JP6207929B2 - Permanent magnet rotating electric machine and elevator apparatus using the same - Google Patents
Permanent magnet rotating electric machine and elevator apparatus using the same Download PDFInfo
- Publication number
- JP6207929B2 JP6207929B2 JP2013177478A JP2013177478A JP6207929B2 JP 6207929 B2 JP6207929 B2 JP 6207929B2 JP 2013177478 A JP2013177478 A JP 2013177478A JP 2013177478 A JP2013177478 A JP 2013177478A JP 6207929 B2 JP6207929 B2 JP 6207929B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- permanent magnet
- nonmagnetic
- nonmagnetic material
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B11/00—Main component parts of lifts in, or associated with, buildings or other structures
- B66B11/04—Driving gear ; Details thereof, e.g. seals
- B66B11/043—Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
本発明は、永久磁石回転電機およびそれを用いたエレベータ装置に関する。 The present invention relates to a permanent magnet rotating electric machine and an elevator apparatus using the same.
スポーク構造の回転子を有する多極の永久磁石回転電機は、回転子内部の漏れ磁束低減と材料の歩留まり向上のため、回転子鉄心が分割されている。そのため、分割された回転子鉄心を何らかの方法で固定する必要がある。回転子鉄心の固定方法の一つとして、回転子鉄心の内周側に非磁性材を配置し、回転子鉄心を非磁性材の外周部に嵌め合わせて固定する方法がある。回転子鉄心を非磁性材の外周部に嵌め合わせて固定する技術として、特許文献1などの技術が開示されている。また、特許文献1では、回転子鉄心の外周部近傍に穴が形成され、その穴に挿入されたバーを回転軸方向の両端に配置されたプレートと連結し、プレートとシャフトを径方向に連結して回転子鉄心を固定する技術が開示されている。 In a multi-pole permanent magnet rotary electric machine having a spoke-structured rotor, the rotor core is divided in order to reduce the leakage magnetic flux inside the rotor and improve the material yield. Therefore, it is necessary to fix the divided rotor core by some method. As one method of fixing the rotor core, there is a method in which a nonmagnetic material is disposed on the inner peripheral side of the rotor core, and the rotor core is fitted and fixed to the outer peripheral portion of the nonmagnetic material. As a technique for fitting and fixing the rotor core to the outer peripheral portion of the nonmagnetic material, a technique such as Patent Document 1 is disclosed. Moreover, in patent document 1, a hole is formed in the outer peripheral part vicinity of a rotor core, the bar inserted in the hole is connected with the plate arrange | positioned at the both ends of the rotating shaft direction, and a plate and a shaft are connected to radial direction. And the technique which fixes a rotor core is disclosed.
回転子鉄心が非磁性材の外周部に嵌め合わされている場合、個々の回転子鉄心の外周部にはトルク発生時に電磁応力が回転周方向に作用する。そして、回転子鉄心と非磁性材との嵌め合わせ部には曲げモーメントが作用する。特に、回転子鉄心が径方向に細長くなるような大径・多極の永久磁石回転電機では、曲げモーメントの腕が長く、電磁応力が大きいことから、嵌め合わせ部の塑性変形または座屈が問題となる。そのため、大径・多極などの永久磁石回転電機では、嵌め合わせ部の強度を確保することが重要である。 When the rotor core is fitted to the outer peripheral portion of the nonmagnetic material, electromagnetic stress acts on the outer peripheral portion of each rotor core in the rotational circumferential direction when torque is generated. A bending moment acts on the fitting portion between the rotor core and the nonmagnetic material. In particular, in large-diameter, multi-pole permanent magnet rotating electrical machines in which the rotor core is elongated in the radial direction, the bending moment arm is long and the electromagnetic stress is large, so there is a problem of plastic deformation or buckling of the mating part. It becomes. Therefore, it is important to secure the strength of the fitting portion in a permanent magnet rotating electrical machine having a large diameter and multiple poles.
特許文献1の技術では、回転子鉄心の外周側に作用するトルクを、回転子鉄心の外周部近傍の穴の中のバーと軸方向両端のプレートとを介してシャフトに伝達しているため、嵌め合わせ部には大きな曲げモーメントが作用しない。しかし、バーは、トルクの伝達に耐えられるだけの強度を確保しなければならないため、バーの幅を大きくする必要がある。その結果、バーの穴は回転子の磁束の流れを妨げて、トルクを低下させる。また、大径・多極の永久磁石回転電機では、回転子鉄心の回転周方向の寸法が大きく取れないことから、トルクの伝達に耐えられるバーの幅を確保することが難しい。 In the technique of Patent Document 1, torque acting on the outer peripheral side of the rotor core is transmitted to the shaft via the bar in the hole near the outer peripheral portion of the rotor core and the plates at both ends in the axial direction. A large bending moment does not act on the fitting portion. However, the bar needs to have a sufficient strength to withstand the transmission of torque, and thus the bar width needs to be increased. As a result, the hole in the bar hinders the flow of magnetic flux in the rotor and reduces the torque. Further, in a large-diameter, multi-pole permanent magnet rotating electric machine, it is difficult to secure a width of a bar that can withstand torque transmission because the rotor core cannot be made large in the circumferential direction.
以上より、特許文献1の技術は回転子鉄心の固定と永久磁石回転電機の性能を両立させる点に関して改良の余地がある。本発明は、永久磁石回転電機の性能を大幅に低下させることなく、回転子鉄心と非磁性材との嵌め合わせ部の強度を確保した永久磁石回転電機を提供することを目的とする。 From the above, the technique of Patent Document 1 has room for improvement in terms of achieving both the fixing of the rotor core and the performance of the permanent magnet rotating electric machine. An object of the present invention is to provide a permanent magnet rotating electrical machine that ensures the strength of a fitting portion between a rotor core and a nonmagnetic material without significantly reducing the performance of the permanent magnet rotating electrical machine.
上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are as follows, for example.
固定子と、固定子の径方向にエアギャップを介して対向する回転子と、回転子の内周側に配置された第一の非磁性材と、を有し、回転子は、回転周方向に複数に分割された回転子鉄心および複数に分割された永久磁石を有し、複数の回転子鉄心および複数の永久磁石が回転子の回転周方向に交互に放射状に配置され、複数の回転子鉄心は、第一の非磁性材の外周部で第一の非磁性材に嵌め合わされ、回転子鉄心は、回転軸方向に回転子鉄心を貫通する鉄心穴を有し、第一の非磁性材は、回転軸方向に第一の非磁性材を貫通する非磁性材穴を有し、回転子の回転軸方向の両側には、二つの第二の非磁性材が設けられ、二つの第二の非磁性材は、鉄心穴および非磁性材穴を通じて連結している永久磁石回転電機。 A stator, a rotor opposed to the stator in the radial direction via an air gap, and a first nonmagnetic material disposed on the inner peripheral side of the rotor; A plurality of rotor cores and a plurality of permanent magnets, wherein a plurality of rotor cores and a plurality of permanent magnets are alternately arranged radially in the circumferential direction of the rotor, and a plurality of rotors The iron core is fitted to the first nonmagnetic material at the outer periphery of the first nonmagnetic material, and the rotor iron core has an iron core hole penetrating the rotor iron core in the rotation axis direction. Has a non-magnetic material hole penetrating the first non-magnetic material in the rotation axis direction, and two second non-magnetic materials are provided on both sides of the rotor in the rotation axis direction. The non-magnetic material is a permanent magnet rotating electrical machine connected through an iron core hole and a non-magnetic material hole.
本発明により、永久磁石回転電機の性能を大幅に低下させることなく、回転子鉄心と非磁性材との嵌め合わせ部の強度を確保した永久磁石回転電機およびそれを用いたエレベータ装置を提供することができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, there is provided a permanent magnet rotating electrical machine that secures the strength of a fitting portion between a rotor core and a nonmagnetic material without significantly reducing the performance of the permanent magnet rotating electrical machine, and an elevator apparatus using the permanent magnet rotating electrical machine. Can do. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
まず、図1〜図5を用いて、本発明による第1の実施形態の永久磁石回転電機の構造について説明する。図1は、本発明の第1の実施形態における固定子と回転子の構成を示す回転軸方向の断面図である。図2は、図1の回転周方向の1/6領域の要部拡大図である。図3は、本発明の第1の実施形態における永久磁石回転電機の径方向の断面図である。図4は、本発明の回転子鉄心の鉄心穴がトルク性能に及ぼす影響の計算で使用する変数の定義を示す図である。図5は、図4の計算結果を示す図である。 First, the structure of the permanent magnet rotating electrical machine according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view in the direction of the rotation axis showing the configuration of the stator and the rotor in the first embodiment of the present invention. FIG. 2 is an enlarged view of a main part of a 1/6 region in the circumferential direction of FIG. FIG. 3 is a radial sectional view of the permanent magnet rotating electric machine according to the first embodiment of the present invention. FIG. 4 is a diagram showing definitions of variables used in calculation of the influence of the core hole of the rotor core of the present invention on the torque performance. FIG. 5 is a diagram illustrating the calculation result of FIG.
図1において、永久磁石回転電機1は、固定子2と回転子3と第二の非磁性材100とから構成される。 In FIG. 1, a permanent magnet rotating electrical machine 1 includes a stator 2, a rotor 3, and a second nonmagnetic material 100.
図2において、固定子2は、固定子鉄心21と固定子巻線22とを備える。固定子鉄心21は、打ち抜き型等により打ち抜いた電磁鋼板を回転軸方向に積層して構成される。固定子鉄心21は、固定子2の外周部に設けられて固定子2の磁路を構成する固定子コアバック23と、固定子コアバック23より固定子2の内周に向かって放射状に所定角度ピッチで延設される固定子突極24とから構成される。図2に示すように、隣り合った一対の固定子突極24間と固定子コアバック23とで構成される空間はスロット25であり、固定子巻線22を収納する空間である。ここで、各固定子突極24には、1極に1個の固定子巻線22を巻回するものとする。 In FIG. 2, the stator 2 includes a stator core 21 and a stator winding 22. The stator core 21 is configured by laminating electromagnetic steel plates punched by a punching die or the like in the rotation axis direction. The stator core 21 is provided on the outer peripheral portion of the stator 2 and constitutes a stator core back 23 that constitutes the magnetic path of the stator 2. The stator core 21 is radially predetermined from the stator core back 23 toward the inner periphery of the stator 2. The stator salient poles 24 extend at an angular pitch. As shown in FIG. 2, a space constituted by a pair of adjacent stator salient poles 24 and the stator core back 23 is a slot 25, and is a space for accommodating the stator winding 22. Here, it is assumed that one stator winding 22 is wound around each stator salient pole 24.
一方、回転子3は、固定子2の径方向にエアギャップ4を介して対向して配置されている。シャフト35が回転子3に連結されている。シャフト35の外周面で回転子3の内周側に第一の非磁性材36が配置されている。回転子3は、第一の非磁性材36の外周面に設けられ、回転周方向に複数に分割された回転子鉄心31と、回転周方向に複数に分割された永久磁石34と、で構成される。永久磁石34と回転子鉄心31はそれぞれ、回転子3の外周に向かって放射状に、回転周方向に交互に配置されている。回転子鉄心31は、例えば、打ち抜き型等により打ち抜いた電磁鋼板を回転軸方向に積層して構成される。回転子鉄心31は、図示のように、回転周方向に極ごとに分割され、回転子3の回転周方向に沿って所定角度ピッチで並べて設けられている。回転子鉄心31は、回転子3の磁路を構成する回転子磁極32として機能する。 On the other hand, the rotor 3 is disposed to face the stator 2 via the air gap 4 in the radial direction. A shaft 35 is connected to the rotor 3. A first nonmagnetic material 36 is disposed on the inner peripheral side of the rotor 3 on the outer peripheral surface of the shaft 35. The rotor 3 is provided on the outer peripheral surface of the first non-magnetic material 36, and includes a rotor core 31 that is divided into a plurality in the rotation circumferential direction and a permanent magnet 34 that is divided into a plurality in the rotation circumferential direction. Is done. The permanent magnets 34 and the rotor cores 31 are alternately arranged radially in the rotation circumferential direction toward the outer periphery of the rotor 3. The rotor core 31 is configured by, for example, laminating electromagnetic steel plates punched by a punching die or the like in the rotation axis direction. As shown in the figure, the rotor core 31 is divided into poles in the rotation circumferential direction, and is arranged side by side at a predetermined angular pitch along the rotation circumferential direction of the rotor 3. The rotor core 31 functions as a rotor magnetic pole 32 that constitutes the magnetic path of the rotor 3.
図示のように、隣り合った一対の回転子磁極32と第一の非磁性材36とで構成される空間、すなわち磁石挿入スペース33には、永久磁石34が収納されている。このときの永久磁石34の磁化は回転子3の径方向に対して直角の方向を向き、回転子磁極32が回転子3の回転周方向に沿ってNSNS・・・と交互になるように配置される。永久磁石34は、接着剤等によって磁石挿入スペース33に固着されている。 As shown in the figure, a permanent magnet 34 is accommodated in a space formed by a pair of adjacent rotor magnetic poles 32 and a first nonmagnetic material 36, that is, a magnet insertion space 33. At this time, the magnetization of the permanent magnet 34 is oriented in a direction perpendicular to the radial direction of the rotor 3, and the rotor magnetic poles 32 are arranged so as to alternate with NSNS... Along the rotation circumferential direction of the rotor 3. Is done. The permanent magnet 34 is fixed to the magnet insertion space 33 with an adhesive or the like.
回転子鉄心31は、第一の非磁性材36の外周部で第一の非磁性材36に嵌め合わされている。第一の非磁性材36は、シャフト35の外周面のキー溝(図示していない)で固定されている。第一の非磁性材36は、回転子磁極32の内周側の漏れ磁束を小さくする効果がある。回転子鉄心31に作用するトルクは、第一の非磁性材36を介してシャフト35へ伝達される。回転子鉄心31は、回転子3の回転軸方向に回転子鉄心31を貫通する鉄心穴37を有し、第一の非磁性材36は、回転子3の回転軸方向に第一の非磁性材36を貫通する非磁性材穴38を有する。本実施例において、回転子鉄心31の外周側に作用するトルクは,回転子鉄心31→回転子鉄心31と第一の非磁性材36との嵌め合わせ部→第一の非磁性材36→シャフト35の順に伝達する。本実施例の場合、トルクの主な伝達経路がバーではないため、従来に比べてバーを大きくしなくてよい。 The rotor core 31 is fitted to the first nonmagnetic material 36 at the outer periphery of the first nonmagnetic material 36. The first nonmagnetic material 36 is fixed by a keyway (not shown) on the outer peripheral surface of the shaft 35. The first nonmagnetic material 36 has an effect of reducing the leakage magnetic flux on the inner peripheral side of the rotor magnetic pole 32. Torque acting on the rotor core 31 is transmitted to the shaft 35 via the first nonmagnetic material 36. The rotor core 31 has an iron core hole 37 that penetrates the rotor core 31 in the direction of the rotation axis of the rotor 3, and the first nonmagnetic material 36 is a first nonmagnetic material in the direction of the rotation axis of the rotor 3. A non-magnetic material hole 38 that penetrates the material 36 is provided. In this embodiment, the torque acting on the outer peripheral side of the rotor core 31 is the rotor core 31 → the fitting portion between the rotor core 31 and the first nonmagnetic material 36 → the first nonmagnetic material 36 → the shaft. It transmits in order of 35. In the case of the present embodiment, the main transmission path of torque is not a bar, so that the bar need not be made larger than the conventional one.
図3において、固定子2は固定子コアバック23を介してフレーム5に回転軸方向に固定され、回転子3と連結したシャフト35はベアリング6を介して、フレーム5に取り付けられている。また、回転子3には回転軸方向に永久磁石回転電機1の制御を行うためのエンコーダ7が接続されている。シャフト35は、回転子3に連結されている。側板39はシャフト35に連結されている。二つの第二の非磁性材100の回転軸方向の片側に側板が配置されている。 In FIG. 3, the stator 2 is fixed to the frame 5 via the stator core back 23 in the rotation axis direction, and the shaft 35 connected to the rotor 3 is attached to the frame 5 via the bearing 6. The rotor 3 is connected to an encoder 7 for controlling the permanent magnet rotating electrical machine 1 in the direction of the rotation axis. The shaft 35 is connected to the rotor 3. The side plate 39 is connected to the shaft 35. Side plates are arranged on one side of the two second nonmagnetic materials 100 in the rotation axis direction.
回転子3の回転軸方向の両側には、二つの第二の非磁性材100が設けられ、二つの第二の非磁性材100は、鉄心穴37および非磁性材穴38を通じて回転軸方向に連結されている。 Two second nonmagnetic materials 100 are provided on both sides of the rotor 3 in the direction of the rotation axis, and the two second nonmagnetic materials 100 pass through the core hole 37 and the nonmagnetic material hole 38 in the direction of the rotation axis. It is connected.
以上の構成のように、回転子鉄心31の外周側を第二の非磁性材100で固定することで、回転子鉄心31の外周面に作用する電磁応力の回転周方向成分により発生する、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の曲げモーメントを弱めることができ、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の強度を確保できる。また、回転子鉄心31の電磁振動も抑える働きがあることから低騒音化につながる。さらに、回転子鉄心31にフェライト磁石を使用した場合、回転子鉄心31の振動抑制により、フェライト磁石の欠けを防止でき、エアギャップ中4に磁石の磁粉が飛び出すのを防ぐことができる。 As described above, by rotating the outer peripheral side of the rotor core 31 with the second nonmagnetic material 100, the rotation generated by the rotational circumferential component of the electromagnetic stress acting on the outer peripheral surface of the rotor core 31. The bending moment of the fitting portion between the core 31 and the first nonmagnetic material 36 can be weakened, and the strength of the fitting portion between the rotor core 31 and the first nonmagnetic material 36 can be secured. Moreover, since it has the function which also suppresses the electromagnetic vibration of the rotor core 31, it leads to a noise reduction. Further, when a ferrite magnet is used for the rotor core 31, the ferrite core can be prevented from being chipped by suppressing the vibration of the rotor core 31, and the magnetic powder of the magnet can be prevented from jumping into the air gap 4.
回転子鉄心31と第一の非磁性材36との嵌め合わせ部の径方向の深さが浅く、回転子鉄心31の内周側の先端形状が尖っている場合、回転子3の製造時に回転子鉄心31の位置決めが困難になり、回転子3の外径真円度が悪化し、低トルク脈動の実現が難しい。そこで、本実施例のように、回転子鉄心31と第一の非磁性材36との嵌め合わせ部をダブテール構造にすることで、回転子鉄心31の位置決めが容易になり、回転子3の外径真円度を向上できることから、低トルク脈動を実現できる。 When the rotor core 31 and the first nonmagnetic material 36 have a small depth in the radial direction and the tip shape on the inner peripheral side of the rotor core 31 is pointed, the rotor 3 rotates when the rotor 3 is manufactured. Positioning of the core 31 is difficult, the outer diameter roundness of the rotor 3 is deteriorated, and it is difficult to realize low torque pulsation. Therefore, as in the present embodiment, the rotor core 31 and the first nonmagnetic material 36 are fitted with a dovetail structure so that the rotor core 31 can be easily positioned and the rotor 3 can be positioned outside the rotor 3. Since the circularity can be improved, low torque pulsation can be realized.
図4と図5から、回転子鉄心31の鉄心穴37がトルク性能に及ぼす影響を示す。図示のように、回転子鉄心31の径方向の対称軸上において、隣り合った一対の永久磁石34の外周側と内周側の角を結んだ2本の線間の距離をa、永久磁石34の内周側の線から鉄心穴37の中心点までの距離をbとする。aを一定値とし、bを変化させたときのトルクの変化を辺要素有限要素法による磁界解析で計算した。 4 and 5 show the influence of the core hole 37 of the rotor core 31 on the torque performance. As shown in the drawing, on the axis of symmetry of the rotor core 31 in the radial direction, the distance between two lines connecting the outer peripheral side and inner peripheral corners of a pair of adjacent permanent magnets 34 is a, the permanent magnet The distance from the inner circumferential side line of 34 to the center point of the core hole 37 is b. The change in torque when a was constant and b was changed was calculated by magnetic field analysis using the side element finite element method.
本実施例では、発生トルクを数千Nmクラスと想定していることから、これに相当する電磁応力を想定し、鉄心穴37の大きさはM6、M8ボルト相当とした。図5では、M6ボルト相当の鉄心穴37を空けた場合のトルク低減率を実線、M8ボルト相当の鉄心穴37を空けた場合のトルク低減率を点線で示している。図中の結果から、トルクは鉄心穴37の位置が外周側にあるほど低下し、鉄心穴37が大きいほど低減率が大きいことがわかる。ここで、トルクの低減率を3%まで許容できるとした場合、M6ボルト相当の鉄心穴37の位置は95%(b/a×100の値で表記)程度まで、M8ボルト相当の鉄心穴37の位置は75%程度まで配置できる。鉄心穴37の位置が50%未満になると、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の曲げモーメントを弱める効果が小さくなることから、鉄心穴37の位置は50%以上95%以下、好ましくは70%以上95%以下、さらに好ましくは90%以上95%以下であることが望ましい。また、鉄心穴37の位置の範囲において、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の曲げモーメントを弱める効果が最も大きい鉄心穴37の位置95%では、M6ボルト相当の鉄心穴37の回転周方向の幅が、その鉄心穴37の中心を通る回転子鉄心31の回転周方向の幅の30%程度であることから、鉄心穴37の回転周方向幅は、その鉄心穴37の中心を通る回転子鉄心31の周方向の幅の35%以下、好ましくは、28%以上32%以下であることが望ましい。 In this embodiment, since the generated torque is assumed to be several thousand Nm class, the corresponding electromagnetic stress is assumed, and the size of the iron core hole 37 is set to be equivalent to M6 and M8 bolts. In FIG. 5, the torque reduction rate when the iron core hole 37 corresponding to M6 bolt is opened is shown by a solid line, and the torque reduction rate when the iron core hole 37 equivalent to M8 bolt is made is shown by a dotted line. From the results in the figure, it can be seen that the torque decreases as the position of the core hole 37 is on the outer peripheral side, and the reduction rate increases as the core hole 37 increases. Here, assuming that the torque reduction rate can be tolerated up to 3%, the position of the core hole 37 corresponding to M6 bolt is up to about 95% (expressed by a value of b / a × 100), and the core hole 37 corresponding to M8 bolt. The position of can be arranged up to about 75%. If the position of the core hole 37 is less than 50%, the effect of weakening the bending moment of the fitting portion between the rotor core 31 and the first nonmagnetic material 36 is reduced, so the position of the core hole 37 is 50% or more. It is desirable that it is 95% or less, preferably 70% or more and 95% or less, more preferably 90% or more and 95% or less. Further, in the range of the position of the core hole 37, at the position 95% of the core hole 37 that has the greatest effect of weakening the bending moment of the fitting portion between the rotor core 31 and the first nonmagnetic material 36, it corresponds to M6 bolt. Since the width in the rotational circumferential direction of the core hole 37 is about 30% of the width in the rotational circumferential direction of the rotor core 31 passing through the center of the core hole 37, the rotational circumferential width of the core hole 37 is the core of the core hole 37. It is desirable that the width of the rotor core 31 passing through the center of the hole 37 is 35% or less, preferably 28% or more and 32% or less of the circumferential width.
シャフト35の外周面にキー溝を作ることが困難な場合は、シャフト35と連結した側板39に二つの第二の非磁性材100を非磁性材穴を通じて連結させ、側板39を介してトルクをシャフト35へ伝達させてもよい。これにより、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の強度確保と、シャフト35へのトルク伝達を同時に行うことができる。 When it is difficult to make a keyway on the outer peripheral surface of the shaft 35, two second nonmagnetic materials 100 are connected to the side plate 39 connected to the shaft 35 through the nonmagnetic material holes, and torque is transmitted via the side plate 39. It may be transmitted to the shaft 35. As a result, it is possible to ensure the strength of the fitting portion between the rotor core 31 and the first nonmagnetic material 36 and transmit torque to the shaft 35 at the same time.
図6と図7を用いて、本発明による第2の実施形態の永久磁石回転電機の構造について説明する。図6は、本実施例における固定子と回転子の構成を示す回転軸方向の断面図である。図7は、本実施例における永久磁石回転電機の径方向の断面図である。 The structure of the permanent magnet rotating electric machine according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a cross-sectional view in the direction of the rotation axis showing the configuration of the stator and the rotor in the present embodiment. FIG. 7 is a cross-sectional view in the radial direction of the permanent magnet rotating electric machine according to the present embodiment.
図6と図7において、二つの第二の非磁性材100は、ピン110により回転子鉄心31の鉄心穴37を通じて回転軸方向に連結し、ボルト120により第一の非磁性材36の非磁性材穴38を通じて回転軸方向に連結し、側板39と連結している。 In FIG. 6 and FIG. 7, two second nonmagnetic materials 100 are connected in the direction of the rotation axis through the core hole 37 of the rotor core 31 by pins 110, and nonmagnetic of the first nonmagnetic material 36 by bolts 120. It is connected to the rotation axis direction through the material hole 38 and connected to the side plate 39.
本実施例のような多極の永久磁石回転電機では、多数の回転子鉄心31を有するため、鉄心穴37の数が多くなり、これらを全てボルト120で連結しようとすると、生産リードタイムが大幅に増えるといった問題がある。これに対して、ピン110を使用することで、連結作業を複数同時に行うことが可能になることから、生産リードタイムを短縮化できる。ピン110の形状は、図中の丸型だけでなく、多角形でもよい。ただし、長方形の場合は長辺の方向を径方向側に向けて配置することで、磁束の流れを極力妨げることなく、二つの第二の非磁性材100を連結することができる。 In the multi-pole permanent magnet rotating electric machine as in this embodiment, since it has a large number of rotor cores 31, the number of iron core holes 37 increases, and if all of them are connected by bolts 120, the production lead time is greatly increased. There is a problem of increasing. On the other hand, by using the pin 110, a plurality of connecting operations can be performed simultaneously, so that the production lead time can be shortened. The shape of the pin 110 is not limited to the round shape in the figure, but may be a polygonal shape. However, in the case of a rectangle, the two second non-magnetic members 100 can be connected without hindering the flow of magnetic flux as much as possible by arranging the direction of the long side toward the radial direction.
一方で、第一の非磁性材36の非磁性材穴38の数は鉄心穴37の数に比べて少ないことから、ボルト120を使用しても生産リードタイムが大幅に増えることはない。そこで、第一の非磁性材36の非磁性材穴38にボルト120を使用して、回転子鉄心31の保持とトルクの伝達を同時に行わせることが可能である。また、第二の非磁性材100から側板39にトルクを伝達させるためには、第一の非磁性材36と第二の非磁性材100と側板39の回転軸方向の締結力を確保する必要があることから、ピン110よりボルト120を使用した方が回転軸方向の締結力を確保でき、安定したトルク伝達が可能である。 On the other hand, since the number of nonmagnetic material holes 38 in the first nonmagnetic material 36 is smaller than the number of iron core holes 37, the production lead time does not increase significantly even if the bolt 120 is used. Therefore, it is possible to simultaneously hold the rotor core 31 and transmit torque by using the bolt 120 in the nonmagnetic material hole 38 of the first nonmagnetic material 36. Further, in order to transmit torque from the second nonmagnetic material 100 to the side plate 39, it is necessary to secure the fastening force in the rotation axis direction of the first nonmagnetic material 36, the second nonmagnetic material 100, and the side plate 39. Therefore, the use of the bolt 120 rather than the pin 110 can secure the fastening force in the direction of the rotation axis, and stable torque transmission is possible.
本実施例では、回転周方向の全周にわたって、鉄心穴37と非磁性材穴38にピン110とボルト120を使用した例を示したが、必ずしも全て使用する必要はない。回転子鉄心31と第一の非磁性材36との嵌め合わせ部の強度に余裕がある場合は、例えば、回転周方向に1個飛ばしでピン110とボルト120を使用する方法を採ってもよい。 In the present embodiment, the example in which the pin 110 and the bolt 120 are used for the iron core hole 37 and the nonmagnetic material hole 38 over the entire circumference in the rotation circumferential direction is shown, but it is not always necessary to use all of them. In the case where there is a margin in the strength of the fitting portion between the rotor core 31 and the first nonmagnetic material 36, for example, a method of using one pin 110 and bolt 120 by skipping one piece in the rotational circumferential direction may be employed. .
図8〜図10を用いて、本発明の第3の実施形態における永久磁石回転電機を説明する。図8は、本発明の第3実施形態における第二の非磁性材の第1変形例の構成を示す回転軸方向の断面図である。図9は、本発明の第3実施形態における第二の非磁性材の第2変形例の構成を示す回転軸方向の断面図である。図10は、本発明の第3実施形態における第二の非磁性材の第3変形例の構成を示す回転軸方向の断面図である。 A permanent magnet rotating electric machine according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view in the direction of the rotation axis showing the configuration of the first modification of the second nonmagnetic material in the third embodiment of the present invention. FIG. 9 is a cross-sectional view in the rotation axis direction showing the configuration of the second modification of the second nonmagnetic material in the third embodiment of the present invention. FIG. 10 is a cross-sectional view in the direction of the rotation axis showing the configuration of the third modification of the second nonmagnetic material in the third embodiment of the present invention.
図8において、二つの第二の非磁性材100は、回転周方向に分割されており、分割された第二の非磁性材100のそれぞれに、第一の非磁性材36の非磁性材穴38を通じて連結する部分が2箇所ある。 In FIG. 8, two second nonmagnetic materials 100 are divided in the circumferential direction of rotation, and each of the divided second nonmagnetic materials 100 has a nonmagnetic material hole of the first nonmagnetic material 36. There are two parts connected through 38.
第二の非磁性材100を回転周方向に分割することで材料の歩留まり向上につながる。また、分割された第二の非磁性材100において、第一の非磁性材36の非磁性材穴38を通じて連結する部分を2箇所以上にすることで、第二の非磁性材100の内周側で発生する電磁振動を低減することができ、低騒音化につながる。 Dividing the second nonmagnetic material 100 in the rotational circumferential direction leads to an improvement in material yield. Further, in the divided second nonmagnetic material 100, the inner periphery of the second nonmagnetic material 100 is formed by providing two or more portions to be connected through the nonmagnetic material holes 38 of the first nonmagnetic material 36. Electromagnetic vibration generated on the side can be reduced, leading to lower noise.
第二の非磁性材100の材料歩留まりのさらなる向上策として、図9と図10の構成がある。図9では、分割された第二の非磁性材100には、回転軸方向において鉄心穴37および非磁性材穴38を覆う形状の第二一の非磁性材300と、回転軸方向において鉄心穴37を覆い、非磁性材穴38を露出させる形状の第二二の非磁性材310の2種類がある。換言すれば、第二二の非磁性材310は、鉄心穴37付近だけを覆う形状をしている。2種類の第二一の非磁性材300、第二二の非磁性材310を回転周方向に交互に配置し、第二一の非磁性材300は鉄心穴37および非磁性材穴38を通じて連結し、第二二の非磁性材310は鉄心穴37だけを通じて連結している。 As a further measure for improving the material yield of the second nonmagnetic material 100, there are configurations shown in FIGS. In FIG. 9, the divided second nonmagnetic material 100 includes a second nonmagnetic material 300 having a shape covering the core hole 37 and the nonmagnetic material hole 38 in the rotation axis direction, and an iron core hole in the rotation axis direction. There are two types of second non-magnetic material 310 that covers 37 and exposes the non-magnetic material hole 38. In other words, the second nonmagnetic material 310 has a shape that covers only the vicinity of the core hole 37. Two types of second first nonmagnetic material 300 and second second nonmagnetic material 310 are alternately arranged in the circumferential direction of rotation, and the second first nonmagnetic material 300 is connected through the core hole 37 and the nonmagnetic material hole 38. The second nonmagnetic material 310 is connected only through the core hole 37.
図10では、第二二の非磁性材310の方が第二一の非磁性材300より多い構成である。これにより、第二の非磁性材100の使用量を削減できる。 In FIG. 10, the second non-magnetic material 310 has a greater number of configurations than the second non-magnetic material 300. Thereby, the usage-amount of the 2nd nonmagnetic material 100 can be reduced.
第二二の非磁性材310には、回転周方向に力が作用することから、回転周方向に隣り合う、第二二の非磁性材310を経由して、第二一の非磁性材300まで力を伝えることで、第二二の非磁性材310に連結された回転子鉄心31と第一の非磁性材36との嵌め合わせ部の強度を確保することができる。 Since a force acts on the second nonmagnetic material 310 in the rotational circumferential direction, the second first nonmagnetic material 300 passes through the second nonmagnetic material 310 adjacent to the rotational circumferential direction. By transmitting the force up to the above, the strength of the fitting portion between the rotor core 31 connected to the second nonmagnetic material 310 and the first nonmagnetic material 36 can be ensured.
図9と図10の構成の場合、回転子3のアンバランス・ウェイトにより、回転子3の振動が問題になる。そこで、二つの第二の非磁性材100の片側をある角度だけ回転周方向にずらして連結することで回転子3のアンバランス・ウェイトが分散され、回転子3の振動を防ぐことができる。図9の場合は、二つの第二の非磁性材100の片側のみを60度だけ回転周方向にずらして連結すればよい。図10の場合は、二つの第二の非磁性材100の片側のみを90度だけ回転周方向にずらして連結すればよい。 9 and 10, the vibration of the rotor 3 becomes a problem due to the unbalanced weight of the rotor 3. Therefore, the unbalanced weights of the rotor 3 are dispersed by connecting one side of the two second nonmagnetic materials 100 while being shifted in the rotational circumferential direction by a certain angle, and vibration of the rotor 3 can be prevented. In the case of FIG. 9, only one side of the two second nonmagnetic materials 100 may be shifted in the rotational circumferential direction by 60 degrees and connected. In the case of FIG. 10, only one side of the two second nonmagnetic materials 100 may be shifted by 90 degrees in the rotational circumferential direction.
図11を用いて、本発明の一実施形態における永久磁石回転電機を備えたエレベータ装置の構造について説明する。図11は、本発明の一実施形態における永久磁石回転電機を備えたエレベータ装置の構成を示す径方向の断面図である。 The structure of the elevator apparatus provided with the permanent magnet rotating electric machine in one embodiment of the present invention will be described with reference to FIG. FIG. 11 is a radial cross-sectional view showing a configuration of an elevator apparatus including a permanent magnet rotating electric machine according to an embodiment of the present invention.
図11において、エレベータ装置400は、永久磁石回転電機1、回転体201、ブレーキ202、ブレーキドラム203、シーブ204で構成される。図11において、固定子2は回転軸方向に固定子コアバック23を介してフレーム5にボルト121で固定され、回転子3と連結したシャフト35はベアリング6を介してフレーム5に取り付けられている。また、回転子3には回転軸方向に永久磁石回転電機1の制御を行うためのエンコーダ7が接続されている。回転体201は外周側に配置されたブレーキ202のシューを受けるためのブレーキドラム203と、ロープに力を伝達するためのシーブ204から構成される。フレーム5は昇降路内のマシンベース、または建屋の最上階の機械室のマシンベースに固定される。 In FIG. 11, the elevator apparatus 400 includes a permanent magnet rotating electrical machine 1, a rotating body 201, a brake 202, a brake drum 203, and a sheave 204. In FIG. 11, the stator 2 is fixed to the frame 5 with bolts 121 via the stator core back 23 in the rotation axis direction, and the shaft 35 connected to the rotor 3 is attached to the frame 5 via the bearing 6. . The rotor 3 is connected to an encoder 7 for controlling the permanent magnet rotating electrical machine 1 in the direction of the rotation axis. The rotating body 201 includes a brake drum 203 for receiving a shoe of a brake 202 disposed on the outer peripheral side, and a sheave 204 for transmitting a force to the rope. The frame 5 is fixed to the machine base in the hoistway or the machine base of the machine room on the top floor of the building.
本発明の一実施形態における永久磁石回転電機1を使用することで、回転子鉄心31と第一の非磁性材36との嵌め合わせ部の強度を確保でき、大きなトルクを発生させるエレベータ装置において、高信頼性のエレベータ装置400を提供できる。また、低振動・低騒音のエレベータ装置400を提供できる。さらに、本発明の一実施形態における永久磁石回転電機1では、フェライト磁石を使用してもネオジム磁石並みの性能を得ることができることから、資源セキュリティーの影響を受けにくいエレベータ装置400を提供できる。 In the elevator apparatus that can secure the strength of the fitting portion between the rotor core 31 and the first nonmagnetic material 36 by using the permanent magnet rotating electric machine 1 in one embodiment of the present invention, and generates a large torque, A highly reliable elevator apparatus 400 can be provided. Moreover, the elevator apparatus 400 with low vibration and low noise can be provided. Furthermore, in the permanent magnet rotating electrical machine 1 according to one embodiment of the present invention, the performance equivalent to that of a neodymium magnet can be obtained even when a ferrite magnet is used, and therefore, an elevator apparatus 400 that is not easily affected by resource security can be provided.
以上では、本発明の永久磁石回転電機と備えたエレベータ装置について示したが、本発明は、高トルクと低トルク脈動が要求されるサーボや電動パワー・ステアリングの永久磁石回転電機への利用が可能である。 In the above, an elevator apparatus equipped with the permanent magnet rotating electric machine of the present invention has been shown. However, the present invention can be applied to a permanent magnet rotating electric machine for servo and electric power steering that require high torque and low torque pulsation. It is.
1:永久磁石回転電機
2:固定子
3:回転子
4:エアギャップ
5:フレーム
6:ベアリング
7:エンコーダ
21:固定子鉄心
22:固定子巻線
23:固定子コアバック
24:固定子突極
25:スロット
31:回転子鉄心
32:回転子磁極
33:磁石挿入スペース
34:永久磁石
35:シャフト
36:第一の非磁性材
37:鉄心穴
38:非磁性材穴
39:側板
100:第二の非磁性材
110:ピン
120、121:ボルト
201:回転体
202:ブレーキ
203:ブレーキドラム
204:シーブ
300:第二一の非磁性材
310:第二二の非磁性材
400:エレベータ装置
1: Permanent magnet rotating electric machine 2: Stator 3: Rotor 4: Air gap 5: Frame 6: Bearing 7: Encoder 21: Stator core 22: Stator winding 23: Stator core back 24: Stator salient pole 25: Slot 31: Rotor core 32: Rotor magnetic pole 33: Magnet insertion space 34: Permanent magnet 35: Shaft 36: First nonmagnetic material 37: Iron core hole 38: Nonmagnetic material hole 39: Side plate 100: Second Nonmagnetic material 110: Pin 120, 121: Bolt 201: Rotating body 202: Brake 203: Brake drum 204: Sheave 300: Second nonmagnetic material 310: Second nonmagnetic material 400: Elevator device
Claims (11)
前記固定子の径方向にエアギャップを介して対向する回転子と、
前記回転子の内周側に配置された第一の非磁性材と、を有し、
前記回転子は、回転周方向に複数に分割された回転子鉄心および複数に分割された永久磁石を有し、
前記複数の回転子鉄心および前記複数の永久磁石が回転子の回転周方向に交互に放射状に配置され、
前記複数の回転子鉄心は、前記第一の非磁性材の外周部で前記第一の非磁性材に嵌め合わされ、
前記回転子鉄心は、回転軸方向に前記回転子鉄心を貫通する鉄心穴を有し、
前記第一の非磁性材は、回転軸方向に前記第一の非磁性材を貫通する非磁性材穴を有し、
前記回転子の回転軸方向の両側には、二つの第二の非磁性材が設けられ、
前記二つの第二の非磁性材は、前記鉄心穴および前記非磁性材穴を通じて連結しており、
前記回転子と連結したシャフトと、
前記シャフトと連結した側板と、を有し、
前記二つの第二の非磁性材の回転軸方向の片側に前記側板が配置され、
前記二つの第二の非磁性材が、前記非磁性材穴を通じて回転軸方向に前記側板と連結している永久磁石回転電機。 A stator,
A rotor facing the stator in the radial direction through an air gap;
A first non-magnetic material disposed on the inner peripheral side of the rotor,
The rotor has a rotor core divided into a plurality of parts in the circumferential direction of rotation and a permanent magnet divided into a plurality of parts.
The plurality of rotor cores and the plurality of permanent magnets are alternately arranged radially in the rotation circumferential direction of the rotor,
The plurality of rotor cores are fitted to the first nonmagnetic material at the outer periphery of the first nonmagnetic material,
The rotor core has an iron core hole penetrating the rotor core in the rotation axis direction;
The first non-magnetic material has a non-magnetic material hole penetrating the first non-magnetic material in the rotation axis direction,
Two second nonmagnetic materials are provided on both sides of the rotor in the rotation axis direction,
The two second nonmagnetic materials are connected through the iron core hole and the nonmagnetic material hole ,
A shaft coupled to the rotor;
A side plate connected to the shaft,
The side plate is arranged on one side of the rotation axis direction of the two second nonmagnetic materials,
The permanent magnet rotating electrical machine in which the two second nonmagnetic materials are connected to the side plate in the rotation axis direction through the nonmagnetic material holes .
前記回転子鉄心が、ダブテールにより前記第一の非磁性材の外周部に嵌め合わされている永久磁石回転電機。 In claim 1,
A permanent magnet rotating electrical machine in which the rotor core is fitted to the outer peripheral portion of the first nonmagnetic material by a dovetail.
前記鉄心穴の回転周方向の幅が、前記鉄心穴の中心を通る前記回転子鉄心の回転周方向幅の35%以下である永久磁石回転電機。 In claim 1 or 2,
A permanent magnet rotating electrical machine in which a width in a rotation circumferential direction of the iron core hole is 35% or less of a rotation circumferential direction width of the rotor core passing through a center of the iron core hole.
前記回転子鉄心の径方向の対称軸上において、
隣り合った一対の前記永久磁石の外周側と内周側の角を結んだ2本の線間の距離をa、
前記永久磁石の内周側の線から前記鉄心穴の中心点までの距離をbとしたとき、
b/aが50%以上95%以下である永久磁石回転電機。 In any one of Claims 1 thru | or 3,
On the axis of symmetry of the rotor core in the radial direction,
The distance between two lines connecting the outer peripheral side and inner peripheral side corners of a pair of adjacent permanent magnets is a,
When the distance from the inner peripheral side line of the permanent magnet to the center point of the core hole is b,
A permanent magnet rotating electrical machine in which b / a is 50% or more and 95% or less.
前記二つの第二の非磁性材が、ピンにより、前記鉄心穴を通じて回転軸方向に連結し、
前記二つの第二の非磁性材が、ボルトにより、前記非磁性材穴を通じて回転軸方向に前記側板と連結している永久磁石回転電機。 In any one of Claims 1 thru | or 4,
The two second non-magnetic materials are connected in a rotation axis direction through the iron core hole by a pin,
The permanent magnet rotating electric machine in which the two second nonmagnetic materials are connected to the side plate in the rotation axis direction through the nonmagnetic material holes by bolts .
前記二つの第二の非磁性材が、回転周方向に分割されている永久磁石回転電機。 In any one of Claims 1 thru | or 5,
A permanent magnet rotating electrical machine in which the two second nonmagnetic materials are divided in the rotational circumferential direction .
前記分割された二つの第二の非磁性材には、前記非磁性材穴を通じて連結する部分が2箇所以上ある永久磁石回転電機。 In claim 6 ,
A permanent magnet rotating electrical machine in which the two divided second nonmagnetic materials have two or more portions connected through the nonmagnetic material holes .
前記分割された二つの第二の非磁性材には、回転軸方向において前記鉄心穴および前記非磁性材穴を覆う形状の第二一の非磁性材と、回転軸方向において前記鉄心穴を覆い、前
記非磁性材穴を露出させる形状の第二二の非磁性材と、があり、
第二一の非磁性材は、前記鉄心穴および前記非磁性材穴を通じて連結し、
第二二の非磁性材は、前記鉄心穴を通じて連結している永久磁石回転電機。 In claim 6 or 7 ,
The two divided second nonmagnetic materials include a first nonmagnetic material having a shape covering the core hole and the nonmagnetic material hole in the rotation axis direction, and the iron core hole in the rotation axis direction. ,Previous
There is a second nonmagnetic material having a shape that exposes the nonmagnetic material hole,
The second non-magnetic material is connected through the iron core hole and the non-magnetic material hole,
The second non-magnetic material is a permanent magnet rotating electrical machine connected through the iron core hole .
前記第二二の非磁性材の方が前記第二一の非磁性材より多い永久磁石回転電機。 In claim 8 ,
The permanent magnet rotating electrical machine in which the second non-magnetic material is more than the second non-magnetic material .
前記二つの第二の非磁性材のいずれかが回転周方向にずれて、前記二つの第二の非磁性材が連結している永久磁石回転電機。 In claim 8 or 9 ,
A permanent magnet rotating electrical machine in which one of the two second nonmagnetic materials is displaced in the rotational circumferential direction and the two second nonmagnetic materials are connected .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177478A JP6207929B2 (en) | 2013-08-29 | 2013-08-29 | Permanent magnet rotating electric machine and elevator apparatus using the same |
CN201410382558.0A CN104426314B (en) | 2013-08-29 | 2014-08-05 | Rotary type permanent-magnet motor and use its elevator gear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177478A JP6207929B2 (en) | 2013-08-29 | 2013-08-29 | Permanent magnet rotating electric machine and elevator apparatus using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015047023A JP2015047023A (en) | 2015-03-12 |
JP6207929B2 true JP6207929B2 (en) | 2017-10-04 |
Family
ID=52672093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013177478A Expired - Fee Related JP6207929B2 (en) | 2013-08-29 | 2013-08-29 | Permanent magnet rotating electric machine and elevator apparatus using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6207929B2 (en) |
CN (1) | CN104426314B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017046386A (en) * | 2015-08-24 | 2017-03-02 | 株式会社富士通ゼネラル | Permanent magnet electric motor |
CN106602822B (en) * | 2016-11-01 | 2019-03-12 | 东南大学 | Rotor permanent magnet type magnetic flux switches hub motor |
CN108649720B (en) * | 2018-07-13 | 2024-08-20 | 张喆 | Mute self-generating generator |
CN110299811A (en) * | 2019-06-13 | 2019-10-01 | 日立电梯电机(广州)有限公司 | Driving device and elevator door-motor system |
KR102359673B1 (en) * | 2020-03-16 | 2022-02-09 | 현대엘리베이터주식회사 | Magnetic flux leakage reduction permanent magnet synchronous motor |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2655784B1 (en) * | 1989-12-08 | 1992-01-24 | Alsthom Gec | FLOW CONCENTRATION MAGNET MOTOR. |
JPH05207690A (en) * | 1992-01-27 | 1993-08-13 | Fanuc Ltd | Rotor for synchronous motor |
JP2000069709A (en) * | 1998-08-21 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Permanent magnet rotor |
CN1233876A (en) * | 1998-12-09 | 1999-11-03 | 宁波东方通用电气公司西安分公司 | Brushless DC electric lift motor structure having rare-earth permanent-manget |
CN2376129Y (en) * | 1999-05-14 | 2000-04-26 | 路子明 | Rotor structure of permasyn motor |
JP2003134768A (en) * | 2001-10-19 | 2003-05-09 | Meidensha Corp | Flat motor and elevator comprising it |
JP2004104986A (en) * | 2002-07-16 | 2004-04-02 | Japan Servo Co Ltd | Permanent magnet type rotary electric machine |
CN2618358Y (en) * | 2003-05-19 | 2004-05-26 | 黑龙江永磁机电设备制造有限公司 | High-efficient rare earth permanent magnetic synchronous motor |
JP2006158008A (en) * | 2004-11-25 | 2006-06-15 | Asmo Co Ltd | Permanent magnet embedded rotor and dynamo-electric machine |
JP2007068310A (en) * | 2005-08-30 | 2007-03-15 | Aisin Seiki Co Ltd | Laminated winding core for rotary machine |
JP2008178253A (en) * | 2007-01-19 | 2008-07-31 | Fanuc Ltd | Method of manufacturing rotor of electric motor, and the electric motor |
JP5334529B2 (en) * | 2008-10-30 | 2013-11-06 | 株式会社日立産機システム | Permanent magnet motor |
JP5295023B2 (en) * | 2009-07-21 | 2013-09-18 | 三菱電機株式会社 | Electric motor |
US8593029B2 (en) * | 2009-09-30 | 2013-11-26 | Mitsubishi Electric Corporation | Lundell type rotating machine |
CN102792560B (en) * | 2010-03-15 | 2016-05-25 | 株式会社安川电机 | Permanent magnet rotary electric machine |
JP5423738B2 (en) * | 2011-08-03 | 2014-02-19 | 株式会社安川電機 | Rotating electric machine |
CN102957237B (en) * | 2011-08-22 | 2017-02-01 | 德昌电机(深圳)有限公司 | Brushless motor and motor rotor thereof |
CN202309282U (en) * | 2011-11-09 | 2012-07-04 | 大洋电机新动力科技有限公司 | Embedded permanent magnet synchronous rotor assembly |
CN103107665A (en) * | 2011-11-11 | 2013-05-15 | 德昌电机(深圳)有限公司 | Permanent magnet motor and electric tool and mower utilizing the same |
CN202374067U (en) * | 2011-11-21 | 2012-08-08 | 珠海格力电器股份有限公司 | Permanent magnet rotor and permanent magnet motor |
CN202586541U (en) * | 2012-03-14 | 2012-12-05 | 深圳市艾飞盛风能科技有限公司 | Permanent magnetic generator and rotor structure of the same |
CN202798410U (en) * | 2012-09-05 | 2013-03-13 | 四川阿克拉斯电动车有限公司 | Tangential magnetic field brushless direct current motor rotor structure with magnetic shield |
-
2013
- 2013-08-29 JP JP2013177478A patent/JP6207929B2/en not_active Expired - Fee Related
-
2014
- 2014-08-05 CN CN201410382558.0A patent/CN104426314B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104426314B (en) | 2017-09-29 |
JP2015047023A (en) | 2015-03-12 |
CN104426314A (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6207929B2 (en) | Permanent magnet rotating electric machine and elevator apparatus using the same | |
US9806569B2 (en) | Hybrid excitation rotating electrical machine | |
WO2014091579A1 (en) | Rotor for motor | |
JP2013021776A (en) | Rotary electric machine | |
US10714994B2 (en) | Rotor and rotary electric machine | |
US9793768B2 (en) | Rotor and rotary electric machine having the same | |
US9698634B2 (en) | Stator core and permanent magnet motor | |
JP2010093906A (en) | Permanent magnet type rotating machine | |
JPWO2018131393A1 (en) | Rotor for rotating electrical machines | |
US20170047801A1 (en) | Permanent-magnet-embedded motor | |
JP6748852B2 (en) | Brushless motor | |
JP2016163421A (en) | Permanent magnet rotary electric machine | |
JP2018198534A (en) | Rotary electric machine | |
JP2013021775A (en) | Rotary electric machine | |
JP6877242B2 (en) | Stator of rotary electric machine and its manufacturing method | |
JP2015208184A (en) | Rotor for rotary electric machine | |
JP2013236418A (en) | Rotary electric machine | |
JP5954279B2 (en) | Rotating electric machine | |
JP2011172359A (en) | Split rotor and electric motor | |
JP6164506B2 (en) | Rotating electric machine | |
JP2015050803A (en) | Rotary electric machine | |
JP7070316B2 (en) | Electric motor | |
JP2013183536A (en) | Electric motor | |
JP5621608B2 (en) | Outer rotor type motor | |
JP6165622B2 (en) | Rotating electric machine rotor and rotating electric machine equipped with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160725 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6207929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |