en) Building devices with communication subsystems independently powered by power over Ethernet (POE)
CA2768736C (en) Demand flow pumping
KR102216367B1 (en) A method for improving the working efficiency of a cooling system through retrofitting a building with a master controller
US9897338B2 (en) Coordinated air-side control of HVAC system
JP6324628B2 (en) Heat pump utilization system control device and heat pump utilization system including the same
US11150620B2 (en) Mobile gateway device for controlling building equipment
JP2013200115A (en) Method for operating vapor compression system, method for controlling operation of vapor compression system, and optimization controller for optimizing performance of vapor compression system
US10948214B2 (en) HVAC system with economizer switchover control
US20210280041A1 (en) Systems and methods for actuator installation auto-verification
CN103925668A (en) Direct-current frequency conversion constant-temperature and humidity set achieving condensation heat recovery and heat and humidity separation control method
EP2737263A2 (en) Hvac systems
WO2016098626A1 (en) Air-conditioning device
CN108291734B (en) Method and system for operating a thermal energy exchanger
JP6215084B2 (en) Air conditioning system
Ma et al. Energy-efficient static pressure reset in VAV systems
US11609019B2 (en) Device and method for controlling an orifice of a valve in an HVAC system
JP6890727B1 (en) Air conditioning system and control method
JP5318446B2 (en) Outside air intake system
JP5285925B2 (en) Air conditioning system
JP2020098055A (en) Air conditioning device and program
JP2015031414A (en) Air conditioning system, and control method of air conditioning system
US11561018B2 (en) Central plant control system with control region detection based on control envelope ray-casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350