JP6212821B2 - Method for producing hexagonal barium titanate dielectric material - Google Patents

Method for producing hexagonal barium titanate dielectric material Download PDF

Info

Publication number
JP6212821B2
JP6212821B2 JP2013200787A JP2013200787A JP6212821B2 JP 6212821 B2 JP6212821 B2 JP 6212821B2 JP 2013200787 A JP2013200787 A JP 2013200787A JP 2013200787 A JP2013200787 A JP 2013200787A JP 6212821 B2 JP6212821 B2 JP 6212821B2
Authority
JP
Japan
Prior art keywords
hexagonal
dielectric material
barium titanate
temperature
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013200787A
Other languages
Japanese (ja)
Other versions
JP2015067462A (en
Inventor
幸邦 秋重
幸邦 秋重
真也 塚田
真也 塚田
政彦 別木
政彦 別木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University Corp Shimane University
Original Assignee
National University Corp Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corp Shimane University filed Critical National University Corp Shimane University
Priority to JP2013200787A priority Critical patent/JP6212821B2/en
Publication of JP2015067462A publication Critical patent/JP2015067462A/en
Application granted granted Critical
Publication of JP6212821B2 publication Critical patent/JP6212821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低焼成温度で得られる六方晶型チタン酸バリウム系結晶の製造方法に関する。   The present invention relates to a method for producing a hexagonal barium titanate crystal obtained at a low firing temperature.

近年、電気機器および電子機器の小型化かつ高性能化が急速に進み、このような機器に使用される電子部品についても、信頼性を十分に確保しつつ、比誘電率や温度特性といった諸特性を向上させることが求められている。これは、電子部品の一例であるセラミックコンデンサについても例外ではない。   In recent years, the miniaturization and performance of electrical and electronic devices have rapidly progressed, and electronic components used in such devices have various characteristics such as relative permittivity and temperature characteristics while ensuring sufficient reliability. It is demanded to improve. This is no exception for ceramic capacitors which are examples of electronic components.

このようなコンデンサの誘電体材料、特に比誘電率の高い誘電体材料としては、立方晶のチタン酸バリウムを主体とした素材が使用されている。一方、近年、容量の向上のため、誘電体層の薄層化が検討されている。誘電体層の薄層化を図るためには、誘電体粒子の粒径が小さいほど好ましい。しかし、立方晶系チタン酸バリウムを微粒化すると、比誘電率が低下するという問題点があった。   As a dielectric material of such a capacitor, particularly a dielectric material having a high relative dielectric constant, a material mainly composed of cubic barium titanate is used. On the other hand, in recent years, a reduction in the thickness of the dielectric layer has been studied in order to improve the capacitance. In order to reduce the thickness of the dielectric layer, the smaller the particle size of the dielectric particles, the better. However, when cubic barium titanate is atomized, there is a problem in that the dielectric constant decreases.

また、比誘電率の高い材料として、六方晶チタン酸バリウムが検討されている。六方晶チタン酸バリウムは、本来的には立方晶より誘電率が低いものの、酸素欠損を導入することで、比誘電率が著しく向上することが示唆されている(特許文献1)。   Further, hexagonal barium titanate has been studied as a material having a high relative dielectric constant. Although hexagonal barium titanate is inherently lower in dielectric constant than cubic crystals, it has been suggested that the introduction of oxygen vacancies significantly improves the relative dielectric constant (Patent Document 1).

また、チタン酸バリウムの結晶構造において、六方晶構造は準安定相であり、通常1460℃以上においてのみ存在することができる。このため、室温において六方晶を得るには1460℃以上の高温から急冷する必要がある。しかしながら、急冷により粒径が1μm以上となり、電子部品に適用する場合に薄層化に対応できず、十分な信頼性を確保できないという問題点があった。   Moreover, in the crystal structure of barium titanate, the hexagonal crystal structure is a metastable phase and can usually exist only at 1460 ° C. or higher. For this reason, in order to obtain hexagonal crystals at room temperature, it is necessary to rapidly cool from a high temperature of 1460 ° C. or higher. However, due to rapid cooling, the particle size becomes 1 μm or more, and there is a problem that when applied to an electronic component, it cannot cope with thinning and sufficient reliability cannot be secured.

このような実情に鑑みて、六方晶チタン酸バリウムを主相とし、極めて高い比誘電率を示すとともに、絶縁抵抗にも優れ、十分な信頼性を確保可能な技術も開発されている(特許文献2)。すなわち、TiをMnで置き換え、Baを希土類元素Mで置換した、次式で表される物質である。
(Ba1−αα(Ti1−βMnβ)BO(ただし、0.900≦(A/B)≦1.040,0.003≦α≦0.05,0.03≦β≦0.2))
このチタン酸バリウム系素材の焼成温度は、実に1150℃まで低減でき、粒成長を抑えた微粒子の製造が可能である。
同様な技術として特許文献6も挙げられる。
In view of such circumstances, a technology that has hexagonal barium titanate as the main phase and exhibits an extremely high relative dielectric constant, excellent insulation resistance, and sufficient reliability has been developed (Patent Literature). 2). That is, a substance represented by the following formula in which Ti is replaced with Mn and Ba is replaced with a rare earth element M.
(Ba 1−α M α ) A (Ti 1−β Mn β ) BO 3 (where 0.900 ≦ (A / B) ≦ 1.040, 0.003 ≦ α ≦ 0.05, 0.03 ≦ β ≦ 0.2))
The firing temperature of this barium titanate-based material can be actually reduced to 1150 ° C., and it is possible to produce fine particles with suppressed grain growth.
Patent document 6 is also mentioned as a similar technique.

しかしながら、製造上の観点からは消費電力の低減や電極の卑金属化などの観点からは、焼成温度の一層の低下が望まれる。   However, from the viewpoint of manufacturing, further reduction in the firing temperature is desired from the viewpoint of reducing power consumption and making the electrode base metal.

特開2005−213083号公報JP 2005-213083 A 特開2011−116629号公報JP 2011-116629 A 特開2007−326768号公報JP 2007-326768 A 特開2010−215450号公報JP 2010-215450 A 特開2011−184289号公報JP 2011-184289 A 特開2011−116628号公報JP 2011-116628 A

すなわち、解決しようとする問題点は、焼成温度の一層の低減化を実現する、六方晶チタン酸バリウム系誘電体材料の製造方法を提供することを目的とする。   That is, the problem to be solved is to provide a method for producing a hexagonal barium titanate-based dielectric material that can further reduce the firing temperature.

請求項1に記載の発明は、BaアルコキシドとTiアルコキシドとKFとが混合されたゾル溶液から、ゾルゲル法によって前駆体ゲルを作製し、600℃以上で焼成することにより、Ba1−xTiO3−x(ただし、0.5≧x≧0.4)の組成を有する六方晶型のチタン酸バリウム系誘電体材料を得ることを特徴とする誘電体材料製造方法である。
According to the first aspect of the present invention, a precursor gel is prepared by a sol-gel method from a sol solution in which Ba alkoxide, Ti alkoxide, and KF are mixed, and is baked at 600 ° C. or higher to obtain Ba 1-x K x. It is a dielectric material manufacturing method characterized by obtaining a hexagonal barium titanate-based dielectric material having a composition of TiO 3−x F x (where 0.5 ≧ x ≧ 0.4).

なお、焼成温度の上限は特に限定していないが、600℃以上であれば六方晶が得られるため、製造エネルギーの観点からは1000℃以下であることが好ましく、更に好ましくは800℃以下である。なお、x=0.4、焼成温度600℃の場合は、9割近くが六方晶となり残余は立方晶であるが、これは実質的に六方晶といえるため、本願においては、若干の立方晶(目安として2割未満)が含まれる場合も六方晶型ないし六方晶系というものとする(x=0.4の場合は焼成温度が650℃であれば総て六方晶となる)。   The upper limit of the firing temperature is not particularly limited, but a hexagonal crystal can be obtained at 600 ° C. or higher. Therefore, it is preferably 1000 ° C. or lower, more preferably 800 ° C. or lower from the viewpoint of production energy. . In addition, when x = 0.4 and the firing temperature is 600 ° C., nearly 90% is hexagonal and the remainder is cubic, which can be said to be substantially hexagonal. Even when (less than 20% as a guide) is included, it is assumed to be hexagonal or hexagonal (when x = 0.4, all are hexagonal if the firing temperature is 650 ° C.).

請求項2に記載の発明は、BaアルコキシドとTiアルコキシドとKFとが混合されたゾル溶液から、ゾルゲル法によって前駆体ゲルを作製し、600℃以上で焼成することにより、Ba1−xTiO3−x(ただし、0.4>x≧0.2)の組成を有する、六方晶型と立方晶型との混晶のチタン酸バリウム系誘電体材料を得ることを特徴とする誘電体材料製造方法である。 According to the second aspect of the present invention, a precursor gel is prepared by a sol-gel method from a sol solution in which Ba alkoxide, Ti alkoxide, and KF are mixed, and is baked at 600 ° C. or higher, whereby Ba 1-x K x A barium titanate-based dielectric material having a composition of TiO 3−x F x (where 0.4> x ≧ 0.2) and a mixed crystal of hexagonal type and cubic type is obtained. It is a dielectric material manufacturing method.

混晶であることにより、立方晶本来の高い比誘電率を備えつつ、酸素欠損導入による六方晶由来の高い比誘電率の獲得および相対的に低温で焼成可能であることに基づいた粒径成長の抑制に由来する高い比誘電率の維持を期待できる新たな特性を備えた素材を得ることができる。   Grain growth based on the fact that it is a mixed crystal and has a high relative dielectric constant inherent to cubic crystals, while obtaining a high relative dielectric constant derived from hexagonal crystals by introducing oxygen vacancies and firing at a relatively low temperature. It is possible to obtain a material having new characteristics that can be expected to maintain a high relative dielectric constant derived from the suppression of.

請求項3に記載の発明は、請求項1または2に記載の誘電体材料製造方法により得られた結晶粉末をスパークプラズマ焼成し、誘電体セラミックスを得ることを特徴とする誘電体セラミックス製造方法である。   The invention according to claim 3 is a dielectric ceramic manufacturing method, characterized in that a dielectric ceramic is obtained by spark plasma firing of the crystal powder obtained by the dielectric material manufacturing method according to claim 1 or 2. is there.

なお、通常焼結であってもスパークプラズマであっても、結晶中のKやFを揮発させ、酸素欠損を積極的に導入したセラミックスを作製する場合などは、高温アニール(例えば900℃以上、場合により1000℃以上)としてもよい。同様のことは、ゾルゲル法の焼成にもいえる。   In the case of producing ceramics in which oxygen or deficiency is positively introduced by volatilizing K or F in the crystal, whether it is normal sintering or spark plasma, high-temperature annealing (for example, 900 ° C. or more, In some cases, the temperature may be 1000 ° C. or higher. The same can be said for sol-gel firing.

請求項4に記載の発明は、一般式がBa1−xTiO3−x(ただし、0.5≧x≧0.4)として表される組成を有する六方晶の誘電体材料である。
According to a fourth aspect of the invention, the general formula Ba 1-x K x TiO 3 -x F x ( however, 0.5 ≧ x 0.4) hexagonal having a composition represented as a dielectric material It is.

本発明によれば、焼成温度を低くして六方晶チタン酸バリウム系誘電体材料、または、立方晶型との混晶のチタン酸バリウム系誘電体材料を得ることができる。得られた誘電体材料を原料に用い、高比誘電率化や微粒化を図ることが可能となる。   According to the present invention, the firing temperature can be lowered to obtain a hexagonal barium titanate dielectric material or a cubic crystal mixed barium titanate dielectric material. By using the obtained dielectric material as a raw material, it becomes possible to achieve a high relative dielectric constant and atomization.

x=0.10と0.20の場合の各焼成温度によるXRDプロットである。It is an XRD plot by each calcination temperature in case of x = 0.10 and 0.20. x=0.30と0.40の場合の各焼成温度によるXRDプロットである。It is an XRD plot by each calcination temperature in case of x = 0.30 and 0.40. x=0.50と1.00の場合の各焼成温度によるXRDプロットである。It is an XRD plot by each calcination temperature in case of x = 0.50 and 1.00. KF置換率と焼成温度と積分強度比との関係を示した図である。It is the figure which showed the relationship between a KF substitution rate, a calcination temperature, and an integral intensity ratio. 焼成温度と積分強度比との関係、および、置換率xと積分強度比との関係を示した図である。It is the figure which showed the relationship between a calcination temperature and integral intensity ratio, and the relationship between the substitution rate x and integral intensity ratio. KF置換率と焼成温度Tと結晶型との関係を示した図である。It is the figure which showed the relationship between KF substitution rate, the calcination temperature T, and a crystal form. x=0.4、焼成温度650℃で得られた六方晶の試料をSPSにて1000℃で固め、酸素中1000℃でアニールした誘電体セラミックスの比誘電率の温度依存を示した図である。It is the figure which showed the temperature dependence of the dielectric constant of the dielectric ceramic which solidified the sample of the hexagonal crystal obtained by x = 0.4 and the calcination temperature of 650 degreeC with SPS at 1000 degreeC, and annealed at 1000 degreeC in oxygen. .

以下、本発明のチタン酸バリウムをゾルゲル法で作成する方法を詳細に説明する。
<使用試薬>
用いた試薬は以下の通りである。
・メタノール(脱水):関東化学社 純度99%/GC
・2−メトキシエタノール:キシダ化学社 純度99%以上/特級
・2−エトキシバリウム:高純度化学研究所 純度99.0%/特級
・チタン(IV)イソプロポキシド:キシダ化学社 99.0%以上/1級
・フッ化カリウム:キシダ化学社 99%/特級
Hereinafter, a method for producing the barium titanate of the present invention by a sol-gel method will be described in detail.
<Reagents used>
The reagents used are as follows.
・ Methanol (dehydration): Kanto Chemical Co., Inc., purity 99% / GC
・ 2-Methoxyethanol: Kishida Chemical Co., Ltd. purity 99% or higher / Special grade ・ 2-Ethoxybarium: High purity chemical laboratory, purity 99.0% / Special grade ・ Titanium (IV) isopropoxide: Kishida Chemical Co., Ltd. 99.0% or higher / Grade 1 / Potassium fluoride: Kishida Chemical Co. 99% / Special grade

<原料試薬量の決定>
原料試薬量の算出法は以下の通りとした。

Figure 0006212821
<Determination of amount of raw material reagent>
The calculation method of the amount of raw material reagent was as follows.
Figure 0006212821

実験では、x=0.10,0.20,0.30,0.40,0.50,1.00として秤量した。試薬量を次に示す。

Figure 0006212821
In the experiment, x = 0.10, 0.20, 0.30, 0.40, 0.50, and 1.00 were weighed. The reagent amount is shown below.
Figure 0006212821

<実験手順>
1.
まずメタノール(脱水)と2−メトキシエタノールを秤量し、トールビーカー内で混合した。次にグローボックス内でフッ化カリウム、2−エトキシバリウム、チタン(VI)イソプロポキシドを秤量し混合した。混合後、マグネットスターラで前駆体溶液を1時間撹拌した。なお、チタン(IV)イソプロポキシドは空気中の水分と容易に反応するため、窒素ガスを満たしたグローボックス内で秤量した。また、フッ化カリウムは潮解性物質であるため、200℃で48時間乾燥した。
<Experimental procedure>
1.
First, methanol (dehydrated) and 2-methoxyethanol were weighed and mixed in a tall beaker. Next, potassium fluoride, 2-ethoxybarium, and titanium (VI) isopropoxide were weighed and mixed in the glow box. After mixing, the precursor solution was stirred with a magnetic stirrer for 1 hour. Since titanium (IV) isopropoxide easily reacts with moisture in the air, it was weighed in a glow box filled with nitrogen gas. Further, since potassium fluoride is a deliquescent substance, it was dried at 200 ° C. for 48 hours.

2.
撹拌終了後の前駆体溶液をスターラに入れ、0℃で1時間冷却した。その後、ガラス棒で溶液を撹拌しながら蒸留水を噴霧し溶液全体をゲル化させた。この加水分解後、50℃で24時間エージングし、離液収縮させた。
2.
The precursor solution after completion of stirring was placed in a stirrer and cooled at 0 ° C. for 1 hour. Then, distilled water was sprayed while stirring the solution with a glass rod to gel the entire solution. After this hydrolysis, the solution was aged at 50 ° C. for 24 hours to cause liquid separation.

3.
前駆体ゲルをほぐし、乾燥器で90℃24時間乾燥した。乾燥させた前駆体ゲルを乳鉢で砕いた。その後、ジルコニア容器に前駆体ゲルを半量ずつ入れ、遊星ボールミル(GokinPlanetaring Planet M2-3F)で粉砕した。遊星ボールミルには、ジルコニアボール(φ=5mm10個、φ2mm20個)を入れ、回転速度300rpmにて8分間粉砕処理した。
3.
The precursor gel was loosened and dried in a dryer at 90 ° C. for 24 hours. The dried precursor gel was crushed in a mortar. Thereafter, half of the precursor gel was placed in a zirconia container and ground with a planetary ball mill (GokinPlanetaring Planet M2-3F). In a planetary ball mill, zirconia balls (10 pieces of φ = 5 mm, 20 pieces of φ2 mm) were put and pulverized for 8 minutes at a rotational speed of 300 rpm.

4.
粉砕した粉末をアルミナるつぼ(45mm×55mm)に入れ、電気炉で設定温度を、400℃、500℃、600℃、650℃、700℃、800℃、900℃、1000℃、1050℃としてそれぞれ12時間焼成した。温度は、室温から設定温度まで3.75時間かけて上昇させ、その後設定温度を12時間維持し、最後に設定温度から3.75時間かけて室温に戻した。
4).
The pulverized powder is put into an alumina crucible (45 mm × 55 mm), and the temperature is set to 400 ° C., 500 ° C., 600 ° C., 650 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., and 1050 ° C. in an electric furnace. Baked for hours. The temperature was raised from room temperature to the set temperature over 3.75 hours, then the set temperature was maintained for 12 hours, and finally returned to room temperature over 3.75 hours from the set temperature.

<実験結果>
xおよび焼成温度を変えた場合のX線回折測定結果を図1〜3に示す。なお、各図において、立方晶は2θ≒56.3°にピーク、六方晶は2θ≒55.7°に近接した2つのピークが表れるので、その部分拡大図も合わせて表示している。
<Experimental result>
The X-ray diffraction measurement results when x and the firing temperature are changed are shown in FIGS. In each figure, a cubic crystal has a peak at 2θ≈56.3 °, and a hexagonal crystal has two peaks close to 2θ≈55.7 °, and a partial enlarged view thereof is also shown.

X線回折測定の結果x=0.10では焼成温度800℃で六方晶型が出現し始める。x=0.20では600℃〜650℃,x=0.30,0.40においては、600℃、x=0.50では500℃で六方晶型が出現する。また、六方晶型出現温度から焼成温度を上昇させていくと、いずれの置換率の場合でも六方晶型の強度が大きくなり、立方晶型の強度が小さくなっていることが確認できた。   As a result of the X-ray diffraction measurement, x = 0.10, hexagonal crystals begin to appear at a firing temperature of 800 ° C. A hexagonal crystal appears at 600 ° C. to 650 ° C. at x = 0.20, 600 ° C. at x = 0.30, 0.40, and 500 ° C. at x = 0.50. It was also confirmed that when the firing temperature was increased from the hexagonal crystal appearance temperature, the hexagonal crystal strength increased and the cubic crystal strength decreased at any substitution rate.

図4には、KF置換率と焼成温度と積分強度比との関係を示した図である。すなわち、立方晶型の積分強度をI、六方晶型の積分強度をIとすると、積分強度比I_rはI_r=I/(I+I)とあらわされる。なお、立方晶型のピークは39°,45°,56°,66°付近を使用し、六方晶型のピークは38°,44°,55°,65°付近を使用し、4箇所の平均をとることとした。I_r=0は、立方晶型が100%であることを示し、I_r=1のときは六方晶型が100%であることを示す。また、焼成温度と積分強度比との関係、および、置換率xと積分強度比との関係を図5に示した。また、KF置換率と焼成温度Tと結晶型との関係を図6に示した。 FIG. 4 is a diagram showing the relationship among the KF substitution rate, the firing temperature, and the integrated intensity ratio. That is, when the cubic type integrated intensity is I c and the hexagonal type integrated intensity is I h , the integrated intensity ratio I_r is expressed as I_r = I h / (I c + I h ). Note that cubic type peaks are used around 39 °, 45 °, 56 °, and 66 °, and hexagonal type peaks are used around 38 °, 44 °, 55 °, and 65 °. It was decided to take. I_r = 0 indicates that the cubic type is 100%, and I_r = 1 indicates that the hexagonal type is 100%. FIG. 5 shows the relationship between the firing temperature and the integrated intensity ratio, and the relationship between the substitution rate x and the integrated intensity ratio. FIG. 6 shows the relationship between the KF substitution rate, the firing temperature T, and the crystal type.

積分強度比から、x≧0.4であって、焼成温度が600℃以上とすると六方晶型のチタン酸バリウムが得られ、0.4>x≧0.2であって、焼成温度が600℃以上とすると六方晶型と立方晶型との混晶のチタン酸バリウムが得られることが確認できた。また、混晶の存在比は、xと焼成温度を調整することにより可変であることも確認できた。   From the integrated intensity ratio, when x ≧ 0.4 and the firing temperature is 600 ° C. or higher, hexagonal barium titanate is obtained, and 0.4> x ≧ 0.2, and the firing temperature is 600. It was confirmed that barium titanate in a mixed crystal of hexagonal type and cubic type can be obtained when the temperature is higher than ℃. It was also confirmed that the abundance ratio of the mixed crystal was variable by adjusting x and the firing temperature.

<セラミックスの作製および誘電特性の評価>
x=0.4、焼成温度650℃で得られた六方晶の試料をSPS(Spark Plasma Sintering:放電プラズマ焼結法)にて1000℃で固め、酸素中1000℃でアニールした誘電体セラミックスを作製した。焼結度を算出したところほぼ100%であった。この試料の比誘電率の温度依存を図7に示す。比誘電率ε’の値は65程度であり、誘電損失tanδは0.01未満であった。これは、文献6の図7の六方晶BaTiOのセラミックスの値と同程度であり、温度依存の様子も低温から室温にかけて右肩下がりである点も同様である。すなわち、本発明ではKF部分置換型の六方晶BaTiOではあるものの、六方晶BaTiOセラミックスと同じ誘電性を持つセラミックスが形成されていることがわかった。換言すれば、本発明で得られる六方晶型のチタン酸バリウムまたはこれと立方晶型のチタン酸バリウムとの混晶は、誘電体材料であることが確認できた。
<Production of ceramics and evaluation of dielectric properties>
A hexagonal sample obtained at x = 0.4 and a firing temperature of 650 ° C. is solidified at 1000 ° C. by SPS (Spark Plasma Sintering), and a dielectric ceramic is produced by annealing at 1000 ° C. in oxygen. did. When the degree of sintering was calculated, it was almost 100%. The temperature dependence of the relative dielectric constant of this sample is shown in FIG. The value of the relative dielectric constant ε ′ was about 65, and the dielectric loss tan δ was less than 0.01. This is almost the same as the value of the hexagonal BaTiO 3 ceramics shown in FIG. 7 of Document 6, and the temperature dependency is also similar to the point that the temperature decreases from low temperature to room temperature. That is, in the present invention, it was found that a ceramic having the same dielectric property as the hexagonal BaTiO 3 ceramic was formed although it was a KF partial substitution type hexagonal BaTiO 3 . In other words, it was confirmed that the hexagonal barium titanate obtained by the present invention or a mixed crystal of this and cubic barium titanate is a dielectric material.

本発明によれば、従来は1460℃といった高温焼成でなければ六方晶が得られないところ、800℃以上も焼成温度を下げても六方晶型もしくは立方晶との混晶を得られる。結晶中のKやFは、高温曝露によって酸素欠損させることができ、比誘電率の向上等、六方晶型であることを利用した応用に資することができる。
According to the present invention, a hexagonal crystal cannot be obtained unless it is conventionally fired at a high temperature of 1460 ° C., but a hexagonal or cubic mixed crystal can be obtained even if the firing temperature is lowered to 800 ° C. or higher. K and F in the crystal can be oxygen deficient by high-temperature exposure, and can contribute to applications utilizing the hexagonal type, such as improvement of relative dielectric constant.

Claims (4)

BaアルコキシドとTiアルコキシドとKFとが混合されたゾル溶液から、ゾルゲル法によって前駆体ゲルを作製し、600℃以上で焼成することにより、
Ba1−xTiO3−x(ただし、0.5≧x≧0.4)
の組成を有する六方晶型のチタン酸バリウム系誘電体材料を得ることを特徴とする誘電体材料製造方法。
From a sol solution in which Ba alkoxide, Ti alkoxide and KF are mixed, a precursor gel is prepared by a sol-gel method, and calcined at 600 ° C. or higher.
Ba 1-x K x TiO 3−x F x (where 0.5 ≧ x ≧ 0.4)
A method for producing a dielectric material, comprising obtaining a hexagonal barium titanate dielectric material having a composition of:
BaアルコキシドとTiアルコキシドとKFとが混合されたゾル溶液から、ゾルゲル法によって前駆体ゲルを作製し、600℃以上で焼成することにより、
Ba1−xTiO3−x(ただし、0.4>x≧0.2)
の組成を有する、六方晶型と立方晶型との混晶のチタン酸バリウム系誘電体材料を得ることを特徴とする誘電体材料製造方法。
From a sol solution in which Ba alkoxide, Ti alkoxide and KF are mixed, a precursor gel is prepared by a sol-gel method, and calcined at 600 ° C. or higher.
Ba 1-x K x TiO 3 -x F x ( however, 0.4> x ≧ 0.2)
A method for producing a dielectric material comprising obtaining a mixed crystal barium titanate-based dielectric material having a composition of:
請求項1または2に記載の誘電体材料製造方法により得られた結晶粉末をスパークプラズマ焼成し、誘電体セラミックスを得ることを特徴とする誘電体セラミックス製造方法。   A dielectric ceramic manufacturing method comprising: spark plasma firing the crystal powder obtained by the dielectric material manufacturing method according to claim 1 or 2 to obtain a dielectric ceramic. 一般式が
Ba1−xTiO3−x(ただし、0.5≧x≧0.4)
として表される組成を有する六方晶の誘電体材料。

The general formula is Ba 1−x K x TiO 3−x F x (where 0.5 ≧ x ≧ 0.4)
A hexagonal dielectric material having a composition expressed as:

JP2013200787A 2013-09-27 2013-09-27 Method for producing hexagonal barium titanate dielectric material Active JP6212821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200787A JP6212821B2 (en) 2013-09-27 2013-09-27 Method for producing hexagonal barium titanate dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200787A JP6212821B2 (en) 2013-09-27 2013-09-27 Method for producing hexagonal barium titanate dielectric material

Publications (2)

Publication Number Publication Date
JP2015067462A JP2015067462A (en) 2015-04-13
JP6212821B2 true JP6212821B2 (en) 2017-10-18

Family

ID=52834524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200787A Active JP6212821B2 (en) 2013-09-27 2013-09-27 Method for producing hexagonal barium titanate dielectric material

Country Status (1)

Country Link
JP (1) JP6212821B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028248A (en) * 1958-11-28 1962-04-03 Nat Res Dev Dielectric ceramic compositions and the method of production thereof
JP5526422B2 (en) * 2006-05-09 2014-06-18 国立大学法人島根大学 Barium titanate crystal piezoelectric material containing KF
JP5273468B2 (en) * 2009-03-17 2013-08-28 国立大学法人島根大学 Method for producing barium titanate crystal
JP5883217B2 (en) * 2009-11-06 2016-03-09 Tdk株式会社 Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component

Also Published As

Publication number Publication date
JP2015067462A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
Zhang et al. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics
Hong et al. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics
TWI399767B (en) Dielectric ceramics and capacitors
JP5883217B2 (en) Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component
CN106631001A (en) Mg-Ca-Ti-based dielectric material for microwave multilayer ceramic chip capacitor (MLCC) and preparation method of Mg-Ca-Ti-based dielectric material
JP5779860B2 (en) Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, and electronic component
Deng et al. Excellent energy-storage performance in Bi0. 5Na0. 5TiO3-based lead-free composite ceramics via introducing pyrochlore phase Sm2Ti2O7
JP2010285336A (en) Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
Sayyadi-Shahraki et al. Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O–ZnO–B2O3 glass additive
Bafrooei et al. High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6–TiO2 nano powders
Li et al. Phase evolution, microstructure, thermal stability and conductivity behavior of (Ba1-xBi0. 67xK0. 33x)(Ti1-xBi0. 33xSn0. 67x) O3 solid solutions ceramics
JP2008156202A (en) Dielectric ceramic and capacitor
JP2012517955A (en) Sintered precursor powder for dielectric production and method for producing the same
JP2006306632A (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
JP2018190956A (en) Non-ferroelectric high dielectric body and method for manufacturing the same
Dewi et al. The effect of heating rate on BaZrxTi1-xO3 thin film for x= 0.4 and x= 0.6 as capacitors
JP6212821B2 (en) Method for producing hexagonal barium titanate dielectric material
Jiwei et al. Direct-current field dependence of dielectric properties in B 2 O 3-SiO 2 glass doped Ba 0.6 Sr 0.4 TiO 3 ceramics
Zhang et al. Realizing ultrahigh energy-storage density in Ca0. 5Sr0. 5TiO3-based linear ceramics over broad temperature range
Wu et al. Simultaneously achieving high permittivity and low loss in CuO/Nb2O5 substituted Li2O-TiO2-Nb2O5 low-temperature microwave dielectric ceramics
Xue et al. Colossal permittivity in Ta-doped SrTiO3 ceramics induced by interface effects and defect structure: An experimental and theoretical study
JP5289239B2 (en) Dielectric porcelain and capacitor
Balmuchu et al. Composition-driven (barium titanate based ceramics) pseudo-binary system for energy storage applications through ferroelectric studies
JP5978553B2 (en) Hexagonal barium titanate powder, method for producing the same, dielectric ceramic composition, electronic component and method for producing electronic component
JP2017088480A (en) Silver-substituted strontium niobate dielectric composition and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6212821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250