JP6215001B2 - Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element - Google Patents

Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element Download PDF

Info

Publication number
JP6215001B2
JP6215001B2 JP2013221133A JP2013221133A JP6215001B2 JP 6215001 B2 JP6215001 B2 JP 6215001B2 JP 2013221133 A JP2013221133 A JP 2013221133A JP 2013221133 A JP2013221133 A JP 2013221133A JP 6215001 B2 JP6215001 B2 JP 6215001B2
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
barrier layer
magnetoresistive film
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013221133A
Other languages
Japanese (ja)
Other versions
JP2015082633A (en
Inventor
亮一 八幡
亮一 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2013221133A priority Critical patent/JP6215001B2/en
Priority to CN201410578628.XA priority patent/CN104576920B/en
Publication of JP2015082633A publication Critical patent/JP2015082633A/en
Application granted granted Critical
Publication of JP6215001B2 publication Critical patent/JP6215001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、基板に磁気抵抗膜が形成された磁気抵抗素子、該磁気抵抗素子を備えた磁気センサ装置、および当該磁気抵抗素子の製造方法に関するものである。   The present invention relates to a magnetoresistive element having a magnetoresistive film formed on a substrate, a magnetic sensor device including the magnetoresistive element, and a method of manufacturing the magnetoresistive element.

固定体に対する回転体の回転を検出するロータリエンコーダでは、例えば、回転体の側にマグネットを設け、固定体の側に磁気抵抗素子を備えた磁気センサ装置が設けられる。かかる磁気抵抗素子では、基板の一方面にNi−Fe等からなる磁気抵抗膜が形成されており、磁気抵抗膜によって構成した2相(A相およびB相)のブリッジ回路から出力された出力に基づいて、回転体の角度速度や角度位置等を検出する(例えば、特許文献1参照)。   In a rotary encoder that detects the rotation of a rotating body relative to a fixed body, for example, a magnetic sensor device is provided that includes a magnet on the rotating body side and a magnetoresistive element on the fixed body side. In such a magnetoresistive element, a magnetoresistive film made of Ni—Fe or the like is formed on one surface of a substrate, and an output output from a two-phase (A phase and B phase) bridge circuit constituted by the magnetoresistive film. Based on this, an angular velocity, an angular position, and the like of the rotating body are detected (see, for example, Patent Document 1).

かかる磁気抵抗素子を製造するには、真空チャンバ内で基板を加熱した状態で基板の一方面に磁気抵抗膜を形成した後、磁気抵抗膜をパターニングする。かかる製造方法において、磁気抵抗膜の表面が空気と接触して酸化すると、酸化膜の厚さ分、磁気抵抗膜が薄くなってしまい、磁気抵抗効果による抵抗変化率が低下してしまう。特に、磁気抵抗素子の感度を高めるには、磁気抵抗膜を薄く形成するため、酸化膜の形成に起因する抵抗変化率の低下は大きな問題となってしまう。そこで、真空チャンバ内に窒素ガスを導入して磁気抵抗膜の温度や真空チャンバ内の温度を低下させてから、真空チャンバを大気開放し、基板を真空チャンバから取り出している。しかしながら、上記の方法を採用しても、磁気抵抗膜の表面が酸化することを十分に防止することができない。   In order to manufacture such a magnetoresistive element, a magnetoresistive film is formed on one surface of the substrate while the substrate is heated in a vacuum chamber, and then the magnetoresistive film is patterned. In such a manufacturing method, when the surface of the magnetoresistive film is oxidized in contact with air, the magnetoresistive film becomes thinner by the thickness of the oxide film, and the rate of change in resistance due to the magnetoresistive effect is reduced. In particular, in order to increase the sensitivity of the magnetoresistive element, the magnetoresistive film is formed thin, so that the decrease in the resistance change rate due to the formation of the oxide film becomes a big problem. Therefore, nitrogen gas is introduced into the vacuum chamber to lower the temperature of the magnetoresistive film and the temperature in the vacuum chamber, and then the vacuum chamber is opened to the atmosphere and the substrate is taken out from the vacuum chamber. However, even if the above method is adopted, the surface of the magnetoresistive film cannot be sufficiently prevented from being oxidized.

一方、磁気抵抗膜のパターニングに用いたレジストマスクを酸素ガスと窒素ガスとの混合ガスを用いたプラズマアッシングにより除去する際に磁気抵抗膜の表面が酸化することを防止する技術が提案されている。かかる技術では、Ni−Co、Ni−Fe等の磁気抵抗膜の表面に非磁性金属からなるバリア層を積層した後、レジストマスクを形成し、磁気抵抗膜およびバリア層を一括してパターニングする(特許文献2参照)。また、特許文献2では、磁気抵抗膜の膜厚とバリア層の膜厚とが同等であるため、バリア層にMo−Si,Ti−W,Ti−N等を用いることにより、バリア層の抵抗を磁気抵抗膜の抵抗より大としている。   On the other hand, a technique for preventing the surface of the magnetoresistive film from being oxidized when the resist mask used for patterning the magnetoresistive film is removed by plasma ashing using a mixed gas of oxygen gas and nitrogen gas has been proposed. . In such a technique, after a barrier layer made of a nonmagnetic metal is laminated on the surface of a magnetoresistive film such as Ni—Co or Ni—Fe, a resist mask is formed, and the magnetoresistive film and the barrier layer are patterned together ( Patent Document 2). Further, in Patent Document 2, since the thickness of the magnetoresistive film and the thickness of the barrier layer are equivalent, the resistance of the barrier layer can be obtained by using Mo—Si, Ti—W, Ti—N, or the like for the barrier layer. Is larger than the resistance of the magnetoresistive film.

特開2012−118000号公報JP 2012-118000 A 特開2009−105208号公報JP 2009-105208 A

しかしながら、特許文献2に記載の構成のように、磁気抵抗膜の膜厚とバリア層の膜厚とが同等である場合、バリア層として、比抵抗値が大きな非磁性金属を用いる必要がある等、制約が大きい。また、バリア層の膜厚が厚い場合には、非抵抗値が大きな非磁性金属材料によってバリア層を形成しても、バリア層の抵抗が小さくなってしまい、磁気抵抗効果による抵抗変化率が低下してしまう。   However, as in the configuration described in Patent Document 2, when the thickness of the magnetoresistive film and the thickness of the barrier layer are equal, it is necessary to use a nonmagnetic metal having a large specific resistance as the barrier layer. The constraints are great. In addition, when the barrier layer is thick, even if the barrier layer is formed of a nonmagnetic metal material having a large non-resistance value, the resistance of the barrier layer is reduced and the rate of change in resistance due to the magnetoresistive effect is reduced. Resulting in.

以上の問題点に鑑みて、本発明の課題は、バリア層によって磁気抵抗膜表面の酸化を防止した場合でも、磁気抵抗効果による抵抗変化率が高い磁気抵抗素子、該磁気抵抗素子を備えた磁気センサ装置、および当該磁気抵抗素子の製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a magnetoresistive element having a high rate of change in resistance due to the magnetoresistive effect even when the surface of the magnetoresistive film is prevented by a barrier layer, and a magnetic device including the magnetoresistive element. It is providing the sensor apparatus and the manufacturing method of the said magnetoresistive element.

上記の課題を解決するために、本発明に係る磁気抵抗素子は、基板と、前記基板の一方面側に形成された磁気抵抗膜と、該磁気抵抗膜の前記基板と反対側の面に当該磁気抵抗膜と同一パターンをもって積層され、当該磁気抵抗膜より膜厚が薄い非磁性金属膜からなるバリア層と、を有し、前記バリア層は、アルミニウムを主成分とすることを特徴とする。 In order to solve the above problems, a magnetoresistive element according to the present invention includes a substrate, a magnetoresistive film formed on one side of the substrate, and a surface of the magnetoresistive film opposite to the substrate. It is stacked with a magnetoresistive film and the same pattern, possess a barrier layer having a thickness from the magnetoresistive film is a thin non-magnetic metal film, wherein the barrier layer is characterized by containing aluminum as its main component.

本発明に係る磁気抵抗素子の製造方法は、基板の一方面側に磁気抵抗膜を形成する磁気抵抗膜形成工程と、前記磁気抵抗膜を酸化性雰囲気と接触させずに前記磁気抵抗膜の表面に当該磁気抵抗膜より膜厚が薄い非磁性金属膜からなるバリア層を形成するバリア層形成工程と、前記バリア層の表面にエッチングマスクを形成するマスク形成工程と、前記バリア層の表面に前記エッチングマスクを形成した状態で前記磁気抵抗膜および前記バリア層をエッチングするエッチング工程と、前記エッチングマスクを除去するエッチングマスク除去工程と、を有し、前記バリア層は、アルミニウムを主成分とすることを特徴とする。 A method of manufacturing a magnetoresistive element according to the present invention includes a magnetoresistive film forming step of forming a magnetoresistive film on one side of a substrate, and a surface of the magnetoresistive film without contacting the magnetoresistive film with an oxidizing atmosphere. A barrier layer forming step of forming a barrier layer made of a nonmagnetic metal film thinner than the magnetoresistive film, a mask forming step of forming an etching mask on the surface of the barrier layer, and the barrier layer on the surface of the barrier layer. possess an etching process of etching said magnetoresistive film and said barrier layer in a state of forming an etching mask, an etching mask removing step of removing the etch mask, wherein the barrier layer is mainly composed of aluminum It is characterized by.

本発明では、磁気抵抗膜を形成した後、磁気抵抗膜を酸化性雰囲気と接触させずに、磁気抵抗膜の表面にバリア層を積層し、この状態で、磁気抵抗膜およびバリア層を形成する。このため、磁気抵抗膜の表面が酸化することを防止することができる。このため、抵抗変化率を向上することができる。また、バリア層の膜厚は、磁気抵抗膜の膜厚よりも薄いため、バリア層に用いる非磁性材料に大きな制約を加えなくても、バリア層の抵抗が大きい。このため、磁気抵抗膜にバリア層を積層した場合でも、抵抗変化率への悪影響を防止することができ、酸化防止に起因する利点を活かすことができる。それ故、バリア層によ
って磁気抵抗膜表面の酸化を防止した場合でも、磁気抵抗効果による抵抗変化率が高い磁気抵抗素子を得ることができる。また、バリア層は、アルミニウムを主成分とするため、比較的安価な非磁性金属によってバリア層を形成することができる。
In the present invention, after the magnetoresistive film is formed, a barrier layer is laminated on the surface of the magnetoresistive film without contacting the magnetoresistive film with the oxidizing atmosphere, and in this state, the magnetoresistive film and the barrier layer are formed. . For this reason, it is possible to prevent the surface of the magnetoresistive film from being oxidized. For this reason, the resistance change rate can be improved. Further, since the thickness of the barrier layer is thinner than that of the magnetoresistive film, the resistance of the barrier layer is large even if no great restriction is imposed on the nonmagnetic material used for the barrier layer. For this reason, even when a barrier layer is laminated on the magnetoresistive film, an adverse effect on the rate of change in resistance can be prevented, and the advantages resulting from the prevention of oxidation can be utilized. Therefore, even when the surface of the magnetoresistive film is prevented by the barrier layer, a magnetoresistive element having a high resistance change rate due to the magnetoresistive effect can be obtained. Moreover, since a barrier layer has aluminum as a main component, a barrier layer can be formed with a comparatively cheap nonmagnetic metal.

本発明において、前記バリア層の厚さは、0.5nmから2.0nmであることが好ましい。本発明において、前記バリア層の厚さは、1.0nmであることが好ましい。かかる膜厚であれば、バリア層に用いる非磁性材料の種類にかかわらず、バリア層の抵抗が大きい。このため、磁気抵抗膜にバリア層を積層した場合でも、抵抗変化率への悪影響を防止することができ、酸化防止に起因する利点を活かすことができる。   In the present invention, the barrier layer preferably has a thickness of 0.5 nm to 2.0 nm. In the present invention, the thickness of the barrier layer is preferably 1.0 nm. With such a film thickness, the resistance of the barrier layer is large regardless of the type of nonmagnetic material used for the barrier layer. For this reason, even when a barrier layer is laminated on the magnetoresistive film, an adverse effect on the rate of change in resistance can be prevented, and the advantages resulting from the prevention of oxidation can be utilized.

本発明において、前記基板には、前記バリア層と同一の金属材料からなる機能層が形成されていることが好ましい。かかる構成によれば、バリア層を追加しても、基板上に形成する金属材料の種類が変わらない。従って、機能層の形成に用いたターゲットを用いてバリア層を形成することができる。   In the present invention, it is preferable that a functional layer made of the same metal material as the barrier layer is formed on the substrate. According to such a configuration, even if a barrier layer is added, the type of metal material formed on the substrate does not change. Therefore, the barrier layer can be formed using the target used for forming the functional layer.

本発明において、前記磁気抵抗膜の厚さは、10nmから80nmであることが好ましい。   In the present invention, the thickness of the magnetoresistive film is preferably 10 nm to 80 nm.

本発明を適用した磁気抵抗素子は、磁気センサ装置等に用いられる。   The magnetoresistive element to which the present invention is applied is used in a magnetic sensor device or the like.

本発明において、前記磁気抵抗膜形成工程を真空チャンバ内で行った後、当該真空チャンバ内に酸化性ガスを導入せずに当該真空チャンバ内で前記バリア層形成工程を行うことが好ましい。   In the present invention, after the magnetoresistive film forming step is performed in a vacuum chamber, the barrier layer forming step is preferably performed in the vacuum chamber without introducing an oxidizing gas into the vacuum chamber.

本発明において、前記磁気抵抗膜形成工程を行った後、非酸化雰囲気中で前記磁気抵抗膜形成工程での前記磁気抵抗膜の成膜温度より高い温度で当該磁気抵抗膜を加熱するアニール工程を行うことが好ましい。かかる構成によれば、抵抗変化率を向上することができる。また、バリア層がない状態でアニール工程を行うと、抵抗変化率にヒステリシスが発生するが、本発明では、バリア層が設けられているため、アニール工程によって抵抗変化率を向上させても、抵抗変化率にヒステリシスが発生することを抑制することができる。   In the present invention, after performing the magnetoresistive film forming step, an annealing step of heating the magnetoresistive film at a temperature higher than the film forming temperature of the magnetoresistive film in the magnetoresistive film forming step in a non-oxidizing atmosphere. Preferably it is done. According to such a configuration, it is possible to improve the resistance change rate. In addition, when the annealing process is performed without the barrier layer, hysteresis occurs in the resistance change rate. However, in the present invention, since the barrier layer is provided, the resistance change rate is improved even if the resistance change rate is improved by the annealing process. It is possible to suppress the occurrence of hysteresis in the rate of change.

本発明において、前記アニール工程は、前記エッチングマスク除去工程の後に行うことが好ましい。かかる構成によれば、磁気抵抗膜の上層にバリア層を形成し、かつ、磁気抵抗膜およびバリア層をパターニングした後にアニール工程を行うので、磁気抵抗膜の歪等を効率よく減少させることができる。   In the present invention, the annealing step is preferably performed after the etching mask removing step. According to this configuration, since the barrier layer is formed on the magnetoresistive film and the annealing process is performed after the magnetoresistive film and the barrier layer are patterned, the strain of the magnetoresistive film can be efficiently reduced. .

本発明では、磁気抵抗膜を形成した後、磁気抵抗膜を酸化性雰囲気と接触させずに、磁気抵抗膜の表面にバリア層を積層し、この状態で、磁気抵抗膜およびバリア層を形成する。このため、磁気抵抗膜の表面が酸化することを防止することができる。このため、抵抗変化率を向上することができる。また、バリア層の膜厚は、磁気抵抗膜の膜厚よりも薄いため、バリア層に用いる非磁性材料に大きな制約を加えなくても、バリア層の抵抗が大きい。このため、磁気抵抗膜にバリア層を積層した場合でも、磁気抵抗効果による抵抗変化率の低下を抑制することができる。   In the present invention, after the magnetoresistive film is formed, a barrier layer is laminated on the surface of the magnetoresistive film without contacting the magnetoresistive film with the oxidizing atmosphere, and in this state, the magnetoresistive film and the barrier layer are formed. . For this reason, it is possible to prevent the surface of the magnetoresistive film from being oxidized. For this reason, the resistance change rate can be improved. Further, since the thickness of the barrier layer is thinner than that of the magnetoresistive film, the resistance of the barrier layer is large even if no great restriction is imposed on the nonmagnetic material used for the barrier layer. For this reason, even when the barrier layer is laminated on the magnetoresistive film, it is possible to suppress the decrease in the resistance change rate due to the magnetoresistive effect.

本発明を適用した磁気抵抗素子を備えた磁気センサ装置、およびロータリエンコーダの原理を示す説明図である。It is explanatory drawing which shows the principle of the magnetic sensor apparatus provided with the magnetoresistive element to which this invention is applied, and a rotary encoder. 本発明を適用した磁気抵抗素子の磁気抵抗膜の電気的な接続構造の説明図である。It is explanatory drawing of the electrical connection structure of the magnetoresistive film | membrane of the magnetoresistive element to which this invention is applied. 本発明を適用した磁気抵抗素子の説明図である。It is explanatory drawing of the magnetoresistive element to which this invention is applied. 本発明を適用した磁気抵抗素子の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the magnetoresistive element to which this invention is applied. 本発明を適用した磁気センサ装置の制御部に構成した温度制御部の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the temperature control part comprised in the control part of the magnetic sensor apparatus to which this invention is applied. 本発明を適用した磁気抵抗素子の抵抗変化率に関する評価結果を示すグラフである。It is a graph which shows the evaluation result regarding the resistance change rate of the magnetoresistive element to which this invention is applied. 本発明を適用した磁気抵抗素子の磁気抵抗効果のヒステリシスを示すグラフである。It is a graph which shows the hysteresis of the magnetoresistive effect of the magnetoresistive element to which this invention is applied. 比較例に係る磁気抵抗素子の磁気抵抗効果のヒステリシスを示すグラフである。It is a graph which shows the hysteresis of the magnetoresistive effect of the magnetoresistive element which concerns on a comparative example. 本発明を適用した別の磁気抵抗素子の磁気抵抗効果のヒステリシスを示すグラフである。It is a graph which shows the hysteresis of the magnetoresistive effect of another magnetoresistive element to which this invention is applied.

以下に、図面を参照して、本発明を適用した磁気抵抗素子、磁気センサ装置、およびロータリエンコーダの実施の形態を説明する。なお、ロータリエンコーダにおいて、固定体に対する回転体の回転を検出するにあたっては、固定体にマグネットを設け、回転体に磁気抵抗素子を設けた構成、および固定体に磁気抵抗素子を設け、回転体にマグネットを設けた構成のいずれの構成を採用してもよいが、以下の説明では、固定体に磁気センサ装置を設け、回転体にマグネットを設けた構成を中心に説明する。   Embodiments of a magnetoresistive element, a magnetic sensor device, and a rotary encoder to which the present invention is applied will be described below with reference to the drawings. In the rotary encoder, when detecting the rotation of the rotating body relative to the fixed body, the fixed body is provided with a magnet, the rotating body is provided with a magnetoresistive element, and the fixed body is provided with a magnetoresistive element. Any of the configurations in which the magnet is provided may be adopted. However, in the following description, the description will focus on the configuration in which the magnetic sensor device is provided in the fixed body and the magnet is provided in the rotating body.

(磁気センサ装置の構成)
図1は、本発明を適用した磁気抵抗素子4を備えた磁気センサ装置10、およびロータリエンコーダ1の原理を示す説明図であり、図1(a)、(b)、(c)は磁気抵抗素子4等に対する信号処理系の説明図、磁気抵抗素子4から出力される信号の説明図、およびかかる信号と回転体2の角度位置(電気角)との関係を示す説明図である。図2は、本発明を適用した磁気抵抗素子4の磁気抵抗膜41〜44の電気的な接続構造の説明図である。
(Configuration of magnetic sensor device)
FIG. 1 is an explanatory diagram showing the principle of a magnetic sensor device 10 including a magnetoresistive element 4 to which the present invention is applied, and a rotary encoder 1. FIGS. 1 (a), (b), and (c) are magnetoresistive elements. FIG. 4 is an explanatory diagram of a signal processing system for the element 4 and the like, an explanatory diagram of a signal output from the magnetoresistive element 4, and an explanatory diagram showing a relationship between the signal and the angular position (electrical angle) of the rotating body 2. FIG. 2 is an explanatory diagram of an electrical connection structure of the magnetoresistive films 41 to 44 of the magnetoresistive element 4 to which the present invention is applied.

図1に示すロータリエンコーダ1は、固定体(図示せず)に対する回転体2の軸線周り(回転軸線周り)の回転を磁気センサ装置10によって磁気的に検出する装置であり、固定体は、モータ装置のフレーム等に固定され、回転体2は、モータ装置の回転出力軸等に連結された状態で使用される。回転体2の側には、N極とS極とが周方向において1極ずつ着磁された着磁面21を回転軸線方向Lの一方側に向けるマグネット20が保持されており、マグネット20は回転体2と一体に回転軸線周りに回転する。   A rotary encoder 1 shown in FIG. 1 is a device that magnetically detects rotation around an axis (rotation axis) of a rotating body 2 with respect to a fixed body (not shown) by a magnetic sensor device 10, and the fixed body is a motor. The rotating body 2 is fixed to a frame or the like of the device, and is used in a state of being connected to a rotation output shaft or the like of the motor device. On the side of the rotating body 2, a magnet 20 is held that directs the magnetized surface 21 in which the N pole and the S pole are magnetized one by one in the circumferential direction to one side in the rotation axis direction L. It rotates around the rotation axis integrally with the rotating body 2.

固定体の側には、マグネット20の着磁面21に対して回転軸線方向Lの一方側で対向する磁気抵抗素子4、および後述する処理を行う制御部90等を備えた磁気センサ装置10が設けられている。また、磁気センサ装置10は、マグネット20に対向する位置に、第1ホール素子61と、第1ホール素子61に対して周方向において機械角で90°ずれた箇所に位置する第2ホール素子62とを備えている。   On the fixed body side, there is a magnetic sensor device 10 including the magnetoresistive element 4 facing the magnetized surface 21 of the magnet 20 on one side in the rotation axis direction L, a control unit 90 that performs processing to be described later, and the like. Is provided. In addition, the magnetic sensor device 10 includes a first hall element 61 and a second hall element 62 located at a position that is shifted by 90 ° in the circumferential direction with respect to the first hall element 61 at a position facing the magnet 20. And.

磁気抵抗素子4は、基板40と、マグネット20の位相に対して互いに90°の位相差を有する2相の磁気抵抗膜(A相(SIN)の磁気抵抗膜、およびB相(COS)の磁気抵抗膜)とを備えた磁気抵抗素子である。かかる磁気抵抗素子4において、A相の磁気抵抗膜は、180°の位相差をもって回転体2の移動検出を行う+A相(SIN+)の磁気抵抗膜43、および−A相(SIN-)の磁気抵抗膜41を備えており、B相の磁気抵抗膜は、180°の位相差をもって回転体2の移動検出を行う+B相(COS+)の磁気抵抗膜44、および−B相(COS-)の磁気抵抗膜42を備えている。   The magnetoresistive element 4 includes a two-phase magnetoresistive film (A phase (SIN) magnetoresistive film and B phase (COS) magnetism) having a phase difference of 90 ° with respect to the phase of the substrate 40 and the magnet 20. A magnetoresistive element. In the magnetoresistive element 4, the A phase magnetoresistive film includes a + A phase (SIN +) magnetoresistive film 43 that detects movement of the rotating body 2 with a phase difference of 180 °, and a −A phase (SIN−) magnetism. The B-phase magnetoresistive film includes a + B-phase (COS +) magnetoresistive film 44 that detects movement of the rotating body 2 with a phase difference of 180 °, and a −B-phase (COS−) magnetoresistive film. A magnetoresistive film 42 is provided.

+A相の磁気抵抗膜43および−A相の磁気抵抗膜41は、図2(a)に示すブリッジ回路を構成しており、一方端がA相用の電源端子VccAに接続され、他方端がA相用のグランド端子GNDAに接続されている。+A相の磁気抵抗膜43の中点位置には、+A相が出力される出力端子+Aが設けられ、−A相の磁気抵抗膜41の中点位置には、−A相が出力される出力端子−Aが設けられている。また、+B相の磁気抵抗膜44および−B相の磁気抵抗膜42も、+A相の磁気抵抗膜44および−A相の磁気抵抗膜41と同様、図2(b)に示すブリッジ回路を構成しており、一方端がB相用の電源端子VccBに接続され、他方端がB相用のグランド端子GNDBに接続されている。+B相の磁気抵抗膜44の中点位置には、+B相が出力される出力端子+Bが設けられ、−B相の磁気抵抗膜42の中点位置には、−B相が出力される出力端子−Bが設けられている。なお、図2では便宜上、A相用の電源端子VccAおよびB相用の電源端子VccBの各々を記載したが、A相用の電源端子VccAとB相用の電源端子VccBとが共通になっていてもよい。また、図2では便宜上、A相用のグランド端子GNDAおよびB相用のグランド端子GNDBの各々を記載したが、A相用のグランド端子GNDAとB相用のグランド端子GNDBとが共通になっていてもよい。   The + A-phase magnetoresistive film 43 and the -A-phase magnetoresistive film 41 constitute the bridge circuit shown in FIG. 2A, and one end is connected to the A-phase power supply terminal VccA and the other end is It is connected to the A phase ground terminal GNDA. An output terminal + A from which the + A phase is output is provided at the midpoint position of the + A phase magnetoresistive film 43, and an output from which the −A phase is output at the midpoint position of the −A phase magnetoresistive film 41. Terminal -A is provided. Similarly to the + A phase magnetoresistive film 44 and the −A phase magnetoresistive film 41, the + B phase magnetoresistive film 44 and the −B phase magnetoresistive film 42 also constitute the bridge circuit shown in FIG. One end is connected to the B-phase power supply terminal VccB, and the other end is connected to the B-phase ground terminal GNDB. An output terminal + B from which the + B phase is output is provided at the midpoint position of the + B phase magnetoresistive film 44, and an output from which the −B phase is output at the midpoint position of the −B phase magnetoresistive film 42. Terminal -B is provided. In FIG. 2, for convenience, the A-phase power supply terminal VccA and the B-phase power supply terminal VccB are shown, but the A-phase power supply terminal VccA and the B-phase power supply terminal VccB are common. May be. For convenience, FIG. 2 shows the A-phase ground terminal GNDA and the B-phase ground terminal GNDB, but the A-phase ground terminal GNDA and the B-phase ground terminal GNDB are common. May be.

本形態の磁気センサ装置10およびロータリエンコーダ1において、磁気抵抗素子4、第1ホール素子61、および第2ホール素子62に対しては、増幅回路91、92、95、96や、これらの増幅回路91、92、95、96から出力される正弦波信号sin、cosに補間処理や各種演算処理を行うCPU(演算回路)等を備えた制御部90が構成されており、磁気抵抗素子4、第1ホール素子61、および第2ホール素子62からの出力に基づいて、固定体に対する回転体2の回転角度位置が求められる。   In the magnetic sensor device 10 and the rotary encoder 1 of the present embodiment, the amplifying circuits 91, 92, 95, and 96 and the amplifying circuits for the magnetoresistive element 4, the first hall element 61, and the second hall element 62 are provided. A control unit 90 including a CPU (arithmetic circuit) that performs interpolation processing and various arithmetic processing on the sine wave signals sin and cos output from 91, 92, 95, and 96 is configured. Based on the outputs from the 1 Hall element 61 and the second Hall element 62, the rotational angle position of the rotating body 2 with respect to the fixed body is obtained.

より具体的には、ロータリエンコーダ1において、回転体2が1回転すると、磁気抵抗素子4からは、図1(b)に示す正弦波信号sin、cosが2周期分、出力される。従って、正弦波信号sin、cosを増幅回路91、92により増幅した後、制御部90において、図1(c)に示すリサージュ図を求め、正弦波信号sin、cosからθ=tan-1(sin/cos)を求めれば、回転出力軸の角度位置θが分かる。また、本形態では、マグネット20の中心からみて90°ずれた位置に第1ホール素子61および第2ホール素子62が配置されている。このため、第1ホール素子61および第2ホール素子62の出力の組合せにより、現在位置が正弦波信号sin、cosのいずれの区間に位置するかが分かる。従って、ロータリエンコーダ1は、磁気抵抗素子4での検出結果、第1ホール素子61での検出結果、および第2ホール素子62での検出結果に基づいて回転体2の絶対角度位置情報を生成することができ、アブソリュート動作を行うことができる。 More specifically, in the rotary encoder 1, when the rotating body 2 rotates once, the magnetoresistive element 4 outputs the sine wave signals sin and cos shown in FIG. Therefore, after the sine wave signals sin and cos are amplified by the amplifier circuits 91 and 92, the control unit 90 obtains the Lissajous diagram shown in FIG. 1C, and θ = tan −1 (sin / Cos), the angular position θ of the rotation output shaft can be obtained. In the present embodiment, the first Hall element 61 and the second Hall element 62 are arranged at a position shifted by 90 ° from the center of the magnet 20. For this reason, it can be understood from the combination of the outputs of the first Hall element 61 and the second Hall element 62 which section of the sine wave signal sin or cos the current position is located. Accordingly, the rotary encoder 1 generates absolute angular position information of the rotating body 2 based on the detection result of the magnetoresistive element 4, the detection result of the first Hall element 61, and the detection result of the second Hall element 62. The absolute operation can be performed.

(磁気抵抗素子4の平面構成)
図3は、本発明を適用した磁気抵抗素子4の説明図であり、図3(a)、(b)は磁気抵抗素子4の平面構成を示す説明図、および断面構成を示す説明図である。なお、図3(b)では、磁気抵抗膜41〜44、温度監視用抵抗膜47(機能層)、および加熱用抵抗膜48(機能層)の層構造を模式的に示してある。また、図3(a)では、温度監視用抵抗膜47については右下がりの斜線を付し、加熱用抵抗膜48については右上がりの斜線を付してある。
(Planar configuration of the magnetoresistive element 4)
FIG. 3 is an explanatory diagram of the magnetoresistive element 4 to which the present invention is applied, and FIGS. 3A and 3B are an explanatory diagram showing a planar configuration of the magnetoresistive element 4 and an explanatory diagram showing a cross-sectional configuration. . FIG. 3B schematically shows the layer structure of the magnetoresistive films 41 to 44, the temperature monitoring resistive film 47 (functional layer), and the heating resistive film 48 (functional layer). Further, in FIG. 3A, the temperature monitoring resistance film 47 is indicated by a downward sloping line, and the heating resistance film 48 is indicated by a right upward slanting line.

図3(a)に示すように、本形態の磁気センサ装置10およびロータリエンコーダ1において、磁気抵抗素子4は、基板40と、基板40の一方面40aに形成された磁気抵抗膜41〜44とを備えており、磁気抵抗膜41〜44は、互いに折り返しながら延在している部分によって、基板40の中央に円形の感磁領域45を構成している。本形態において、基板40は四角形の平面形状を有するシリコン基板である。   As shown in FIG. 3A, in the magnetic sensor device 10 and the rotary encoder 1 of this embodiment, the magnetoresistive element 4 includes a substrate 40 and magnetoresistive films 41 to 44 formed on one surface 40a of the substrate 40. The magnetoresistive films 41 to 44 constitute a circular magnetosensitive region 45 in the center of the substrate 40 by portions extending while being folded back. In this embodiment, the substrate 40 is a silicon substrate having a quadrangular planar shape.

磁気抵抗膜41〜44からは配線部分が一体に延在しており、配線部分の端部には、A相用の電源端子VccA、A相用のグランド端子GNDA、+A相出力用の出力端子+A、−A相出力用の出力端子−A、B相用の電源端子VccB、B相用のグランド端子GNDB、+B相出力用の出力端子+B、および−B相出力用の出力端子−Bが設けられている。   A wiring portion extends integrally from the magnetoresistive films 41 to 44, and an A-phase power supply terminal VccA, an A-phase ground terminal GNDA, and an output terminal for + A-phase output are provided at the ends of the wiring portions. + A, -A phase output terminal -A, B phase power supply terminal VccB, B phase ground terminal GNDB, + B phase output terminal + B, and -B phase output terminal -B Is provided.

また、本形態の磁気抵抗素子4では、基板40の一方面40a側に温度監視用抵抗膜47および加熱用抵抗膜48が形成されている。ここで、加熱用抵抗膜48は、基板40の辺に沿って四角枠状に延在して閉ループを構成した状態で、磁気抵抗膜41〜44が形成されている領域の全体を囲んでいる。このため、加熱用抵抗膜48と磁気抵抗膜41〜44とは、基板40の面内方向でずれた領域に形成されており、平面視で重なっていない。また、加熱用抵抗膜48の相対向する2つの辺部分の一方からは配線部分481が延在し、その端部には、加熱用抵抗膜48に対する給電用の電源端子VccHが形成されている。これに対して、2つの辺部分の他方から延在する配線部分482の端部は、A相用のグランド端子GNDAに接続している。このため、A相用のグランド端子GNDAは、加熱用抵抗膜48に対するグランド端子GNDHとしても利用されている。ここで、配線部分481と加熱用抵抗膜48との接続位置と、配線部分482と加熱用抵抗膜48との接続位置は、感磁領域45に対して点対称位置にある。このため、配線部分481と加熱用抵抗膜48との接続位置から配線部分482と加熱用抵抗膜48との接続位置に向かって右回りした際の加熱用抵抗膜48の長さと、配線部分481と加熱用抵抗膜48との接続位置から配線部分482と加熱用抵抗膜48との接続位置に向かって左回りした際の加熱用抵抗膜48の長さが等しい。   In the magnetoresistive element 4 of this embodiment, the temperature monitoring resistance film 47 and the heating resistance film 48 are formed on the one surface 40 a side of the substrate 40. Here, the heating resistance film 48 extends in a square frame shape along the side of the substrate 40 to form a closed loop, and surrounds the entire region where the magnetoresistive films 41 to 44 are formed. . For this reason, the heating resistance film 48 and the magnetoresistive films 41 to 44 are formed in regions shifted in the in-plane direction of the substrate 40 and do not overlap in a plan view. In addition, a wiring portion 481 extends from one of two opposing side portions of the heating resistance film 48, and a power supply terminal VccH for supplying power to the heating resistance film 48 is formed at the end thereof. . In contrast, the end of the wiring portion 482 extending from the other of the two side portions is connected to the A-phase ground terminal GNDA. Therefore, the A-phase ground terminal GNDA is also used as the ground terminal GNDH for the heating resistance film 48. Here, the connection position between the wiring part 481 and the heating resistance film 48 and the connection position between the wiring part 482 and the heating resistance film 48 are point-symmetrical with respect to the magnetosensitive region 45. Therefore, the length of the heating resistance film 48 when it is turned clockwise from the connection position between the wiring portion 481 and the heating resistance film 48 toward the connection position between the wiring portion 482 and the heating resistance film 48, and the wiring portion 481. The heating resistance film 48 is equal in length when it is turned counterclockwise from the connection position of the heating resistance film 48 toward the connection position of the wiring portion 482 and the heating resistance film 48.

温度監視用抵抗膜47は、加熱用抵抗膜48の内側領域のうち、加熱用抵抗膜48の4つの角の1つの角付近に設けられており、感磁領域45と加熱用抵抗膜48との間に位置する。温度監視用抵抗膜47は、複数回、折り返しながら延在した平面形状になっている。このため、占有面積が狭くても、温度監視用抵抗膜47を長く形成することができる。ここで、温度監視用抵抗膜47は、磁気抵抗膜44の配線部分と部分的に重なっているが、感磁領域45とは基板40の面内方向でずれた領域に形成されており、感磁領域45とは重なっていない。温度監視用抵抗膜47一方の端部には、温度監視用の電源端子VccSが形成されている。また、温度監視用抵抗膜47の他方の端部は、B相用のグランド端子GNDBに接続している。このため、B相用のグランド端子GNDBは、温度監視用抵抗膜47に対するグランド端子GNDSとしても利用されている。   The temperature monitoring resistance film 47 is provided in the vicinity of one of the four corners of the heating resistance film 48 in the inner region of the heating resistance film 48. Located between. The temperature monitoring resistance film 47 has a planar shape extending while being folded a plurality of times. For this reason, even if the occupation area is small, the resistance film 47 for temperature monitoring can be formed long. Here, the temperature monitoring resistance film 47 partially overlaps the wiring portion of the magnetoresistive film 44, but is formed in a region shifted in the in-plane direction of the substrate 40 from the magnetosensitive region 45. It does not overlap with the magnetic region 45. A temperature monitoring power supply terminal VccS is formed at one end of the temperature monitoring resistance film 47. The other end of the temperature monitoring resistance film 47 is connected to a B-phase ground terminal GNDB. For this reason, the B-phase ground terminal GNDB is also used as the ground terminal GNDS for the temperature monitoring resistance film 47.

(磁気抵抗素子4の断面構成)
図3(b)に示すように、本形態の磁気抵抗素子4において、基板40の一方面40aには、シリコン酸化膜からなる第1絶縁膜51、シリコン酸化膜からなる第2絶縁膜52、およびポリイミド樹脂等からなる第3絶縁膜53が順に形成されている。
(Cross-sectional configuration of magnetoresistive element 4)
As shown in FIG. 3B, in the magnetoresistive element 4 of the present embodiment, a first insulating film 51 made of a silicon oxide film, a second insulating film 52 made of a silicon oxide film, A third insulating film 53 made of polyimide resin or the like is sequentially formed.

ここで、磁気抵抗膜41〜44は、基板40と第1絶縁膜51との層間に形成されている。温度監視用抵抗膜47および加熱用抵抗膜48は、第1絶縁膜51と第2絶縁膜52との層間に形成されている。このため、磁気抵抗膜41〜44は、温度監視用抵抗膜47および加熱用抵抗膜48とは第1絶縁膜51を介して別の層に形成され、温度監視用抵抗膜47と加熱用抵抗膜48とは同一の層に形成されている。   Here, the magnetoresistive films 41 to 44 are formed between the substrate 40 and the first insulating film 51. The temperature monitoring resistance film 47 and the heating resistance film 48 are formed between the first insulating film 51 and the second insulating film 52. For this reason, the magnetoresistive films 41 to 44 are formed in a layer different from the temperature monitoring resistance film 47 and the heating resistance film 48 via the first insulating film 51, and the temperature monitoring resistance film 47 and the heating resistance film 48 are formed. The film 48 is formed in the same layer.

なお、磁気抵抗膜41〜44および加熱用抵抗膜48が基板40と第1絶縁膜51との層間に形成され、温度監視用抵抗膜47が第1絶縁膜51と第2絶縁膜52との層間に形成されている構成等を採用してもよい。   The magnetoresistive films 41 to 44 and the heating resistive film 48 are formed between the substrate 40 and the first insulating film 51, and the temperature monitoring resistive film 47 is formed between the first insulating film 51 and the second insulating film 52. A structure formed between layers may be employed.

本形態において、磁気抵抗膜41〜44は蒸着法により形成されたNi−Fe膜、Ni−Co、Ni−Fe−Co等の磁性膜である。温度監視用抵抗膜47および加熱用抵抗膜48はいずれも、蒸着法により形成された非磁性膜であり、チタン(Ti)膜、Ti合金膜、アルミニウム(Al)膜、Al合金膜等、チタンやアルミニウムを主成分とする膜からなる。本形態において、温度監視用抵抗膜47および加熱用抵抗膜48はTi膜からなる。   In this embodiment, the magnetoresistive films 41 to 44 are magnetic films such as a Ni—Fe film, Ni—Co, and Ni—Fe—Co formed by a vapor deposition method. Each of the temperature monitoring resistance film 47 and the heating resistance film 48 is a non-magnetic film formed by vapor deposition, such as titanium (Ti) film, Ti alloy film, aluminum (Al) film, Al alloy film, titanium, etc. And a film mainly composed of aluminum. In this embodiment, the temperature monitoring resistance film 47 and the heating resistance film 48 are made of a Ti film.

(バリア層の構成)
図3(b)に示すように、本形態の磁気抵抗素子4において、磁気抵抗膜41〜44の表面(基板40と反対側の面)には、磁気抵抗膜41〜44と同一パターンをもってバリア層71〜74が積層されている。バリア層71〜74は、磁気抵抗膜41〜44より膜厚が薄い非磁性金属膜からなる。例えば、バリア層71〜74は、Al膜、Al合金膜等、アルミニウムを主成分とする膜からなる。また、磁気抵抗膜41〜44の厚さは、例えば、10nmから80nmであり、バリア層71〜74の厚さは、例えば、0.5nmから2.0nmである。本形態において、バリア層71〜74の厚さは1.0nmである。
(Configuration of barrier layer)
As shown in FIG. 3B, in the magnetoresistive element 4 of this embodiment, the surface of the magnetoresistive films 41 to 44 (surface opposite to the substrate 40) has the same pattern as the magnetoresistive films 41 to 44. Layers 71 to 74 are laminated. The barrier layers 71 to 74 are made of a nonmagnetic metal film that is thinner than the magnetoresistive films 41 to 44. For example, the barrier layers 71 to 74 are made of a film containing aluminum as a main component, such as an Al film or an Al alloy film. Moreover, the thickness of the magnetoresistive films 41 to 44 is, for example, 10 nm to 80 nm, and the thickness of the barrier layers 71 to 74 is, for example, 0.5 nm to 2.0 nm. In this embodiment, the thickness of the barrier layers 71 to 74 is 1.0 nm.

ここで、バリア層71〜74は、図4を参照して説明する方法で磁気抵抗素子4を製造する際、磁気抵抗膜41〜44の表面が酸化されることを防止する機能を有している。   Here, the barrier layers 71 to 74 have a function of preventing the surfaces of the magnetoresistive films 41 to 44 from being oxidized when the magnetoresistive element 4 is manufactured by the method described with reference to FIG. Yes.

(磁気抵抗素子4の製造方法)
図4は、本発明を適用した磁気抵抗素子4の製造方法を示す工程断面図である。本形態の磁気抵抗素子4を製造するには、まず、図4(a)に示すように、基板40を準備した後、図4(b)に示す磁気抵抗膜形成工程において、基板40を蒸着用の真空チャンバ内に搬入する。次に、真空チャンバ内を真空状態とするとともに、基板40を300℃から400℃の温度、例えば、355℃の温度に加熱し、この状態で、Ni−Fe膜、Ni−Co、Ni−Fe−Co等の磁性膜からなる磁気抵抗膜49を蒸着法により形成する。磁気抵抗膜49の膜厚は、例えば、10nmから80nmであり、本形態において、磁気抵抗膜49の膜厚は35nmである。
(Manufacturing method of magnetoresistive element 4)
FIG. 4 is a process sectional view showing a method of manufacturing the magnetoresistive element 4 to which the present invention is applied. In order to manufacture the magnetoresistive element 4 of this embodiment, first, as shown in FIG. 4A, after preparing the substrate 40, the substrate 40 is deposited in the magnetoresistive film forming step shown in FIG. 4B. Into the vacuum chamber. Next, the vacuum chamber is evacuated and the substrate 40 is heated to a temperature of 300 to 400 ° C., for example, 355 ° C. In this state, the Ni—Fe film, Ni—Co, and Ni—Fe are heated. A magnetoresistive film 49 made of a magnetic film such as Co is formed by vapor deposition. The thickness of the magnetoresistive film 49 is, for example, 10 nm to 80 nm. In this embodiment, the thickness of the magnetoresistive film 49 is 35 nm.

次に、図4(c)に示すバリア層形成工程では、磁気抵抗膜49を酸化性雰囲気と接触させずに磁気抵抗膜49の表面に磁気抵抗膜49より膜厚が薄い非磁性金属膜からなるバリア層79を蒸着法により形成する。より具体的には、磁気抵抗膜49を形成した真空チャンバの内部に大気(酸化性雰囲気)を導入せずに真空状態のままとするとともに、基板40を真空チャンバから搬出せずに、蒸着材料のみ変更し、磁気抵抗膜49の表面にバリア層79を形成する。バリア層71〜74は、アルミニウムを主成分とする膜からなる。また、バリア層79の厚さは、例えば、0.5nmから2.0nmであり、本形態において、バリア層79の厚さは1.0nmである。 Next, in the barrier layer forming step shown in FIG. 4C, the magnetoresistive film 49 is formed on the surface of the magnetoresistive film 49 from a nonmagnetic metal film thinner than the magnetoresistive film 49 without bringing it into contact with the oxidizing atmosphere. A barrier layer 79 is formed by vapor deposition. More specifically, the vapor deposition material can be used without leaving the atmosphere (oxidizing atmosphere) in the vacuum chamber in which the magnetoresistive film 49 is formed and leaving the substrate 40 in a vacuum state without carrying out the substrate 40 from the vacuum chamber. Only a change is made, and a barrier layer 79 is formed on the surface of the magnetoresistive film 49. The barrier layers 71 to 74 are made of a film containing aluminum as a main component. Further, the thickness of the barrier layer 79 is, for example, 0.5 nm to 2.0 nm, and in this embodiment, the thickness of the barrier layer 79 is 1.0 nm.

次に、磁気抵抗膜49およびバリア層79を形成した基板40を真空チャンバから搬出した後、図4(d)に示すマスク形成工程を行う。マスク形成工程では、バリア層79の表面に感光性樹脂を塗布した後、露光、現像し、磁気抵抗膜41〜44を形成すべき位置にレジストマスクからなるエッチングマスク89を形成する。   Next, after the substrate 40 on which the magnetoresistive film 49 and the barrier layer 79 are formed is unloaded from the vacuum chamber, a mask forming process shown in FIG. 4D is performed. In the mask forming step, a photosensitive resin is applied to the surface of the barrier layer 79, and then exposed and developed, and an etching mask 89 made of a resist mask is formed at positions where the magnetoresistive films 41 to 44 are to be formed.

次に、図4(e)に示すエッチング工程では、バリア層79の表面にエッチングマスク89を形成した状態で磁気抵抗膜49およびバリア層79をエッチングする。その結果、磁気抵抗膜49は磁気抵抗膜41〜44にパターニングされ、バリア層79はバリア層71〜74にパターニングされる。かかるエッチング工程では、ドライエッチングおよびウエットエッチングのいずれを用いてもよい。   Next, in the etching step shown in FIG. 4E, the magnetoresistive film 49 and the barrier layer 79 are etched with the etching mask 89 formed on the surface of the barrier layer 79. As a result, the magnetoresistive film 49 is patterned into the magnetoresistive films 41 to 44, and the barrier layer 79 is patterned into the barrier layers 71 to 74. In this etching process, either dry etching or wet etching may be used.

次に、図4(f)に示すエッチングマスク除去工程を行い、エッチングマスク89を除去する。かかるエッチングマスク除去工程では、酸素ガスを含むガスを利用したプラズマアッシング、およびウエットアッシングのいずれを用いてもよい。   Next, an etching mask removing process shown in FIG. 4F is performed to remove the etching mask 89. In the etching mask removing step, either plasma ashing using a gas containing oxygen gas or wet ashing may be used.

次に、図3(b)に示すように、シリコン酸化膜からなる第1絶縁膜51を形成した後、温度監視用抵抗膜47および加熱用抵抗膜48を形成し、その後、シリコン酸化膜からなる第2絶縁膜52、およびポリイミド樹脂等からなる第3絶縁膜53を順に形成する。本形態では、温度監視用抵抗膜47および加熱用抵抗膜48を形成する際には、Ti膜、Ti合金膜、Al膜、Al合金膜等、チタンやアルミニウムを主成分とする膜を蒸着法により形成した後、レジストマスクを用いて、パターニングする。   Next, as shown in FIG. 3B, after forming a first insulating film 51 made of a silicon oxide film, a temperature monitoring resistance film 47 and a heating resistance film 48 are formed, and then, from the silicon oxide film A second insulating film 52 and a third insulating film 53 made of polyimide resin or the like are sequentially formed. In this embodiment, when the temperature monitoring resistance film 47 and the heating resistance film 48 are formed, a film mainly composed of titanium or aluminum, such as a Ti film, a Ti alloy film, an Al film, or an Al alloy film, is deposited. Then, patterning is performed using a resist mask.

また、本形態では、図4(b)に示す磁気抵抗膜形成工程を行った後、非酸化雰囲気中で磁気抵抗膜形成工程での磁気抵抗膜49の成膜温度より高い温度、例えば、385℃の温度で約30分間、磁気抵抗膜49(磁気抵抗膜41〜44)を加熱するアニール工程を行うことが好ましい。本形態では、エッチングマスク除去工程を行った後、第1絶縁膜51を形成する前にアニール工程を行う。   In this embodiment, after the magnetoresistive film forming step shown in FIG. 4B is performed, a temperature higher than the film forming temperature of the magnetoresistive film 49 in the magnetoresistive film forming step in a non-oxidizing atmosphere, for example, 385 It is preferable to perform an annealing step of heating the magnetoresistive film 49 (the magnetoresistive films 41 to 44) for about 30 minutes at a temperature of ° C. In this embodiment, after the etching mask removing process is performed, an annealing process is performed before the first insulating film 51 is formed.

(磁気抵抗素子4の温度調節)
図5は、本発明を適用した磁気センサ装置10の制御部90に構成した温度制御部の概略構成を示す説明図である。
(Temperature adjustment of magnetoresistive element 4)
FIG. 5 is an explanatory diagram showing a schematic configuration of a temperature control unit configured in the control unit 90 of the magnetic sensor device 10 to which the present invention is applied.

図5に示すように、本形態の磁気センサ装置10の制御部90には、温度監視用抵抗膜47の抵抗変化に基づいて加熱用抵抗膜48への給電を制御する温度制御部が構成されている。より具体的には、温度監視用抵抗膜47の温度監視用の電源端子VccSには抵抗81が接続されており、抵抗81において温度監視用抵抗膜47が接続されている側と反対側は電源端子VccS0に接続されている。温度監視用抵抗膜47において抵抗81が接続されている側と反対側には温度監視用のグランド端子GNDSが設けられており、温度監視用抵抗膜47と抵抗81は、電源端子VccS0とグランド端子GNDSとの間で直列に接続されている。   As shown in FIG. 5, the control unit 90 of the magnetic sensor device 10 according to the present embodiment includes a temperature control unit that controls power supply to the heating resistance film 48 based on the resistance change of the temperature monitoring resistance film 47. ing. More specifically, a resistor 81 is connected to the temperature monitoring power supply terminal VccS of the temperature monitoring resistor film 47, and the side of the resistor 81 opposite to the side where the temperature monitoring resistor film 47 is connected is the power source. It is connected to the terminal VccS0. A temperature monitoring ground terminal GNDS is provided on the opposite side of the temperature monitoring resistor film 47 to which the resistor 81 is connected. The temperature monitoring resistor film 47 and the resistor 81 are connected to the power supply terminal VccS0 and the ground terminal. It is connected in series with GNDS.

加熱用抵抗膜48の加熱用の電源端子VccHにはバイポーラトランジスタからなるスイッチング素子83が接続されており、スイッチング素子83において加熱用抵抗膜48が接続されている側と反対側は電源端子VccH0に接続されている。加熱用抵抗膜48においてスイッチング素子83が接続されている側と反対側には加熱用のグランド端子GNDHが設けられており、加熱用抵抗膜48とスイッチング素子83とは、電源端子VccH0とグランド端子GNDHとの間で直列に接続されている。   A switching element 83 made of a bipolar transistor is connected to the heating power supply terminal VccH of the heating resistance film 48, and the opposite side of the switching element 83 to which the heating resistance film 48 is connected is connected to the power supply terminal VccH0. It is connected. A heating ground terminal GNDH is provided on the opposite side of the heating resistive film 48 to which the switching element 83 is connected. The heating resistive film 48 and the switching element 83 are composed of a power supply terminal VccH0 and a ground terminal. It is connected in series with GNDH.

ここで、温度監視用抵抗膜47と抵抗81との間は、オペアンプ82の一方の端子に入力されており、オペアンプ82の他方の端子にはスイッチング素子83をオンオフするための閾値となる電圧Voが入力されている。この状態で、基板40の温度が下がると、温度監視用抵抗膜47の抵抗値が低下し、抵抗81とで分圧された接続点の電圧が下がる。そのときオペアンプ82の他方の端子に入力されている閾値Voより低くなるとオペアンプ82がオン状態となりスイッチング素子83をオンするので加熱用抵抗膜48へ給電される。   Here, the temperature monitoring resistor film 47 and the resistor 81 are inputted to one terminal of the operational amplifier 82, and the other terminal of the operational amplifier 82 has a voltage Vo serving as a threshold for turning on and off the switching element 83. Is entered. In this state, when the temperature of the substrate 40 decreases, the resistance value of the temperature monitoring resistance film 47 decreases, and the voltage at the connection point divided by the resistor 81 decreases. At that time, when the voltage becomes lower than the threshold value Vo inputted to the other terminal of the operational amplifier 82, the operational amplifier 82 is turned on and the switching element 83 is turned on, so that power is supplied to the heating resistance film 48.

この状態で、基板40の温度が上がると、温度監視用抵抗膜47の抵抗値が上昇し、抵抗81との接続点の電圧が上昇する。そのときオペアンプ82の他方の端子に入力されている閾値Voより高くなるとオペアンプ82がオフ状態となりスイッチング素子83をオフするので加熱用抵抗膜48への給電が停止される。それ故、磁気抵抗素子4(磁気抵抗膜41〜44)の温度は、温度監視用抵抗膜47および抵抗81の抵抗値等によって規定された所定の温度に維持される。   In this state, when the temperature of the substrate 40 increases, the resistance value of the temperature monitoring resistance film 47 increases, and the voltage at the connection point with the resistor 81 increases. At that time, when the voltage becomes higher than the threshold value Vo inputted to the other terminal of the operational amplifier 82, the operational amplifier 82 is turned off and the switching element 83 is turned off, so that the power supply to the heating resistive film 48 is stopped. Therefore, the temperature of the magnetoresistive element 4 (the magnetoresistive films 41 to 44) is maintained at a predetermined temperature defined by the resistance values of the temperature monitoring resistor film 47 and the resistor 81, and the like.

(評価結果)
図6は、本発明を適用した磁気抵抗素子4の抵抗変化率に関する評価結果を示すグラフであり、図6(a)、(b)は、バリア層71〜74としてアルミニウム膜を用いた場合のアルミニウム膜の膜厚と抵抗変化率(ΔR/R)との関係を示すグラフ、およびバリア層71〜74としてアルミニウム膜を用いた場合のアニール時間と抵抗変化率(ΔR/R)との関係を示すグラフである。なお、図6(a)では、アニール工程を行わなかった場合の結果を点線L0で示し、アニール工程(温度=385℃、時間=約30分間)を行った場合の結果を実線L1で示してある。
(Evaluation results)
FIG. 6 is a graph showing an evaluation result regarding the resistance change rate of the magnetoresistive element 4 to which the present invention is applied. FIGS. 6A and 6B show a case where an aluminum film is used as the barrier layers 71 to 74. A graph showing the relationship between the thickness of the aluminum film and the rate of change in resistance (ΔR / R), and the relationship between the annealing time and the rate of change in resistance (ΔR / R) when an aluminum film is used as the barrier layers 71 to 74 It is a graph to show. In FIG. 6A, the result when the annealing step is not performed is indicated by a dotted line L0, and the result when the annealing step (temperature = 385 ° C., time = about 30 minutes) is performed is indicated by a solid line L1. is there.

図7は、本発明を適用した磁気抵抗素子4の磁気抵抗効果のヒステリシスを示すグラフであり、図7(a)、(b)は、バリア層71〜74として膜厚が1.0nmアルミニウム膜を用い、アニール工程を行わなかった場合のグラフ、およびバリア層71〜74として膜厚が1.0nmアルミニウム膜を用い、アニール工程(温度=385℃、時間=約30分間)を行った場合のグラフである。   FIG. 7 is a graph showing the magnetoresistive effect hysteresis of the magnetoresistive element 4 to which the present invention is applied. FIGS. 7A and 7B show an aluminum film having a thickness of 1.0 nm as the barrier layers 71 to 74. When the annealing process is not performed, and when the annealing process (temperature = 385 ° C., time = about 30 minutes) is performed using a 1.0 nm-thickness aluminum film as the barrier layers 71 to 74. It is a graph.

図8は、比較例に係る磁気抵抗素子4の磁気抵抗効果のヒステリシスを示すグラフであり、図8(a)、(b)は、バリア層71〜74を形成せずにアニール工程を行わなかった場合のグラフ、およびバリア層71〜74を形成せずにアニール工程(温度=385℃、時間=約30分間)を行った場合のグラフである。   FIG. 8 is a graph showing the hysteresis of the magnetoresistive effect of the magnetoresistive element 4 according to the comparative example. FIGS. 8A and 8B do not perform the annealing process without forming the barrier layers 71 to 74. And a graph when the annealing step (temperature = 385 ° C., time = about 30 minutes) is performed without forming the barrier layers 71-74.

図9は、本発明を適用した別の磁気抵抗素子4の磁気抵抗効果のヒステリシスを示すグラフであり、バリア層71〜74として膜厚が1.0nmチタン膜を用い、アニール工程(温度=385℃、時間=約30分間)を行った場合のグラフである。   FIG. 9 is a graph showing the magnetoresistive effect hysteresis of another magnetoresistive element 4 to which the present invention is applied. A titanium film having a thickness of 1.0 nm is used as the barrier layers 71 to 74, and an annealing process (temperature = 385). It is a graph at the time of performing (degreeC, time = about 30 minutes).

なお、抵抗変化率(ΔR/R)は、磁束密度が0mTのときの抵抗値を基準にしてある。また、図7、図8および図9は、磁束密度を0mT、−15mT、0mT、+15mT、0mTに変化させたときの抵抗変化率(ΔR/R)を示してある。   The rate of change in resistance (ΔR / R) is based on the resistance value when the magnetic flux density is 0 mT. FIGS. 7, 8 and 9 show the rate of change in resistance (ΔR / R) when the magnetic flux density is changed to 0 mT, −15 mT, 0 mT, +15 mT, and 0 mT.

まず、図6(a)から分かるように、バリア層71〜74を設けた場合、アニール工程の有無にかかわらず、バリア層71〜74を設けない場合(Al膜膜厚が0nm)に比して抵抗変化率(ΔR/R)が大きくなる。但し、バリア層71〜74が厚すぎると、抵抗変化率(ΔR/R)が低下していくことから、バリア層71〜74の厚さは、0.5nmから2.0nm、特に、1.0nmであることが好ましい。   First, as can be seen from FIG. 6A, when the barrier layers 71 to 74 are provided, the barrier layers 71 to 74 are not provided (Al film thickness is 0 nm) regardless of the annealing process. As a result, the rate of resistance change (ΔR / R) increases. However, since the rate of change in resistance (ΔR / R) decreases if the barrier layers 71 to 74 are too thick, the thickness of the barrier layers 71 to 74 is 0.5 nm to 2.0 nm. It is preferably 0 nm.

また、バリア層71〜74を設けた場合、およびバリア層71〜74を設けない場合のいずれにおいても、アニール工程を行った場合、抵抗変化率(ΔR/R)がアニール工程を行わない場合に比して大きくなる。但し、バリア層71〜74が厚すぎる場合にアニール工程を行うと、抵抗変化率(ΔR/R)がアニール工程を行わない場合に比して抵抗変化率(ΔR/R)が低下していくことから、バリア層71〜74の厚さが0.5nmから2.0nmの場合にアニール工程を行うことが好ましい。   Further, in the case where the barrier layers 71 to 74 are provided and in the case where the barrier layers 71 to 74 are not provided, when the annealing process is performed, the resistance change rate (ΔR / R) is when the annealing process is not performed. It becomes larger than that. However, when the annealing process is performed when the barrier layers 71 to 74 are too thick, the resistance change rate (ΔR / R) is decreased as compared with the case where the annealing process is not performed. Therefore, it is preferable to perform the annealing step when the thickness of the barrier layers 71 to 74 is 0.5 nm to 2.0 nm.

また、アニール温度が385℃の場合、アニール工程の時間は、0分から30分までは、時間が長い程、抵抗変化率(ΔR/R)が大きくなるが、30分を超えると、時間を長くしても抵抗変化率(ΔR/R)は一定である。従って、アニール工程の時間は30分が好ましい。   In addition, when the annealing temperature is 385 ° C., the annealing process time increases from 0 minutes to 30 minutes, and the resistance change rate (ΔR / R) increases as the time increases, but when it exceeds 30 minutes, the time increases. Even so, the rate of change in resistance (ΔR / R) is constant. Accordingly, the annealing process time is preferably 30 minutes.

また、図7(a)、(b)に示すように、バリア層71〜74として膜厚が1.0nmアルミニウム膜を用いた場合、アニール工程を行わなかった場合(図7(a)参照)、およびアニール工程(温度=385℃、時間=約30分間)を行った場合(図7(b)参照)のいずれにおいても、問題となるヒステリシスは発生しない。   As shown in FIGS. 7A and 7B, when an aluminum film having a film thickness of 1.0 nm is used as the barrier layers 71 to 74, an annealing process is not performed (see FIG. 7A). , And the annealing step (temperature = 385 ° C., time = about 30 minutes) (see FIG. 7B), no problematic hysteresis occurs.

これに対して、図8(a)、(b)に示すように、バリア層71〜74を設けなかった場合、アニール工程を行わなかった場合(図8(a)参照)では、問題となるヒステリシスは発生しないが、アニール工程(温度=385℃、時間=約30分間)を行った場合(図8(b)参照)、ヒステリシスが発生する。   On the other hand, as shown in FIGS. 8A and 8B, there is a problem when the barrier layers 71 to 74 are not provided and when the annealing process is not performed (see FIG. 8A). Hysteresis does not occur, but hysteresis occurs when the annealing process (temperature = 385 ° C., time = about 30 minutes) is performed (see FIG. 8B).

従って、バリア層71〜74として膜厚が1.0nmアルミニウム膜を用いた場合、アニール工程を行わなかった場合でも抵抗変化率(ΔR/R)が向上するとともに、アニール工程を行うことにより、抵抗変化率(ΔR/R)をさらに向上させても、問題となるヒステリシスは発生しない。   Therefore, when an aluminum film having a film thickness of 1.0 nm is used as the barrier layers 71 to 74, the resistance change rate (ΔR / R) is improved even when the annealing process is not performed, and the resistance is improved by performing the annealing process. Even when the rate of change (ΔR / R) is further improved, no problematic hysteresis occurs.

なお、図9に示すように、バリア層71〜74として膜厚が1.0nmチタン膜を用い、アニール工程(温度=385℃、時間=約30分間)を行った場合でも、抵抗変化率(ΔR/R)が大きく、問題となるヒステリシスは発生しない。   As shown in FIG. 9, even when a titanium film having a film thickness of 1.0 nm is used as the barrier layers 71 to 74 and an annealing process (temperature = 385 ° C., time = about 30 minutes) is performed, the resistance change rate ( ΔR / R) is large, and no problematic hysteresis occurs.

(本形態の主な効果)
以上説明したように、本形態では、磁気抵抗膜49を形成した後、磁気抵抗膜49を酸化性雰囲気と接触させずに、磁気抵抗膜49の表面にバリア層79を積層し、その後、磁気抵抗膜49およびバリア層79をパターニングする。このため、磁気抵抗膜49(磁気抵抗膜41〜44)の表面が酸化することを防止することができ、抵抗変化率を向上することができる。また、バリア層71〜74の膜厚は、磁気抵抗膜41〜44の膜厚よりも薄いため、バリア層71〜74に用いる非磁性材料に大きな制約を加えなくても、バリア層71〜74の抵抗が大きい。このため、磁気抵抗膜41〜44にバリア層71〜74を積層した場合でも、抵抗変化率への悪影響を防止することができ、酸化防止に起因する利点を活かすことができる。それ故、抵抗変化率が高い磁気抵抗素子4を得ることができる。
(Main effects of this form)
As described above, in this embodiment, after the magnetoresistive film 49 is formed, the barrier layer 79 is laminated on the surface of the magnetoresistive film 49 without bringing the magnetoresistive film 49 into contact with the oxidizing atmosphere. The resistance film 49 and the barrier layer 79 are patterned. For this reason, it is possible to prevent the surface of the magnetoresistive film 49 (the magnetoresistive films 41 to 44) from being oxidized, and the resistance change rate can be improved. Moreover, since the film thickness of the barrier layers 71-74 is thinner than the film thickness of the magnetoresistive films 41-44, the barrier layers 71-74 can be applied without imposing large restrictions on the nonmagnetic material used for the barrier layers 71-74. The resistance of is great. For this reason, even when the barrier layers 71 to 74 are laminated on the magnetoresistive films 41 to 44, an adverse effect on the rate of change in resistance can be prevented and the advantage resulting from the prevention of oxidation can be utilized. Therefore, the magnetoresistive element 4 having a high resistance change rate can be obtained.

また、バリア層71〜74を設ければ、アニール工程を利用して抵抗変化率の向上を図った場合でも、問題となるヒステリシスの発生を抑制することができる。   In addition, when the barrier layers 71 to 74 are provided, the occurrence of a problematic hysteresis can be suppressed even when the resistance change rate is improved using an annealing process.

また、バリア層71〜74の厚さを0.5nmから2.0nmとした場合、バリア層71〜74に用いる非磁性材料の種類にかかわらず、バリア層71〜74の抵抗が大きい。このため、磁気抵抗膜41〜44にバリア層71〜74を積層した場合でも、抵抗変化率への悪影響を防止することができ、酸化防止に起因する利点を活かすことができる。特に、バリア層71〜74の厚さが1.0nmである場合にはその効果が顕著である。   Further, when the thickness of the barrier layers 71 to 74 is set to 0.5 nm to 2.0 nm, the resistance of the barrier layers 71 to 74 is large regardless of the type of the nonmagnetic material used for the barrier layers 71 to 74. For this reason, even when the barrier layers 71 to 74 are laminated on the magnetoresistive films 41 to 44, an adverse effect on the rate of change in resistance can be prevented and the advantage resulting from the prevention of oxidation can be utilized. In particular, when the thickness of the barrier layers 71 to 74 is 1.0 nm, the effect is remarkable.

また、バリア層71〜74は、アルミニウムまたはチタンを主成分とすることが好ましい。かかる構成によれば、比較的安価な非磁性金属によってバリア層71〜74を形成することができる。特に、バリア層71〜74がアルミニウムである場合には、スパッタ時のターゲットが安価であるため、比較的安価な非磁性金属によってバリア層71〜74を形成することができる。   Moreover, it is preferable that the barrier layers 71-74 have aluminum or titanium as a main component. According to this configuration, the barrier layers 71 to 74 can be formed of a relatively inexpensive nonmagnetic metal. In particular, when the barrier layers 71 to 74 are aluminum, the sputtering target is inexpensive, so that the barrier layers 71 to 74 can be formed of a relatively inexpensive nonmagnetic metal.

また、基板40には、バリア層71〜74と同一の金属材料からなる機能層が形成されている場合には、バリア層71〜74を追加しても、基板40上に形成する金属材料の種類が変わらない。従って、機能層の形成に用いた蒸着材料を用いてバリア層71〜74を形成することができる。すなわち、基板40に機能層として形成した温度監視用抵抗膜47および加熱用抵抗膜48と、バリア層71〜74とが同一の金属材料からなる場合、バリア層71〜74を追加しても、蒸着材料を新規に準備する必要がないので、コストの増大を抑制することができる。   Further, in the case where the functional layer made of the same metal material as the barrier layers 71 to 74 is formed on the substrate 40, the metal material to be formed on the substrate 40 even if the barrier layers 71 to 74 are added. Kind does not change. Therefore, the barrier layers 71 to 74 can be formed using the vapor deposition material used for forming the functional layer. That is, when the temperature monitoring resistance film 47 and the heating resistance film 48 formed as a functional layer on the substrate 40 and the barrier layers 71 to 74 are made of the same metal material, even if the barrier layers 71 to 74 are added, Since it is not necessary to prepare a new vapor deposition material, an increase in cost can be suppressed.

また、本形態では、アニール工程をエッチングマスク除去工程の後に行う。このため、磁気抵抗膜41〜44の上層にバリア層71〜74を形成し、かつ、磁気抵抗膜49およびバリア層79をパターニングした後にアニール工程を行うので、磁気抵抗膜の歪等を効率よく減少させることができる。それ故、アニール工程の効果が大きい。   In this embodiment, the annealing process is performed after the etching mask removing process. For this reason, the barrier layers 71 to 74 are formed on the magnetoresistive films 41 to 44, and the annealing process is performed after the magnetoresistive film 49 and the barrier layer 79 are patterned. Can be reduced. Therefore, the effect of the annealing process is great.

また、本形態の磁気センサ装置10では、磁気抵抗膜41〜44が形成された基板40に、温度監視用抵抗膜47および加熱用抵抗膜48が形成されている。このため、設定温度との温度差や温度変化を温度監視用抵抗膜47の抵抗値によって監視し、その監視結果に基づいて加熱用抵抗膜48に給電し、磁気抵抗膜41〜44を設定温度にまで加熱することができる。従って、各磁気抵抗膜41〜44において、温度変化が発生した際の応力の影響に起因する抵抗変化率や、膜質の差に起因する抵抗変化率が相違している場合でも、設定温度で高い精度が得られるように、磁気抵抗膜41〜44の抵抗バランスを設定しておけば、環境温度の変化が発生しても安定した検出精度を得ることができる。すなわち、温度変化が発生しても、図1(c)に示すリサージュ図の原点位置が移動しないので、回転体2の回転角度位置を精度よく検出することができる。   In the magnetic sensor device 10 of this embodiment, the temperature monitoring resistance film 47 and the heating resistance film 48 are formed on the substrate 40 on which the magnetoresistive films 41 to 44 are formed. For this reason, the temperature difference or temperature change from the set temperature is monitored by the resistance value of the temperature monitoring resistance film 47, and the heating resistance film 48 is supplied based on the monitoring result, and the magnetoresistive films 41 to 44 are set to the set temperature. Can be heated up to Therefore, in each of the magnetoresistive films 41 to 44, even when the resistance change rate due to the influence of stress when the temperature change occurs and the resistance change rate due to the difference in film quality are different, the set temperature is high. If the resistance balance of the magnetoresistive films 41 to 44 is set so as to obtain accuracy, stable detection accuracy can be obtained even if the environmental temperature changes. That is, even if a temperature change occurs, the origin position of the Lissajous diagram shown in FIG. 1C does not move, so that the rotational angle position of the rotating body 2 can be detected with high accuracy.

1・・ロータリエンコーダ
2・・回転体
4・・磁気抵抗素子
40・・基板
41〜44、49・・磁気抵抗膜
47・・温度監視用抵抗膜(機能層)
48・・加熱用抵抗膜(機能層)
71〜74、79・・バリア層
1 .. Rotary encoder 2 .. Rotating body 4 .. Magnetoresistive element 40 .. Substrate 41 to 44, 49 .. Magnetoresistive film 47 .. Resistance film for monitoring temperature (functional layer)
48 .. Resistance film for heating (functional layer)
71-74, 79 ... Barrier layer

Claims (10)

基板と、
前記基板の一方面側に形成された磁気抵抗膜と、
該磁気抵抗膜の前記基板と反対側の面に当該磁気抵抗膜と同一パターンをもって積層され、当該磁気抵抗膜より膜厚が薄い非磁性金属膜からなるバリア層と、
有し、
前記バリア層は、アルミニウムを主成分とすることを特徴とする磁気抵抗素子。
A substrate,
A magnetoresistive film formed on one side of the substrate;
A barrier layer made of a nonmagnetic metal film that is laminated on the surface of the magnetoresistive film opposite to the substrate with the same pattern as the magnetoresistive film, and is thinner than the magnetoresistive film;
Have
The barrier layer is composed of aluminum as a main component .
前記バリア層の厚さは、0.5nmから2.0nmであることを特徴とする請求項1に記載の磁気抵抗素子。   The magnetoresistive element according to claim 1, wherein the barrier layer has a thickness of 0.5 nm to 2.0 nm. 前記バリア層の厚さは、1.0nmであることを特徴とする請求項2に記載の磁気抵抗素子。   The magnetoresistive element according to claim 2, wherein the barrier layer has a thickness of 1.0 nm. 前記基板には、前記バリア層と同一の金属材料からなる機能層が形成されていることを特徴とする請求項1乃至3の何れか一項に記載の磁気抵抗素子。 The magnetoresistive element according to any one of claims 1 to 3 , wherein a functional layer made of the same metal material as the barrier layer is formed on the substrate. 前記磁気抵抗膜の厚さは、10nmから80nmであることを特徴とする請求項1乃至4の何れか一項に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, wherein the magnetoresistive film has a thickness of 10 nm to 80 nm . 請求項1乃至5の何れか一項に記載の磁気抵抗素子を備えていることを特徴とする磁気センサ装置。A magnetic sensor device comprising the magnetoresistive element according to claim 1. 基板の一方面側に磁気抵抗膜を形成する磁気抵抗膜形成工程と、A magnetoresistive film forming step of forming a magnetoresistive film on one side of the substrate;
前記磁気抵抗膜を酸化性雰囲気と接触させずに前記磁気抵抗膜の表面に当該磁気抵抗膜より膜厚が薄い非磁性金属膜からなるバリア層を形成するバリア層形成工程と、A barrier layer forming step of forming a barrier layer made of a nonmagnetic metal film having a thickness smaller than that of the magnetoresistive film on the surface of the magnetoresistive film without contacting the magnetoresistive film with an oxidizing atmosphere;
前記バリア層の表面にエッチングマスクを形成するマスク形成工程と、A mask forming step of forming an etching mask on the surface of the barrier layer;
前記バリア層の表面に前記エッチングマスクを形成した状態で前記磁気抵抗膜および前記バリア層をエッチングするエッチング工程と、An etching step of etching the magnetoresistive film and the barrier layer in a state where the etching mask is formed on the surface of the barrier layer;
前記エッチングマスクを除去するエッチングマスク除去工程と、An etching mask removing step for removing the etching mask;
を有し、Have
前記バリア層は、アルミニウムを主成分とすることを特徴とする磁気抵抗素子の製造方法。The method for manufacturing a magnetoresistive element, wherein the barrier layer contains aluminum as a main component.
前記磁気抵抗膜形成工程を真空チャンバ内で行った後、当該真空チャンバ内に酸化性ガスを導入せずに当該真空チャンバ内で前記バリア層形成工程を行うことを特徴とする請求項7に記載の磁気抵抗素子の製造方法。8. The barrier layer forming step is performed in the vacuum chamber without introducing an oxidizing gas into the vacuum chamber after the magnetoresistive film forming step is performed in the vacuum chamber. Of manufacturing the magnetoresistive element. 前記磁気抵抗膜形成工程を行った後、
非酸化雰囲気中で前記磁気抵抗膜形成工程での前記磁気抵抗膜の成膜温度より高い温度で当該磁気抵抗膜を加熱するアニール工程を行うことを特徴とする請求項7または8に記載の磁気抵抗素子の製造方法。
After performing the magnetoresistive film forming step,
The magnetism according to claim 7 or 8, wherein an annealing step is performed in which the magnetoresistive film is heated at a temperature higher than a film forming temperature of the magnetoresistive film in the magnetoresistive film forming step in a non-oxidizing atmosphere. A method of manufacturing a resistance element.
前記アニール工程は、前記エッチングマスク除去工程の後に行うことを特徴とする請求項7乃至9の何れか一項に記載の磁気抵抗素子の製造方法。 The method of manufacturing a magnetoresistive element according to claim 7, wherein the annealing step is performed after the etching mask removing step .
JP2013221133A 2013-10-24 2013-10-24 Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element Active JP6215001B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013221133A JP6215001B2 (en) 2013-10-24 2013-10-24 Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element
CN201410578628.XA CN104576920B (en) 2013-10-24 2014-10-24 The manufacture method of magnetoresistive element, magnet sensor arrangement and magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221133A JP6215001B2 (en) 2013-10-24 2013-10-24 Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element

Publications (2)

Publication Number Publication Date
JP2015082633A JP2015082633A (en) 2015-04-27
JP6215001B2 true JP6215001B2 (en) 2017-10-18

Family

ID=53013070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221133A Active JP6215001B2 (en) 2013-10-24 2013-10-24 Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element

Country Status (2)

Country Link
JP (1) JP6215001B2 (en)
CN (1) CN104576920B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056179A1 (en) 2014-10-09 2016-04-14 パナソニックIpマネジメント株式会社 Magnetic sensor
US10890464B2 (en) * 2016-03-22 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Rotation detecting device and correction method therefor
JPWO2018012272A1 (en) 2016-07-12 2019-05-09 パナソニックIpマネジメント株式会社 Magnetic sensor and detection device using the same
JP6583208B2 (en) * 2016-10-14 2019-10-02 株式会社デンソー Magnetic detection element
JP2019129254A (en) * 2018-01-25 2019-08-01 株式会社東海理化電機製作所 Magnetic sensor
CN112048704B (en) * 2020-08-13 2021-05-25 北京航空航天大学合肥创新研究院 Integrated processing equipment for ultrathin multilayer film and application method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111136A (en) * 1999-10-08 2001-04-20 Fujitsu Ltd Direction-of-magnetization controlled film and magnetoresistance effect-type sensor using the same
WO2001056090A1 (en) * 2000-01-28 2001-08-02 Sharp Kabushiki Kaisha Magnetoresistance effect device and method for manufacturing the same, base for magnetoresistance effect device and method for manufacturing the same, and magnetoresistance effect sensor
JP2002323775A (en) * 2001-04-26 2002-11-08 Fujitsu Ltd Pattern forming method
JP2003204092A (en) * 2002-01-07 2003-07-18 Tdk Corp Magnetoresistive sensor, thin film magnetic head equipped with the same, method of manufacturing magnetoresistive sensor, and method of manufacturing thin film magnetic head
US6773515B2 (en) * 2002-01-16 2004-08-10 Headway Technologies, Inc. FeTa nano-oxide layer as a capping layer for enhancement of giant magnetoresistance in bottom spin valve structures
JP4085859B2 (en) * 2002-03-27 2008-05-14 ヤマハ株式会社 Magnetic sensor and manufacturing method thereof
KR100590211B1 (en) * 2002-11-21 2006-06-15 가부시키가이샤 덴소 Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US6956716B2 (en) * 2003-07-30 2005-10-18 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic head having multilayer heater for thermally assisted write head and method of fabrication thereof
JP2006344728A (en) * 2005-06-08 2006-12-21 Alps Electric Co Ltd Magnetic sensing element and manufacturing method thereof
JP2009105208A (en) * 2007-10-23 2009-05-14 Tokai Rika Co Ltd Magnetoresistive element and method of manufacturing the same
JP5780744B2 (en) * 2010-12-03 2015-09-16 日本電産サンキョー株式会社 Rotary encoder
US8568602B2 (en) * 2011-01-19 2013-10-29 HGST Netherlands B.V. Method of manufacturing a magnetic read sensor having a low resistance cap structure
US9024632B2 (en) * 2011-05-30 2015-05-05 Denso Corporation Magnetic sensor with a plurality of heater portions to fix the direction of magnetization of a pinned magnetic layer

Also Published As

Publication number Publication date
CN104576920B (en) 2018-01-09
CN104576920A (en) 2015-04-29
JP2015082633A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6215001B2 (en) Magnetoresistive element, magnetic sensor device, and method of manufacturing magnetoresistive element
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
US6661225B2 (en) Revolution detecting device
JP2013174605A (en) Brushless motor
JPH1070325A (en) Sensor for detecting external magnetic field
JP6512141B2 (en) Magnet and displacement detection device
JP6151544B2 (en) Magnetic sensor device and rotary encoder
JP3260921B2 (en) Movable body displacement detection device
JP5007916B2 (en) Magnetic sensor
JP2010266247A (en) Magnetic sensor and magnetic field measurement device
WO2016075763A1 (en) Magnetic sensor
JP4485499B2 (en) Magnetic detection device and manufacturing method thereof
JP3873752B2 (en) Rotation angle detector
JP2011185747A (en) Anomaly detector
JP6369527B2 (en) Sensor unit
JP6594806B2 (en) Magnetic sensor
JP6563564B2 (en) Sensor unit
JP2005049262A (en) Magnetic sensor and magnetic sensor unit
JP5630247B2 (en) Rotation angle sensor
US20240318983A1 (en) Magnetic multi-turn sensor
WO2011033981A1 (en) Magnetic sensor production method
JP2008209317A (en) Magnetic angle sensor
JP6371149B2 (en) Current sensor and method of manufacturing current sensor
WO2011052596A1 (en) Magnetic sensor
JP2005223121A (en) Magnetoresistance effect element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150